
 

Momentum and its affiliated transport coefficients
for hot QCD matter in a strong magnetic field

Shubhalaxmi Rath* and Binoy Krishna Patra†

Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, India

(Received 6 February 2020; accepted 7 July 2020; published 11 August 2020)

We have studied the effects of anisotropies on the momentum transport in a strongly interacting matter
by the transport coefficients, viz. shear (η) and bulk (ζ) viscosities. The anisotropies could arise either by the
strong magnetic field or by the preferential expansion, both of which are created in the very early stages of
ultrarelativistic heavy ion collisions at the RHIC or the LHC. This study is thereby aimed to understand
(i) the fluidity and location of the transition point of the matter through η=s and ζ=s (s is the entropy
density), respectively, (ii) the sound attenuation through the Prandtl number (Pl), (iii) the nature of the flow
by the Reynolds number (Rl), and (iv) the competition between momentum and charge diffusions through
the ratio ðη=sÞ=ðσel=TÞ. For this purpose, we have first calculated the viscosities in the relaxation-time
approximation of kinetic theory approach and the interactions among partons are embodied by assigning
masses to quarks and gluons at finite temperature and strong magnetic field, known as the quasiparticle
model. Compared to the isotropic medium, both η and ζ get increased in the magnetic field-driven
(B-driven) anisotropy, contrary to the decrease in the expansion-driven anisotropy. Zooming in, η increases
with temperature faster in the former case than in the latter case, whereas ζ in the former case
monotonically decreases with the temperature and in the latter case, it is meager and ultimately diminishes
at a specific temperature. Thus, the behaviors of shear and bulk viscosities could in principle distinguish the
aforesaid anisotropies. As a result, η=s gets enhanced in the former case but decreases with temperature and
in the latter case, it becomes even smaller than the isotropic one. Similarly, ζ=s gets amplified but decreases
faster with the temperature in the presence of a strong magnetic field. The Prandtl number gets increased in
B-induced anisotropy and gets decreased in expansion-induced anisotropy, compared to the isotropic case.
However, Pl is always found larger than 1, so the sound attenuation is mostly governed by the momentum
diffusion. The momentum anisotropy due to the magnetic field makes the Reynolds number smaller than 1,
whereas the expansion-driven anisotropy makes it larger. Finally the ratio ðη=sÞ=ðσel=TÞ is amplified much
in the presence of magnetic field-driven anisotropy, whereas the amplification is less pronounced in an
isotropic medium as well as in an expansion-driven anisotropic medium. However, the ratio is always more
than 1, so the momentum diffusion always prevails over the charge diffusion.
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I. INTRODUCTION

Ultrarelativistic heavy-ion collisions (URHICs) at the
RHIC and the LHC provide an enticing opportunity to
investigate the strongly interacting matter in the form of
deconfined quarks and gluons, dubbed as quark-gluon
plasma (QGP). One of the amazing findings at the
RHIC and the LHC is the substantial collective flow and
the data are well reproduced by perfect fluid dynamics [1].

In a parallel theoretical discovery, a lower bound (1=4π) in
the ratio of shear viscosity (η) to entropy density (s) is
found for some physical systems, such as quarks and
gluons, helium, nitrogen, and water at and near their phase
transitions [2,3]. Conversely, there are indications that the
ratio of bulk viscosity (ζ) to entropy density may have a
maximum in the vicinity of the phase transition. Thus, the
location of the transition or rapid crossover in QCD via the
ratios η=s and ζ=s can be pinpointed, in addition to and
independent of the equation of state.
The above-mentioned predictions were made for the

simplest possible phenomenological setting, i.e., fully
central collisions. However, an intensely strong magnetic
field is expected to be produced at very early stages of
URHICs, when the events are off-central [4]. Depending
on the centrality, the strength of the magnetic field may
reach betweenm2

π (1018 Gauss) at the RHIC to 15m2
π at the
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LHC [5] and at extreme cases it may reach 50 m2
π . Naive

classical estimates predict that the magnetic field may be
very strong for a very short duration [6]. However, the
realistic calculations on the charge transport properties of
the produced medium, mainly the electrical conductivity,
suggest that the magnetic field may remain substantially
strong for a significantly longer time [7,8]. Since the above-
mentioned collective flow has been interpreted as a strong
indicator of early thermalization, the strong magnetic field
created at the early stages of URHICs might affect the
momentum transport of the produced matter.
A wide range of theoretical and phenomenological

observations have been made on how the strong magnetic
field influences the properties of hot QCD matter, such as
thermodynamic and magnetic properties [9–12], chiral
magnetic effect [4,13], dilepton production [14,15],
(inverse) magnetic catalysis due to the (restoration) break-
ing of the chiral symmetry [16–18] etc. As an artifact of the
strong magnetic field, the dynamics of quarks along the
longitudinal direction (pL) dominates over the motion
along the transverse direction (pT) (pL ≫ pT). This is
further evidenced in the quantum-mechanical dispersion
relation for a flavor (i) of mass mi and electric charge qi:
ωi;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
L þ 2njqiBj þm2

i

p
, where only the lowest

Landau level (n ¼ 0) is populated in the strong magnetic
field limit (jqiBj ≫ T2 as well as jqiBj ≫ m2

i , abbreviated
as SMF limit), i.e., the case of vanishingly small pT (≈0),
thus it results in an anisotropy in the momentum space. For

a weak-momentum anisotropic limit (ξ ¼ hp2
Ti

2hp2
Li
− 1 < 1),

the anisotropic distribution function for quark could be
conceived by stretching the isotropic distribution in the
direction of anisotropy.1 Another kind of momentum
anisotropy could also emerge at the similar timescale of
magnetic field production due to the asymptotic free
expansion of the matter along the beam direction compared
to its transverse direction (pT ≫ pL) [19]. So, unlike the
aforesaid anisotropy, the (weak) anisotropic distribution
functions for both quarks and gluons could be approxi-
mated by contracting the respective distribution functions
in the direction of anisotropy due to the positive value of ξ.
In order to take into account the dissipative processes,

namely thermal conduction and viscosity etc., one usually
goes to the next approximation beyond the initial local
equilibrium distribution function (f0), i.e., f ¼ f0 þ δf.
The correction δf is determined by solving the transport
equation, after linearizing the collision integral (which also
involves the initial local equilibrium distribution function)
with respect to the correction. Thus, if the initial distribu-
tion is anisotropic then the initial anisotropy is going to

affect the solution of the transport equation, which in turn
affects the transport coefficients. If the medium exhibits
weak anisotropy then the transport coefficients are decom-
posable into isotropic and anisotropic terms. For an
example, due to the asymptotic expansion at very high
energy in the early stages of the collisions, the expansion
rate along the longitudinal direction becomes much higher
than that along the transverse direction. As a result, the
system becomes much colder in the longitudinal direction
than in the transverse direction, which gets translated into
an anisotropy in the particle momentum distribution
[20,21]. Thus, the anisotropy initially present in the spatial
distribution is translated into the anisotropy in the momen-
tum distribution of particles [22–24].
It is seen in the hydrodynamics study [25] how a spatial

