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Scalar sunset diagram at finite temperature with imaginary square masses
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We evaluate the finite temperature scalar sunset diagram with imaginary square masses, that appears in
the Gribov-Zwanziger approach to Yang-Mills (YM) theory beyond one-loop order. Since YM theory
at finite temperature is governed by center-symmetry and the Polyakov loop, we also include the possibility
of a constant temporal background gauge field in the form of color-dependent imaginary chemical

potentials.
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I. INTRODUCTION

In recent years, much valuable progress has been made
toward the understanding of non-Abelian gauge theories at
finite temperature using background field gauge (BFG)
methods [1,2] in the Landau-DeWitt gauge, in combination
with several functional methods [3—14]. On the one hand,
BFG methods provide an efficient way to describe the
confinement/deconfinement order parameter (the Polyakov
loop or any of its proxies [3]) because the related center
symmetry is explicit at the quantum level and is easily
maintained in approximation schemes [15-17]. On the
other hand, functional methods provide a method of choice
when investigating infrared, nonperturbative properties of
non-Abelian theories [18].

However, most functional approaches take as a starting
point the usual Faddeev-Popov version of the gauge fixing
which is known to be a valid description of non-Abelian
gauge theories at high energies but which is also expected
to be modified in the infrared due to the influence of Gribov
copies [19]. It is then an interesting question whether a
complete gauge-fixing procedure in the infrared (IR)
regime could capture some genuine nonperturbative effects,
beyond those that are captured by the infinite hierarchies of
equations considered in functional methods. Even more, it
has been suggested that a resolution of the IR gauge-fixing
may open the way to a new perturbative perspective on
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certain aspects of the infrared dynamics of non-Abelian
gauge fields [20,21].

Several models have been put forward in order to
implement the BFG formalism in the Landau-deWitt
gauge while restricting the number of Gribov copies. In
Refs. [16,22-25], the formalism was used within the Curci
Ferrari (CF) model [26] to compute the background
potential and Polyakov loop up to two-loop order, both
in pure Yang-Mills theories and in heavy-quark QCD. It
was argued that this model could be part of a complete
gauge-fixing in the Landau gauge, since a CF gluon mass
term may arise after the Gribov copies have been accounted
for via an averaging procedure [27], see also Ref. [28] for a
related discussion in a different gauge. One salient feature
of the results obtained within the CF model is that, not only
various aspects of the phase structure are already accounted
for at leading one-loop order, but the two-loop corrections
turn out to be small and tend to improve the results,
supporting the existence of a “perturbative way” lurking
behind the gauge-fixing problem.

A more explicit way to account for Gribov copies is the
Gribov-Zwanziger (GZ) method [29-31]. At the cost of
introducing some new fields, the functional integral is
restricted to a region that contains less Gribov copies, the
so-called Gribov region. In Ref. [32], a GZ type action for
the Landau-DeWitt gauge was proposed, but it was later
established in Ref. [33] that this model is not invariant
under background gauge transformations and an alternative
proposal was made where both background gauge invari-
ance and Becchi-Rouet-Stora-Tyutin (BRST) symmetry are
manifest. It is however not clear how to extend this
proposal at finite temperature while maintaining the back-
ground gauge invariance. Here, we will follow the frame-
work of Ref. [34], where BRST symmetry is sacrificed (just
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as in the CF model) to establish a background gauge
invariant GZ type model that is easy to implement at finite
temperature.

In Ref. [34], the one-loop background potential and the
Polyakov loop up to first order were determined within this
model and in Ref. [35] these calculations were extended to
the case of QCD with heavy quarks, leading to the best
agreement to date with the available lattice data regarding
the description of the upper boundary line in the so-called
Columbia plot. A natural question is whether these prom-
ising results at leading order resist the inclusion of higher
order corrections, which would support similar results
within the CF approach.

The present work is a modest contribution towards this
goal: we address the calculation of the scalar sunset diagram
and the mass derivatives thereof that appear in the two-loop
background potential in the model at finite temperature. This
potential puts forward new challenges because imaginary
square masses appear with the introduction of the auxiliary
fields needed to localize the GZ action. Indeed, the tree-level
gluon propagator in the GZ model reads

2
1

4Q ;= Re—5—.

0" +vy O +iy

Go(Q) =

with y the Gribov parameter. Though the existence of
imaginary masses in the GZ model is a well-known fact,
to our knowledge there is no literature on the proper handling
of imaginary masses in higher-order loop calculations at
finite temperature. The full calculation of the two-loop
potential in the GZ model as well as the Polyakov loop
will be treated in a different work [36]. For related work at
zero temperature, see [37-39].

A convenient tool to make sense of the finite temperature
contributions to the potential is thermal splitting which is
commonly used in calculations that involve Matsubara
sums [40,41]. By decomposing sum-integrals according to
the number of thermal factors, UV divergences become
much easier to handle. Moreover, we can separate a
vacuum piece, which will equal the zero-temperature
contribution. The vacuum two-loop sunset amplitude for
real masses was calculated in [42] and the finite temper-
ature contributions have been known for a long time [43],
with a recent generalization in the presence of the Polyakov
loop [16,23,44]. Part of this work will therefore be an
extension of these results to the case of imaginary square
masses. We do not aim at a full generalization, however,
instead limiting ourselves to the cases that appear in the
two-loop calculation in the GZ model [36].

This work is organized as follows. In Sec. II, we look at
the scalar tadpole sum-integral as a pedagogical introduc-
tion to the techniques that will be used to deal with the
sunset sum-integral. In particular, we introduce the spectral
representation and give a first trivial example of thermal
splitting. In Sec. III, we look at the scalar sunset

sum-integral. In Sec. IV, we investigate the relevant mass
derivatives of the sunset sum-integrals and their respective
thermal splittings that are also needed for the evaluation of
the GZ potential at two-loop order. More technical details
are gathered in the Appendixes.

II. THE SCALAR TADPOLE AS A SIMPLE
EXAMPLE

In what follows, we denote Euclidean momenta by
capital letters Q,K,L,.... Each of these comprises a
bosonic Matsubara frequency w, =2zTn, with n € Z,
and a spatial momentum ¢, with ¢ = |q|. Integration over
Euclidean momenta is encoded in sum-integrals, which
we keep denoting, however, as standard integrals for

f f n; . 1

We work in dimensional regularization, meaning that the
integral over spatial momenta corresponds to

d-1g
/ 2e / d d T, (2)
27)
with d = 4 — 2e.

In the context of Yang-Mills theory at finite temperature,
it is crucial to take into account the order parameter for the
confinement/deconfinement transition also known as the
Polyakov loop #, or, equivalently, the corresponding
constant, temporal and diagonal gluonic background A,
such that # o tr exp{igBA,}, with f=1/T the inverse
temperature. In this situation, the Matsubara frequencies
are shifted by a color-dependent imaginary chemical
potential, w, = @5 = w, + #k/, where the 7 denote the
components of Ay along the diagonal part {#/} of the su(N)
algebra, A, = #/#/, while the ¥/ denote the weights of the
adjoint representation, that arise as one diagonalizes the
adjoint action of all the #: [#/, | = k/t*. For the present
paper, we do not need to know more about the precise way
the Polyakov loop appears in explicit calculations. In what
follows, we denote by Q, = (@¥; q) the shifted Euclidean
momentum and we also introduce the notation 7 - k = #/x/.

In this first section, as a pedagogical example, we treat
the scalar tadpole sum-integral

JE = /Q Ga(0,). 3)
with
1
G0 = gz —. @

assuming that the square mass « is purely imaginary.
The procedure that follows might seem unnecessarily
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complicated for the evaluation of such a simple sum-
integral. However, it introduces the basic ingredients that
make the corresponding evaluation of the scalar sunset
sum-integral in the next section much simpler.

A. Spectral representation

The first step is to evaluate the Matsubara sum in Eq. (3).
To this purpose, we decompose the propagator as

1 1 1
= { = . K] . (5
244 |Ega — 10y, —€44— l0),

with &,,=+/ g*> +a. Tt proves useful to rewrite the
previous identity in the form of a “spectral representation”

Ga(0,) = Gliaq) = /f¢&2, (6)

9 90 — 1®

Go(Qx)

where [ = [dqo/(2x) and

22 [5(QO &y, a)

€q.a
- 83.(1)' (7)

= 2msign(q0)5(a3

We mention that, in the presence of imaginary square
masses, the notations || 4, and 8(qo F €,,) are understood
as mere bookkeeping devices allowing one to select the two
complex energies +e,,. Similarly, sign(qo) selects the
corresponding sign in front of +e, ,, and should therefore
be understood as the sign of the real part of qo

Using the spectral representation (6) in Eq. (3), we find

pa(CIO; (I) = 5(‘]0 + gq a)}

J§=/ Pa(q0:4)T*(q0)- (8)
q0-9
with

T*(qo) = TZ )

nez q0 —

a simple Matsubara sum. We stress that, even though ¢
takes complex values, it does not interfere with the
Matsubara frequencies because its real part never vanishes.
Using standard techniques for the evaluation of Matsubara
sums, we then arrive at®

"The spectral representation can be given a rigorous meaning
by defining the Dirac and sign distributions along the appropriate
contour We will not need these technicalities here though.

The simple Matsubara sum considered here is not absolutely
convergent. This means that, when applying the standard tech-
nique based on contour integration, one needs a priori to take into
account a contribution from the contour at infinity. Fortunately,
this contribution cancels upon integrating over ¢, in Eq. (8), in
line with the fact that the original Matsubara sum is absolutely
convergent.

