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We study the response of the electron mass to an externally applied electrical field. As a consequence of
nonlinear electromagnetic (EM) effective action, the mass of a particle diminishes in the presence of an
externally applied electric field. We consider modification of the muon anomalous magnetic moment g − 2

due to electron loop insert in higher order. Since the virtual electron pair is in close proximity to the muon, it
experiences strong field phenomena. We show that the current theory-experiment muon g − 2 discrepancy
could originate in the (virtual) electron mass nonperturbative modification by the strong muon EM field.
The magnitude of the electron mass modification can be also assessed via enhancement of eþe−-pair
production in strong fields.

DOI: 10.1103/PhysRevD.102.036014

I. INTRODUCTION

The Higgs minimal coupling mass generating mecha-
nism of heavy, beyond GeV mass scale, elementary
particles is well established. The origin of the lightest
standard model (SM) electron mass is not expected to be
resolved experimentally in the near future: the LHC pp-
collider is capable of constraining the minimal coupling to
factor ∼100 above the predicted SM value, and next
generation eþe−-colliders are limited to factor ∼10 above
the required sensitivity [1]. However, given the small value
of electron mass a significant electron mass contribution
from electromagnetic (EM) self-energy in the realm of
QED can be expected.
We propose here a complementary probe of electron

mass, the mass modification by a strong external field.
This is based on the observation that a negligible in
magnitude beyond SM (BSM) component is irrelevant,
while the Higgs mass component can respond to external
EM field strengths of electro-weak natural strength, inac-
cessible today. However, the electromagnetic (EM) mass
component of the electron is susceptible to modification
by an applied strong external field, measured in electron
mass me natural units characterized by the Schwinger
(EHS) field,

EEHS ¼
m2

eð0Þ
e

¼ 1.323 × 1018 V=m: ð1Þ

The electron mass response to external EM fields has
been studied before [2–4]. We revisit the topic with the aim
to better understand the relation between the two dominant
contributions to electron mass, the EM and Higgs portions.
The EM mass in external fields can be studied in QED
either as EM-self-energy or in the EM-energy-momentum
tensor analysis: We show this in Sec. II, where we also
propose an effective method allowing exploration of field-
dependent mass in the strong field nonperturbative regime.
We show how the nonlinear mixing between fields sup-
presses the total field to an amount that can be smaller than
their linear superposed sum. For this reason the electron’s
EM field mass portion diminishes in an externally applied
electric field, an effect we call in the following mass
melting.
In Sec. III using a specific limiting EM field strength

model we explore the supercritical field regime [5,6]. The
model is tailored to match closely to the QED effective
Euler-Heisenberg-Schwinger (EHS) action [7–10] for qua-
siconstant fields up to the EHS field strength, and contains
an adjustable parameter that allows for probing of the
relation between EM and non-EM components of electron
mass. In Sec. IVA we compute the model mass melting
effect in supercritical fields, and in Sec. IV B show that in
subcritical fields this effective modification has the right
structure (powers in α) and order of magnitude to be
consistent with evaluation of perturbative self-energy
corrections in QED.
Most high precision QED experiments probe fields

below the EHS critical field, in which the mass modifica-
tion can be explored using perturbative QED. Fields
beyond the EHS strength appear in the muon g − 2: The
anomaly in the muon magnetic moment is sensitive to the
melting of the (virtual) electron mass entering the vacuum
polarization experienced by the virtual photon, induced by
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the muon-sourced EM field. Due to the small effective size
of the muon, as a quantum wave localized at its Compton
wave length scale, the virtual electrons entering the muon
g − 2 consideration experience much stronger fields than
that in the electron g − 2 case. We show in Sect. VA via
computation of the induced vacuum polarization displace-
ment current charge density that the polarized virtual
electron pairs lie close enough to the muon to experience
strong field phenomena. We argue that therefore a pertur-
bative QED evaluation of g − 2 is unreliable. We show that
our model mass melting of the electron by the field of the
muon is capable to explain the observed theory-experiment
g − 2 discrepancy [11].
Another experimental process highly sensitive to the

value of the electron mass is the QED vacuum decay into
electron-positron pairs, see Sec. V B. For uniform homog-
enous EM fields, pair production in strong fields is inherent
in the EHS effective action obtained for quasiconstant
fields. For inhomogeneous fields the nonperturbative proc-
ess of pair production has been explored in the context of
heavy ion collisions [12]. The localization of strong field
phenomena has facilitated consideration of the local vac-
uum structure and instability [13]. Pair production in the
EHS action seen in perspective of the development of novel
ultraintense-pulsed-laser technologies [14] has been spur-
ring a renaissance of strong field physics [15–18]. We close
this paper with an outline of future research opportunities.