anisotropy gets converted into a flow anisotropy in the
momentum space for an expanding matter with finite shear
and bulk viscosities. One might thus expect that, the
anisotropies discussed hereinabove could affect the trans-
port properties of the medium. Recently we had explored
the effects of aforesaid momentum anisotropies on the
transports of charge and heat by electrical (σel) and
thermal (κ) conductivities, respectively, where not only
their magnitudes have undergone a drastic change, but their
behaviors have also seen a marked difference in the above-
mentioned anisotropies [8]. Moreover we had also studied
the affiliated coefficients related to σel and κ by the Lorenz
number in Wiedemann-Franz law and the Knudsen num-
ber, whose magnitudes as well as behaviors distinguish the
anisotropies. As a corollary, the electrical conductivity thus
obtained enhances the duration for which the magnetic field
remains strong. In the present work, we intend to explore
the effects of aforesaid anisotropies on the momentum
transports across and along the layer by shear and bulk
viscosities, respectively. This exploration will further
facilitate understanding the effects of a strong magnetic
field on the affiliated coefficients: (i) to check the fluidity
and the transition point of the hot QCD matter by the ratios
η=s and ζ=s, (ii) to observe the sound attenuation in the

medium by the Prandtl number (Pl=ηCp

ρκ , Cp: specific heat at
constant pressure; ρ: mass density; κ: thermal conduc-
tivity), (iii) to characterize the nature of flow by the
Reynolds number (Rl=Lvρη , L and v: characteristic length
and velocity of the flow), and finally (iv) the competition
between the momentum and charge diffusions by the ratio
ðη=sÞ=ðσel=TÞ. The studies on the above-mentioned trans-
port coefficients are helpful to understand the transport
phenomena in other areas where strong magnetic fields
might exist, such as the core of the magnetar and the
beginning of the Universe, in addition to URHICs.
A variety of calculations on shear and bulk viscosities

have been done by applying the perturbation theory
[26–28], the kinetic theory [29–31], and so on for a thermal
medium of quarks and gluons in the absence of a magnetic

1It is worth to mention here that, although gluons being
uncharged particles are not directly affected by the magnetic
field-driven anisotropy, their dynamics can be indirectly influ-
enced by the magnetic field through the modification of the
Debye screening mass.
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field. In the presence of a magnetic field the rotational
invariance is broken, which in turn induces an azimuthal
anisotropy of produced particles. As a result, the viscous
stress tensor is characterized by seven viscous coefficients,
out of which five are shear viscosities and the remaining
two are bulk viscosities [32–38]. Since the components of
fluid velocity transverse to the magnetic field direction tend
to zero [34], i.e., they decay with a finite relaxation-time
even in a zero spatial gradient limit, so, they are no longer
long-lived hydrodynamic variables [39]. Specifically, in the
SMF limit, only the longitudinal components of shear and
bulk viscosities along the direction of a magnetic field
survive, which are contributed only by the lowest Landau
level (LLL) quarks/antiquarks, and other components
become negligible [32,34,37]. The influence of a magnetic
field on the viscosities has also been investigated previ-
ously in various approaches and models, such as, correlator
technique using the Kubo formula [37,40], perturbative
QCD in a weak magnetic field [39], the Chapman-Enskog
method with effective fugacity approach [41] and the
holographic model [42–44]. In our present work, we are
going to calculate both of the viscosities in both magnetic
field- and expansion-driven anisotropies within the kinetic
theory approach in the relaxation-time approximation. We
will further examine the influence of anisotropies on the
relative behavior between them by the above-mentioned
derived transport coefficients: η=s and ζ=s, the Prandtl
number, the Reynolds number, and the ratio of momentum
diffusion to charge diffusion, which are worthy of inves-
tigation for different perspectives.
The ratio η=s is studied in a holographic model by

Kovtun, Son, and Starinets [2] and reports a lower bound 1
4π,

irrespective of physical systems. The above ratio is also
studied in a parton transport model to reproduce the
collective behavior [45–48] at URHICs and is found to
be very small (≈ 1

4π) and a hydrodynamic model [49] also
reports the value of η=s between 1

4π to
2
4π compatible with the

experiments [50,51] as well as with the lattice calculations
[52,53]. The ratio ζ=s is found to be very small (< 0.15) in
lattice calculations [54,55] except for a small region around
the QCD deconfinement transition temperature Tc and even
becomes extremely small away from Tc. The Prandtl
number is calculated for a strongly coupled liquid helium
using kinetic theory [56], which is found to be around 2.5,
and for a nonrelativistic conformal holographic fluid Pl is
1.0 [56,57]. For dilute atomic Fermi gas at high temper-
atures, Pl is calculated in the framework of kinetic theory,
where it turns out to be 2

3
[58]. The magnitude of the

Reynolds number indicates the type of flow, whether it is
laminar (Rl ≤ 1) or turbulent (Rl ≫ 1) [59]. The (3þ 1)-
dimensional fluid dynamical model reports the value of the
Rl for QGP in the range 3–10 [60], whereas the holographic
setup estimates the higher value as approximately 20 [59].
Thus, the QGP is thought to be a viscous medium and the
flow remains laminar. Similarly in the calculations using

the relativistic kinetic theory [31] and the Chapman-Enskog
method with effective fugacity approach [61], the ratio
γ ¼ ðη=sÞ=ðσel=TÞ is reported between 1 to 20 or even
higher for a QGP system near transition temperature and
gets saturated at higher temperatures.
Recently we have noticed that the noninteracting