TK(CIO) = Ng—itx (10)

with n,=1/(e*/T — 1) the Bose-Einstein distribution
function.

B. Thermal splitting

One problem with the expression above is that it involves
thermal factors with energies whose real parts can be as
negative as possible. In particular, this does not facilitate
the extraction of UV divergences. To remedy this situation,
we write

Ngo—itx = —0(—qo) + Sign(QO)n\qo\—isign(qo)?«’ (11)
where sign(q,) is to be understood as the sign of the real part
of gy, see above, 0(q,) is equal to 1 if the real part of g is
positive and zero otherwise, and |go| = gosign(qo).
Plugging Eq. (11) into Eq. (10) and then back into
Eq. (8), we arrive at the “thermal splitting” of the tadpole
sum-integral: J& = J,(0n) 4+ J%(1n). Here, J,(0n) denotes
the pure vacuum contribution (no thermal factor), depending
neither on the temperature nor on the background, while

s = [ astaa), (12

where 6%(q0; @) = pa(qo; q)Sign(CIO)n\qo\—isign(qo)?-lv

In the contribution with one thermal factor, one can
perform the frequency integral. Moreover, because this
contribution is UV finite, one can take the limit d — 4 and
evaluate the angular integral analytically. One obtains

- 1 o0 N, —ic ik

J’; ]n £ m,,,rlc_i / d 9 ""€qa—10, ’
: 51/ 22y T
(13)

where 6, € {—1,+1}. On the other hand, the vacuum
contribution is conveniently computed by rewriting it as a
standard d-dimensional Euclidean integral

ummzémkam. (1)

Seen as a function of a complex a, this integral is analytic,
with a branch cut for a« € Re™. Therefore, its value for a
imaginary can be obtained by analytic continuation of the
known expression for a € Ret. We simply find

1
J,(0n) = 16“ “4n —+1+(9() . (15)
where i = 4zu’e™ and y is the Euler constant.
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III. THERMAL SPLITTING OF THE SCALAR
SUNSET

Using similar techniques, we now would like to evaluate
the (0-leg) sunset sum-integral

s= | 6.(0IGKIGL). (16

where momentum and color conservation imply respectively
OQ+K+L=0and x+1+17=0, see Fig. 1.> We con-
sider the case where the square masses a, , and y are purely
imaginary. In fact, we restrict to those cases that are relevant
for the GZ framework, where the square masses are either O
or +im?. More precisely, it can be shown that the relevant
scalar sunset sum-integrals that appear in the GZ framework
are S Sg’;f(_a), Sete, with @ = +im?, together of course
with the corresponding permutations of masses [36].

|

Using the spectral representation (6) in Eq. (16), we find

Siﬁfy:/ pa(%;q)/ pp(ko; K)
9054 kosk

X /loﬂy(lo;l)sm(%, ko, lo), (17)
with
S (qo- ko lo)
= Tz%; (qo — i) (ko — ia);n)(lo + iw, + iw))’ e

a double Matsubara sum. Standard techniques for the
evaluation of Matsubara sums together with color con-
servation k + A + 7 = 0, lead then to

S"’“(qo, ko, o) = (nko—ii-/l - ”l10+ﬁ-r)(”q0—ﬁ-;c - n—l(,—ko—ii-x)

lo + ko + qo

_ Npo—ii-aTy—ifr + (—"—q0+ﬁ-;<)nk0-i;-/1 + (_n—q0+ii~x)(_n—lo+i?-r)

where, in going from the first to the second line, we have
used the well-known identity n.n, = (1 + n, + ny)n,,.
Finally, by making use of Eq. (11), we arrive at the thermal
splitting of the scalar sunset sum-integral: SZ’},; =
Sap,(On) + S5 (1n) + S5 (2n). As in the previous exam-
ple, S,3,(0n) denotes the pure vacuum contribution (no
thermal factor), depending neither on the temperature nor
on the background, while

s =S [ aitawa) [ pplkko

apy
cyclic ¥ 90:4
0(ly) — 0(—ky)
IR e )
I 0 0T 40
and
sgpen = [ atlasa) [ okt
cyc]ic qd05q k();k
1
x | p,(lp;]) ————— 21
Aym>%+%+% e1)

where ) . ;. stands for the cyclic permutations of the pairs
(a,x), (B,4), and (y,7) and 65(qo;q) was defined in the
previous section.

We note that the thermal splitting considered here
assumes that the denominator [ + k + g, never vanishes.

These two identities can be conveniently combined into Q, +
K,+L,=0[l6].

, 19
lo + ko + qo (19)

|
We show in Appendix A that this is indeed so in those cases
that are relevant for the GZ framework. More generic cases
may require a regularization of the denominator but we
shall not consider them here.

A. Contribution with two thermal factors

The contribution with two thermal factors is easily
handled. We can first perform the [/, integral by using
the spectral representation (6) backwards. This leads to

a

Y

FIG. 1. The two-loop sunrise graph for imaginary square
masses a, f#, y. The momenta and color charges are conserved
at the vertices.

036013-4



SCALAR SUNSET DIAGRAM AT FINITE TEMPERATURE WITH ...

PHYS. REV. D 102, 036013 (2020)

Sty (2n) = / QO>CI/ o (ko: k)G, (ko +qos1),
UOR kosk

cyclic

(22)

where G(zo;]) is defined in Eq. (6) and obeys
G(-z9;2) = G(zp;z). Next, we perform the ¢, and k,
integrals and obtain

Spion) = Y 3 [[eciet

cyclic 64,05

A

where o,, 65, and o, take values in {—1,41}. Finally,
because this contribution is UV finite, we can set d = 4 and
perform the angular integrals. We find eventually

< (2n) = 4422/ dgqteiod

cyclic 64,05

nSk‘/j_iﬁ/}}'A ~
Gyl

2ery Cubqa + OpErps 1), (23)

y / Akl ), (24)
0 Ekp
with
2., 2
(afy) = —(04€40 + OpErp)” + €q+k!y
~(0utqa+ operp)’ + €y
_r-a- B = 204,058, o815 + 2k (25)
Yy —a—p—20,0p¢, 465 — 2qk
B. Contribution with one thermal factor
Integration over the frequencies leads this time to
€ga—i0, 1K ~
S = 33 [ ). (26)
Cycllc [ q.a

with
N 1
Ig,(€,0:9) = Gﬁ(aaeq ot €, k)
k 281y

1 .
+ @ G/i(aaeq,a - ek,/;" l):|

B 1 1
B /k dei pery Lk,/i t &1y T 0a€ga
1
Erp T €y

- Uaé‘q’a:|
B / 1 Exp T €y
k 2expely (Exp +€1y)° — €qa

(27)

where we note that the dependence on ¢, has dropped in the
last line, which explains a posteriori why we did not
include it in our notation for I (e,,;q). We show in
Appendix B that this quantity does not depend on q either.
It follows that S¥7 (1n) = > e J&(1n) 1§, (0n), with

1 15 kB + gk,y

1% (0n) = liml 4, (e, ,:q) = .
ﬁV( ) q—0 /j}/( £ q) A 281{#8](_7 (é'k_/j + 8k,y)2 -

(28)

The case I}, (On) can be evaluated immediately as

1
10 (On —/
ﬂy( ) k 261 pEiy ExptEry

o 1 6/(/3 €k/ _Jﬂ(On)—Jy(On) 29
/28k/3€ky p-vr p-r . ( )

As for the general case I§ (On), we show in Appendix B
that it can be obtained from the analytic continuation of the
vacuum Euclidean integral

1, (0n)(Q> > 0) = A = Gs(K)G,(L).  (30)
We find

“ 1 1 Q
I/}y(o ) 16 2{——1n;+2
(a‘,ﬂ,r)—a—ﬁ+ylnR(a‘,ﬁ’y)—a—ﬁﬂ'
2a 20
R(a_’ﬁ’y)+a_ﬂ+ylnR(a_7ﬁ7y)+a—ﬁ+}/
2a 20?
Rl py) +at+p—y R .fpr)tatf-y
2a 2?
R(a - —v R(a _ -
. (a,py) —a+p " 1 (a ’ﬁ,y)_2a+ﬁ y}7 (1)
2a 20
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with = = a — 01 and

R(a.f.y) = + 47> =20 =20y = 2ya.  (32)

More details on the continuation are given in Appendix B.

C. Vacuum contribution (no thermal factor)

The vacuum contribution can be written as a standard d-
dimensional Euclidean integral

=0

S(l/f}/ (On) = /
0.K

This integral is known analytically for positive square
masses a, f, and y [42]. One strategy to obtain the
corresponding integral for imaginary square masses is to
perform an analytic continuation of the result of [42] with
respect to the masses. This is an efficient strategy in the
case where the nonvanishing masses are all equal.

Let us take for instance S,qy(0n). Seen as function of a
complex a, it is analytic with a branch cut for a € Re™.

Because the expression for o € Re™,
Su00(0n) = (Amp?)2T(1 + €)? (= —o

o 1 1 | 3

—_— —— n [—

42 2\ T2

+% <ln2(a) —3In(a) +%2+;>] (34)

Ga(Q)Gy(K)G,(L).  (33)

has branch cuts only for & € Re™, it can be immediately
used to represent S,o(0n) in the case where a is purely
imaginary. Using a similar argument, we obtain

SuaO0) = (4m P14 €2 (- o)

301 9
na—-_
* [46 2¢ <3 ne 2>

+ (; In*(a) - gln(a) — iv3Li G - “f)

4 in? n 21)}

12v3 4]

The evaluation of Sy4(_o)(On) is trickier because it
involves the analytic continuation of a function of two
complex variables. Although this can be done in principle,
we here chose a more direct evaluation by adapting the
technique in Ref. [42] to the case of imaginary square
masses. This technique is based on the derivation of a
differential equation satisfied by S,4,(0n). Although the
derivation of the differential equation is not affected by the
presence of imaginary square masses, we reproduce it here

(35)

for completeness and because we shall use it for other
purposes later.