II. MASS MELTING ARISING IN NONLINEAR
ELECTROMAGNETISM

A. Effective scalar potential

The mass response to external EM fields is recognized
exploring the position of the electron propagator pole, see
e.g., [19]. The field-dependence of electron self-energy [2]
allows us to write

meða; bÞ≡me þ ϕðme; a; bÞ: ð2Þ

Only in the limit of quasi-constant fields can ϕ in Eq. (2) be
expressed as a function of both Lorentz and gauge invariant
quantities. Here með0Þ≡me is the physical electron mass;
the invariants

a2 − b2 ¼ 2S ¼ E2 − B2; a2b2 ¼ P2 ¼ ðE · BÞ2; ð3Þ

are appearing in the eigenvalues of the EM field tensor. The
scalar ϕ itself now enters the Dirac equation since

½γ · Π −meða; bÞÞ�ψ ¼ 0; ð4Þ

in view of Eq. (2).
The scalar potential ϕ has been studied applying per-

turbative QED methods: The leading self-energy diagram
consisting of the dressed (by external fields) electron
propagator along a virtual photon loop [2,4]; and magnetic

field driven mass (mass catalysis [3], and references
therein). The perturbative approach is assumed to be valid
for weak fields well below the EHS critical field scale. The
supercritical regime requires extending the computation to
a nonperturbative summation in self-energy diagrams. This
includes a self-consistency requirement in Eq. (2): On the
right-hand side (rhs) the mass scale accompanying a, b
dependence can be interpreted as being affected by the EM
response.
To explore this mass response in the nonperturbative

regime we propose to consider a model formulation of
mEM, the EM field mass portion of electron mass me. How
a finite mEM with a stable EM stress configuration arises
remains an open question today [6,20,21]. Electron mass
cannot be entirely EM in origin due to lepton mass
differences: to resolve the EM portion is not possible
within perturbative QED, but may arise in a self-consistent
and nonperturbative approach, see [22]. By EM field mass
we refer to the energy contained within the EM field of a
particle: this quantity is strongly dependent on the particle
charge distribution—in QED the “electron size” is gov-
erned by the Compton wavelength, while in classical EM
theory the α−1 ¼ 137 times smaller so-called classical
electron radius is the appropriate scale.

B. EM field mass

We evaluate meða; bÞ by integrating EM field mass
density. The Lorentz invariant field mass density U
obtained from the field 4-momentum density Pν, see for
example Eq. (28.11) in [23]:

Pν ¼ uμTμν; ð5Þ

U≡ ffiffiffiffiffiffiffiffiffiffi
PνPν

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uμTμνTναuα
p

; ð6Þ

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT00Þ2 þ ðT0kÞ2

q
; ð7Þ

where T is the EM energy-momentum tensor and u is the
relative 4-velocity between observer and the source of the
field. The last relation follows in the comoving (relative
rest) reference frame of the field source u ¼ ð1; 0⃗Þ.
T for any nonlinear effective EM Lagrangian L is

obtained by varying L with respect to the metric gμν,
resulting in [24]:

Tμν ¼
∂L
∂S TM

μν − gμν

�
L − S

∂L
∂S − P

∂L
∂P

�
; ð8Þ

where TM is the Maxwell energy momentum tensor

TM
μνðxÞ ¼ TμνðxÞjL¼LM ¼ FμαFα

ν −
gμν
4

FβαFαβ: ð9Þ

g is the space-time (here Minkowski) metric, F is the EM
field tensor, and the Maxwell Lagrangian
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LM ¼ 1

2
ðE2 − B2Þ: ð10Þ

For a pure electric field, Eq. (8) may be written as

Tμν ¼
D
E

�
TM
μν þ gμν

E2

2

�
− gμνL; ð11Þ

where we introduced the displacement field

D ¼ ∂L
∂E : ð12Þ

Plugging Eq. (11) into Eq. (5) produces

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
D
E

�
TM
00 þ g00

E2

2

�
− g00L

�
2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE ·D − LÞ2

q
: ð13Þ

The same result is obtained by performing a Legendre
transform of L [5]. Note that U and E are to be evaluated as
functions of D which is sourced by some applied charge
distribution.
Consider the electric field Ep sourced by the charge of

the electron (we postpone for now the magnetic field
sources by the magnetic dipole moment), in the presence
of an external constant and homogeneous electrical field
Eex. First we write the EM field mass for the electron’s
electric component in the absence of external fields

mEMðEex ¼ 0Þ ¼
Z

d3rUðDpÞ; ð14Þ

where for a point electron (or, outside of charge distribution
of an electron) we have

