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In this paper we have considered the 3D Ising model perturbed with the energy operator coupled with a
nonuniform harmonic potential acting as a trap, showing that this system satisfies the trap-size scaling
behavior. Eventually, we have computed the correlators hσðzÞσð0Þi, hϵðzÞϵð0Þi and hσðzÞϵð0Þi near the
critical point by means of conformal perturbation theory. Combining this result with Monte Carlo
simulations, we have been able to estimate the OPE coefficientsCσ

σϵ,Cϵ
σσ andCϵ

ϵϵ, finding a good agreement
with the values obtained in [G. Costagliola, Phys. Rev. D 93, 066008 (2016), F. Kos, D. Poland,
D. Simmons-Duffin, and A. Vichi, J. High Energy Phys. 08 (2016) 036].
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I. INTRODUCTION

In recent years, conformal data for several conformal field
theories (CFTs) have been determined thanks to the con-
formal bootstrap program [1–5]. In addition to that, combin-
ing this numerical high-precision technique to analytical
methods developed in the framework of conformal pertur-
bation theory (CPT) [6–8], it is possible to determine the
behavior of the off-critical correlators of many different
systems. This approach has been applied successfully to the
well-known 3D Ising model, by adding perturbations
proportional to the spin and the energy operator [9,10].
Starting from a slightly different perspective, CPT can

be also combined to Monte Carlo simulations to get insight
both on the behavior of the correlators outside the critical
point and on the CFTs data at the critical point. In [11], the
author followed this approach to study the Ising model
perturbed by a confining potential coupled to the spin
operator. This model is particularly interesting because the
behavior of the 1-point expectation values can be argued
just by applying simple renormalization group arguments
[12–14], and depends only on the trap potential parameters
(trap size scaling (TSS) behavior). Moreover, many experi-
ments involving Bose-Einstein condensates and cold atoms
show a critical behavior even in the presence of a trapping
potential [15,16].

In this paper we pursue further this program, studying
the Ising model perturbed by a trapping potential coupled to
the energy operator in 3 dimensions. There are many
reasons to investigate this system. From a purely theoretical
point of view, one can wonder if the TSS argument still
holds if the trapping potential is coupled to the energy
operator instead of the spin operator. Moreover, studying
the effects of the energy-trapping potential on the 2-point
functions out of criticality provides an alternative method to
estimate the CFT data at the critical point.
Finally, the study of the correlation functions out of the

critical point is relevant also from the experimental point of
view. Indeed, a trapping potential coupled to the energy
operator can be effectively seen as a perturbation of the
system by a non-uniform thermal gradient, a thermal trap.
This setup might be implemented in real system experi-
ments and the knowledge of the correlators is fundamental
in order to understand the behavior of the observables of
this system out of the critical point.

II. THE MODEL AND THE TRAP SIZE SCALING

We consider the Ising model perturbed by a confining
potential coupled to the energy operator:

S ¼ Scft þ
Z

ddzUðzÞϵðzÞ; ð2:1Þ

where Scft is the d-dimensional Ising model action, z is the
radial coordinate, and UðrÞ ¼ ρjzjp is the trap potential. In
this paper we will consider p ≥ 2, focusing mostly on the
harmonic potential case p ¼ 2. The parameter ρ is the trap
parameter, which is related to the characteristic trap length
l−p ≡ ρ defined in [12], and determines the shape of the
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trap. Here we will study the large-trap case, namely the
small ρ regime, where the CPT approach can be safely
applied.

A. The one-point functions

As shown in [12], where the trap size scaling (TSS)
ansatz has been introduced, the behavior of the 1-point
function can be extracted using renormalization group
arguments. In fact, it can be shown that near the critical
point the one-point functions for spin and energy, defined
in the center of the trap (z ¼ 0), are

hσð0Þiρ ¼ Aσρ
θΔσ ; hϵð0Þiρ ¼ Aϵρ

θΔϵ ; ð2:2Þ

where Δσ , Δϵ are the scaling dimensions of the operators σ
and ϵ respectively, Aσ and Aϵ are nonuniversal constants
and the exponent θ is the characteristic trap exponent. This
exponent can be determined using scaling arguments if one
notices that the perturbation has to be scale invariant.
Rescaling the radial coordinate z by a factor b, z → z