Let us write the scalar sunset vacuum integral symboli-
cally as

(©.6,6)= [ " 6.(06)K)G,L).  (36)
with L = —Q — K. Expanding the identities
0={ -5, 66:616) }={ ~5,(0,.646) |
(37)
we find
0= {20-KG2G,G,} — {2L - KG,G,G2}, (38)

0= ~d{G,GyG,} + {20°G3G4G, } ~ {20 - LG,G,;G7}.

(39)

Then, writing Q> = Q> + a — a, as well as
20 K=L>+y-Q>—a—-K>—f+(a+p-y), (40)
2L-K=0"+a-K>—f—-L>—y+ (f+y—a), (41)
20 L=K>+p-L>-y-Q*—a+(y+a-p), (42
we arrive at
0={GiGy} = {GiG,} + (a + = 1){G2G,4G, }

~{GyG7} +{GuGy} = (B+7 — a){GuGyGr}. (43)

0= (3-d){G,G,G,} —2a{G2G4G,}

- {GaG?} + {GﬁG)%} - (}’ +a- ﬁ){GaG/}Gg} (44)
Using the first relation in order to replace {G2G;G, } in the
second, we find
0=(-d)(a+p-7{G.GsG,} + R(a.p.7){GuG,G7}

+ (@ = p+7){G.G7} - {GsGP})

+2a({G3Gy} - {G3G, }). (45)

Finally, using that {G3G,} = {G2}{G}, this rewrites

Rz(a’ﬂ? y)Saﬂy ( ) (d 3)((1 + ﬁ - }/)Saﬂy(on)

+(d - 2) .(0n)J 5(0n)
—(a=p—7)Ja(0n)J,2(0n)
—(B—a—=7r)Jp(0n)J:(0n), (46)
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{Ga}

{G,G4G,}. In the case where y # 0, we

where we have introduced the notations J,»(0n) =
and S5, (0n) =
can use
J,(0
(1-a/2) "™ )
4

0
J,2(0n) = —a—ny(On) =

0
Sapr? (On) = _3_},‘3&/37(0”)’ (48)

to arrive at the differential equation

0
Rz(a’ﬁ’ }/)a_}/saﬂy(on) = (3 _d) (a+ﬂ_}/)srzﬁy(0n)

+(2—d)J,(0n)J4(0n)

{aﬂr

«(0n)J,(On)

p-a-y

+2}/

Jﬂ(On)Jy(On)} . (49)

In Appendix C, we use this equation to obtain S,,,(0n) in
some appropriate range of values for y. We follow the
approach of Ref. [42] by carefully adapting it to the case of
imaginary square masses. We find in particular

a
12874

1 1 /3
X {E—&—% (E—Zlna—l—ln(—a))

+i§<”—2—m1n3_\/§>
2

Saa(-a)(0n) = (4mp?)*T(1 + €)? (-

7 3

+Z—3lna+§ln(—a)

1ln In( )+51n2 1lnz( )|. (50)
snaln(-a) + 7 In*a -7 a)l.

We mention that the vacuum integrals S, ., (0n), S 0(0n),
and S, _(On) have also been used in [37,39] but the
individual results are not quoted, only their final combi-
nation in the vacuum GZ horizon condition at two-loop
order. For similar integrals involving both real and imagi-
nary square masses, see [38].

D. Summary

In summary, the scalar sunset sum-integral can be split as

S5, = Sap,(On) + S5 (1n) + S (2n),  (51)

with S5, (0n) given in Egs. (34), (35), or (50) depending on

the considered case, while S’;%(ln) reads

SKM (ln)

8 TS(1n)1% (0n) + J4(1n)I7a(On)

+ I (1n)I(0n), (52)

with 1% (On) given in Eq. (31), and S (2n) is given
in Eq. (24).

IV. MASS DERIVATIVES

The various sunset diagrams that appear in the GZ
framework lead also to mass derivatives of the scalar
sunset, in the limit where the corresponding mass is taken
to zero. In fact, what appear are the limits [36]

A _
ASK’;T = lim SK/ZIT -i-]K J J; (53)
0py a—0 apy ﬂ —_
R PR
KAT KAT a” p 0 _ 77 0 rx
AS0207 —{1112(1)}}11;% |:S 22, » }’2 Jﬂz ]/2 Ja2:| s
(54)

where, as already introduced above, the squaring of the
mass indices corresponds to the doubling of the associated
propagators, or more generally to taking minus the deriva-
tive with respect to the associated square mass. The relevant

cases for the GZ framework are ASS’};( )’ ASS’%&/ ASS§62 ,

with y = £im?, together with the corresponding permuta-
tions of the masses [36]. We also mention that ASg .4 is
nothing but the function 7 defined in [45], for zero external
momentum but generalized to the case of finite
temperature.

It is easily seen that, even though S4*

A
Zﬁ ’ SK2;2 ’ JZZ? and

J?ﬂ are singular in the limits & — 0 or  — 0, the combi-

nations of sum-integrals in Egs. (53) and (54) admit regular
limits. To verify this, let us first note that the potential
singularities originate either from the vacuum pieces which
do not depend on the color weights (x, 4, 7), or from the
thermal pieces in the case where the weights are equal to
zero. Therefore, one can safely ignore the weights in order
to check the regularity of the above limits. For instance, in
the limit & — 0, the sum-integral S5, is dominated by the
Q — 0 region and behaves consequently as

1 1
*WNé@umyfémwmwa
Jﬁ_‘lr
=—J, . 55
o~ (55)

The divergent behavior in the right-hand side is precisely
what is subtracted in Eq. (53) to ensure that the limit is
regular.” To understand the singular structure of Se2prys WE
first write it identically as

“Because the divergence is at most ~a~'/?
ature, there are no subleading divergent terms.

at finite temper-

036013-7



DUIFJE MARIA VAN EGMOND and URKO REINOSA

PHYS. REV. D 102, 036013 (2020)

1 1 1
Sepy = ;/QK (Qz T a)2 (K> +ﬂ)2
K>+ Q*+2K-Q
(K+0Q)+r
(56)

_1/ 1 1
v Jox (Q* +a)* (K* + p)?

The term with K - Q in the second line leads to regular
contributions in the limit @ — 0 and  — 0, while the term
with K? (respectively, Q?) leads to singular contributions as
a — 0 (respectively, f — 0), controlled by the Q — 0
(respectively, K — 0) region of the integral. We find

1 1 1
S(lzﬁZY:;A(Q2+a)2/1;(K2+ﬂ)2

‘%éwﬁwfﬂx%é+n

1/ 1 / 1
- +regular
vJoQ*(Q*+a) Jx (K*+p)

Jpdg J,—J J,—J
= yﬂ + y},z 07 -+ yyz 0J/jz +regular.

(57)

These are precisely the terms that are subtracted in Eq. (54)
to obtain a regular limit.

The regular limits ASS’;T and AS;%ZY admit thermal
splittings that one derives from the corresponding splitting
(51) of the scalar sunset, and which we now discuss.

A. Thermal splitting
From Egs. (51) and (53), we find the thermal splitting

ASEE = ASyep, (0n) + ASSE (1n) + ASSE (2n),

0*py 02y 02y (58)

with

J3(0n) —J,(0
ASp,(0n) = lim {Sazﬂy(On) + Jaz(on)w]’

-v
(59)
Jy(1n) = J3(1n)
p—vr
, (60)

AS¥ (1n) = lim {S;ﬁzy(ln) + J 2 (0n)

0%py
+J%,(1n) —J”(On; — Jy(on)}

ASKAT (21’!) = hII(l) |:SZ§Z}/(2}’Z) + Jzz(ll’l)

Jy(1n) —J;(ln)]
0*pr

p-vr
(61)

Similarly, from Eqgs. (51) and (54), we find the thermal
splitting

ASS’%Z? = ASeee, (On) + ASS%Zy(ln) + ASS'zl(f)zy(Zn)y (62)
with
J 2 (0n)J 2 (0n
AS()ZOzy(OI’l) = lll’%}}ln(l) |:Saz/}2},(0n) — M
a—0 f— v

J e (On) + Jﬂz (On)
2

J,(0n) |,
14

(63)

12 (0n) 7% (1n)
4

KAT
ASOZOQy

(1n) = liy i 28, (1) -

_ J5(1n)J 52 (On) _ J,(0n)
v 7’
_ Mjﬁa@n) - 17;2”) 5 (1n)

Ji(1n) = Ji(1n
D= ]

A
Jﬁz(ln)

(64)

J5(1n) g%, (1n)
14

A Skﬁr

g, (2n) = lim lim [sg&;jzy(zn) _

a—0 -0
B Ji(1n) = J5(1n)

},2

Tn_/ln
A0 )

Jzz(ln)
(65)

where we have used that Jy(0r) = 0. In what follows, we
shall also make extensive use of the property J2(0n) = 0,
valid in dimensional regularization [46,47]. This property
might be more difficult to grasp than the previous one
because J 2 (0n) diverges in the limit @ — 0. However this
just means that the function J 2 (0n), although defined for
a = 0, is not continuous at @ = 0. Then, we shall always
make sure that when the property J:(0n) = 0 is used, it
corresponds to J 2 (0n) being evaluated for @ = 0 and not to
a limit being taken. We mention finally that the results to be
presented below can be obtained without ever using
J2(0n) = 0 although the calculations are lengthier.