Dp ¼
∂L
∂Ep

¼ r̂
e

4πjr⃗j2 : ð15Þ

To include an external field, a closer look at the super-
position principle is required. Only for Maxwell action may
E be written as a linear superposition of Ep and Eex. In any
nonlinear theory, the superposition of electric fields is
violated, and only the displacement fields generated by
inhomogeneous Maxwell equations may be superposed.
We use displacement fields to distinguish the external and
particle field in the rest frame:

D ¼ Dp þDex ¼ r̂
e

4πjr⃗j2 þDex: ð16Þ

The superposed displacement fields enter the expression
for mass density [Eq. (13)], from which we subtract the
contribution from the external field alone:

ŨðDÞ ¼ UðDp þDexÞ −UðDexÞ: ð17Þ

Equation (17) is integrated to obtain the external field-
dependent mass:

mEMðEexÞ ¼
Z

d3rŨðDÞ: ð18Þ

This expression for EM field mass is applicable to both
linear and nonlinear actions.
Only in the linear Maxwell theory is the mass unaffected

by the presence of external fields: the Maxwell Lagrangian

LM ¼ E2=2; ð19Þ

gives superposable fields

E ¼ Ep þ Eex ¼ D ¼ Dp þDex; ð20Þ

(only in Gauss-type units can we set E ¼ D, in SI units
there is a further vacuum dielectric constant factor). The
mass density becomes

ŨðDÞ ¼ D2
p

2
þDp ·Dex: ð21Þ

Evaluating the field mass according to Eq. (18)

mEMðEexÞjL¼LM ¼
Z

d3r

�
D2

p

2
þDp ·Dex

�

¼
Z

d3r
D2

p

2
¼ mEMðEex ¼ 0Þ; ð22Þ

where the mixing term integrates to zero for any radial
Coulomb field in presence of a constant and homogeneous
external field. Our intuitive chain of argument using
classical fields shows clearly that only when the super-
position principle of fields holds can one expect to describe
the particle interaction with electron mass unchanged by
the external field.
Upon field quantization, that is in QED, the situation

becomes more complex since any interacting quantum field
theory is intrinsically a nonlinear theory. However, to
lowest order the Maxwell Lagrangian would then include
the vacuum polarization contribution, described diagram-
matically by an electron loop coupled to two photon lines
(of order E2). Such a contribution though being nonlocal, is
still linear and thus does not introduce external field
corrections to the EM field mass.
The correction we anticipate appears at higher order. For

the case of (quasi-)constant fields, an exact result was
obtained by Euler and Heisenberg, and illuminated by
Schwinger [7–9]. This EHS field-dependent action is
giving the vacuum state the properties of a nonlinear
dielectric and introduces light-light scattering diagrams,
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beginning with order E4. We have as action to lowest order
the Maxwell term complemented by nonlinear effective
QED term:

L1
EHS ¼

E2

2
þ E4

E2
cr
þ…; ð23Þ

here expanded to leading fourth order contribution. Ecr is a
“critical” field scale we recognize in magnitude in quanti-
tative consideration of QED effects.
The new nonlinear term is mixing the particle and the

external field in a more complex fashion due to violation of
the EM field superposition principle. In order to use the
superposition principle for the displacement fields we
evaluate the relation between field and displacement field,
and its inversion, in the weak field limit

D ¼ E þ 4
E3

E2
cr
þ… → E ¼ D − 4

D3

E2
cr
þ…; ð24Þ

see [25]. The electric field is suppressed by the light-light
scattering response; hence the negative contribution to E on
the rhs of Eq. (24). The total electric field is thus smaller
than the superposed fields encountered in the linear theory
in Eq. (20), reducing the EM field mass density:

UðDÞ ¼ D2

2
−
D4

E2
cr
−…: ð25Þ

Writing D ¼ Dp þDex explicitly and subtracting the
external field contribution far from the Coulomb field
source,

ŨðDÞ ¼ D2
p

2
þDp ·Dex −

1

E2
cr
fD4

p þ 2D2
pD2

ex

þ 4D2
pDp ·Dex þ 4D2

exDp ·Dex

þ 4ðDp ·DexÞ2g −…: ð26Þ

Plugging Eq. (26) into Eq. (18), odd powers Dp ·Dex

integrate to zero and we obtain, to order D2
p,

mEMðEexÞ¼
Z

d3r

�
D2

p

2
−
2D2

pD2
exþ4ðDp ·DexÞ2

E2
cr

�
: ð27Þ

In Eq. (27) the leading correction to the EM field mass
density is quadratic in external fields, and due to its
negative sign, mass decreases (melts) in an external field.
We now turn to a nonperturbative formulation, essential to a
quantitative study of EM field mass.