b, the
perturbation transforms as
Z

ddz0U0ðz0Þϵ0ðz0Þ ¼ b−dþΔρ−pþΔϵ

Z
ddzUðzÞϵðzÞ; ð2:3Þ

where Δρ ¼ 1
θ. Eventually the scale invariance condition

yields

Δρ ¼ pþ d − Δϵ: ð2:4Þ

B. Two-point functions

Regarding the two-point functions, we can make use of
the operator product expansion (OPE) to express them as
series involving 1-point expectation values:

hOiðzÞOjð0Þiρ ¼
X
k

Ck
ijðρ; zÞhOkð0Þiρ: ð2:5Þ

Each of the Wilson coefficient Ck
ijðρ; zÞ, evaluated outside

the critical point, can be expanded in series of the trap
characteristic parameter ρ, namely:

hOiðzÞOjð0Þiρ ¼
X
k

½Ck
ijð0; zÞ þ ρ∂ρCk

ijð0; zÞ þ � � ��

× hOkð0Þiρ: ð2:6Þ

As shown in [6], the series expansion asymptotically
converges and all the coefficients are infrared finite.
Moreover the derivatives of the coefficients can be evalu-
ated systematically in terms of quantities of the unperturbed
theory. Before doing that, it is useful to write the fusion
rules, in order to understand which of the Wilson coef-
ficients identically vanish. Among the primary operators of
the 3D Ising model, we are interested in the identity I

together with only two relevant ones, namely σ and ϵ. The
corresponding fusion rules are

½σ�½σ� ¼ ½I� þ ½ϵ� þ � � � ; ½ϵ�½ϵ� ¼ ½I� þ ½ϵ� þ � � � ;
½σ�½ϵ� ¼ ½σ� þ � � � : ð2:7Þ

These relations imply that any correlation functions
containing an odd number of σs identically vanishes.
Contrary to the d ¼ 2 case, where Kramers-Wannier
duality (h½ϵ�n½I�li ¼ ð−1Þnh½ϵ�n½I�li) implies that Cϵ

ϵϵ ¼ 0,
in d ¼ 3 this Wilson coefficient is in general non-trivial and
must be taken into account in the series expansions.

C. Wilson coefficients in the d = 3 case

In three spatial dimensions, the knowledge of correlators
at the critical point is limited to two and three-point
functions, and the scaling dimensions and structure con-
stants have been evaluated numerically in [1]: ðΔσ; ΔϵÞ ¼
ð0.5181489ð10Þ; 1.412625ð10ÞÞ and ðCϵ

σσ; Cϵ
ϵϵÞ ¼

ð1.0518537ð41Þ; 1.532435ð19ÞÞ. Out of the critical point,
the correlators can be expanded as a series of the parameter
ρ in the following way:

hσðz1Þσð0Þiρ ¼ CI
σσðz1Þ þ Cϵ

σσðz1ÞAϵρ
θΔϵ

þ ρ∂ρCI
σσðz1Þ þ � � � ; ð2:8Þ

hϵðz1Þϵð0Þiρ ¼ CI
ϵϵðz1Þ þ Cϵ

ϵϵðz1ÞAϵρ
θΔϵ

þ ρ∂ρCI
ϵϵðz1Þ þ � � � ; ð2:9Þ

hσðz1Þϵð0Þiρ ¼ Aσρ
θΔσðCσ

σϵðz1Þ þ ρ∂ρCσ
σϵðz1Þ þ � � �Þ:

ð2:10Þ

As said before, the derivatives of Wilson coefficient can be
written in terms of known quantities [6–8]. For instance,
∂ρCI

σσðz1Þ reads:

−∂ρCI
σσðz1Þ ¼

Z
d3z2jz2jp½hσðz1Þσð0Þϵðz2Þi

− Cϵ
σσðz1Þhϵðz2Þϵð0Þi�: ð2:11Þ

This integral can be evaluated using a Mellin transform
technique (see Appendix for details). In particular, the
second term is just a regulator needed to cancel the IR-
divergent part, meaning that only the first term contributes
to the final result. Expanding the first term in (2.11) in
terms of the known correlation function at the critical point
we find:

∂ρCI
σσðz1Þ ¼ −zΔt−2Δσþp

1 Cϵ
σσ

×
Z

d3y
yp

yΔϵð1þ y2 − 2y cos θÞΔϵ2
; ð2:12Þ

ANDREA AMORETTI et al. PHYS. REV. D 102, 036018 (2020)

036018-2



where Δt ¼ 3 − Δϵ and y ¼ z2=z1. We refer to Appendix
for the details of the computation. The final result is

∂ρCI
σσðz1Þ ¼ −zΔt−2Δσþp

1 Cϵ
σσIðpÞ; ð2:13Þ

where IðpÞ is numerical factor that can be expressed in
terms of Gamma functions and the relevant parameters of
the model, as shown in (A8). In what follow we are going to
consider mostly the harmonic potential case, p ¼ 2, for
which Ið2Þ ≃ −8.4448.
Following the same procedure we can also evaluate the

derivative of CI
ϵϵ:

∂ρCI
ϵϵðz1Þ ¼ −zΔt−2Δϵþp

1 Cϵ
ϵϵIðpÞ: ð2:14Þ

Putting it all together, the expressions (2.8)–(2.10) can be
expressed as:

z2Δσ
1 hσðz1Þσð0Þiρ ¼ 1þ Cϵ

σσAϵðρθz1ÞΔϵ

− Cϵ
σσρz

Δtþ2
1 Ið2Þ þ � � � ; ð2:15Þ

z2Δϵ
1 hϵðz1Þϵð0Þiρ ¼ 1þ Cϵ

ϵϵAϵðρθz1ÞΔϵ

− Cϵ
ϵϵρz

Δtþ2
1 Ið2Þ þ � � � ; ð2:16Þ

zΔϵ
1 hσðz1Þϵð0Þiρ ¼ Aσρ

θΔσðCσ
σϵ þ #ρzΔtþ2

1 þ � � �Þ: ð2:17Þ

As usual in this approach, the asymptotic convergence of
the series expansion is guaranteed for distances (measured
from the center of the trap) less than about one correlation
length. In the last equation the symbol # stands for the
numerical value of the coefficient ∂ρCσ

σϵðz1Þ. The compu-
tation of this coefficient within the CPT framework
involves the use of a 4-point correlation function at the
critical point:

− ∂ρCσ
σϵðz1Þ lim

jz3j→∞
hσðz3Þσð0Þi

¼ lim
jz3j→∞

Z
jz2j<jz3j

d3z2 jz2jp½hσðz1Þσðz3Þϵðz2Þϵð0Þi

− Cσ
σϵðz1Þhσðz3Þσð0Þϵðz2Þi�: ð2:18Þ

Since hσðz1Þσðz3Þϵðz2Þϵð0Þi is not known analytically at
the critical point, (2.18) cannot be evaluated exactly.
However, as we will show later, this term cannot be
neglected and it will be determined a posteriori using
Monte Carlo simulations.

III. CONVERSION TO THE LATTICE AND
NUMERICAL RESULTS

The model previously described can be solved on
a lattice in order to verify the validity of the CPT expan-
sion and to get some insights in the numerical factors
which we have not been able to determine analytically.

The Hamiltonian of the system on a cubic lattice can be
expressed in the following form:

H ¼ −J
X
hiji

σiσjð1þUðriÞÞ þ h
X
i

σi ð3:1Þ

where σi is the spin field, ri is its distance from the center of
the confining potential and h is a possible magnetic field
perturbation whose importance will be shortly explained.
The conformal point is recovered for h ¼ 0. To get a more
precise physical intuition about the trapping effect, it is
convenient to perform the transformation σi ¼ 1–2ρi.
Then, the new variable ρi can only assume two values
(0 and 1) and it can be thought as a density of particles in a
d-dimensional gas. Eventually, the Hamiltonian reads:

H ¼ −4J
X
hiji

ρiρj − μ
X
i

ρi þ 4J
X
hiji

UðriÞρið1 − ρjÞ

ð3:2Þ

where μ ¼ 2h − 4qJ is the chemical potential and q is
the coordination number (q ¼ 6 in three dimensions). The
main advantage of this transformation is that, since the
potentialUðriÞ diverges at large ri, it makes it apparent that
the only way to prevent the last term in (3.2) to diverge is to
set either hρii ¼ 1 or hρii ¼ 0 for all i far from the center of
the trap. The first condition is not physically acceptable (all
the particles running away to infinity) and it can be avoided
by inserting a small and positive magnetic field h in
Eq. (3.1), namely:

lim
h→0þ

lim
jrj→∞

hσri ¼ 1: ð3:3Þ

This leaves us only with the second possibility, which is
equivalent to require a null density of particles (hρii ¼ 0)
far from the center of the lattice, which means that the
system is trapped.