B. Vacuum contributions (no thermal factor)

AS4,(0n): The vacuum contribution ASg4, (On) is in
fact nothing but S, (0n). Indeed, even though both
S,25,(0n) and J 2 (On) are singular in the limit & — 0, their
particular combination in Eq. (59) is regular. Moreover
since Sq24,(0n) and Jip (On) are well defined in dimensional
regularization, the limit y — O is then equivalent to the
direct evaluation at y =0, and we find ASg;, (0n) =
S, (0n) owing to the fact that Ji» (On) = 0. Now, since
Eq. (46) is valid for y =0, and using once more the
property Jy(0n) = 0, we arrive at
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Sue, (0n) = (d —3) (g_%y)zsoﬂy(on)
RPN T

which expresses AS, 5y (0n) in terms of already determined

functions. We notice that, in the case of ASozy(_y), the term

ASpp,(0n) = Sy, (0n). The difference with the above
is that we do not have an equation fixing directly Sp2, (0n).
Acting on Eq. (66) with —0/0p, we obtain an equation for
So2p2,(0n) with B # 0, but Sy, (0n) is not the limit of
S22, (0n). The way out is to subtract from Sz, its f — 0
divergent part, in such a way that

proportional to Soy(_y)(On) vanishes and therefore we do Seo2,(0n) = lim [Soz 2 (0n) — Jp (On)J 7(0”)} (67)
not need to consider this vacuum sunset integral. ! p=0 |~ a
ASpe,(0n): We can proceed similarly for ASq, (0n).
First, from the same argument as above, we find  owing again to J:(0On) = 0. We find
|
J»(0n)J,(0n) B+ 3y B+r J 2 (0n)J,(On)
Szz(On)—ﬁiy:(d—S)iS (0n) 4 (d = 3) ——"5 | Sy, (On) + -~
o r B=r)" R v
J5(0n)J,(On d-2 1 d-3 p+
+2(d-2) p(On) 7(3 )—f— [ 2——2——ﬂ 7/}Jﬁz(On) J,(0n).  (68)
B=7) B-r?* v B-r? 7

The dangerous contributions proportional to J (0n) in the
right-hand side cancel in the limit f — 0 and we find
eventually

I
where we have once more made use of Eq. (66). We have
cross-checked this last result using a direct evaluation of
S22, (0n) using standard techniques.

Contributions with one thermal factor AS** (1n): The
So0, (0n) Sooz, (0n) o
Seee, (0n) = =3(d - 3)007—2”+ (d— 3)L, contribution with one thermal factor to ASS%; can be
v v rewritten as
Soo, (01
— (d-3)(d—6) 00 (69)
r
|
KAT 1 K a K [ B T
ASghs (1n) = lim |:Ja2(1n)1ﬂy(0n) + ()15, (0n) + J4(1n)I%, (On) + J5(1n)17, ,(On)
JA(1n) = Ji(1n 0n) —J,(0
T aomy 2 =2 (00) +J5(1n) (”)(”)]
p=vr p=vr
N - J5(0n) — (On) .
= (lxg% {Jaz(ln)< ﬂy(()n) + = = + J5(1n) /}Y(On)
J2(0
+J’1(1n)< ) ( 4(0n) + il ")H (70)
r=p
|
Owing to Eq. (29), it seems that the contribution in the first ~ with
round bracket can be neglected in the limit @ — 0. This
turns out to be true, .al'though one needs to pay a little bit of A I%,(On) = 12; (On), (72)
attention, since, at finite temperature and in the case where
x = 0, JX,(1n) diverges in the same limit. Fortunately, the on)
divergence goes as a~'/2, which is not enough to com- v R J2(On 5
Al = lim |/ —| =T
pensate the vanishing of the round bracket ~a. We find OZY(On) k] (0m) + —y 027(0n)’ (73)

eventually that

A SKM

o (In) = J§(1n) AL (On) +

—|—JT(1n)AIy2ﬂ(On)

Ji(1n)AIG, (On)
(71)

where the contribution within brackets is regular in the limit
a — 0 and we have used Jy(0n) = 0 in the last step.

The first quantity can be computed using similar tricks as
for I%(On) in the previous section, namely

036013-9



DUIFJE MARIA VAN EGMOND and URKO REINOSA

PHYS. REV. D 102, 036013 (2020)

1 1 1 (rp — €k )3
AI% (On ——/ ——/ / z
p(0n) k 2€x pery (Erp + €ry)’ k 2ecpery,  (B—7v)
_ _/ (‘c’%,ﬁ + 38%,;/)/8/(,}/ - (E%,y + 38%,/})/£k,ﬂ
k 2(-v)’
1 4—-d 4—-d
il (], oo
|
where we have used that G4(K) and the integral |, T=0 missing. It is easily seen that
one can follow the steps below Egs. (37) by removing the
koo fr=0 K d-1 g1,(0n). (75) factors G4(K) (those terms that did not have such a factor
k 260 - Jx K*4 B B d pAET) need to be discarded) and to replace the explicit occur-

together with [7=01 = 0 in dimensional regularization.
As for Algzy(On), we can proceed in many different
ways, either by acting with —0/0a on the previously
determined expression for 1%,(0n), followed by the a —
0 limit after appropriate subtraction of the @ — 0 singular

part, or by computing the appropriate subtracted Euclidean
integral

J,2(0n)
K* + 4

Alp,(0n)(K?) = lim Iz, (K?) - = I, (K?),

(76)

and analytically continuing it from K> > 0 to K?> = —f
imaginary. Here we proceed with this second strategy but
instead of continuing the explicit expression of the integral,
we continue the corresponding differential equation, with
the advantage that Algzy(On) will be expressed in terms of

already computed quantities.
To derive the differential equation, we basically consider

rences of # by —K?. It follows that

R*(y.—K?*, a)l 2, (0n)(K?)
= (d - 3)(}, - K2 - a)lay(on)(Kz)
+ (d =2)J,(0n) + (K* + a+7)J 2(0n). (77)

This identity is valid for @ = 0, in which case, we obtain

I, (0n)(K?)
=)= R (Om)(K) +(d=2)1,00)
(K2+7)? '
After continuation, we find eventually
b o — =BG, On) +(d=2)], (0n)
15, (0n) = Ty )

ASY7, (1n): Similarly, the contribution with one thermal

0202
the same equations as in Eqgs. (37) but with the propagator ~ factor to yASS’%Zy can be rewritten as
|
. N " Jp(0n) J,(0n) Jp2(0n) J,(0n)
ASilg, (1n) = limlim {J,,zun) (zﬁzy«m)— TS ) ) (1, (om) =S RS
2 J 2(0”1) 2 Jaz(()n) . Jaz(on) J 2(071)
+J5(1n) <Iﬂ2y(0n)+ ﬁ},z > —|—J71),(1n) (Igzy(On) +T —|—J},(1n) IZZﬁZ(On)— ” _ ﬁyz .
(80)
Using Eq. (29), this rewrites
ASgE, (1n) = (J5(1n) + J5(1n)) ALY, (0n) + J5(1n) ALY, (On), (81)
with
. . ’ J}2 (On)
AIS; (On) = lim i 1% (0n)+~- , =15, (0n), (82)
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J2(0n) Jp(0n) Using Eqgs. (74) and (79) and after subtracting the f — 0
All,»(0n) = lim lin(l)[ 2/32(011) 5 — £ 5 } and y — 0 singular parts, according to Eqgs. (84) and (85)
a=0p~ 4 v respectively, we find eventually
Ipg2 (0m). (83) . d—6J7,(0n)
Iz, (On) = . (86)
We note that /2y
B 00(0”)
J 52 (0n) I (0n) =(d = 3)(d — 6) = 5—. (87)
02 — 1 0? s 0%0 2
Ig, (0n) = /lené {Iﬁzy(On) + . ] (84) p
700 C. Contributions with two thermal factors
17,2 (0n) = lim {Igz P (On) — P (2 n)} . (85) AS"ﬁ’y(Zn) The contribution with two thermal factors to
p= 14 ASS’};, can be rewritten as
|
€, q—i0, 1K ® Mg y—icyta 4C]k
ASKE (2 1 L dkk—"—"= | In(ap;
Ozﬂ}’( l’l) 6471' a]—l?(l){—l_gzﬁﬁ/ qq da ( 8(“1 > /) 8/;’1c |:n(aﬂ ) ﬂ 7/:|
—ic, ik —io, T 4qk
+ / d < Coa 100 >/ dkk—[ ay; p +—]
Z 1 da da €aq 0 Eyk ( ) ﬂ
® Ne, —icix Mgy y—icyi-d d
+ / dqq €q.a a / dkk k.p B —ln (Xﬂ, 7/
(;Uﬁ 0 €aq 0 epr  da ( )
© g —icix [ Ne —ig v d
+ / dgq——"—"— / dkk—"—"——1n(ay; B
62(; 0 €agq 0 g da ( )
ng iogt-A ng, io, it
+ / dgg—L—"~ / dkk ——— —ln by; } 88
Z oo e i) (88)

The terms with the a derivative acting on the thermal factor can be treated using an integration by parts after noticing that
df (e,4)/da = df (e,,)/dq* = (df (€,4)/dq)/(2q). The boundary term vanishes both for ¢ — oo (due to the thermal
factor). The boundary at ¢ = 0O contributes

1 . L P I g j—icyi-a 4qk
1 . a dkk kp 4 1 1 _
e {2 [ e e 5

CurOy a.q €k

e «—l0,TK Mg, —ic,?t 4qk
+ Z / dkkk"—’hm [In(a}/ p)+ L] } =0 (89)

640, Eyk :B

(note that @ — 0 is taken only after the limit ¢ — 0). We obtain

1
KAT —
A5 1) = G ili%{

1 /°° N, —icytk /°° nek/;—ia/;?‘ﬂ [6 4k :|
+= dg =0T [ g ST gy
5> [ da—= i 5B T 5

Cq:0p 0 a.q Sﬂ’k
1 /°° N, —ic ik /°° Mg, —ic,tz |: 0 4k :|
+= dg = e = g (g )
2(;0.7 0 7 €aq 0 &k aq ( / ﬁ) V= ﬁ
B Z/ daq Moy mﬁr/l/ dkk;m”_ln(ﬁ}” )} (90)
04.0, €p.q 0 €k
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where 9/0q denotes the partial derivative at ¢,, fixed.