III. NONLINEAR EFFECTIVE ACTION

We study mass melting in context of the following EM
actions:

A. EHS effective action

In QED, in the quasiconstant (local) field approximation,
the EHS effective action arises [10]

LEHS ¼ LM −
1

8π2

Z
∞

0

ds
s3−δ

e−m
2
eð0Þs

×

�
e2abs2 cot½eas�

tanh½ebs� − 1

�
; ð28Þ

depending implicitly on the Schwinger (EHS) field, Eq. (1).
The argument “0” seen above for the electron mass reminds
that the result was obtained without allowing for a
dependence of electron mass on the external applied field.
The field invariants a and b in Eq. (28) are given by

Eq. (3), and the pre-factor 1=8π2 in Eq. (28) follows units
used by Schwinger in which α ¼ e2=4π, see Ref. [10]. The
function in Eq. (28) has been subtracted to remove the zero-
point energy, and the logarithmically divergent contribution
to be absorbed by charge renormalization is regularized by
infinitesimal δ.
In the perturbative regime, weak field expansion

(Eex, Bex ≪ EEHS) produces the light-light scattering
contribution

LEHS ¼ LM þ 2α

45πE2
EHS

�
S2 þ 7

4
P2 þOðS3Þ

�
: ð29Þ

Understanding of the magnitude of the mass melting
effect requires a finite computable EM field mass, see
Eq. (18), yet the EHS action, without improvements, leads
to a divergent result. We demonstrate this divergence
in two steps: first considering the divergent electric
component of the Maxwell EM field mass and later
EHS. For the Maxwell case we find:

mEMð0ÞjL¼LM ¼
Z

d3rðEp ·Dp − LMðEpÞÞ

¼
Z

d3r
Ep ·Dp

2

¼ e2

8π

Z
dr r2 ·

1

r4
→ ∞: ð30Þ

To remedy the divergent Maxwell expression requires an
effective action which suppresses E, where at the origin
Ep ≪ Dp, for example such that product Ep ·Dp ∝ 1=r2,
instead of 1=r4 as in the Maxwell case. Now if the original
EHS action were applied instead,

mEMð0ÞjL¼LEHS
¼

Z
d3rðEp ·Dp − LEHSðEpÞÞ; ð31Þ

where at the origin the strong field limit (Ep ≫ EEHS) gives
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Re½LEHS� ¼
E2
p

2

�
1 −

α

3π
ln½2eEp=m2

eð0Þ�
�
: ð32Þ

Differentiating Eq. (32) by Ep to obtain DpðEpÞ, we find
that Ep > Dp, causing the product Ep ·Dp to be even more
divergent than in the Maxwell case.
Four here relevant additional corrections to EHS result

are known and we believe can influence the divergent
behavior of the EM self-fields above:
(1) In the original EHS result, the fermions are non-

dynamical since they are integrated out in order to
obtain an effective action: self-energy corrections to
the mass can only appear in higher order corrections.
Since we know that the EHS effective action is
nonlinear, we need to account for the possibility that
the electron mass is melted in strong fields. This EM
field mass correction described in Sec. II enters the
Dirac equation at the start of derivation of EHS
action, Eq. (4). One can understand this considering
such a self-consistent correction applied to the
Landau energy levels summed in the Weisskopf
EHS evaluation [8]. The result thus is

LEHSþmelt ¼ LM −
1

8π2

Z
∞

0

ds
s3−δ

e−m
2
eða;bÞs

×

�
e2abs2 cot½eas�

tanh½ebs� − 1

�
: ð33Þ

Eq. (33) contains a higher order correction to the
EHS action via field-dependent mass, hence sub-
script “+melt.” Interestingly, the Schwinger field is
now an external field-dependent quantity:

Emelt
EHS ¼

m2
eðaex; bexÞ

e
: ð34Þ

(2) Nonlocal corrections to the action are required in
order to account for nonlinear mixing between the
external fields and the inhomogeneous fields of the
particles [26–29].

(3) Another effect has been pointed out by Gies and
Karbstein [30,31]: in addition to the well-studied
internal photon line corrections to the EHS action
[32,33], reducible connecting photon line correc-
tions to the EHS action have been shown to be
nonvanishing. This contribution may also be ac-
counted for in a self-consistent manner. We continue
this work in an upcoming paper, following a
suggestion by Weisskopf that the EM fields entering
effective action are themselves screened by the
vacuum response [8].

(4) The modification to effective action due to QED
induced anomalous magnetic moment has recently
attracted attention and we refrain from in depth
discussion here. We note that in addition to mass, the

g − 2 contribution becomes a field-dependent quan-
tity [4] which must enter into EHS action in a self
consistent manner. For incorporation of g − 2 into
EHS action see [34–37], recently shown by the
authors to have a significant influence on pair
production in strong magnetically dominated
fields [38].