A. Lattice implementation

The Monte Carlo simulation is performed with the
Metropolis algorithm on a cube with side L and fixed
boundary. The trap is centered in the middle point of the
cube. The spin i located on the lattice at distance r from the
center is denoted with σlatri . We calculate the following
observables: the spin one-point function on the central site
hσlat0 i, and the energy one-point function in the middle of
the lattice, defined as hϵlat0 i≡ hσlat0 σlat1 i − Ecr, where Ecr is
the energy bulk contribution at the critical point and h…i is
the statistical average.
The correlation functions are calculated from the central

site of the lattice up to the distance r on the central axis,
averaging between the six orthogonal directions. Thus, they
are defined as:
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GσσðrÞ≡ 1

6

�X3
i¼1

σlat0 ðσlatri þ σlat−riÞ
�
; ð3:4Þ

GϵϵðrÞ≡ 1

6

�X3
i¼1

ϵlat0 ðϵlatri þ ϵlat−riÞ
�
; ð3:5Þ

GσϵðrÞ≡ 1

6

�X3
i¼1

ϵlat0 ðσlatri þ σlat−riÞ
�
; ð3:6Þ

As the system breaks translational invariance, we may
wonder Gσϵ to be different from Gϵσ . However, we have
verified that the differences between the two correlators are
negligible within the parameter range used in the simu-
lations and we will eventually focus on Gσϵ in the rest of
our analysis.
We have performed our simulations focusing on the

harmonic trap case, namely setting p ¼ 2. Moreover we
have fixed the following constants to their known Ising
model values: the energy bulk value Ecr ¼ 0.3302022ð5Þ
and the critical temperature βc ¼ 0.22165462ð2Þ [17],
the scaling dimensions Δσ ¼ 0.51815ð2Þ and Δϵ ¼
1.41267ð13Þ [3]. Thus, pθ ¼ 2=ð5 − ΔϵÞ ≃ 0.55752. The
uncertainty on these constants is negligible with respect to
our numerical precision.
The simulations have been performed with a lattice side

L ¼ 480 that is large enough to avoid finite size effects
within our current precision. Since our observables are
closely sampled around the center of the trap, we adopt a
hierarchical upgrading scheme [18]: instead of performing
the Monte Carlo sweep on the whole lattice at each step,
sweeps are performed in nested cycles over smaller cubic
boxes of increasing size centered in the middle of the
lattice. With this procedure computational times are
reduced without affecting local central observables. In a

single Monte Carlo simulation, starting from a configura-
tion with all spins aligned, 5 × 106 sweeps have been
performed, with about 104 sweeps for thermalization.
Observable uncertainties have been calculated by using
the batched mean method. Moreover, final results of all
observables have been obtained by averaging about 100
repeated and independent Monte Carlo simulations.

B. One-point functions

Since the potential is coupled to the temperature, which
in the lattice is nonzero at the critical point, the effective
scaling parameter on the lattice to be compared with
analytical prediction is ρlat ≡ βcρ. Thus, the one-point
functions on the lattice are

hσlat0 i ¼ Alat
σ ρθΔσ

lat ; ð3:7Þ

hϵlat0 i ¼ Alat
ϵ ρθΔϵ

lat : ð3:8Þ

The results for the spin and energy one-point functions
are shown in Fig. 1. The fit has been performed in the range
10−8 ≤ ρ ≤ 5.625 × 10−7. Within this range, the scaling
exponents are in good agreement with the theoretical result
predicted by the TSS argument (3.7)–(3.8), as shown in
Table I. This confirms the validity of the TSS ansatz [12]
also in the present case. Eventually, we fix the exponents to
the value (3.7)–(3.8) and we repeat the fit with only two

FIG. 1. Bi-log plots of the spin (Left panel) and energy (Right panel) one-point functions against power law fits (red line). Due to
numerical accuracy, the fits have been performed for values of ρ greater than the ones indicated by the dashed vertical lines.

