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An approach to study a generalization of the classical-quantum transition for general systems is
proposed. In order to develop the idea, a deformation of the ladder operators algebra is proposed that
contains a realization of the quantum group SUð2Þq as a particular case. In this deformation Planck’s
constant becomes an operator whose eigenvalues approach ℏ for small values of n (the eigenvalue of the
number operator) and zero for large values of n (the system is classicalized).
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I. INTRODUCTION

There are different motivations to consider a deformation
of the classical-quantum transition [1–12]. The difficulties
to find a consistent quantum theory incorporating the gra-
vitational interaction could be due to the present formu-
lation of quantum theories [13]. A modification of this
formulation through the classical-quantum transition can
provide a new way to overcome those difficulties. Different
arguments combining gravity and quantum mechanics [14]
lead to the conclusion that there is a minimum length [15]
and then to consider a noncommutative space [16] and then
a generalization of the uncertainty principle which implic-
itly goes beyond the formulation of quantum mechanics
[17,18]. There are also arguments that a theory of gravity at
super-Planckian energies should become a classical theory
[19–22] which leads one to look for a framework able to
accommodate such classicality. The difficulties to make
compatible the quantum uncertainty with the classical
determinism (measurement problem) can also be solved
by a modification of the classical-quantum transition. We
end the list of motivations for a deformation of the
classical-quantum transition pointing out the possibility
that it provides a new way to try to overcome the difficulties
to understand some surprising quantum mechanical effects
like the phenomenon of high temperature superconductivity
and Bose-Einstein condensation. The possibility of having
an increase in the critical temperature of the Bose-Einstein
condensation when one goes beyond the current formulation

of quantum mechanics is one of the motivations for the
present work.
Along the lines outlined previously, much work has been

done either modifying the Heisenberg uncertainty relations
[1–4], restudying the classical-quantum mechanics transi-
tion [23–27], modifying quantum mechanics using quan-
tum groups [28] or using arguments from noncommutative
geometry [29–42] and related arguments [3,43–46].
A strategy to study classical-quantum transition for

general systems is proposed. In order to develop the idea,
a deformation of the ladder operators algebra is proposed
and contains a limit to SUð2Þq as a symmetry group. In this
deformation the Planck constant becomes an operator
whose eigenvalues approach ℏ for small values of the
quantum number n, but for large values of n, the eigen-
values approach zero and the system is classicalized. A
deformation of the classical-quantum transition can be
interpreted as an step to go beyond standard quantum
mechanics considered (as any other physical theory) as an
effective theory which breaks down in some extreme
conditions. In this work we try to implement this idea
by replacing the fundamental constant in quantum mechan-
ics, the Planck constant ℏ, by an operator. In the limit when
the operator can be approached by a constant one recovers
standard quantum mechanics. One way to replace the
Planck constant by an operator, the one we consider in
this work, is based on a deformation of the algebra of ladder
operators which reproduce the Heisenberg algebra.
In Sec. II we introduce a deformed algebra of ladder

operators in terms of a continuous family of real functions
of one variable depending on one continuous deformation
parameter (λ). The corresponding deformed Fock space and
a simple example for the deformed algebra are identified.
In Sec. III it is shown how the formulation of a classical
mechanical system, in terms of appropriately chosen
combinations of the phase space coordinates in complex
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variables, defines a deformation of the classical-quantum
transition through the replacement of the complex variables
by deformed ladder operators. The consequences of the
deformation are studied in three simple cases: a one- and
two-dimensional harmonic oscillator and a particle in two
dimensions in the presence of a constant magnetic field.
The deformation of the Heisenberg algebra and the corre-
sponding generalized uncertainty principle for the three
cases are discussed in Secs. IV and V. The relation of the
proposal presented in this work with previous works where
the idea of a deformation of standard quantum mechanics
has been considered from different perspectives is dis-
cussed in Sec. VI. We end with a summary and future
prospects in Sec. VII.

II. DEFORMED LADDER OPERATORS

We start considering deformed creation (ã†) and anni-
hilation (ã) operators such that

½ã; ã†� ¼ Dλðã†ãÞ; ð1Þ

where λ is a real number and DλðxÞ a real function of a real
variable (x) satisfying the conditions D0ðxÞ ¼ 1 and
DλðxÞ > 0. The first condition is what defines a deforma-
tion since when λ → 0 one recovers the standard creation-
annihilation commutation relations, with a† (a) increasing
(decreasing) the eigenvalue of a†a in one unit. The second
condition guarantees that ã, ã† are ladder operators with ã
(ã†) decreasing (increasing) the eigenvalue of ã†ã. We also
add the conditions Dλð0Þ ¼ 0, D0

λðxÞ < 0 to have a simple
deformation of the spectrum of the operator ã†ã. The
parameter λ of deformation will in general take values in an
interval which will depend on the function D defining the
deformation.