B. Generalized Born-Infeld model

Practical use of EHS action considering the above
described self-consistency extensions is difficult as con-
siderable improvement of our understanding of the (elec-
tron) mass response to external fields is required. Therefore
we explore a model of the Born-Infeld (BI) type created
expressly to describe EM-mass of the electron. We recall
that BI model also introduces a limit to the achievable field
strength. We do not consider the model as an extension to
QED, which has in large part been constrained [39–41].
Instead we fine-tune it so that it will allow to make
predictions in lieu of the EHS effective action accounting
perhaps for the required EHS improvements we discussed.
We fine-tune a BI-like model introduced in Ref. [6]

Leff ¼ −
E2
crðnÞ
2n

��
1 −

a2 − b2

E2
crðnÞ

− 7
a2b2

E4
crðnÞ

�
n
− 1

�
: ð35Þ

Choosing n ¼ 1=2 and Ecr ¼ 89.72EEHS we obtain the
original BI result [42]. Ecr provides a limit on the maximum
strength that an electric field may reach, and we inserted the
a2b2 coefficient so that the model more closely tracks in its
functional form the EHS action in presence of both electric
and magnetic fields.
We further choose the value of the critical field such that

an expansion of Eq. (35) generates exactly the EHS light-
light scattering result, Eq. (29)

EcrðnÞ ¼ EEHS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
45πð1 − nÞ

2α

r
: ð36Þ

FIG. 1. Nonlinear contribution of Leff field for all −1=2 ≤ n ≤
1=2 alongside the real part of LEHS (B ¼ 0). Choice of n does not
affect Leff until stronger EM fields.
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This also assures that Leff and the original LEHS agree in
shape up to EHS field EEHS, see Fig. 1. Because the action
Eq. (35) has two free parameters, different choices of n ≤
1=2 in Eq. (35) allow to choose the magnitude of finite EM
field mass, as opposed to the original BI model where all
electron mass was attributed to the EM field. A finite EM-
mass arises in the range n ≤ 1=2 since the product E ·D ∝
1=r2 at the origin.

IV. EVALUATION OF EFFECTIVE MASS

A. Model computation

We compute the electric component of EM field mass via
the displacement field, differentiating the model for effec-
tive action, Eq. (35):

D ¼ Dp þDex ¼
∂Leff

∂E ¼ E
�
1 −

E2

E2
crðnÞ

�
n−1

: ð37Þ

D is numerically inverted to obtain an expression for
electric field EðDÞ ¼ EðDp þDexÞ. We separately define
the externally applied electric field Eex as the limit far from
the particle:

lim
jr⃗j→∞

D ¼ Dex ¼ Eex

�
1 −

E2
ex

E2
crðnÞ

�
n−1

; ð38Þ

numerically inverted to obtain EexðDexÞ. E and Eex are then
plugged into the mass density given by Eqs. (17) and (18):

mEMðEexÞ ¼
Z

d3rðUðDÞ −UðDexÞÞ

¼
Z

d3rfðEðDÞ ·D − LeffðEðDÞÞÞ

− ðEexðDexÞ ·Dex − LeffðEexðDexÞÞÞg: ð39Þ

Eq. (39) is computed numerically and plotted in Fig. 2 for
the examples of n ¼ 1=2 and n ¼ 0.
The plots in Fig. 2 are a model example. We see the

significant nonperturbative behavior and in the zoom-insert
at bottom the domain which explains why one can often
argue that mass-melting is a minor effect. Total melting
of the EM field mass occurs at the critical fields
EcrðnÞ ≫ EEHS: Ep is suppressed as the externally applied
field Eex approaches EcrðnÞ, due to the violation of linear
superposition (see Sect. II). That is, when the total field
cannot exceed EcrðnÞ and the external field approaches
this limit, there is no room left for the particle field. At
this point only the (model n-dependent) non-EM mass
(Higgsþ BSM) components remain, flat solid lines in
Fig. 2.