TABLE I. Exponents extracted from the fits shown in Fig. 1.

Exponent Theory Simulation χ2=d:o:f:

θΔσ 0.144439(5) 0.144(1) 0.6
θΔϵ 0.39379(5) 0.392(4) 1.4
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free parameters to find the remaining constants, obtaining
Alat
σ ¼ 1.6390ð13Þ and Alat

ϵ ¼ 2.226ð11Þ.

C. Two-point functions

With the definitions (3.4)-(3.6) at hand, and taking into
account the bulk contribution to the energy operator on the
lattice Ecr, the two-point functions on the lattice (denoted
with the average h…ilat) assume the following form:

hσðrÞσð0Þilat ¼ GσσðrÞ; ð3:9Þ

hϵðrÞϵð0Þilat ¼GϵϵðrÞþE2
cr −Ecrðhϵlatr iþ hϵlat0 iÞ; ð3:10Þ

hσðrÞϵð0Þilat ¼ GσϵðrÞ − Ecrhσlatr i: ð3:11Þ

In order to make contact with the CPT theoretical results
(2.8)–(2.10), we must consider the lattice conversion fac-
tors Rσ and Rϵ. Regarding the first, Rσ ¼ 0.55245ð13Þ

according to [19]. Estimates of Rϵ vary from 0.2306(38)
[19] to 0.2377(9) [11]. This is the largest source of
systematic uncertainty in our simulations. For this reason
we will adopt the average Rϵ ¼ 0.2341 with a variation
�0.0030 to evaluate the final systematic error. Finally, the
structure constant on the lattice ðCϵ

σσÞlat must be converted
taking into account the conversion rules for ϵ and ρ, namely
hϵlati ¼ Rϵhϵi and ρlat ¼ R−1

ϵ ρ. Eventually, combining
(2.8)–(2.10) with (3.9)–(3.11) we obtain:

hσðrÞσð0Þilat ¼
R2
σ

r2Δσ
ð1þ Cϵ

σσ R−1
ϵ Alat

ϵ ρθΔϵ
lat r

Δϵ

− Cϵ
σσIð2ÞRϵρlatr2þΔtÞ; ð3:12Þ

hϵðrÞϵð0Þilat ¼
R2
ϵ

r2Δϵ
ð1þ Cϵ

ϵϵ R−1
ϵ Alat

ϵ ρθΔϵ
lat r

Δϵ

− Cϵ
ϵϵIð2ÞRϵρlatr2þΔtÞ; ð3:13Þ

hσðrÞϵð0Þilat ¼
RϵRσρ

θΔσ
lat

rΔϵ
ðCσ

σϵ R−1
σ Alat

σ þ bρlatr2þΔtÞ:
ð3:14Þ

The parameter b in the second term of (3.14) is related to
the coefficient (2.18), which, as already mentioned, we
have not been able to compute analytical using CPT. This
parameter will be evaluated a posteriori by fitting the
numerical results.
We can now insert the lattice quantities Alat

ϵ and Alat
σ

calculated in Sec. III B, and directly fit the continuum
structure constants Cϵ

σσ and Cϵ
ϵϵ. Fit results, reported in the

Table II, are in good agreement with the known values:
Cϵ
σσ ¼ 1.0518537, Cϵ

ϵϵ ¼ 1.532435 [3]. Figure 2 shows the
behavior of the correlators. More specifically, data and fits
are outlined for ρ ¼ 9 × 10−8, and Monte Carlo data
reproduce well the expected behavior. We obtained very
similar results for the other trap-sizes reported in the
Table II.

TABLE II. Results of the structure constant found by fitting the
data with the function (3.12) for various trap sizes ρ. The number
in round brackets denotes the statistical uncertainty of the fit,
while the number in square brackets denotes the systematic error
due to the uncertainty of the constants. Regarding the correlator
related to the table on the right side, we have sampled all the
distances in the same simulation, so that statistical errors have
been estimated by means of the jackknife technique.