description of particles yields the unusually large values
of thermal and electrical conductivities. So we have
circumvented the problem by the quasiparticle description
of particles, commonly known as the quasiparticle model
(QPM), where the interactions among the constituents
are embodied in terms of the medium generated masses
in the distribution functions of particles in the phase space.
The QPM has been proposed previously in different
approaches, such as the Nambu-Jona-Lasinio (NJL) and
Polyakov NJL-based quasiparticle models [62–64], a
quasiparticle model with Gribov-Zwanziger quantization
[65,66], a thermodynamically consistent quasiparticle
model [67] etc. In this work, we have used the resummed
propagators for quarks and gluons immersed in a thermal
medium in the absence and in the presence of a strong
magnetic field by the respective self-energies and finally
the poles of respective propagators yield the medium
generated (quasiparticle) masses for quarks and gluons.
With this quasiparticle description, the thermal and elec-
trical conductivities were found finite [8], but larger in the
anisotropy induced by the strong magnetic field than by
the expansion. Here also, in the magnetic field-driven
(B-driven) anisotropy, not only the magnitude of shear
viscosity becomes larger than that in the expansion-driven
anisotropy, but its increase with temperature also becomes
faster. Similarly the bulk viscosity is also larger in B-driven
anisotropy but decreases slowly with the temperature,
whereas in expansion-driven anisotropy, ζ is very small
and abruptly approaches zero at a higher temperature
(> Tc). Although the magnitude of the entropy density
and its variation with the temperature get decreased in
B-induced anisotropy compared to isotropic and expan-
sion-induced anisotropic cases, the increase of η with
temperature (T) is smaller than the increase of s with T.
As a result, unlike η and s, η=s decreases with temperature,
but its magnitude is always larger than those in an isotropic
medium as well as in expansion-induced anisotropy.
On the other hand, ζ=s gets enhanced in B-driven
anisotropy, but it now decreases faster with temperature.
The Prandtl number becomes higher in the B-driven
anisotropy than that in the isotropic medium, whereas
the expansion-driven anisotropy reduces this number to the
value lower than that in the isotropic medium, thus showing
opposite behavior in two anisotropies. However, in all cases
the Prandtl number remains greater than 1, so the sound
attenuation in an interacting system is mostly governed by
the momentum diffusion. The Reynolds number becomes
less than 1 in B-driven anisotropy, so the kinematic
viscosity (η=ρ) dominates over the size and velocity of
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the flow and it describes the hot QCD matter as a viscous
fluid, whereas in expansion-driven anisotropy Rl becomes
greater than 1. Finally, we have observed that, the ratio
ðη=sÞ=ðσel=TÞ in B-driven anisotropy gets increased as
compared to the isotropic one, but in the presence of
expansion-driven anisotropy this ratio becomes smaller
than the isotropic one. However, ðη=sÞ=ðσel=TÞ is always
larger than 1, therefore the momentum diffusion dominates
over the charge diffusion.
Our work is organized as follows. In Sec. II, we have

reviewed the quasiparticle description of hot quarks and
gluons in an ambience of a strong magnetic field.
Section III overall deals with the momentum transports
by shear and bulk viscosities and their ratios with the
entropy density. To be specific, in Sec. III A, we have first
revisited the shear and bulk viscosities in isotropic thermal
medium and the same in the presence of the expansion- and
strong magnetic field-induced anisotropies are computed
in Sec. III B. After computing the viscosities, we have
calculated the ratios η=s and ζ=s in Sec. III C. In Sec. IV,
we have studied the coefficients affiliated to momentum,
heat, and charge transports through the Prandtl number, the
Reynolds number, and the ratio of momentum diffusion to
charge diffusion. Finally, in Sec. V, we have concluded.

II. QUASIPARTICLE DESCRIPTION OF
PARTONS AT FINITE T AND STRONG B

Quasiparticle description of quarks and gluons at finite
temperature in the presence of a magnetic field embodies
the interactions among themselves in the form of thermal
masses. Especially, different flavors acquire masses differ-
ently due to their different electric charges, in addition to
their current masses. The masses are generated due to the
interaction of a given parton in a given environment with
other particles of the medium; therefore, the quasiparticle
description in turn describes the collective properties of the
medium. Different versions of quasiparticle description
exist in the literature based on different effective theories,
such as the Nambu-Jona-Lasinio model and its extension
PNJL model [62–64], Gribov-Zwanziger quantization
[65,66], thermodynamically consistent quasiparticle model
[67] etc. However, our description relies on perturbative
thermal QCD, where the medium generated masses for
quarks and gluons are obtained from the poles of dressed
propagators calculated by the respective self-energies at
finite temperature and/or a strong magnetic field [8].
Let us start with the quasiparticle description of quarks

and gluons in a thermal medium alone, where a gluon
acquires a thermal mass [68,69],

m2
gTðTÞ ¼

g02T2

6

�
Nc þ

Ni

2

�
ð1Þ

where Ni is the number of flavours. Similarly quark also
acquires a thermal mass,

m2
qTðTÞ ¼

g02T2

6
; ð2Þ

where g0 is the running coupling taken up to one loop,
which runs only with the temperature with the renorma-
lization scale fixed at 2πT and has the following [70] form:

g02 ¼ 48π2

ð11Nc − 2NiÞ ln ðΛ2=Λ2

MS
Þ ; ð3Þ

where Λ ¼ 2πT and ΛMS ¼ 0.176 GeV.
In the presence of a strong magnetic field, the gluons

are not affected directly by the magnetic field. However, the
quark-loop of the gluon self-energy will be affected by the
magnetic field, which in turn could affect the aforesaid
mass (1) [11,71,72] as

m2
gT;BðT; BÞ ¼

g02T2Nc

6
þ g2

8π2
X
i

jqiBj: ð4Þ

We are now going to discuss the thermal quark mass in the
presence of a strong magnetic field, which will be given
from the pole (p0 ¼ 0;p → 0 limit) of the effective quark
propagator. The effective propagator can be obtained self-
consistently from the Schwinger-Dyson equation, which is
given by

S−1ðpkÞ ¼ γμpkμ − ΣðpkÞ; ð5Þ

where ΣðpkÞ is the quark self-energy at finite temperature
in the presence of a strong magnetic field. We can evaluate
it up to one loop from the following expression:

ΣðpÞ ¼ −
4

3
g2i

Z
d4k
ð2πÞ4 ½γμSðkÞγνD

μνðp − kÞ�; ð6Þ

where 4=3 denotes the Casimir factor and g represents the
running coupling in the presence of a strong magnetic field
[73],

g2 ¼ 4π

α0sðμ0Þ−1 þ 11Nc
12π ln

�
Λ2
QCDþM2

B

μ2
0

�
þ 1

3π

P
i
jqiBj
τ

; ð7Þ

where

α0sðμ0Þ ¼
12π

11Nc ln
�
μ2
0
þM2

B

Λ2
V

� ; ð8Þ

where MB (∼1 GeV) represents an infrared mass which is
interpreted as the ground state mass of two gluons con-
nected by a fundamental string, with the string tension,
τ ¼ 0.18 GeV2, and ΛV and μ0 have values 0.385 and
1.1 GeV, respectively [73–75].
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SðkÞ is the quark propagator, which in the strong
magnetic field limit is given [76] by the Schwinger
proper-time method in momentum space,

SðkÞ ¼ ie−
k2⊥
jqiBj

ðγ0k0 − γ3kz þmiÞ
k2k −m2

i
ð1 − γ0γ3γ5Þ; ð9Þ

where the four vectors are defined with the metric tensors:
gμν⊥ ¼ diagð0;−1;−1; 0Þ and gμνk ¼ diagð1; 0; 0;−1Þ,

k⊥μ ≡ ð0; kx; ky; 0Þ; kkμ ≡ ðk0; 0; 0; kzÞ:

Dμνðp − kÞ is the gluon propagator, which is not affected
by the magnetic field, i.e.,

Dμνðp − kÞ ¼ igμν

ðp − kÞ2 : ð10Þ

In imaginary-time formalism, the quark self-energy (6) in a
strong magnetic field can be simplified [8] into