B. Perturbative self-consistent corrections

The leading EM self-energy correction is known via the
perturbative QED computation of the internal photon line
correction to EHS action. To ensure that the effective form
studied here is consistent, we compare the two and show
that the model effect is of the right order.
To understand the weak field behavior of the mass

melting effect we expand the integrand in Eq. (39) in
powers of Eex (from hereon we drop subscript “ex”) and
integrate to obtain the light-light scattering contribution.
This is the quadratic in EM field mass modification:

mEMðEÞjn¼1=2 ¼ mEMð0Þ
�
1 −

α

30π

E2

E2
EHS

−…

�
;

mEMðEÞjn¼0 ¼ mEMð0Þ
�
1 −

α

36π

E2

E2
EHS

−…

�
: ð40Þ

The EM field mass mEMð0Þ makes up the following
portions of total electron mass for n ¼ 1=2 and n ¼ 0:
0.8703með0Þ and 0.9754með0Þ, Fig. 2 top. Counting
powers in α, the mass modification of order αE2=E2

EHS
corresponds to the leading perturbative QED treatment,
described diagrammatically by the electron propagator
connected to a virtual photon loop that encloses two
external photon lines [2].

FIG. 2. Top: dashed lines plot mass-melting models with
parameters n ¼ 1=2 and n ¼ 0, solid lines for the non-EM mass
mH þmBSM. Bottom: zoom-in detail of mass behavior below the
EHS field.
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We track how the effective action is modified by mass
melting in a self-consistent manner. Eq. (40) is input into
the mass entering EHS action for a pure electric field:

LEHSþmelt ¼ LM −
1

8π2

Z
∞

0

ds
s3−δ

e−m
2
eðEÞs

× ðeEs cot½eEs� − 1Þ: ð41Þ

Writing explicitly the bare charge in the Maxwell contri-
bution to demonstrate renormalization procedure and
expanding to order E4,

LEHSþmelt

¼ e2E2

2e20
þ 1

8π2

Z
∞

0

ds
s3−δ

e−m
2
eðEÞs

�ðeEsÞ2
3

þ ðeEsÞ4
45

�

¼ e2E2

2e20

�
1þ e20

12π2

�
δ−1 − γE − ln½m2

eð0Þ� − ln

�
m2

eðEÞ
m2

eð0Þ
���

þ αE4

90πE2
EHS

: ð42Þ

We apply renormalized charge

1

e2
¼ 1

e20

�
1þ e20

12π2
ðδ−1 − γE − ln½m2

eð0Þ�Þ
�
; ð43Þ

and use effective mass model Eq. (40) to write the
remaining finite logarithmic expression to order E2,

ln

�
m2

eðEÞ
m2

eð0Þ
�
n¼1=2

¼ − 0.8703α
30π

E2

E2
EHS

;

ln
�
m2

eðEÞ
m2

eð0Þ
�
n¼0

¼ − 0.9754α
36π

E2

E2
EHS

: ð44Þ

To order E4 the effective action becomes

LEHSþmeltjn¼1=2¼LMþ αE4

90πE2
EHS

�
1þ0.8703α

2π

�
;

LEHSþmeltjn¼0¼LMþ αE4

90πE2
EHS

�
1þ0.9754 ·5α

12π

�
; ð45Þ

aligning in order of α well with the known 2-loop QED
correction to EHS action [10,32,43],

LEHSþ2loop ¼ LM þ αE4

90πE2
EHS

�
1þ 40α

9π

�
: ð46Þ

We see that the EM field effective mass correction Eq. (45)
is smaller compared to QED perturbative result Eq. (46).
For higher order in α and E effects, the self-consistency

requirement means that the corrected “EHSþmelt” effec-
tive action must again be plugged back into EM field mass

computation. Repeating this procedure forces us to con-
sider higher orders in the semi-convergent perturbative
EHS series, along with higher order radiative corrections
described above in Sec. III. Thus a full self-consistent
computation is in principle nonperturbative and the radia-
tive corrections have to be built in.

V. METHODS FOR MEASURING MASS
MELTING MODEL

A. Muon magnetic moment

Turning our attention to precision QED experiments, we
consider the muonic g − 2 anomalous magnetic moment
(μAMM). Mass melting affects the electron mass entering
the vacuum polarization contributions to the μAMM. The
muon sees Bex, the external magnetic field applied in
measuring the μAMM, while the virtual electron sees both
Bex and the electromagnetic fields of the muon Eμ, Bμ.
Figure 3 shows the contribution to the μAMM in which
the electron loop is ‘doubly-dressed’: zoom-in shows the
propagator dressed by the muon’s fields (two-line), and
summation of its self-energy corrections—the two-line
propagator sums all photons connecting the electron loop
to the muon, and the self-energy correction sums virtual
photons that only couple to the electron.
The electron vacuum polarization correction to the

μAMM is given by Eq. (77) in [11]

ΔaμðmeðEÞÞ ∼
α2

π2

�
1

3
ln

�
mμ

meðEÞ
�
−
25

36

�
: ð47Þ

We have extended this well known expression by allowing
the electron mass to be function of the EM field, i.e., to
melt. The ln½mμ=me� term is sensitive in nonperturbative
fashion to value of me that is subject to mass melting. We
did not suggest that the muon mass melts—we expect that
the electron proportionally has more EM field mass than
the muon, and the muon requires much stronger fields (on
the order of m2