A. Deformed Fock space

The spectrum of the operator ã†ã can be derived from the
commutator Eq. (1). There is an eigenvalue cnðλÞ for each
integer n such that

cnþ1ðλÞ ¼ cnðλÞ þDλðcnðλÞÞ: ð2Þ

The recurrence relation Eq. (2) defines the eigenvalues if
one assumes there is one state (j0i) such that ãj0i ¼ 0
corresponding to the lowest eigenvalue [c0ðλÞ ¼ 0]
of ã†ã. One has c1ðλÞ ¼ 1, cnþ1ðλÞ − cnðλÞ < 1 for
n > 0, and each choice of the function Dλ leads to a
different λ-dependent contraction of the natural numbers.
Alternatively, a different choice of the function defining
the deformation such that D0

λðxÞ > 0 would have lead to a
λ-dependent expansion of the natural numbers.
One has a linear representation of the algebra Eq. (1) in a

space (deformed Fock space) with an orthonormal basis
that together with the state j0i has the states

jni ¼
�Yn
j¼1

cjðλÞ
�
−1=2

ðã†Þnj0i; ð3Þ

for any natural number n.

B. Linear deformation

The simplest example for the function D defining the
deformed commutators of ladder operators is a linear
function DλðxÞ ¼ 1 − λx. In this case the recurrence
relations Eq. (2) reduce to

cnþ1ðλÞ ¼ 1þ ð1 − λÞcnðλÞ; ð4Þ

which combined with

cnðλÞ ¼ 1þ ð1 − λÞcn−1ðλÞ ð5Þ

leads to

cnþ1ðλÞ − cnðλÞ ¼ ð1 − λÞðcnðλÞ − cn−1ðλÞÞ ¼ …

¼ ð1 − λÞnðc1ðλÞ − c0ðλÞÞ ¼ ð1 − λÞn;
ð6Þ

and

cnðλÞ ¼
1 − ð1 − λÞn

λ
: ð7Þ

In the case 1 > λ > 0 one has cnðλÞ < 1=λ,
limn→∞ cnðλÞ ¼ 1=λ, and limn→∞ðcnþ1ðλÞ − cnðλÞÞ ¼ 0.
One has a bounded spectrum for the operator ã†ã with
the inverse of the deformation parameter playing the role of
a cutoff and the discrete spectrum approaches a continuum
spectrum for large n (classicality).
The deformed commutation relations of ladder operators

Eq. (1) can be written in this case as

ãã† − ð1 − λÞã†ã ¼ 1; ð8Þ

which is known as a q-commutator [47–49] with the
identification q2 ¼ 1 − λ. The case q2 > 1 (λ < 0) is the
one-dimensional case of the studies of deformations of
quantum mechanics with a quantum group symmetry [3].
In this work we will be more interested in the case λ > 0.

III. DEFORMED QUANTUM MECHANICS

In order to identify a deformation of the classical-
quantum transition from the deformed ladder operator
commutation relations, we need to reformulate a classical
system in terms of complex variables αi (one for each
degree of freedom, i ¼ 1;…; n) which will become the
ladder operators in the quantum theory (holomorphic
representation) [50]. This requires one to identify linear
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combinations of the phase space variables such that the
quadratic part of the classical Hamiltonian hð2Þ takes the
form

hð2Þ ¼
Xn
i¼1

ϵiα
�
i αi: ð9Þ

In the case without deformation this is just the Hamiltonian
of n harmonic oscillators with frequencies ωi when
ϵi ¼ ℏωi. If one has a particle in an external potential
with a nondegenerate minimum, then the holomorphic
representation can easily be obtained from the diagonaliza-
tion of the matrix whose elements are the second deriv-
atives of the potential at the minimum.
The case of a harmonic oscillator is just the particular

case where the potential is quadratic in the space coor-
dinates. In more general cases one has to assume a Taylor
expansion of the potential around its minimum and the
Hamiltonian will have, together with the quadratic terms
(hð2Þ), higher powers of the space coordinates which can
be expressed as products of the complex variables αi. In the
next section we will show a few simple examples of
holographic representations.
Once the Hamiltonian of the classical system has been

written in terms of complex variables one can define the
Hamiltonian of the quantum system (H) as the operator
obtained by replacing the variables αi by operators ãi
satisfying the algebra

½ãi; ã†j � ¼ δijDλðã†i ãiÞ; ½ãi; ãj� ¼ ½ã†i ; ã†j � ¼ 0: ð10Þ

If one wants to go beyond the linear choice for the function
D one has to restrict to a decoupled algebra for each degree
of freedom.1 There is an ordering ambiguity which can be
fixed writing all factors α�i to the left of factors αi in the
classical Hamiltonian h so that one has a normal ordered
quantum Hamiltonian H.