ΣðpkÞ ¼
g2jqiBj
3π2

�
πT
2mi

− lnð2Þ
�

×

�
γ0p0

p2
k

þ γ3pz

p2
k

þ γ0γ5pz

p2
k

þ γ3γ5p0

p2
k

�
: ð11Þ

To solve the Schwinger-Dyson equation self-
consistently, the quark self-energy at finite temperature
in the presence of a magnetic field should be written first in
a covariant form [12,77],

ΣðpkÞ ¼ Aγμuμ þ Bγμbμ þ Cγ5γμuμ þDγ5γμbμ; ð12Þ

where the form factors, A, B, C, and D are computed in
LLL approximation as

A ¼ g2jqiBj
3π2

�
πT
2mi

− lnð2Þ
�
p0

p2
k
; ð13Þ

B ¼ g2jqiBj
3π2

�
πT
2mi

− lnð2Þ
�
pz

p2
k
; ð14Þ

C ¼ −
g2jqiBj
3π2

�
πT
2mi

− lnð2Þ
�
pz

p2
k
; ð15Þ

D ¼ −
g2jqiBj
3π2

�
πT
2mi

− lnð2Þ
�
p0

p2
k
; ð16Þ

with uμ (1, 0, 0, 0) and bμ (0, 0, 0, −1), the preferred
directions of heat bath and magnetic field, respectively.

The quark self-energy (12) can be expressed in terms of
chiral projection operators (PR and PL) as

ΣðpkÞ ¼ PR½ðA − BÞγμuμ þ ðB − AÞγμbμ�PL

þ PL½ðAþ BÞγμuμ þ ðBþ AÞγμbμ�PR; ð17Þ

after substituting C ¼ −B and D ¼ −A. Hence, the
Schwinger-Dyson equation (5) finally (in Appendix A)
gives the thermal mass for ith flavor (through the p0 ¼ 0;
pz → 0 limit) in a strong magnetic field as

m2
iT;BðT; BÞ ¼

g2jqiBj
3π2

�
πT
2mi

− lnð2Þ
�
; ð18Þ

which depends on both temperature and magnetic field.
Thus the gluon and quark distribution functions with
medium generated masses (1), (4) and (2), (18) for gluons
and quarks, respectively manifest the interactions present in
the medium in terms of modified occupation probabilities
in the phase space, which in turn affect the transport
coefficients related to the momentum transport in a kinetic
theory approach in the next section.

III. MOMENTUM TRANSPORT IN A
THERMAL QCD MEDIUM

In this section, we will study the transport coefficients for
a strongly interacting matter through the shear and bulk
viscosities in the presence of momentum anisotropies. The
shear and bulk viscosities can be determined using different
models and approaches, namely the relativistic Boltzmann
transport equation in the relaxation-time approximation
[29,78,79], the correlator technique using Green-Kubo
formula [80–83], the lattice simulations [84,85], the molecu-
lar dynamics simulation [86] etc. In the present analysis, we
use the relativistic Boltzmann transport equation to calculate
the shear and bulk viscosities in the relaxation-time approxi-
mation for both isotropic and anisotropic hot QCDmediums
in Secs. III A and III B, respectively.

A. Shear and bulk viscosities for an
isotropic thermal medium

To proceed for the calculations of shear and bulk
viscosities, we assume a local temperature TðxÞ and flow
velocity uμðxÞ which is also called the velocity of energy
transport in the Landau-Lifshitz approach and the velocity
of baryon number flow in the Eckart approach. In this
work, we assume the baryon chemical potential to be very
small or zero.
Allowing the system to be slightly out of equilibrium, the

energy-momentum tensor gets shifted by a small amount,
i.e.,

ΔTμν ¼ Tμν − Tμν
ð0Þ; ð19Þ
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where Tμν
ð0Þ represents the energy-momentum tensor in local

equilibrium and Tμν for the partonic system is given by

Tμν ¼
Z

d3p
ð2πÞ3 p

μpν

�
2
X
i

gi
fi
ωi

þ gg
fg
ωg

�
; ð20Þ

where the factor “2” represents the equal contributions from
quark and antiquark. The nonequilibrium part of the energy-
momentum tensor is proportional to the velocity gradient.
The traceless part and the trace part of the velocity gradient
are known as the shear viscous force and the bulk viscous
force, respectively,

ΔTμν ¼
Z

d3p
ð2πÞ3 p

μpν

�
2
X
i

gi
δfi
ωi

þ gg
δfg
ωg

�
; ð21Þ

where the summation is over three light flavors (u, d, and s)
and gi and gg are the degeneracy factors for quarks and
gluons, respectively. The infinitesimal change in quark
distribution function due to the action of an external force
is defined as δfi ¼ fi − fisoi , where fisoi is the equilibrium
distribution function in the isotropic medium for ith flavor,

fisoi ¼ 1

eβu
αpα þ 1

; ð22Þ

where pα ≡ ðωi;pÞ with ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

p
and uα is the

four-velocity of fluid. Similarly, the infinitesimal change in
gluon distribution function is defined as δfg ¼ fg − fisog ,
where fisog is the equilibrium distribution function in the
isotropic medium,

fisog ¼ 1

eβu
αpα − 1

; ð23Þ

with pα ≡ ðωg;pÞ. The infinitesimal changes in the distri-
bution functions for gluons and quarks can be obtained from
the solutions of their respective relativistic Boltzmann trans-
port equations. It will be easier to solve in the relaxation-time
approximation:

pμ∂μfgðx; pÞ ¼ −
pνuν

τg
δfgðx; pÞ; ð24Þ

pμ∂μfiðx; pÞ ¼ −
pνuν

τi
δfiðx; pÞ; ð25Þ

where the forms of the relaxation times for gluons (τg) and
quarks (τi) can be understood heuristically in terms of the
quasiparticle description in Sec. II, where they acquire
masses due to the interactions among themselves in a
thermal QCD medium. Let us start with the relaxation time

in the case of pure SU(3) gauge theory and then extend to the
case where the quarks are included:
The gluon-gluon interaction exhibits the infrared singu-

larities when the momentum of an exchanged gluon
becomes soft, at least, in the naive perturbation theory,
because the gluons are massless. This is circumvented by
using a resummed (dressed) gluon propagator in a thermal
medium, which is decomposed into the longitudinal, ΔL,
and transverse, ΔT , components. The longitudinal one in
the static limit manifests the gluon to acquire an effective
mass, namely

ΔLð0;qÞ ¼
1

q2 þ 2m2
gT
; ð26Þ

where the effective (thermal) mass [given in Eq. (1)], in
turn, screens the infrared singularities, known as familiar
Debye screening. Whereas the transverse one, ΔTð0;qÞ
(¼ 1

q2
), at first sight, implies that the magnetostatic fields are

not screened. However, if the leading term in q0=q is
retained, then it yields for q0=q → 0,