μ=e) for noticeable EM field mass modifi-
cation to occur.
The electron and its mass is impacted by the strong muon

EM field; we consider this remark in quantitative manner
by estimating the relative virtual electron pair location with
respect to the muon. To illustrate that the virtual electrons
cannot resolve the muon to distances smaller than the

FIG. 3. Electron vacuum polarization contributions to μAMM:
“x” denotes Bex.
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muon Compton wavelength, we assign a charge distri-
bution ρμðrÞ ¼ 2α1=2 exp½−r2=ƛ2μ�π−1ƛ−3μ . This assumes
that the muon is localized to the distance of one muon
Compton wavelength, much smaller compared to that of
the electron: ƛμ¼ðme=mμÞ·ƛe¼ð1=206Þ·386fm¼1.87fm.
The muon does not possess such a charge distribution,
but this provides an estimate for the field strengths that
the virtual ‘quantum sized’ particles experience. We com-
pute the induced perturbative current derived by Schwinger
[9] and repeat this computation replacing the muon
by an electron localized to its Compton wavelength. In
Figs. 4 and 5 we plot the muon and respective electron
(ρeðrÞ ¼ 2α1=2 exp½−r2=ƛ2e�π−1ƛ−3e ) charge distributions,
and their induced (virtual electron) polarization charge
clouds.
The induced charge is much closer to the muon than the

electron: we mark the muon Compton wavelength at which
Eμ is 309 times the EHS field, and further out the radius at
which Eμ is equal to the EHS field. We see that the muon’s
induced polarization charge occupies the domain of field
strengths in which perturbative treatment of the polarization
loop contribution to g − 2 cannot be trusted. The electron’s
induced charge lies in the perturbative regime and thus the
electron’s g − 2 avoids this difficulty. The importance of
nonperturbative AMM computation in the presence of

strong Coulomb fields was also noted by Sikora and
collaborators [44]. However these authors considered the
electron AMM only.
To estimate the order of magnitude of the nonperturba-

tive effect we evaluate as an example the electron mass
subject to a field strength of 4 times the EHS field, giving
meðEÞ ¼ 0.99876með0Þ and meðEÞ ¼ 0.99897með0Þ, for
n ¼ 1=2 and n ¼ 0 respectively. The μAMM increases by

ΔaμðmeðEÞÞjn¼1=2 − Δaμðmeð0ÞÞ ¼ 2.23 × 10−9

ΔaμðmeðEÞÞjn¼0 − Δaμðmeð0ÞÞ ¼ 1.86 × 10−9; ð48Þ

close to the discrepancy between experimental and theo-
retical values of 2.9 × 10−9 [11].
We do not discuss in comparable depth the electron-

AMM, as it is less affected than the μAMM. As noted
already, due to the difference in Compton wavelengths,
virtual electrons exist much farther from a real electron than
from a muon, experiencing weaker mass melting fields: at
ƛe the electric field is only 1=137 of the EHS field, at which
perturbative QED is valid and higher order loop diagrams
have been highly constrained [45]. The model gives a
maximum melting effect of meðEÞ ∼með0Þð1 − 10−9Þ,
modifying the electron g − 2 on the order of one part
per 1012, two orders of magnitude below the experimental
uncertainty [46].

B. Pair production in strong fields

As ultrashort pulse laser fields approach strengths
capable of probing vacuum instability, the EHS action
has been a focus of much theoretical attention [10,12,47].
We explore how the mass melting modifies the imaginary
part of EHS action describing the pair production

Im½LEHSþmelt� ¼
e2ab
8π3

X∞
n¼1

coth½nπb=a�e−nπm2
eða;bÞ=ea

n
:

ð49ÞFIG. 4. Solid: muon charge distribution, dashed: induced
electron vacuum charge.

FIG. 5. Solid: electron charge distribution, dashed: induced
electron vacuum charge.

FIG. 6. Enhancement of pair production for effective models
with n ¼ 1=2, 0, normalized to the original result obtained with
constant electron mass.
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From Eq. (49) the rate of pair production and vacuum decay
time is obtained [48]. In Fig. 6 the enhancement of pair
production according to Eq. (49) with mass modified by the
model computation, Sec. IVA, is shown.
We find that the mass melting model does not signifi-

cantly modify pair production until EM field strengths
beyond EEHS are reached, that is when a significant portion
of electron mass has melted. While high intensity lasers are
unlikely to be suitable for measuring mass melting until
they reach the EHS field strength regime, stronger fields
capable of probing the effect are generated in heavy ion
collisions [49–52].