Using
2(k+q)
y—a—f—20,05¢, o6 p+2qk

2(k—q)
y—a—f—206,04¢, o€ p—2qk

0
8—qln(aﬁ )=

y—a—p—20,05, 461 5— 29

—4k ,
(7/ - _ﬁ - 26(16[)’8q.(18k,/3)2 _4q2k2

(o1)

1
1 a) =
n(ﬁy (X) a— ﬂ e ZGﬂUygq,ﬂgk,}’ + 2qk
1
a—=f—y—20p0,8, 561, —2qk
—4qk
— ’ 92
(a=p—y- 26/367561,/3&,7)2 —4g%k? -

we find eventually

Uaaﬁgk.ﬁ + q%

as well as
ASSE (2n) Z " dgn ™ ik Do
OZﬁy 1671’4 qNg—ic,ix 0 Ep

N —ic,tz
dkek? 2~

(B—7)* + 44 +40,05(f —1)qerp

0q0y€y + q%

1 © ©
Tl 4 d —io, K
a2 o |

&y k

(y = B)* + 44%y + 40,0,(y — B)gey,

1

N, —ic ?’vlnek —io, T
dkk2 ap” OB v oy

1 ) o
- daag?
+16ﬂ4;A qq/o

g/}.qg}/,k (ﬂ + }/)2 + 4([}}/ + qu + kzﬂ) + 46/)’6y(ﬁ + 7)7/651,/}8/(.7 ‘
(93)
Note that the first two integrals remain safe when x = 0 provided we first sum over o,,.
Sg%& (2n): Similarly, the contribution with two thermal factors to AS"W reads
1 i d (N, —ic,ix ® d (Ne —icyia qk
AS, (2 lim1 dgqq— | —— dkk — | -~ -
e, (20) = o ag%ﬂg%{Jr; A 99 - ( o ) A e ( | LG T
€4a—i041K i Ney y—icsi-d | d 4qk
+ / dgq— < o ) / dkk —"—"~ {—ln afy ——]
azo'/, da Eay 0 Epx dp ( ) r?
g, ~ic k[ d (N —icyia 4qk
+ / dqqg——"—""— / dkk— <7k‘” ? > { n(ap;y }
azo'/; 0 dﬂ eﬂ,k da ( )
€qa—i04K A Ne, —ic,ic | d 4qk
+ dqq— ( E— > / dkk ——"— {— ay; ) + —]
Z / da &a, .q 0 gy,k ﬂ ( ) 7
e, —io, it d &g p—iophA d 4qk
+ / dgq—"—"— / dkk — ( el )[—1 n(yf;a —I——}
; €rq 0 dfp Ep.k d ( ) 7’
© Mg, —ic,ix [ Mg y—icyt-a d?
+ / dgg—""—"— / dkk—""""— In(ap;
HZ% L ere dadp ™)
+ Z / dqq Eq(,—murx / dlck —Fkr 1T ek/—wyrr d2 11’1((17/ ﬂ)
s €ag Jo g, dadp ’
—io, T ng, ioyiA d2
+ / dqq Cor 1% / dkk —"—"= vBia } 94
> 0 P L (94)
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Using integration by parts, we find

1
64r* (1—>0[}—>0{+O_Z”/}/ 9994, da (
/ dik & d ak/; iopiA i_li
a’q 0 dﬂ gﬁ,k da 2dq2

3 [dagTe
€qa™ laark>/ dkk —m 3
£aq 0

(70'/1
d(n

#3 [T g (e
&, p—iopi- d
dik - (2= L
er ) |da n(yp

dp
In(af;y)

d 1

Ny y—icyi-a

A SKAT

0o, (21) =

£4a— taarlc> /°° dkk
Saq 0

gﬁ.k
4qk

io, 7Kk

)mwn +ﬂ

L i) + 24

4qk]
72

‘5'},,]c

a) +

+z/ dqq €4y mrTAoo
6.0,

+Z/ dgq—+—— Pews

00'/;

+Z/ dqq—tse=iox

Gqs0y

+Z/ dq 6(“, lO'/rT

00y

—io, 7Kk

dkk sk/, ioytA dz
5ﬂ,k d dﬁ

d’
dadp

€a.q

ic, 7Kk ew io,tt

Eyk

In(ay; f)

(zq

81<11 iogt-A d

dadf H(Vﬁ;a)},

/
P

€p.k

and then

11m lim
6474 a—0 -0

4> [T

0q:0p

_2/

640y

—Z/

0p,0y

ASE (2

)_

{

sq a—lo, Tk nek_/;—ia/;?%

In(ag:y) + fw+v%ﬂ

/oodk
0
/oodkk
aq 0
sq/ to'yrr/mdk
0

[8(181(

dq dp

o4
Ok da

€aq €k

n . ~
eq a—i0, 7K &y —io, it

(@ + 55

)

Eyk

Ny y—icyi-d

(Br:a) +

Epk

We have

2

0qok

0

Ok —(

2(k+q)
Ok —(o, Eqa T OpEp)’ T Enir,
2
- Y —a— P —20,0p8, 4615 + 2qk B
2
Y —a—p— 20,058, 46k p

2(k—q)
Culya+ O'ﬂé'kﬁ)z + eé_ky
4(k+ q)?
(y —a—p—20,0p8, ok p + 2gk)?
4k —q)°
(y — a— B —20,0p5¢, 461 5 — 2qk)*

In(ap;y) =

’

—2qk

s0, in the limit ¢« — 0 and g — 0,
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> 8 4 2 2 2 2
In(ap;y) +—(q* + k%) —— = - -
dqok (af:7) }/2( ) y vr=X_ v r=X, v

2 2
X Mg - X P-4kt gy
Cr(r=X0) r(r—Xx_)?
2X, +4(‘1 + 1) (r = X,)? =4k = g)*r*

r(r—Xy) r(r—X.)?

20247 +2k2 —y)X2 — 2(4q% 4+ 4k* — y)yX_ — 8qky*
rr—X.)?
2(2¢% +2k* —y) X% — 2(4q° + 4k* — y)r X, + 8qky?
+ 2 2 : (98)
rir—X.)

with X, = 2(o,05 & 1)gk such that X, X_ =0, X, + X_ = 4o,05qk, X, — X_ = 4gk and X7 = +4qkX_. Using these
properties, we find

0? ) 8 5 4
8q6kln(aﬁ’y) +},—2(CI + k%) =

_ —8qk(2¢* +2k* —y)X_ — 2(4q* + 4k* — y)yX_ — 8qky*
B r*(r* = (2r +4gk)X_)
8qk(2q + 2k —y)X, —2(4q* + 4k* —y)yX . + 8qky?
r*(r* = 2y —4qk)X,)
_ (2r* = 8y(¢* + K> — gk) — 16qk(g* + k*))X_ — 8qky*
B 72(r* = (2r +4qk)X_)
N (27> = 8y(q* + k> + qk) + 16qk(q*> + k*)) X, + 8qky?
r*(r* = (2r —49h)X,)
2 (27 = 8y(q* + K — qk) — 16qk(q* + k*))X_ — 8qky*(y* — (2r — 4qk)X..)
r*(y = 40,0pqk)*
r*(2r* = 8y(q” + k> + qk) + 16gk(g* + k%)X + 8qky*(y* — (2r +4qk)X_)
y*(y — 40,04qk)*
qk}/ —dy(q* + k2) — 164*k* + 40,05qk(y + 24* + 2k2)

=8 99
a2 7 y? + 164%k* — 8o «0pqky (99)
Similarly
LDy 2k + ) a 2k g)
dpog T T A gty + 0yer, )t €y | AP —(Cafyn + OyEey) + 2y,
2(k + q) 2(k—q)

(B—a—y—=20,0,6, ., + 2gk)* (p—a—y— 20,0,€, 4Eky — 2gk)?