A. One-dimensional harmonic oscillator

The Hamiltonian of the classical system is in this case

h ¼ p2

2m
þmω2x2

2
¼ ℏωα�α; ð11Þ

with

α ¼ 1ffiffiffi
2

p
� ffiffiffiffiffiffiffi

mω

ℏ

r
xþ i

ffiffiffiffiffiffiffiffiffiffi
1

ℏmω

r
p

�
: ð12Þ

If one replaces the variable α by an operator ã which
together with ã† satisfy the deformed algebra Eq. (1)

then the (normal ordered) deformed quantum oscillator
Hamiltonian has the spectrum

En ¼ ℏωcnðλÞ; ð13Þ

instead of the equally spaced standard quantum oscillator
spectrum. The contraction (expansion) of the natural
numbers defined by cnðλÞ when λ > 0 (λ < 0) leads to a
contraction (expansion) of the spectrum of the deformed
quantum oscillator. In the case of a linear deformation one
has a splitting of energy levels

Enþ1 − En ¼ ℏωð1 − λÞn ð14Þ

which approaches to a continuum spectrum (classicality) at
large n when λ > 0.
The standard construction of coherent states in Fock

space can be generalized to coherent deformed states as the
eigenvectors jαi of the operator ã, ãjαi ¼ αjαi. One has

jαi ¼ N ðαÞ
�
j0i þ

X∞
n¼1

αn

½Qn
j¼1 cjðλÞ�1=2

jni
�

ð15Þ

and one has hαjαi ¼ 1 if one chooses

N ðαÞ ¼ ðD exp ½jαj2�Þ−1=2; ð16Þ

where

D exp½x� ≐ 1þ
X∞
n¼1

xn

½Qn
j¼1 cjðλÞ�

ð17Þ

is the deformed exponential.

B. Two-dimensional harmonic oscillator

We consider a two-dimensional isotropic oscillator with
a classical Hamiltonian

h¼ p2
1

2m
þ p2

2

2m
þmω2x21

2
þmω2x22

2
¼ℏω½α�1α1þα�2α2�: ð18Þ

A new ingredient with respect to the one-dimensional case
is that there is some ambiguity in the identification of the
complex variables α1, α2 as linear combinations of the
phase space coordinates. Each choice of these variables
leads to a different quantum system.
The simplest choice

α1 ¼
1ffiffiffi
2

p
� ffiffiffiffiffiffiffi

mω

ℏ

r
x1 þ i

ffiffiffiffiffiffiffiffiffiffi
1

ℏmω

r
p1

�
;

α2 ¼
1ffiffiffi
2

p
� ffiffiffiffiffiffiffi

mω

ℏ

r
x2 þ i

ffiffiffiffiffiffiffiffiffiffi
1

ℏmω

r
p2

�
; ð19Þ

leads to a quantum system where the rotation with angle θ

1In the case of a linear algebra (with λ < 0) it is possible to
consider a deformed algebra [quantum group SUqðnÞ algebra]
with a mixing of different degrees of freedom.
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x01 ¼ cos θx1 þ sin θx2; x02 ¼ − sin θx1 þ cos θx2;

p0
1 ¼ cos θp1 þ sin θp2; p0

2 ¼ − sin θp1 þ cos θp2;

ð20Þ

acts on the complex variables as

α01 ¼ cos θα1 þ sin θα2; α02 ¼ − sin θα1 þ cos θα2:

ð21Þ

The deformed algebra (10) is not invariant under the
corresponding transformation on the operators ã1, ã2
and the rotational symmetry of the classical system is lost
in the classical-quantum transition. In order to maintain
the rotational symmetry in the quantum system one has to
choose

α1 ¼
1

2

� ffiffiffiffiffiffiffi
mω

ℏ

r
ðx1 þ ix2Þ þ i

ffiffiffiffiffiffiffiffiffiffi
1

ℏmω

r
ðp1 þ ip2Þ

�
;

α2 ¼
1

2

� ffiffiffiffiffiffiffi
mω

ℏ

r
ðx1 − ix2Þ þ i

ffiffiffiffiffiffiffiffiffiffi
1

ℏmω

r
ðp1 − ip2Þ

�
: ð22Þ

In this case one has

α01 ¼ e−iθα1; α02 ¼ eiθα2; ð23Þ

and the corresponding transformation of the deformed
operators ã1, ã2 leaves the algebra (10) invariant. The
spectrum of the quantum Hamiltonian is

En1;n2 ¼ ℏω½cn1ðλÞ þ cn2ðλÞ�; ð24Þ

generalizing the spectrum of the two-dimensional quantum
oscillator which is reproduced if one replaces cnðλÞ by n.