ΔTðq0;qÞ ≃
1

q2 − i
2
πm2

gTðq0=qÞ
; ð27Þ

showing a frequency-dependent (dynamical) screening
with a cutoff qc ¼ ðπm2

gTq0=2jqjÞ1=2, which is able to
screen the infrared singularities to make the cross sections
finite, otherwise those cross sections would diverge in the
bare perturbation theory. So, the gluon-gluon cross section
is being computed with a dressed gluon propagator, thus
the cross section consists of jΔLj2, jΔT j2 and their inter-
ference term, where the first one is made finite by the
Debye screening. Both the second and the interference
terms are made finite in Hard Thermal Loop approximation
and one recovers, as in the case of Debye screening, a
lnðT=mgTÞ screening factor. This factor is not affected by
the possible existence of a magnetic mass, demonstrating
that despite the absence of the screening of magnetostatic
fields, transverse gluon exchange is effectively cut off in the
infrared by the thermal mass. Thus, the (quasiparticle)
interactions also play the role in deriving the relaxation
time for gluons, which is of the order of τg ∼
½α2s lnð1=αsÞ�−1 [87,88].
The preceding discussion can easily be generalized to

include the quarks, where the infrared singularities in the
relevant processes (gg → gg; qg → qg; qq → qq) respon-
sible to bring back the system into local equilibrium are
similarly removed by the masses generated by a thermal
medium. The thermal masses for light quarks, m2

qT [given
in Eq. (2)] in hard thermal loop calculation are independent
of their masses and are of the same order ofm2

gT , apart from
a flavor factor. One then finds that the gluon and quark

SHUBHALAXMI RATH and BINOY KRISHNA PATRA PHYS. REV. D 102, 036011 (2020)

036011-6



contributions are simply added to yield the final form of the
relaxation time. Indeed, the explicit expressions for the
relaxation times of gluons (τg) and quarks (τi) are calcu-
lated in Ref. [87],

τg ¼
1

22.5Tα2s log ð1=αsÞ½1þ 0.06Ni�
; ð28Þ

τi ¼
1

5.1Tα2s log ð1=αsÞ½1þ 0.12ð2Ni þ 1Þ� ; ð29Þ

respectively. However, in the heavy quark transport phe-
nomena, if the heavy quarks are assumed to be equilibrated
in the medium, one can define the relaxation time for a
heavy quark, which carries the mass dependence.

Substituting the values of δfi and δfg in Eq. (21), we
obtain

ΔTμν ¼ −
Z

d3p
ð2πÞ3

pμpν

pνuν

�
2
X
i

gi
τipμ∂μfi

ωi
þ gg

τgpμ∂μfg
ωg

�
:

ð30Þ

The derivative is written covariantly as the sum of the time
and space parts: ∂μ ¼ uμDþ∇μ, with D ¼ uμ∂μ. In the
local rest frame, the flow velocity and the temperature are
the functions of spatial and temporal coordinates, so the
distribution function can be expanded in terms of the
gradients of flow velocity and temperature. The partial
derivatives of the isotropic quark and gluon distribution
functions are calculated as

∂μfisoi ¼ fisoi ð1 − fisoi Þ
T

�
uαpαuμ

DT
T

þ uαpα
∇μT

T
− uμpαDuα − pα∇μuα

�
; ð31Þ

∂μfisog ¼ fisog ð1þ fisog Þ
T

�
uαpαuμ

DT
T

þ uαpα
∇μT

T
− uμpαDuα − pα∇μuα

�
; ð32Þ

respectively. Substituting the above values of ∂μfisoi and ∂μfisog in Eq. (30), then using DT
T ¼ −ð∂P∂εÞ∇αuα and Duα ¼ ∇αP

εþP
from the energy-momentum conservation, we get

ΔTμν ¼ 2
X
i

gi

Z
d3p
ð2πÞ3

pμpν

ωiT
τifisoi ð1 − fisoi Þ

�
ωi

�∂P
∂ε

�
∇αuα þ pα

	 ∇αP
εþ P

−
∇αT
T



þ pαpβ

ωi
∇αuβ

�

þ gg

Z
d3p
ð2πÞ3

pμpν

ωgT
τgfisog ð1þ fisog Þ

�
ωg

�∂P
∂ε

�
∇αuα þ pα

	 ∇αP
εþ P

−
∇αT
T



þ pαpβ

ωg
∇αuβ

�
: ð33Þ

The pressure and the energy density are related to the energy-momentum tensor as P ¼ −ΔμνTμν=3 and ε ¼ uμTμνuν, where
the projection tensor is defined as Δμν ¼ gμν − uμuν. The definitions of viscosities require the velocity gradient to be
nonzero. The freedom to define velocity uμ or, equivalently, the local rest frame, creates arbitrariness, because in the Eckart
frame uμ represents the velocity of baryon number flow, whereas in the Landau-Lifshitz frame it represents the velocity
of energy flow. However, the arbitrariness can be avoided by choosing a specific frame through the imposition of the
“condition of fit.” To choose the Landau-Lifshitz frame, the condition of fit in the local rest frame requires the
“00”component of the dissipative part of the energy-momentum tensor to be zero, i.e.,ΔT00 ¼ 0 [89]. Since our motivation
is to calculate shear and bulk viscosities, we write only the space-space component of ΔTμν which is proportional to the
velocity gradient,

ΔTij ¼ 2
X
i

gi

Z
d3p
ð2πÞ3

pipj

ωiT
τifisoi ð1 − fisoi Þ

�
−
pkpl

2ωi
Wkl þ

	
ωi

�∂P
∂ε

�
−

p2

3ωi



∂lul þ pk

	 ∂kP
εþ P

−
∂kT
T


�

þ gg

Z
d3p
ð2πÞ3

pipj

ωgT
τgfisog ð1þ fisog Þ

�
−
pkpl

2ωg
Wkl þ

	
ωg

�∂P
∂ε

�
−

p2

3ωg



∂lul þ pk

	 ∂kP
εþ P

−
∂kT
T


�
; ð34Þ

where the following expressions have been used:

∂kul ¼ −
1

2
Wkl −

1

3
δkl∂juj; ð35Þ

Wkl ¼ ∂kul þ ∂luk −
2

3
δkl∂juj: ð36Þ
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In a fluid, fluctuations in the momentum and energy
densities represent two of the hydrodynamic modes whose
responses are characterized by the shear viscosity (η) and
the bulk viscosity (ζ), respectively. For the system which is
slightly shifted from the equilibrium, the shear and bulk
viscosities are defined as the coefficients of the space-space
component of the dissipative part of the energy-momentum
tensor in a first order theory [32,87,90],

ΔTij ¼ −ηWij − ζδij∂lul: ð37Þ

This relation is valid for small fluctuations of the energy-
momentum tensor from its equilibrium. We get the shear
viscosity and the bulk viscosity by comparing Eqs. (34)
and (37) for an isotropic medium as