_ _4k(ﬂ—a— y — 20,0, qasky) +4¢*k> — 4q*(p— a—y — 20, 0yEq afky) (100)
((ﬂ a—y— 20 Gy qagky) _4q2k2)2 ’

so, in the limit @ — 0 and f — 0,
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d o 4k 4k (v + 20,0,q¢1,)* + 4¢°k* + 4¢*(y + 20,0,q¢;.,)
dpog P+ =k T T
dp dq vy ((r +2040,9e,)* — 44°K)
_ 4k 71847 +8¢°K + douoyqer, (r +24°)
r (r* + 447y + 40,0,7qer, )
4k 7>+ 84%y +8¢°K° + 40,0,9¢1, (v +24°)

r? vt +24¢%7 + 164 (4% + K2)y* + 8o,0,77qer, (v + 447)
8qy + 4‘1(2q2 + kz) + 26&678k-7(7 + 6q2)

. 101
vt 42407 +16¢% (> + K)y* + 8o,0,17qer, (v + 44°) 1on
We deduce eventually that
2 o o r?—4y(q* + k%) —16¢*k* + 40,059k (y +24* +2k*)
ASF, (20 =3y [ dan i [l
vy }’Z%Z,;ﬂ ? Jo I Jo ktoprs }/2+16q2k2—80'a6ﬂqky
_42 * d i * dkk2 ne/‘«r_i”ﬁ'f qu+4CI(2q2 + kz) + 20'(16},6‘](.7(}/4-66]2)
qMg-io,ix 2 2402 + 162 (2 + K22+ 8 2 402
= Jo 0 g V' H24q%7 +164°(q° +k*)r* +80,0,77 ey (v +44°)
Ly LT L 8ky +4k(2K*+q*) +2040,¢,, (y +6k?) (102)
19 it 8 041y 16K (K2 + q2)y? + Bopo,r ke, , (y + 4K2)
=)o va Jo v v q°)r* +8op0,y7key, (v
D. Summary
: . 1 4-d
In summary, the subtracted simple and double mass Al (0n) :m 7+Tﬂ J5(0n)
derivatives of the scalar sunset sum-integral can be r i
split as ASSE = ASyy, (On) + ASEE (1n) + ASKE (2n) _ <ﬂ T ) Jy(On)], (107)
and Asgégzy = ASg, (0n) + Asgégzy(ln) + Asgggzy(Zn),
with the vacuum contributions p 1 p
Al (On) = G- [(d=3)(B+ 7)1, (0n)
Bty
ASge5,(0n) = (d - 3) G717 Sopy (On) + (d—2)J,(0n)), (108)
J5(0n)J,(0n)
+(d—2) (103) v d—6J,(0n)
B-r)? Al (0n) =2—— e (109)
Soo, (0n)
ASgee,(0n) =(d —3)(d - 6) =5, (104 15,(0
0202},( f’l) ( )( ) 2 ( ) Algzoz(on) :(d— 3)(d—6) 00( I’l) (110)

the one thermal factor contributions

2

ASgE (1n) = J5(1n)AIG, (On) + J5(1n) AT, (On)

Ozﬂy 14
+J5(1n)AL, (On), (105)
ASg, (1n) = (J5(1n) + J5(1n)AIG, (On)
+ J5(1n)AIL, ., (0n), (106)

with

B

and, finally, the two thermal factor contributions given in
Egs. (93) and (102).

V. CONCLUSIONS

In this work, we have evaluated the scalar sunset
diagrams with imaginary square masses that appear in
the two-loop background potential in the GZ type model
with a background gauge invariance from Ref. [34]. This
also involves some mass derivatives of the scalar sunset in
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the limit where the corresponding mass is taken to zero. In
fact, what appear are not mass derivatives by themselves,
but specific combinations with tadpole integrals and their
mass derivatives that admit regular limits in the zero mass
limit. The evaluated cases include three scalar sunsets and
three mass derivative combinations. In each case the square
masses are either 0 or £im?.

Through thermal splitting we have decomposed the sum-
integrals into contributions with 0, 1, and 2 thermal factors.
For the terms with O thermal factors, the vacuum contri-
bution, we obtained the integral by analytic continuation
from the results for real masses from Ref. [42], for the cases
where the nonvanishing masses were equal. In the other
cases, i.e., the cases with square masses of opposite sign,
we have made a direct evaluation adapting the technique of
Ref. [42] to imaginary square masses.

Instead of considering only the scalar sunset sum-
integrals that appear in the GZ framework, one could make
a broader study of all scalar sunset diagrams with purely
imaginary masses. However, when using thermal splitting
this requires some regularization of the denominator for the
contributions with 1 or 2 thermal factors, in order to avoid
singularities. This problem is particular for imaginary
masses: in the case of real masses one simply adds a
regulator to the denominator in the form of an infinitesimal
imaginary number. In some cases, like the cases considered
here, the imaginary masses themselves work as a regulator,
making it impossible for the denominator to vanish, but this
is not true in general. Even when we limit ourselves to cases
where the square masses are either 0 or im?, there are
examples where the denominator can vanish, e.g., when
one square mass is 0 and the other two square masses are
im?. In principle, it is possible to find a consistent
regularization for each case but one should investigate
how this affects the subsequent steps of the calculation.
Since this lies beyond the scope of the GZ application that
we are pursuing, we leave this question for a future study.

The sunset diagrams that have been calculated in this
work make up a substantial part of the calculation of the
two-loop background potential in the GZ framework. We
are currently evaluating the full two-loop potential [36] in
the presence of a temporal background in order to study the
deconfinement transition in Yang-Mills theory using this
framework, as well as the interplay between the Polyakov
loop and the Gribov parameter. It will be interesting to
compare these results with the one-loop results in the
same model from Ref. [34], as well as with the two-
loop studies in the CF model at finite temperature from
Refs. [16,22-25].
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APPENDIX A: REGULARIZATION

After performing the spectral integrals in Eq. (21), one
finds denominators of the form o,¢,, + oger 5 + 0,81,
with 6,, 64, and o, taking values in {-=1,+1}, and
| = |g + k|. For real masses, one needs to add an imaginary
regulator /0" to the denominator to avoid divergences. For
imaginary square masses, the discussion is more intricate.
As we now argue, however, in all cases of interest for the
GZ framework, a regulator is not necessary. To see when
the denominators can vanish, we write

0= Gagq,a + 0/}6'](’/} + 0781.},,

< (Gagq.a + U/}Sk,ﬂ)z = 812,}/

© 20,058,065 =V —A— P+ P—qg> -k

o 483.(,8@ =@{y-—a-p+1-q¢—-k)?

{ 0=R*(a,p,7) + R*(¢*, K*, I?)
@ b
0=qg*(a=p-y)+KP~-r—a)+Py—a-p)

(A1)

where in the last step we have separated the condition into a
real and an imaginary part, owing to the fact that a, f,
and y are purely imaginary. We recall that I = ¢* + k>+
2kq cos @, from which it follows that

R¥(q* K. P) = ¢* + k* + (¢° + K*)* +4k*q* cos* 0

+ 4qk(q* + k*) cos O
—2¢%k* = 2(q* + K*)(q* + k* + 2qk cos 6)
= —4g*k*sin? 6. (A2)

With this in mind, let us consider the cases of interest. We
consider first the cases’ (a.p.y) = (im?,0,0), (a.B.y) =
(im?,—im?,0), and (a,B,y)=(im?,im?,—im?), for which
R*(a,pB.y) equals —m*, —4m* and —5m* respectively. In
those cases, it is obvious that the first condition in (A1)
cannot be satisfied unless m = 0. Next, we consider
(a, B.y) = (im?,im?,im?), for which R*(a,p.y) = 3m™.
In this case, the conditions (A1) read

0 = 3m* — 4¢2k2 sin? 0, (A3)

0 = m*(g* + k* + gkcos0). (A4)
Since m > 0, we can solve the second equation as
gkcos@® = —(g* + k*) and plug it back into the first
condition to arrive at

0 =3m* +4(q* + ¢*k* + k%), (AS)

which has again no solution if m > 0.

>The case (a, B,y) = (im*,—im?,0) is relevant for the dis-

: KAT
cussion of ASimg(_imz)Oz-

036013-16



SCALAR SUNSET DIAGRAM AT FINITE TEMPERATURE WITH ...

PHYS. REV. D 102, 036013 (2020)

APPENDIX B: EVALUATION OF Iy, (¢, ,;q)

Let us consider the vacuum Euclidean integral

I (on(@ 20 = [ 6,K)G,(L). (@)

with imaginary square masses f# and y. In order to make
contact with iﬂy(eq.a;q), let us evaluate the frequency
integral in (B1) using the residue theorem. To this purpose,
we write it as

1;,(0n)(Q? > 0) = // )
pr(Om(Q 27i —7? +£kﬁ (z+iq4)* + 7,

I/};, (On

where the contour C is along the imaginary axis. Closing C
on the right and noting that®

|

1 [ I I
_Z2 + E%,ﬂ B 281("[3 Z—&p 2 + Ekp

1 1 1 1
—(z+iqy)* +e7, N _Zel,y [z +iqs—ep, CZtiqy+ Sz.y] '

In the last step, we have written g3 as —¢*

the fact this last integral is similar to the one defining
I5,(£,4:q) in Eq. (27), with a replaced by
precisely, if we introduce the function

gk,/i + 6'l,y

1 (B4)
(B2)  we find
|
0= o )
K 2€kﬂ —(exp +iqu)* + &1, 261, (e, —iqs)* + €5y
el =
+ :
Kk 4¢ /ﬂ?ly erpte, tiqn epte,—iq
/ ekﬁ + 81;, ' (BS)
k 2k g1y ( Eep+ sly) - eé_Qz
to emphasize
oo Q> = —(K + P — ¢ +2ep5e1,) —f—7.  (BS)
—Q? More
and whose real part obeys
ReQ? < —(k* + I* — ¢* + 2[K]|1])
. (B6) ~(([&] +[11)* = (k+1)*) < 0. (B9)

1
F@)= |
al k 2expery (15 + 61_7)2 —€,_0

seen now as a function of a complex Q2 for a fixed q,
we have both Fy(Q*>0) = 14,(0n)(Q*>0) and
(Q2 =-acE lR) - Iﬁy( q,a° q)

1. Analytic continuation

To turn this observation into a practical way to determine
iﬂy(gq’a; q), we note first that if iﬁy(eq.a; q) makes sense for
a given value of a, it makes sense for any other value close
to it. In particular, we can write

jliy(gq,a;q) = Fq(Q2 =—-a+ 0+) <B7)

Second, it is easily seen that Fy(Q?) is analytic in the
semiplane ReQ? > 0. Indeed, the potentlal singularities are
restricted to the region defined by the condition
(exp+€1,) — 8;_ o> = 0, which corresponds to

From these considerations, it follows that, if we know
explicitly a function G(Q?) which is analytic over an open
connected subset Q of ReQ? > 0 containing both the Q? =
—a+ 0" and the Q% > 0 axis, and which agrees with
15,(0n)(Q* > 0) along this axis, then G(Q?) = F,(Q?)
over Q. In particular, I, (e,,;q) can be obtained
as G(Q* = —a+0").