ρ range r Cϵ
σσ χ2=d:o:f:

1 × 10−8 7–13 1.059(20)[40] 3.5
4 × 10−8 7–13 1.049(5)[15] 0.9
9 × 10−8 7–13 1.043(3)[14] 0.2

ρ range r Cϵ
ϵϵ χ2=d:o:f:

1 × 10−8 6–13 1.46(15)[30] 0.9
4 × 10−8 6–13 1.58(7)[24] 0.6
9 × 10−8 6–13 1.50(8)[20] 1.1

7 8 9 10 11 12 13

0.030

0.035

0.040

0.045

0.050

r

Analytic result

Simulation results

6 8 10 12

0.0000

0.0002

0.0004

0.0006

0.0008

r

Analytic result

Simulation results

FIG. 2. Results for the spin-spin (left) and energy-energy (right) two-point functions and their fits with the expected behavior
[Eqs. (3.12) and (3.13)] red line. Due to numerical accuracy, fits are performed for values of r greater than the ones indicated by the black
dashed vertical lines. Error bars are small and usually hidden within the points size.
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Table III shows the fit results for the mixed correlator
hσϵi without including the second term in (3.14) (b ¼ 0),
while table IV shows the fits including b as a free
parameter. As one can see from the tables, once Cσ

σϵ is
left as a free parameter its value agrees better with the
known result if we take into account the parameter b. This
is confirmed in Fig. 3, where it is evident that the presence
of b significantly improves the agreement between the
theoretical prediction and the numerics. This proves that the
second term in (3.14) is definitely important and must be
taken into account.

IV. DISCUSSION

In this paper we have further developed the program of
studying systems in their off-critical scaling regime, using
the consolidated approach based on the OPE and the
possibility of expanding the Wilson coefficients in terms
of the perturbing parameter by means of conformal
perturbation theory [6–8]. This has been done for the
3D Ising model perturbed by a trapping potential coupled
to the energy operator. Nevertheless, the procedure can be
applied in principle to other systems in a different univer-
sality class since the method only requires scale invariance
at the critical point.

We have evaluated the first leading terms in the expan-
sions of the correlators comparing the analytic predictions
against numerical Monte Carlo simulations. The results for
the 1-point functions outlined in Fig. 1 confirm once again
the validity of the TSS ansatz [12] as a powerful tool to
determine the behavior of the expectation values of the
model outside the critical point.
Despite the necessity of using large size traps and

consequently large lattices, the estimates of the structure
constants shown in Tables II are in good agreement with the
known results found in literature. This fact shows the
reliability of the approach and confirms that this method is
a promising tool for studying different systems out of
criticality. Additionally, we have proven that the behavior
of the hσϵi correlator is influenced by the presence of a term
which depends, according to the CPT approach, on an
integral involving a 4-point function (2.18). Due to the lack
of knowledge on the 4-point function at the critical point in
the 3D Ising model, this integral can not be evaluated
analytically. However, using the high quality CFT data in
[20] one could compute the 4-point function needed in
(2.18) analogously to what has been done for the σ 4-point
function in [21]. The integral (2.18) may be eventually
evaluated applying the procedure used to compute similar
integrals involving the ϵ 4-point function in [22] and the σ
4-point function in [23]. This will allow us to validate our
numerical estimation (Table III and IV) and constitutes a
worthwhile future direction.
Finally, the method used in this paper could be applied to

other interesting examples like systems with a quantum
critical point, systems where the critical point is broken by
a lattice operator (to compare with what has been done in
[24] by means of AdS=CFT techniques) and the 3D OðNÞ

TABLE III. Fit performed including the second term of Eq. (3.14) and fixing Cσ
σϵ to the known value (third

column), and fit of the structure constant Cσ
σϵ setting b ¼ 0 (fifth column). It is evident from the data that b

contributes non-trivially to the correlator, as our numerical results do not match the known value for Cσ
σϵ if we set

b ¼ 0.

ρ range r b ðCσ
σϵ ¼ 1.0518537Þ χ2=d:o:f: Cσ

σϵ ðb ¼ 0Þ χ2=d:o:f:

1 × 10−8 7–13 1.1ð2Þ½3� × 104 2.2 1.098(3)[10] 0.3
4 × 10−8 6–13 2.8ð4Þ½5� × 103 0.98 1.082(6)[12] 1.6
9 × 10−8 6–13 1.9ð2Þ½4� × 103 5.5 1.094(10)[14] 4.3

TABLE IV. Performing the fit with two free parameters the
situation improves and the numerical values of Cσ

σϵ are in
agreement with the expected one within the numerical error.
The results for ρ ¼ 1 × 10−8 are probably affected by some finite-
size effect, as it can been seen in the hσσi correlator as well.