C. Landau quantization

The next example we consider of a deformed classical-
quantum transition is the classical system of a particle in
two-dimensional space in the presence of a constant
magnetic field B. The classical Hamiltonian is

h ¼ ðp1 − qA1Þ2
2m

þ ðp2 − qA2Þ2
2m

; ð25Þ

where (A1, A2) is the electromagnetic potential correspond-
ing to the magnetic field, B ¼ ∂1A2 − ∂2A1. There are
different choices for the electromagnetic potential (different
gauges).
In the symmetric gauge one has A1 ¼ −x2=2, A2 ¼ x1=2

and then

h ¼ ðp1 þ qB
2
x2Þ2

2m
þ ðp2 −

qB
2
x1Þ2

2m
¼ ℏωα�α; ð26Þ

where ω ¼ ðqBÞ=m and

α ¼ 1

2

� ffiffiffiffiffiffiffi
mω

2ℏ

r
ðx1 þ ix2Þ þ i

ffiffiffiffiffiffiffiffiffiffi
2

ℏmω

r
ðp1 þ ip2Þ

�
: ð27Þ

It is convenient to introduce a second complex linear
combination of the phase space variables β, orthogonal
to α,

β ¼ 1

2

� ffiffiffiffiffiffiffi
mω

2ℏ

r
ðx1 − ix2Þ þ i

ffiffiffiffiffiffiffiffiffiffi
2

ℏmω

r
ðp1 − ip2Þ

�
: ð28Þ

The deformed classical quantum transition is defined by
replacing the complex variables α, α� in the Hamiltonian by
operators ã, ã† satisfying the deformed algebra Eq. (1). The
spectrum of the deformed quantum Hamiltonian will be

En ¼ ℏωcnðλÞ ¼ ℏ
qB
m

cnðλÞ: ð29Þ

The ladder operators ã, b̃ are similar to the operators
ã1, ã2 found in the case of the two-dimensional oscillator
in order to maintain the rotational symmetry in the
classical-quantum transition. The difference is that in the
Hamiltonian there is only one term instead of two terms
with the same frequency.
In the Landau gauge one has A1 ¼ −Bx2, A2 ¼ 0 and the

Hamiltonian is given by

h ¼ ðp1 þ qBx2Þ2
2m

þ p2
2

2m
¼ p2

2

2m
þ 1

2
m

�
qB
m

�
2
�
x2 þ

p1

qB

�
2

¼ ℏωα�α; ð30Þ

with ω ¼ ðqBÞ=m. The complex variable α is in this case

α ¼ 1ffiffiffi
2

p
� ffiffiffiffiffiffiffi

mω

ℏ

r
x2 þ

ffiffiffiffiffiffiffiffiffiffi
1

ℏmω

r
ðp1 þ ip2Þ

�
ð31Þ

instead of (27). The orthogonal complex linear combination
of phase space variables β is in this case

β ¼ 1ffiffiffi
2

p
� ffiffiffiffiffiffiffi

mω

ℏ

r
x1 þ

ffiffiffiffiffiffiffiffiffiffi
1

ℏmω

r
ðp2 þ ip1Þ

�
: ð32Þ

The spectrum of the quantum Hamiltonian is the same in
both gauges with

En ¼ ℏ
qB
m

cnðλÞ: ð33Þ

D. Rotational symmetry

In the two examples of two-dimensional quantum
systems (harmonic oscillator and a particle in a constant
magnetic field) we have found that it is possible to make the
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deformation compatible with the rotational symmetry of
the quantum system. In the first case this is done using
the arbitrariness in the holomorphic representation of the
classical system and in the second case using the appro-
priate choice of gauge (symmetric gauge).
If one considers the three-dimensional harmonic oscil-

lator it is not possible to make compatible the deformation
in the transition from the classical to the quantum system
with rotational symmetry. All one could do is to choose
the holomorphic representation such that one has a sym-
metry under rotations in a given direction in the quantum
system. If one considers a very small deformation param-
eter (λ ≪ 1), the effect of the deformation (and then the
violation of rotational symmetry) in the spectrum starts
to be appreciable when n is sufficiently large that cnðλÞ
differs from n. On the other hand, if one goes to still much
larger values of n, one will approach the classical con-
tinuum limit.