2. Explicit expression

It remains to construct explicit examples of G(Q?). This
is easily done by evaluating I5,(0n)(Q? > 0) using the
Feynman trick and by extending the result to complex
values of Q2. Of course, as long as Q% > 0, there are many
equivalent forms of G(Q?) that one can write. In order to
determine Tﬁy(eq,a; q), we should only use those forms that
obey the above mentioned analytic properties.

®0f course, the same result is obtained by closing the contour
on the left.
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The Feynman trick allows us to write

15, (0n)(Q? > 0)
1 (1 i
= 1622 { +In— 0

—A dxln( (1—x)+x§+(1 )é)} (B10)

To perform the integral over x, it is convenient to write

p
QZ
=—x?+ <1+

x(I=x)+x=+(1 x)

ﬂ_
% )”@

F=1\\? L(, B=1\’
- <x"(1+ Q2y>> +é+1<1+ Q2y>

= Q'+ A+ +20%(B+7) - 2pr
=0'+20%(B+7y)+ (B—7)?
= (Q*+p+7y) —4py.

Rz(_Q27ﬂ7 }/)
(B12)

If we want to split the logarithm of the product of the two
factors in Eq. (B11), we need to check that the sum of the
arguments of the factors lies between —z and z. Since, the
product of the factors never crosses the branch cut, it is
enough to work at x = 0 and Q> = 0. One finds

Arg(R(0.5.y) +p—y) +Arg(R(0.5.y) = f+7)
=arg(\/(B=1)2+ (B=1)) +Arg(/ (B=1)* = (5-1))

— Arg(2iMax(—if, —iy)) :gsign(Max(—iﬂ, —iy)),

_ (R BN+ +h—r (B13)
20?
R(-Q*.p.y)-Q* =B +r
x ( 202 +x>, (B11) which lies between —z/2 and 7/2. We can then split the
logarithm and compute the x integral to obtain, after some
with trivial simplifications,
I5,(0n)(Q* 2 0) = G()(Q?)
_ 1 1 _2 (_szﬁv7>+Q2_ﬁ+y R(_Qz,ﬁ,7)+Q2—ﬂ+}/
=6—{ +IH@+2— 2Q2 In 2Q2
LRS- —fty RGPy -0~y
2 2
20 20
+R(—Q2,ﬁ r)—Q +p- "1n R(-Q*.B.r)-Q*+p~7
20?7 20?7
2 2 2 2
(Qﬁ7)+2Q +th-1, (Qﬂ7)+2Q +B- 7} (B14)
2K 20
It will be convenient to rewrite this Euclidean expression as
15,(0n)(Q* 2 0) = G1)(Q?)
1 1 In i 5
" e "ot
R-Q*.pr)+Q*=p+r R=Q"py)+ QO ~f+y
20? 2?
+R<_Q2’ﬂ’}/) Qz_/))"‘}/l R( QzﬁY> QZ_/}—'_)/
20 20’
+R(—Q2,ﬂ r) -0 +p- Y 1n R(-Q*.p.y) = Q> +f~—y
20? 2i?
2 2 2 2
(QﬂV)JrZQ +h—r R=QBy) + 0+ )~ 7/} (B15)
20 202
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where we have changed the scale under the logarithms to
the price of changing In%/Q? by —1In ji*/ Q>

Let us now analyze the singularities of G(;)(Q%). We
mention that we are not after the precise determination of
the singularities. Rather we want to check that they comply
with the above mentioned requirements, allowing one to
extract I, (€, ,:q) as G1)(Q* = —a + 0"). First, there is a
branch cut along the negative real axis, originating from
Inji?/Q* A second branch cut originates from
R(—QZ, S, v) which contains a square root. More precisely,
this branch cut corresponds to

with u > 0.

R*(=Q7.p.7) = —u, (B16)

This is easily solved using the third form of R*(—Q?, f,7)
in (B12), and we find

02 =—f—y+/4py—u with u>0. (BI7)

Finally, from the logarithms, we have potentially four
branch cuts corresponding to

Q% +(B-7)£R(-0%,.B.y)=—u with u>0, (B18)

2 —(B—y)£R(=0Q%,.f.7)=—u with u>0.  (B19)

Using the first form of R*(—Q?2,,7) in (B12), we find

0 __uu+2(ﬁ—y)__uu2+2ﬂu—|—4(ﬁ—y)y
1= u—2y 2 u* —4y? ’

(B20)

uu—2(p-y) _uu2+27u+4(7—ﬂ)/3

2 p— =
2= u—2p 2 u*—4p°

(B21)

It is easily checked that, even though there are some
singularities in the semiplane ReQ? > 0, they comply with
the requirements and therefore

j/iy(eq,a; q) = G(l)(Q2 - —a+ O+) (Bzz)
We note in particular that 14, (¢, ,; q) does not depend on q.

This could have been anticipated from the fact that the
analytic continuation is unique.

APPENDIX C: EVALUATION OF S, _g)(0n)

Let us consider the slightly more general quantity
Saay(0n). Without loss of generality, we can assume that
a = im?> with m*> > 0. However, we take y = ic?, with
¢ € R. Writing S, (0n) = V(m?, ¢*)/(2x)* and general-
izing the argumentation of [42], we write

C o . d\?2 V<_2)(m2,02)
V(m ,C ) = (477.'/1 ) dF<3 —§> [W
VED (m2, c?)

s

+17<0>(m2,c2)+...]. (C1)

Each of the V(/)’s obeys a differential equation that can be
derived from Eq. (49). One finds

o _,.
R*(m?, ?) = V) (m?, c?)

0c?

= (2 =2m2)VD(m?, ) + gD (m?, ?),  (C2)

with R?(m?, ¢*) = R*(m?, m?, ¢?) = ¢*(c* — 4m?) and

I, = I ). ()
gV (m?.c?)
= (2 =2m> )V (m?, c?)
im* 5, 2 2 ) 270 (2
+T[ —c*+(c*=2m*)In(im*) + c*In(ic*)], (C4)
7O (m2, c?)

= (? =2m®) V=D (m?, ¢?)
im? ’ 2 c?
+?{‘m+6‘

+ 2 In(ic?) In(im?) + (2m? = ¢?) In(im?) — ¢*In(ic?) |.

2
2m2>ln2(im2) +%ln2(ic2)

(C5)

The determination of the V/)’s proceeds recursively: one
first determines V(~2) by integrating the corresponding
differential equation with the explicit expression (C3) for
3'~2. Knowing V(=?), one can then determine g(~") from
(C4) and repeat the procedure, until all the V(/)’s have been
determined. We mention that the integration of each
differential equation gives each VU)(m?,¢?), in terms of
aboundary value V) (m?, c%). There seems to be a circular
reasoning a priori. We see below how this problem is
avoided.

1. Integrating the differential equation and
boundary value

Each differential equation (C2) is valid separately over
2 <0,0 < ¢ < 4m? and ¢? > 4m?. We here focus on the
> <0 and

regions c¢>>4m?, in which case
R*(m?, ¢?) > 0. Following [42], we note that
0 1 2 _2m?
52 2 2 :_C3 2m2’ (Co)
Oc* R(m*, ¢*) R (m?*, ¢*)
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o 2_22 44
SR = R (@)
dc* R(m*, ¢*) R’ (m?*, ¢?)

It follows that the differential equation can be rewritten as

9 (4m* VU (m?, ¢?) + g (c*, m?) (2 = 2m?)
dc? R(m?, c?)
c? = 2m? 9\ (c?, m?)

" R(m2, &) dc? ’ (C8)

The benefit of this rewriting is two-fold. First, it can be
integrated to provide an expression for V) (m?, ¢?) in
terms of an integral involving §\/) (m?, ¢*) and a boundary
value VU)(m?,c2). Second, by choosing ¢3 =0 or ¢} =
4m* (depending on the considered region), this boundary is
not needed because

4m*VO) (m?, ) + g (c3, m*)(c3 —2m*) =0, (C9)

owing to Eq. (C2). It follows that

x—2m? 9gY) (m?,x)
R(m?,x) Ox

_ . 1 c?
Vi (m?,c?) =— {R(mz,cz)/ dx
4 e

+(2m2—cz)g(j)(m2,cz)}, (C10)

which provides a one-dimensional integral representation
for VU)(m?, c?).