ηiso ¼ β

15π2
X
i

gi

Z
dp

p6

ω2
i
τifisoi ð1 − fisoi Þ

þ β

30π2
gg

Z
dp

p6

ω2
g
τgfisog ð1þ fisog Þ; ð38Þ

ζiso ¼ 2

3

X
i

gi

Z
d3p
ð2πÞ3

p2

ωi
fisoi ð1 − fisoi ÞAi

þ 1

3
gg

Z
d3p
ð2πÞ3

p2

ωg
fisog ð1þ fisog ÞAg: ð39Þ

The factors Ai and Ag in the ζiso expression are given by

Ai ¼
τi
3T

�
p2

ωi
− 3

�∂P
∂ε

�
ωi

�
; ð40Þ

Ag ¼
τg
3T

�
p2

ωg
− 3

�∂P
∂ε

�
ωg

�
: ð41Þ

For the calculation of bulk viscosity, the forms of Ai and Ag

should be such that, the Landau-Lifshitz condition, i.e.,
uμΔTμνuν ¼ 0, is satisfied. In the local rest frame, to make
the Landau-Lifshitz condition (ΔT00 ¼ 0) satisfied, we
have to replace Ai → A0

i ¼ Ai − biωi and Ag → A0
g ¼

Ag − bgωg, where bi and bg are associated with the energy
conservation [91]. From Eq. (33), the Landau-Lifshitz
conditions for terms Ai and Ag are written as

2
X
i

gi

Z
d3p
ð2πÞ3 ωifisoi ð1 − fisoi ÞðAi − biωiÞ ¼ 0; ð42Þ

gg

Z
d3p
ð2πÞ3 ωgfisog ð1þ fisog ÞðAg − bgωgÞ ¼ 0; ð43Þ

respectively, and the quantities bi and bg are obtained by
solving Eqs. (42) and (43). Now replacing Ai → A0

i and

Ag → A0
g in Eq. (39) and then simplifying, we get the bulk

viscosity for an isotropic medium as

ζiso ¼ β

9π2
X
i

gi

Z
dpp2

�
p2

ωi
− 3

�∂P
∂ε

�
ωi

�
2

τifisoi ð1− fisoi Þ

þ β

18π2
gg

Z
dpp2

�
p2

ωg
− 3

�∂P
∂ε

�
ωg

�
2

τgfisog ð1þ fisog Þ:

ð44Þ

B. Shear and bulk viscosities for an anisotropic
thermal medium

Here we are going to study the shear and bulk viscosities
in two different types of momentum anisotropies, which
may be produced at very early stages of ultrarelativistic
heavy ion collisions. The first one is due to the initial
asymptotic expansion and the second one is due to the
strong magnetic field.

1. Expansion-induced anisotropy

The QGP created in the early stages of heavy ion
collisions experiences larger longitudinal expansion than
the radial expansion which develops a local momentum
anisotropy. If the momentum anisotropy is weak (ξ < 1)
with direction n, the distribution function in the aniso-
tropic medium can be approximated as the isotropic
one with the tail of distribution being curtailed [19].
The distribution function is thus rescaled as fanisoex;i ðpÞ ¼
fisoi ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ξðp · nÞ2

p
Þ, i.e.,

fanisoex;i ðp;TÞ ¼
1

eβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þξðp·nÞ2þm2

i

p
þ 1

; ð45Þ

which after Taylor series expansion up to OðξÞ, takes the
following form:

fanisoex;i ¼ fisoi −
ξβðp · nÞ2

2ωi
fisoi ð1 − fisoi Þ: ð46Þ

Similarly the anisotropic distribution function for a gluon
is written as

fanisoex;g ¼ fisog −
ξβðp · nÞ2

2ωg
fisog ð1þ fisog Þ: ð47Þ

The general form of the anisotropic parameter (ξ) is
written as

ξ ¼ hp2
Ti

2hp2
Li

− 1; ð48Þ

where pL¼p ·n, pT ¼ p − n · ðp · nÞ, p≡ ðp sin θ cosϕ;
p sin θ sinϕ; p cos θÞ, n ¼ ðsin α; 0; cos αÞ, α is the angle
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between the z axis and direction of anisotropy, and ðp · nÞ2 ¼ p2cðα; θ;ϕÞ ¼ p2ðsin2 α sin2 θ cos2 ϕþ cos2 α cos2 θþ
sinð2αÞ sin θ cos θ cosϕÞ. For pT ≫ pL, ξ is positive.
In the presence of weak-momentum anisotropy, the partial derivatives of the anisotropic quark and gluon distribution

functions are calculated as

∂μfanisoex;i ¼ ∂μfisoi −
ξp2cðθ;ϕÞ

2

�
−
fisoi ð1− fisoi Þ

ωiT2
ðuμDT þ∇μTÞ−

fisoi ð1− fisoi Þ
ω2
i T

ðuμpαDuα þpα∇μuαÞ þ
1− 2fisoi
ωiT

∂μfisoi

�
;

ð49Þ

∂μfanisoex;g ¼ ∂μfisog −
ξp2cðθ;ϕÞ

2

�
−
fisog ð1þ fisog Þ

ωgT2
ðuμDT þ∇μTÞ−

fisog ð1þ fisog Þ
ω2
gT

ðuμpαDuα þpα∇μuαÞ þ
1þ 2fisog
ωgT

∂μfisog

�
;

ð50Þ

respectively. Now substituting ∂μfanisoex;i and ∂μfanisoex;g in Eq. (30) for the expansion-driven anisotropy and then proceeding like
the isotropic case, we obtain the shear and bulk viscosities as follows:

ηanisoex ¼ β

15π2
X
i

gi

Z
dp

p6

ω2
i
τifisoi ð1 − fisoi Þ − ξβ

90π2
X
i

gi

Z
dp

p8

ω4
i
τifisoi ð1 − fisoi Þ

−
ξβ2

90π2
X
i

gi

Z
dp

p8

ω3
i
τifisoi ð1 − fisoi Þð1 − 2fisoi Þ þ β

30π2
gg

Z
dp

p6

ω2
g
τgfisog ð1þ fisog Þ

−
ξβ

180π2
gg

Z
dp

p8

ω4
g
τgfisog ð1þ fisog Þ − ξβ2

180π2
gg

Z
dp

p8

ω3
g
τgfisog ð1þ fisog Þð1þ 2fisog Þ; ð51Þ

where the ξ-independent terms in the right-hand side constitute the shear viscosity for an isotropic medium. So in terms of
ηiso, ηanisoex is written as