IV. DEFORMED HEISENBERG ALGEBRA

Let us start with the one-dimensional deformed quantum
harmonic oscillator. The commutator of operators which
define the Heisenberg algebra is given by

½x; p� ¼
� ffiffiffiffiffiffiffiffiffiffi

ℏ
2mω

r
ðãþ ã†Þ;−i

ffiffiffiffiffiffiffiffiffiffi
ℏmω

2

r
ðã − ã†Þ

�

¼ iℏ½ã; ã†� ¼ iℏDλðã†ãÞ: ð34Þ

If one uses the basis of eigenstates (jni) of the quantum
Hamiltonian one has

hnj½x; p�jmi ¼ δn;miℏDλðcnðλÞÞ: ð35Þ

The effect of the deformation in the Heisenberg algebra is
to replace the Planck constant ℏ by an effective (energy
dependent) Planck constant

ℏeffðnÞ ≐ ℏDλðcnðλÞÞ ¼ ℏ½cnþ1ðλÞ − cnðλÞ�: ð36Þ

In the case of a linear deformation one has ℏeffðnÞ ¼
ℏð1 − λÞn so that when λ > 0 one has limn→∞ ℏeffðnÞ ¼ 0
(classicality).
Next we can consider the deformation of the two-

dimensional harmonic oscillator compatible with the rota-
tional symmetry. In this case one has the operators
corresponding to the phase space variables

x1 ¼
1

2

ffiffiffiffiffiffiffi
ℏ
mω

r
ðã1 þ ã2 þ ã†1 þ ã†2Þ; x2 ¼ −

i
2

ffiffiffiffiffiffiffi
ℏ
mω

r
ðã1 − ã2 − ã†1 þ ã†2Þ;

p1 ¼ −
i
2

ffiffiffiffiffiffiffiffiffiffi
ℏmω

p
ðã1 þ ã2 − ã†1 − ã†2Þ; p2 ¼

1

2

ffiffiffiffiffiffiffiffiffiffi
ℏmω

p
ðã2 − ã1 þ ã†2 − ã†1Þ; ð37Þ

and the deformed commutators

½x1; p1� ¼ ½x2; p2� ¼
iℏ
2
ð½ã1; ã†1� þ ½ã2; ã†2�Þ ¼

iℏ
2
ðDλðã†1ã1Þ þDλðã†2ã2ÞÞ; ½x1; p2� ¼ ½x2; p1� ¼ 0;

½x1; x2� ¼
iℏ

2mω
ð½ã1; ã†1� − ½ã2; ã†2�Þ ¼

iℏ
2mω

ðDλðã†1ã1Þ −Dλðã†2ã2ÞÞ;

½p1; p2� ¼
iℏmω

2
ð½ã1; ã†1� − ½ã2; ã†2�Þ ¼

iℏmω

2
ðDλðã†1ã1Þ −Dλðã†2ã2ÞÞ: ð38Þ

If we use the eigenstates (jn1; n2i) of the quantum two-dimensional harmonic oscillator Hamiltonian we have

hn1; n2j½x1; p1�jm1; m2i ¼ hn1; n2j½x2; p2�jm1; m2i ¼ δn1;m1
δn2;m2

iℏ
2
½Dλðcn1ðλÞÞ þDλðcn2ðλÞÞ�;

hn1; n2j½x1; x2�jm1; m2i ¼ δn1;m1
δn2;m2

iℏ
2mω

½Dλðcn1ðλÞÞ −Dλðcn2ðλÞÞ�;

hn1; n2j½p1; p2�jm1; m2i ¼ δn1;m1
δn2;m2

iℏmω

2
½Dλðcn1ðλÞÞ −Dλðcn2ðλÞÞ�: ð39Þ

Together with an effective (energy-dependent) Planck constant

ℏeffðn1; n2Þ ≐
ℏ
2
½Dλðcn1ðλÞÞ þDλðcn2ðλÞÞ� ¼

ℏ
2
½cn1þ1ðλÞ − cn1ðλÞ þ cn2þ1ðλÞ − cn2ðλÞ�; ð40Þ

one has, as a consequence of the deformation in the transition from the classical to the quantum system, a noncommutativity
of space operators and also of momentum operators with (energy-dependent) space (momentum) noncommutativity
parameters θðn1; n2Þ [Bðn1; n2Þ]
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θðn1; n2Þ ≐
ℏ

2mω
½cn1þ1ðλÞ − cn1ðλÞ − cn2þ1ðλÞ þ cn2ðλÞ�;

Bðn1; n2Þ ≐
ℏmω

2
½cn1þ1ðλÞ − cn1ðλÞ − cn2þ1ðλÞ þ cn2ðλÞ�: ð41Þ

Once more one can see that when λ > 0 one has a classicality limit

lim
n1;n2→∞

ℏeffðn1; n2Þ ¼ lim
n1;n2→∞

θeffðn1; n2Þ ¼ lim
n1;n2→∞

Beffðn1; n2Þ ¼ 0: ð42Þ

All the results of the deformed Heisenberg algebra for
the two-dimensional harmonic oscillator can be applied to
the case of a particle in two dimensions in the presence of a
constant magnetic field when one uses the symmetric
gauge. All one has to do is to replace everywhere the
frequencyω of the harmonic oscillator by the ratio ðqB=mÞ.
The space (momentum) noncommutativity parameters
satisfy in this case the relations

qB
ℏ

θðn1; n2Þ ¼
1

ℏqB
Bðn1; n2Þ

¼ 1

2
½cn1þ1ðλÞ − cn1ðλÞ − cn2þ1ðλÞ þ cn2ðλÞ�;

ð43Þ

where n1 is the integer which fixes the energy levels and n2
is the integer which specifies the different states in each
energy level.