2. Computing the remaining integrals

It remains to evaluate the integral in Eq. (C10). To this
purpose, it is convenient to consider the change of variables

14 1)?
— U - . (C11)
such that
dx 5 1
— = 1--). C12
ar " ( t2> (C12)
The function x(7) increases from x(—o0) = —0c0 to
x(=1) = 0 and then decreases to x(0~) = —oo. Similarly,

it decreases from x(0%) = +oo to x(1) = 4m? and then
increases to x(+00) = +oo. This means that the change of
variables (C11) is adapted to the regions x <0 and
x > 4m?. In each case, there are two possible branches
obtained by solving a quadratic equation whose discrimi-
nant is A= (2m® —x?)* —4m* = R?*(m*,x*). The
branches read

_ x—=2m? £ R(m?x)
= 2 s

t=t.(x) (C13)

2m

with 0 < 7_(x) < 1 < t,(x) in the case where x > 4m?,
whereas 7_(x) < —1 < 7, (x) < 0 in the case where x < 0.
We note for later purpose that

1 R(m?,x?)

t =1, L+t =——=, I, —1_=
+ + ) + 2

m

(C14)

Moreover, if we choose to work with 7.(x), with 7 = +1,
then

2+ 1 -1
R(mz,X) = tm? <2t — T+> = tm? s

(C15)

It follows that Eq. (C10) rewrites

1:(c?)

_ . 1 2419
VO (m?, %) = y [TR(mz,cz)/ tt + 193" (x)
m S

an(c?) 1 Ox
3U) (m?, ¢
+(m? - )T <Zz’c)], (C16)

and the result should not depend on the value of 7.
It is now easy to see that the procedure described below
Eqgs. (C3)—(C5) generates the following integrals:

IOE/:dz];thz, (C17)
Ilz[’dzlztzx, (C18)
Jozf’dzljztzln(ix), (C19)
J = / " dtl;ztlen(ix), (C20)
Koz%[’ dr ;tzlnz(ix), (c21)

where we have introduced ¢ = sgn(c?) and ¢, = 1,(c?) for
simplicity. For the first one, we have

=t —t,=1 o (C22)

-]

Similarly
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N 2
11:2m2/ dr— +m2/ dtu
- t - £
r‘[ tT l 2
:2m/ ittt +m/ dt(t+—3+—)
£t
—2m210+m2{ < >—|—21n|t @
_|._

= 2tR(m?, c? <—— 1) +2m21n|t1|}

= 7R (m” )(1 )+2m21n|t|

To treat the other integrals, we use the formula

(C23)

[ wmien) = syl - [ a0
(C24)

obtained via integration by parts. In particular, we have

R(m?, c? 1, —1)?
Jozrmln(icz)—/ dt([ )

m? 2
R(m?,c?) . I 1 2
:TTIH(ICZ)—/; dt<1+t_2_;>
R(m?, c?) .
= TT (1n(lC2) - 1) -+ 2In 7| (CZS)

and, similarly,

=2m2/t1dl1—;tzln(ix)+m2/frdt(l;ﬂ)zln(ix)

_2m210+m2/t1dt< 1>ln(ix)+2m2/t1dt@
1>ln

z_+%>+2m2/ dt <tlx)

1>ln

=2m?Jy+1R(m?,c?) <

1
e
=2m?Jy+1R(m?,c?) <

—l—;TR(m ) (3 ——) (C26)

2m?

—m21n|tf|+2m2/ dt (tzx)

o

2
= tR(m?, ¢?) (; 5+ 1) In(ic?)

1 c?
— ETR(mZ, C2) (1 + W)

+3m?In|t,| + 2m2/ dt

o

m(t’x) (C27)

Using similar ideas, we find

R(m c?) In*(ic?)

I 1 2 )
KO = m2 ) — ; dr| 1 +?—; ll'l(l)C)
R 2 In?(ic? = In(i
m 2 - t

In these last two expressions, we need the integral

t’[ ] T 2 it -
/ dtln(zx):/t dtlnm +2/ t dt1n|1 1

c [ o —0c t
_/ it 1n|t|+/ dtln(sg?(t)i)

=Inm?In|t,| = 2®(-t,) + 2®(-0)

1
—§1n2|tf|—|—igoln|t1|, (C29)
where we have introduced Spence function
d
®(u) = —/ ad P (C30)
0o X
We note that
el KT O (sgn(u)*
Bsan() = > / =
k=1
= Z 2 tsen(u Z 2
keven kodd
=1
= (1 —sgn(u Z 2+sgn Z—z
keven
1 1 7 ’
(C31)

Moreover, depending on the sign of u, we can split the
integral into an integral from 0 to sgn(u) [which gives
®(sgn(u))] and an integral from sgn(u) to u on which we
implement the change of variables x = 1/y. We find
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1/u dy
@) = @(sgn() + [ |1 3| ~Inly|
sen(u) Y
1 1
= 2®(sgn(u)) — <I><—> - Eln2 |ul, (C32)
u
that is
1 7 1,
D(u) +CD<;> —E—l—sgn(u)z—iln lul.  (C33)

Using these various formulas, together with 7,7_, = 1, we
arrive at

t In(ix) = #°
di =TT
l r 12 %4

20(—1,) + Inm? In|t,|

1
1] +igaln|t,|

71'2 71'2 2
S {E —o - 20(—t_,) + Inm*In|r_,|

(C34)

1
—51n2|t_1| + i%o’]n |t_1|:| R

where the second equality is the explicit form of the identity

i, j 1 i
/ dtln(tzx) _ _/ dtln(tzx)’

which is readily obtained using the change of variables
t— 1/t and t, = —1/t_.. This formula will be useful
below when checking that our final result does not depend
on the choice of 7.

(C35)

3. Recursive determination of the VV)’s

Let us now determine the VU)’s recursively. We start
from Eq. (C3) which gives

_(_2) 2 .
0g\=%) (m*, x) _ i
Ox

(C36)

Using Eq. (C16), this leads then to

VD (m?, ) = % [tm*R(m?, c*)I,
&m
+ (2m? = ¢?)(c* — m?))
= # [R2(m2, 2) = (¢* = 3m2c? + 2m*)]

- —é (2m? + ). (C37)

From this result and Eq. (C4), we find

F(2) = é [6m* —2m2c? — c* + 2m?(c? — 2m?) In(im?)

+2m*c? In(ic?)], (C38)
and then
_(_1) 2 .
W = i[mz In(im?) — x + m*In(ix)].  (C39)

Equation (C16) now gives

i

VED (2, e2) =
(m”.c%) 16m?

tR(m?,c?)(m*In(im*) Iy =1, +m>J,)

2)5_}(_1)(’712762)

m2

—4i(2m*-c

:1L6[3(2m2 +c?)—4m?In(im?)—2c%In(ic?)).

(C40)
From this result and Eq. (C5), we find

i
16
+ m?(c? — 4m?)In?(im?) + m*c?In®(ic?)
+2m2c? In(im?) In(ic?)

+ 6m?(2m?* — %) In(im?)

[—14m* + 2m?c? + 3¢*

+2c%(m? — ¢®) In(ic?)] (C41)
and then
99 _ L4 4 x) — dm n(in®) + 4 — x) In(ix)
ox 16
+ m?1n%(ix) + m? In?(im?) + 2m? In(im?) In(ix)).

(C42)
Equation (C16) now gives

l
64m>
+ 1In2(im?))m?1, + 41,
+2(2 + In(im?))m>Jy — 4J, + 2mK,}
§(0>(m2, C2)

m2

VO (m?,c?) = tR(m?, c*){(4 — 41n(im?)

—16i(2m* = ¢?) (C43)

which simplifies to
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2 2

_ ] 1
VO (m?, %) = 1L6 [TR(m2, cz){—% + sgn(c?) % + 2@(—t1(cz))+iln2|t,(cz)| +in®(=c?)In |t1(02)|}

2 1
- % (2m? + ¢2) + 6m?* In(im?) + 3c* In(ic?) — ¢ In(im?) In(ic?) + (% - 2m2>ln2(im2) - §c2ln2(ic2)] ,
(C44)

where we recall that

2 o2 4 o/ (P = dm?)
t,(cz):c m* +1v/c*(c m ) (C45)

2m?

It is clear from (C34), that this result does not depend on 7. In particular, it is convenient to choose 7 = +1 since —7, < 1
and therefore ®(—r, ) = Liy(—1,):

2 2

_ ] 1
VO (m?,c?) = 1L6 [R(mz, 62){_711_2 + sgn(c?) % + 2Li2(—t+(cz))+§1n2|t+(cz)| +in®(=c?)In |t+(02)|}

7 2 1
-3 (2m? + ¢?) + 6m? In(im?) + 3¢ In(ic?) — ¢? In(im?) In(ic?) + (% - 2m2>ln2(im2) - Eczlnz(icl)] )

(C46)
For the relevant case ¢> = —m?, we have t,(-m?) = (=3 ++/5)/2. Using the well-known result
3-V5\ 7 1+/5
Li () =2~z %2 4
12(2)15112’ (C47)
as well as
1n3_\/§:—2ln1+\/§, (C48)
2 2
we find
- im? 2 3—-+5 7
VO (m?, —m?) = S A(E —irn Vs + =~ = 61In(im?) + 31In(—im?)
16 5 2 2
. . 5 5., 1 .
— In(im?) In(=im?) + Elnz(zmz) - Elnz(—lmz) . (C49)
Combining Egs. (C37), (C40), and (C49) into (C1), we arrive eventually at
S (0n) = (42> T(1 + €)* = — L + L (2 2ma +In(-aq)
aat~) 1287%) (462 " 2¢ \2
5 (n? 3—-+5 7 3 1 5 1
+ g <% —irln 2\/_> +t7- 3lna+ Eln(—a) - Eln aln(—a) + Zlnza - Zlnz(—a) : (C50)
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