ηanisoex ¼ ηiso − ξ

�
β2

90π2
X
i

gi

Z
dp

p8

ω3
i
τifisoi ð1 − fisoi Þ

	
1

βωi
þ 1 − 2fisoi




þ β2

180π2
gg

Z
dp

p8

ω3
g
τgfisog ð1þ fisog Þ

	
1

βωg
þ 1þ 2fisog


�
: ð52Þ

The bulk viscosity is calculated as

ζanisoex ¼ β

9π2
X
i

gi

Z
dpp2

�
p2

ωi
− 3

�∂P
∂ε

�
ωi

�
2

τifisoi ð1 − fisoi Þ

−
ξβ

54π2
X
i

gi

Z
dp

p4

ω2
i

�
p4

ω2
i
− 9

�∂P
∂ε

�
2

ω2
i

�
τifisoi ð1 − fisoi Þ

−
ξβ2

54π2
X
i

gi

Z
dp

p4

ωi

�
p2

ωi
− 3

�∂P
∂ε

�
ωi

�
2

τifisoi ð1 − fisoi Þð1 − 2fisoi Þ

þ β

18π2
gg

Z
dpp2

�
p2

ωg
− 3

�∂P
∂ε

�
ωg

�
2

τgfisog ð1þ fisog Þ

−
ξβ

108π2
gg

Z
dp

p4

ω2
g

�
p4

ω2
g
− 9

�∂P
∂ε

�
2

ω2
g

�
τgfisog ð1þ fisog Þ

−
ξβ2

108π2
gg

Z
dp

p4

ωg

�
p2

ωg
− 3

�∂P
∂ε

�
ωg

�
2

τgfisog ð1þ fisog Þð1þ 2fisog Þ; ð53Þ
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which can be decomposed into ξ-independent (isotropic) and ξ-dependent parts as

ζanisoex ¼ ζisoex − ξ

�
β2

54π2
X
i

gi

Z
dp

p4

ωi
τifisoi ð1 − fisoi Þ

	
1

βωi

�
p4

ω2
i
− 9

�∂P
∂ε

�
2

ω2
i

�

þ ð1 − 2fisoi Þ
�
p2

ωi
− 3

�∂P
∂ε

�
ωi

�
2


þ β2

108π2
gg

Z
dp

p4

ωg
τgfisog ð1þ fisog Þ

×

	
1

βωg

�
p4

ω2
g
− 9

�∂P
∂ε

�
2

ω2
g

�
þ ð1þ 2fisog Þ

�
p2

ωg
− 3

�∂P
∂ε

�
ωg

�
2

�

: ð54Þ

2. Strong magnetic field-induced anisotropy

The presence of a magnetic field makes the quark
momentum p to decompose into the transverse and
longitudinal components with respect to its direction
(say, 3-direction). Thus the dispersion relation for the
quark of ith flavor is modified as

ωi;nðpLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
L þ 2njqiBj þm2

i

q
; ð55Þ

where n ¼ 0, 1, 2, � � � specify different Landau levels. In
the strong magnetic field limit, the strength of the magnetic
field is much larger than the temperature of the system and
the mass of the quark. So, even in a thermal medium the
quarks cannot get excited to higher Landau levels due to
very high energy gap ∼Oð ffiffiffiffiffiffi

eB
p Þ and they occupy only the

lowest Landau level. Therefore, pT is much smaller than pL
and this develops a momentum anisotropy with the value
of the anisotropic parameter (ξ) becoming negative. The
distribution function in this case has the following form:

fanisoB;i ðp0;TÞ ¼ 1

eβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02þξðp0·nÞ2þm2

i

p
þ 1

; ð56Þ

where we have denoted the momentum vector in a strong
magnetic field limit (pT ¼ 0) by p0 ¼ ð0; 0; p3Þ. For very
small ξ, the above distribution function can be expanded as

fanisoB;i ¼ fξ¼0
i −

ξβp2
3

2ωi
fξ¼0
i ð1 − fξ¼0

i Þ: ð57Þ

The ξ-independent part of the quark distribution function in
the presence of a strong magnetic field in a general frame is
written as

fξ¼0
i ¼ 1

eβu
αp̃α þ 1

; ð58Þ

where p̃α ≡ ðωi; p3Þ with ωi in the strong magnetic field
limit (n ¼ 0) given by ωi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þm2

i

p
.

The gluons which are electrically uncharged particles
are no longer affected by the B-driven anisotropy. Thus the
gluon distribution function retains its form as in the

isotropic case. The quark contributions to the shear and
bulk viscosities become modified due to the presence of
anisotropy created by the strong magnetic field. In the SMF
limit, only longitudinal (along the direction of the magnetic
field) shear and bulk viscosities have contributions from
the lowest Landau level quarks, so we are now going to
calculate the longitudinal components of the viscosities.
In the presence of a strong magnetic field, effective

(1þ 1)-dimensional kinetic theory helps to determine
transport coefficients. Due to dimensional reduction, the
(integration) phase factor is written [92,93] as

Z
d3p
ð2πÞ3 ¼

jqiBj
2π

Z
dp3

2π
: ð59Þ

The energy-momentum tensor (T̃μν ¼ T̃μν
ð0Þ þ ΔT̃μν) in this

regime has the following form:

T̃μν ¼
X
i

gijqiBj
2π2

Z
dp3

p̃μp̃ν

ωi
fi: ð60Þ

Similarly, the nonequilibrium part of the energy-momentum
tensor is written as

ΔT̃μν ¼
X
i

gijqiBj
2π2

Z
dp3

p̃μp̃ν

ωi
δfi; ð61Þ

where the new notation for momentum p̃μ in the SMF limit
is defined as p̃μ ¼ ðp0; 0; 0; p3Þ. The relativistic Boltzmann
transport equation for a quark distribution function in the
relaxation-time approximation in conjunction with the strong
magnetic field limit is written as

p̃μ∂μfiðx; pÞ ¼ −
p̃νuν

τBi
δfi: ð62Þ

Here τBi denotes the relaxation-time for a quark in the
presence of a strong magnetic field and is given [94] by

τBi ¼ ωiðeβωi − 1Þ
αsC2m2

i ðeβωi þ 1Þ
�
1

�	Z
dp0

3

1

ω0
iðeβω0

i þ 1Þ


�
;

ð63Þ
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where C2 is the Casimir factor. After substituting the value of δfi in Eq. (61), we get

ΔT̃μν ¼ −
X
i

gijqiBj
2π2

Z
dp3

p̃μp̃ν

p̃νuν
τBi p̃

μ∂μfi
ωi

: ð64Þ

In the presence of weak-momentum anisotropy due to the strong magnetic field, the partial derivative of the anisotropic
quark distribution function is calculated as

∂μfanisoB;i ¼ fξ¼0
i ð1 − fξ¼0

i Þ
T

�
uαp̃αuμ

DT
T

þ uαp̃α
∇μT

T
− uμp̃αDuα − p̃α∇μuα

�

−
ξp2

3

2

�
−
fξ¼0
i ð1 − fξ¼0

i Þ
ωiT2

ðuμDT þ∇μTÞ

−
fξ¼0
i ð1 − fξ¼0

i Þ
ω2
i T

ðuμp̃αDuα þ p̃α∇μuαÞ þ
1 − 2fξ¼0

i

ωiT
∂μf

ξ¼0
i

�
: ð65Þ

Substituting the above expression in Eq. (64) for the case of B-driven anisotropy and then calculating the space-space or
longitudinal component of ΔT̃μν, we get