V. DEFORMED UNCERTAINTY PRINCIPLE

From the expression for the commutator ½x; p� in the one-
dimensional case we conclude that for any state jΨi one has
the lower bound for the product of the uncertainties in the
position and momentum

ðΔxÞΨðΔpÞΨ ≥
ℏ
2
jhΨjDλðã†ãÞjΨij: ð44Þ

If one considers the eigenstates jni of the product of ladder
operators ã†ã one has

ðΔxÞnðΔpÞn ≥
ℏ
2
½cnþ1ðλÞ − cnðλÞ�: ð45Þ

When λ > 0 the lower bound decreases when n increases
and it can be made arbitrarily small. This is an indication
that there will be states where one can make the uncer-
tainties in the position and momentum operators arbitrarily
small. If we calculate directly the uncertainty of the
position operator in the state jni we have

ðΔxÞ2n ¼ hnjx2jni − hnjxjni2 ¼ ℏ
2mω

hnjðãþ ã†Þ2jni ¼ ℏ
2mω

hnjð2ã†ãþ ½ã; ã†�Þjni

¼ ℏ
2mω

½2cnðλÞ þDλðcnðλÞÞ� ¼
ℏ

2mω
½cnðλÞ þ cnþ1ðλÞ�: ð46Þ

Then these are not the states we are looking for. If we consider the coherent states jαi we have

ðΔxÞ2α ¼
ℏ

2mω
½hαjðãþ ã†Þ2jαi − hαjðãþ ã†Þjαi2� ¼ ℏ

2mω
hαj½ã; ã†�jαi: ð47Þ

In the case of the linear deformation, the uncertainty of the
position operator in a coherent state is

ðΔxÞ2α ¼
ℏ

2mω
ð1 − λjαj2Þ ð48Þ

and one has coherent states for any complex number α such
that 0 < jαj2 < 1=λ. Then one has

lim
jαj2→1=λ

ðΔxÞ2α ¼ 0: ð49Þ

A similar analysis can be made for the uncertainty of the
momentum operator in a coherent state. The result is

ðΔpÞ2α ¼
ℏmω

2
ð1 − λjαj2Þ; ð50Þ

and one also has

lim
jαj2→1=λ

ðΔpÞ2α ¼ 0: ð51Þ

Then one has states where both the uncertainties in the
position and momentum operator can be made arbitrarily
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small (classicality). One would expect this will have
implications on the issue of locality in quantum mechanics
[51,52].

In the two-dimensional harmonic oscillator one can also
consider the uncertainty of a position operator in a two-
dimensional coherent state jα1;α2i

ðΔx1Þ2α1;α2 ¼
ℏ

4mω
½hα1; α2jðã1 þ ã2 þ ã†1 þ ã†2Þ2jα1; α2i − hα1; α2jðã1 þ ã2 þ ã†1 þ ã†2Þjα1; α2i2�

¼ hα1; α2j½ã1; ã†1�jα1; α2i þ hα1; α2j½ã2; ã†2�jα1; α2i: ð52Þ

In the case of a linear deformation one has

ðΔx1Þ2α1;α2 ¼
ℏ

4mω
½ð1 − λjα1j2Þ þ ð1 − λjα2j2Þ�; ð53Þ

and

lim
jα1j2→1=λ

lim
jα2j2→1=λ

ðΔx1Þ2α1;α2 ¼ 0: ð54Þ

The same result applies for ðΔx2Þ2α1;α2.
For the uncertainties of momentum operators one has

ðΔp1Þ2α1;α2 ¼ ðΔp2Þ2α1;α2
¼ ℏmω

4
½ð1 − λjα2j2Þ − ð1 − λjα1j2Þ� ð55Þ

and then

lim
ðjα1j2→1=λ

lim
jα2j2→1=λ

ðΔp1Þ2α1;α2 ¼ lim
ðjα1j2→1=λ

lim
jα2j2→1=λ

ðΔp2Þ2α1;α2
¼ 0: ð56Þ

Finally let us mention that all the results of the two-
dimensional harmonic oscillator apply to the Landau
system with the identification mω ¼ qB.
Note that one escapes to the restrictions on possible

deformations of the uncertainty principle implied by the
rigidity of the symplectic form [53,54] through the defor-
mation of the classical-quantum transition.