ρ range r Cσ
σϵ b χ2=d:o:f:

1 × 10−8 7–13 1.098(4)[10] ∼0 0.3
4 × 10−8 6–13 1.067(7)[12] 1.8ð5Þ½1� × 103 0.3
9 × 10−8 6–13 1.080(9)[12] 1.0ð2Þ½1� × 103 0.8
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0.0040

r

Including second term

Leading Order

Simulation results

FIG. 3. Fit for the spin-energy two-point function against the
theoretically expected behavior performed not including (green
line) and including (red line) the second term in Eq. (3.14). As it
is evident, the red line agrees consistently better with the
numerical result.
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model. In particular, the latter needs to be treated carefully,
because it exhibits spontaneous symmetry breaking and the
dynamics of the Goldstone bosons might have a non-trivial
effect on the system.
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APPENDIX: MELLIN TRANSFORM TECHNIQUE

The integral (2.11) can be evaluated using a Mellin trans-
form technique, following what has been done in [6–8]. In
particular, it is convenient to introduce the quantity

IðmÞ ¼
Z

d3zΘðmjzjÞgðzÞ; ðA1Þ

where ΘðjmjzÞ ¼ e−mjzj is an IR-regulator needed to
guarantee the convergence of the integral. We are interested
in the m ∼ 0 expansion of IðmÞ, that can be recovered by
considering its Mellin transform. Assuming that the leading
behavior of IðmÞ as m → 0 is ma, while it approaches m−b

when m → ∞, the Mellin transform ĨðsÞ is defined on the
strip −a < ReðsÞ < b in the complex s plane as:

ĨðsÞ ¼
Z

∞

0

dm
m

msIðmÞ: ðA2Þ

Eventually, it can be proven that only the first term of the
integral (2.11) contributes, while the second one leads to a
null strip so that the transform is not well defined.
The asymptotic expansion of the original function at

m ¼ 0 is in a one to one correspondence with the poles of
the Mellin transform, namely:

IðmÞ ¼
X
i

ResðĨðsÞÞs¼−aim
−s; ðA3Þ

where a1 ≡ a < a2 < … are the powers of m in the
asymptotic expansion of IðmÞ at m ∼ 0. (A3) tells us
that we can get the corrections to the Wilson coefficients

by taking the residue of the perturbative expansions at
s ¼ 0 if the infrared counterterms do not give any finite
contribution.
With our choice of the regulator, the Mellin transform of

IðmÞ can be easily obtained by using the convolution
theorem, finding:

ĨðsÞ ¼ ΓðsÞg̃ð1 − sÞ; ðA4Þ
where

g̃ð1 − sÞ ¼
Z

d3zjzj−sgðzÞ; ðA5Þ

is essentially the Mellin transform of g up to angular
coefficients. This means that in order to find an expression
for the derivatives of the Wilson coefficients, one just needs
to evaluate the Mellin transform of the function gðzÞ.
In our case, as it can be seen from Eq. (2.12),

gðzÞ ¼ zp−Δϵ

ð1þ z2 − 2z cos θÞΔϵ2
: ðA6Þ

The Mellin transform can be evaluated by performing the
angular integral and rewriting the result in terms of beta-
functions as follows:

ĨðsÞ ¼ ΓðsÞ 2π

2 − Δϵ
½Bðpþ 2 − Δϵ − s; 2Δϵ − 4 − pþ sÞþ

− Bðpþ 2 − Δϵ − s; 3 − ΔϵÞ
− Bð3 − Δϵ; 2Δϵ − 4 − pþ sÞ� ðA7Þ

Then, we are ready to extract them ∼ 0 behavior from (A3).
The only contribution comes from the residue at s ¼ 0, so
that

IðpÞ ¼ 2π

2 − Δϵ
½Bðpþ 2 − Δϵ; 2Δϵ − 4 − pÞþ

− Bðpþ 2 − Δϵ; 3 − ΔϵÞ
− Bð3 − Δϵ; 2Δϵ − 4 − pÞ�; ðA8Þ

which for p ¼ 2 gives Ið2Þ ≃ −8.4448.
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