VI. OUTLOOK

We proposed an effective formulation of the EM field
mass in the strong field regime not amenable to perturbative
QED evaluation. We discuss the possible experimental
implications.
The external field-dependent electron mass can be

obtained considering nonlinear EM theory: The violation
of superposition in nonlinear EM theories is described in
Sec. II. The effective EM field mass given in Eq. (13)
causes mass modification, Eq. (27). We have explored this
effect using a model limiting field effective action adjusted
to match the EHS light-light scattering, Eq. (35). In our
model mass melting aligns in magnitude with perturbative
QED for weak fields (up to field-gradient corrections), and
produces a large degree of melting in the regime of
supercritical fields where an exact QED evaluation is not
available, Fig. 2.
We explored observable consequences of the mass

melting in the μAMM. The EM fields sourced by the
muon at the location of virtual polarized eþe−-pairs are
in the regime in which nonperturbative strong field QED
computation is required, Fig. 4. Applying the mass
melting model prediction we found a narrowing of the
experimental result discrepancy with the theory Eq. (48).
We relate to a proposed resolution to the μAMM
discrepancy that involves an external scalar field
[53,54], since the external field-dependent shift in mass
can be described in terms of an effective scalar potential.
Our nonperturbative result influences the μAMM in a
manner not visible to perturbative QED evaluation. The
model prediction has a negligible effect on the electron
AMM, due to the weaker EM fields experienced by the
virtual electrons. We have also evaluated a mass melting
enhancement of pair production in fields relevant to
heavy ion collisions, Sec. V B.
A future area of interest is that of high Z atoms, which

also probe mass melting of the electron: An electron in the
hydrogen-like uranium 1S-state is likely subject to mass
melting since the atomic nucleus with Z ¼ 92 provides
strong EM fields, on the order of EEHS, and there is ample
experimental measurement of the 1S-state binding energy
to probe mass melting [55]. We also comment on muonic

hydrogen: for a long time there has been a Lamb-shift
discrepancy [56], which in part motivated this work.
However this may have been resolved recently [57].
Since the muon and proton fields cancel at least in part,
we expect the mass melting effect to be smaller than in the
case of the muon g − 2 discrepancy.
Regarding future theoretical developments, we return to

Sec. III where we have discussed how we plan to improve
the EHS action for quasiconstant fields accounting for
field-dependent mass and the recent development in reduc-
ible diagram summation [30,31]. Another modification is
the nonlocal correction to account for nonlinear mixing
between the external fields and the inhomogeneous fields
of the particles [26–29]. These improvements must be
incorporated in a self-consistent manner: the nonlinear
effective action, used to compute the external field-depen-
dent mass via our effective formulation, also contains the
corrected mass built in.
Another topic discussed in Sec. III concerns how non-

linear EM model theories may be used to model QED
effective action. The model action is a monotonically
increasing function that matches the known EHS light-
light scattering, yet the two actions differ in stronger fields.
A questionable sign flip occurs in the real part of EHS
action beyond EEHS, which causes the EM field mass to be
divergent. This sign flip is in the regime where higher order
corrections are capable of significantly altering the action.
Since mass melting reduces the EHS field Eq. (34), we
expect a self-consistent computation will produce a com-
pounding effect that becomes important in strong fields,
possibly producing a further change in sign.
Study of mass melting should also consider the

magnetic moment’s contribution to EM field mass, which
may affect the predicted rate of mass melting. Such a
computation is more involved: so far the generalized
model limits only the E field [6], and an extension of the
model to limit both E and B has not yet been invented:
the BI-like models are singular upon inclusion of a point-
like magnetic dipole. Since the dipole field is important
at a smaller radius than the Coulomb field, whether the
electric or magnetic mass component is the dominant
contribution depends on the nonzero effective size of the
electron that arises [20]. This size lies in between the two
physically relevant length scales: the classical electron
radius (2.82 fm) and the electron Compton wave-
length (386 fm).
The work we presented is a tip of an iceberg of many

questions that our insight about the effect of EM field
nonlinearity presents, inherent in QED. It is possible that
there is not a smooth mass melting but a mass discontinuity
that will appear in the presence of both electric and
magnetic self-mass sources. Our work could also revive
effort to conduct numerical study of QED leading to model
independent nonperturbative evaluation of EM field mass
melting in the presence of strong fields.
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The methods we presented should allow the develop-
ment of theoretical description of the EM mass compo-
nent of the electron in presence of strong external fields.
A natural consequence of this QED based reconsidera-
tion of electron mass is the differentiation between
intrinsic material mass (due to Higgs field) and the
EM electron mass, otherwise inaccessible to present day
experiment.
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