VI. COMPARISON WITH OTHER APPROACHES
TO THE DEFORMATION OF THE

CLASSICAL-QUANTUM TRANSITION

In order to study the relation of the proposal to consider a
deformation of the classical-quantum transition based on
deformed ladder operators satisfying the algebra (1) with
previous works on deformed quantum mechanics [47–49],
it is convenient to introduce an operator N such that

½N; ã� ¼ −ã; ½N; ã†� ¼ ã†; ð57Þ

so that its eigenvalues differ by integer numbers. Then one
can introduce new operators a, a† such that

N ¼ a†a; ½a; a†� ¼ 1 ½N; a� ¼ −a; ½N; a†� ¼ a†:

ð58Þ

The comparison of the commutators of the operator N with
(ã, ã†) and with (a, a†) leads to the nonlinear relations

ã ¼ afðNÞ; ã† ¼ fðNÞa†; ð59Þ

which define deformed ladder operators for each choice of
the function f.
One has

ã†ã ¼ fðNÞa†afðNÞ ¼ Nf2ðNÞ; ð60Þ

and the eigenvalues [cnðλÞ] of the operator ã†ã are just the
eigenvalues of Nf2ðNÞ, i.e., nf2ðnÞ. Then one has a
correspondence between the spectrum of the deformed
quantum oscillator and the function f which defines the
nonlinear transformation (59) between the ladder operators
a, a† and the deformed ladder operators ã, ã†.
The deformed algebra of ladder operators in (1) can then

be restated in a more contrived way as

½N; ã� ¼ −ã; ½N; ã†� ¼ ã†; ½ã; ã†� ¼ FðNÞ; ð61Þ

with the identification

FðNÞ ¼ DλðNf2ðNÞÞ; ð62Þ

and the simple recurrence relations (2) for the eigenvalues
of the operator ã†ã become

ðnþ 1Þf2ðnþ 1Þ ¼ nf2ðnÞ þ FðnÞ: ð63Þ

A particular choice for the spectrum of the operator
ã†ã is

cnðλÞ ¼ nf2ðnÞ ¼ eλn − e−λn

eλ − e−λ
: ð64Þ

In this case one has
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FðNÞ ¼ ðN þ 1Þf2ðN þ 1Þ − Nf2ðNÞ

¼ ðeλ − 1ÞeλN þ ð1 − e−λÞe−λN
eλ − e−λ

: ð65Þ

One can also calculate

ãã† − eλã†ã ¼ ðN þ 1Þf2ðN þ 1Þ − eλNf2ðNÞ ¼ e−λN

ð66Þ

which is the algebraic relation which defines what is known
as the q-oscillator (with the identification q ¼ eλ), used to
generalize the representation of the SUð2Þ group in terms of
the ladder operators of two oscillators to the case of the
quantum group SUð2Þq.
One can also use the relation

ã†ã ¼ eλN − e−λN

eλ − e−λ
ð67Þ

to express the operator N in terms of ã†ã and then, to
identify the function Dλ which defines [through (1)] the
deformed ladder operators corresponding to the q-oscillator

Dλðã†ãÞ ¼ FðNÞ ¼ ½sinh2 λðã†ãÞ2 þ 1�1=2
þ ðcosh λ − 1Þã†ã: ð68Þ

But this function is such that D0
λðxÞ > 0 and then one has

that the separation of eigenvalues cnþ1ðλÞ − cnðλÞ > 1, in
contrast to the deformation of the classical to quantum
transition that approaches a continuum spectrum in the
large n limit.
Another case where one can easily find the spectrum of

the deformed quantum oscillator and the associated non-
linear transformation defining the deformed ladder oper-
ators is the case we referred to as linear deformation. In this
case one has

fðNÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1 − λÞN

λN

r
ð69Þ

for the function defining the nonlinear transformation
defining the deformed ladder operator, and

FðNÞ ¼ ðN þ 1Þf2ðN þ 1Þ − Nf2ðNÞ ¼ ð1 − λÞN ð70Þ

for the function which defines the commutator of ladder
operators in terms of the operator N. We think that one has
then a clear relation of the linear deformation with quantum
groups. Whether one can identify a generalization of these
group structures related with other deformations is beyond
our present knowledge.
The deformation of the classical to quantum transition

in the case of a system with two degrees of freedom (either
when one has a two-dimensional harmonic oscillator

or a particle in the presence of a constant magnetic field)
cannot be put in correspondence with the realization of
the quantum SUð2Þq quantum group in terms of two
q-oscillators. In the deformation of the classical to quantum
transition the two pairs of deformed ladder operators
(ãi, ã

†
i ) do not mix in the algebraic relations2 while the

algebra of the two q-oscillators which realize the SUð2Þq
quantum group requires a mixing. Both operators N1, N2,
defined by the conditions

½Ni; ãi� ¼ −ãi ½Ni; ã
†
i � ¼ ã†i ð71Þ

have to appear in the commutators

½ãi; ã†j � ¼ δijFðN1 − N2Þ: ð72Þ

Then the deformed quantum systems that we have pro-
posed through the deformation of the classical to quantum
transition differs from the deformed quantum system
associated with the realizations of quantum groups.
Another related discussion of a possible deformation of a

quantum system is based on considering a quantum group
SUðnÞq symmetric Fock space defined by the algebraic
relations [28,55]

ãiãj − qãjãi ¼ 0 ði < jÞ; ã†i ã
†
j − qã†j ã

†
i ¼ 0 ði > jÞ;

ãiã
†
j − qã†i ãj ¼ 0 ði ≠ jÞ;

ãiã
†
i − q2ã†i ãi ¼ 1þ ðq2 − 1Þ

X
j<i

ã†j ãj ð73Þ

which also requires one to go beyond the deformation of
the classical to quantum transition with algebraic relations
which do not mix different pairs of deformed ladder
operators. Only if one considers the reduction of the
previous algebraic relations to the case of a single pair
of operators

ãã† − q2ã†ã ¼ 1 ð74Þ

one can rewrite it as

½ã; ã†� ¼ 1 − λã†ã ð75Þ

with the identification λ ¼ 1 − q2. This is just the case
referred to as linear deformation with DλðxÞ ¼ 1 − λx but
the quantum group symmetry of the Fock space requires
q2 > 1 and then λ < 0 which does not lead to classicality in
the large n limit.
We end up pointing out that the spectrum of the

deformed quantum oscillator can be identified with the
spectrum of a deformed Hamiltonian

2See (10).
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H̃ ¼ Hf2ðH=ℏωÞ ð76Þ

where H is the (normal ordered) quantum Hamiltonian of
the harmonic oscillator whose spectrum is given by
En ¼ ℏωn. The spectrum of H̃ is then

Ẽn ¼ ℏωnf2ðnÞ ¼ ℏωcnðλÞ ð77Þ

which is the spectrum of the deformed quantum oscillator.

VII. SUMMARY AND OUTLOOK

We have presented in this work a proposal for the
deformation of the ladder operators associated with the
Heisenberg algebra of a quantum mechanical system.
In the case of a classical mechanical system with a
Hamiltonian quadratic in the phase space variables one
can introduce in the classical system complex variables
which are linear combinations of the phase space variables
such that the Hamiltonian can be written as a linear com-
bination of the squared modulus of these complex varia-
bles. When the complex variables are replaced by deformed
ladder operators one finds a deformed Hamiltonian with a
deformed spectrum and a deformed Fock space of eigen-
states. The deformation of the Heisenberg algebra and the
uncertainty principle can be interpreted as the replacement
of the Planck constant by an operator.
An issue that any proposal of a deformation of the

uncertainty principle, as the one presented in this work,
should address is its consistency with a related violation of
the second law of thermodynamics [56]. Another issue is
that not all the symmetries of the classical system are in
general compatible with the deformation. As we have
shown, in some cases one can use the criteria to respect
the symmetries of the classical theory in the classical-
quantum transition to fix some ambiguities in the identi-
fication of the complex variables corresponding to the
deformed ladder operators. In the case of a relativistic

theory one will find the difficulty to make compatible a
minimal length associated with a deformation of the
classical-quantum transition with the Lorentz symmetry.3

One could go beyond the systems with a quadratic
Hamiltonian considered in this work. Any Hamiltonian
which can be expanded in powers of the phase space
variables can be reformulated at the classical level in terms
of the complex variables defined by the quadratic part of
the Hamiltonian and then the replacement of the complex
variables by the deformed ladder operators in the higher
order terms defines the deformed quantum system.
Some extensions or applications of the proposal pre-

sented in this work can be considered. The main idea used
to define a deformation of the classical-quantum transition
in a quantum mechanical system, based on the introduction
of a formulation of the classical system in terms of
appropriately chosen complex variables which are replaced
by deformed ladder operators in the quantum theory, can
be easily extended to the case of field theory defining a
deformed quantum field theory. Also the contraction of
the discrete spectrum of the harmonic oscillator for large n
will have an analog for a many particle system with a large
occupation number when the deformation of ladder oper-
ators is introduced in this context. One can guess that the
deformation can be relevant in the determination of the
critical temperature of Bose-Einstein condensation.
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