ΔT̃ij ¼
X
i

gijqiBj
2π2

Z
dp3

p̃ip̃j

ωiT
τBi f

ξ¼0
i ð1 − fξ¼0

i Þ
�	

ωi

�∂P
∂ε

�
−

p2
3

3ωi



∂lul −

p̃kp̃l

2ωi
Wkl

þ p̃k

� ∂kP
εþ P

−
∂kT
T

��
− ξ

X
i

gijqiBj
2π2

Z
dp3

p̃ip̃jp2
3

2ω3
i T

τBi f
ξ¼0
i ð1 − fξ¼0

i Þ

×

�
−
	
ωi

�∂P
∂ε

�
þ p2

3

3ωi



∂lul −

p̃kp̃l

2ωi
Wkl þ p̃k

� ∂kP
εþ P

þ ∂kT
T

��

− ξ
X
i

gijqiBj
2π2

Z
dp3

p̃ip̃jp2
3

2ω2
i T

2
τBi f

ξ¼0
i ð1 − fξ¼0

i Þð1 − 2fξ¼0
i Þ

×

�	
ωi

�∂P
∂ε

�
−

p2
3

3ωi



∂lul −

p̃kp̃l

2ωi
Wkl þ p̃k

� ∂kP
εþ P

−
∂kT
T

��
: ð66Þ

The pressure and the energy density in a strong magnetic field can be written in terms of the energy-momentum tensor as

P ¼ −Δk
μνT̃μν and ε ¼ uμT̃μνuν, respectively, where the longitudinal projection tensor is denoted by Δ

k
μν ¼ gkμν − uμuν with

gkμν (diagð1; 0; 0;−1Þ) as the suitable metric tensor.
It is known that, instead of only two ordinary viscosity coefficients, η and ζ [in Eq. (37)] in the absence of a magnetic

field, the eight coefficients suffice to describe the viscous behavior in the presence of a magnetic field, wherein the Onsager
relation, however, reduces the numbers from eight to seven. The seven independent coefficients can be further grouped into
the five shear viscosity coefficients—η, η1, η2, η3, and η4, one volume or bulk viscosity coefficient—ζ and a cross-effect
between the ordinary and volume viscosities—ζ1. Thus, the linear combination of seven independent tensors yields the
viscous tensor for an arbitrary magnetic field, B (with a direction, b ¼ B

B) [32],

πij ¼ 2η

�
Vij −

1

3
δij∇ · V

�
þ ζδij∇ · V

þ η1ð2Vij − δij∇ · V þ δijVklbkbl − 2Vikbkbj − 2Vjkbkbi þ bibj∇ · V þ bibjVklbkblÞ
þ 2η2ðVikbkbj þ Vjkbkbi − 2bibjVklbkblÞ
þ η3ðVikbjk þ Vjkbik − Vklbikbjbl − VklbjkbiblÞ
þ 2η4ðVklbikbjbl þ VklbjkbiblÞ
þ ζ1ðδijVklbkbl þ bibj∇ · VÞ; ð67Þ
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which is broadly decomposed into the traceless compo-
nents (which are the coefficients of η, η1, η2, η3, η4) and the
nonzero traces (the coefficients of ζ and ζ1). The usual
symbols used in the above equation are

bij ¼ ϵijkbk;

Vij ¼
1

2

�∂Vi

∂xj þ
∂Vj

∂xi
�
:

The first two terms in Eq. (67) are the usual terms at B ¼ 0,
so η and ζ are the ordinary viscosity coefficients.
When applied to plasma, the above tensor (67) is

simplified by the vanishing of the cross effect between
ordinary viscosity and volume viscosity (ζ1). The tensor
could be further reduced in a much simpler form in the
strong magnetic field by the vanishing of η1, η2, η3, and η4
coefficients. This can be easily seen by first replacing the
η-term in the tensor,

η0ð3bibj − δijÞ
�
bkblVkl −

1

3
∇ · V

�
;

and then rearranging the terms in the tensor. Thus, the
components of the tensor (67) in a magnetic field along a
specific direction (z direction) are written in Cartesian
coordinates as

πxx ¼ −η0
�
Vzz −

1

3
∇ · V

�
þ η1ðVxx − VyyÞ

þ 2η3Vxy þ ζ0∇ · V; ð68Þ

πyy ¼ −η0
�
Vzz −

1

3
∇ · V

�
þ η1ðVyy − VxxÞ

− 2η3Vxy þ ζ0∇ · V; ð69Þ

πzz ¼ 2η0

�
Vzz −

1

3
∇ · V

�
þ ζ0∇ · V; ð70Þ

πxy ¼ 2η1Vxy − η3ðVxx − VyyÞ; ð71Þ

πxz ¼ 2η2Vxz þ 2η4Vyz; ð72Þ

πyz ¼ 2η2Vyz − 2η4Vxz: ð73Þ

When the magnetic field becomes strong, the motion is
restricted to one dimension in the direction of the magnetic
field. As a result, the transverse components of the velocity
gradient, Vxx; Vyy; Vxy, vanish, which in turn make the
nondiagonal terms of the tensor, πxy, πxz, and πyz, zero.
Thus, the nonvanishing (longitudinal) components in the
viscous tensor are written as

πxx ¼ −η0
�
Vzz −

1

3
∇ · V

�
þ ζ0∇ · V; ð74Þ

πyy ¼ −η0
�
Vzz −

1

3
∇ · V

�
þ ζ0∇ · V; ð75Þ

πzz ¼ 2η0

�
Vzz −

1

3
∇ · V

�
þ ζ0∇ · V; ð76Þ

where η0 and ζ0 are known as the longitudinal viscosities.2

The above components consist of traceless and nonzero
trace terms and the coefficients of them are the shear and
bulk viscosities, respectively, like the case in the absence of
a magnetic field in Eq. (37). Hence, separating the traceless
and nonzero trace parts, the above components are grouped
into forms,

πxx ¼ πyy ¼ −
1

2
πzz ¼ −η0

�
Vzz −

1

3
∇ · Vjz

�
; ð77Þ

πxx ¼ πyy ¼ πzz ¼ ζ0∇ · Vjz; ð78Þ

respectively. The coefficients of those traceless and nonzero
trace terms are the (longitudinal) shear and bulk viscosities,
respectively. Therefore, generalizing the viscous tensor into
the relativistic energy-momentum tensor T̃μν [32,95] in the
strong magnetic field regime, the spatial component of the
dissipative part of the relativistic energy-momentum tensor
can be defined (Appendix B) as (by relabeling η0 ≡ ηB and
ζ0 ≡ ζB as an artifact of the strong magnetic field limit)

ΔT̃ij ¼ −ηBWij − ζBδij∂lul: ð79Þ

From Eqs. (66) and (79), we get the quark contribution to
the shear viscosity for the B-driven anisotropic medium as

ηanisoB;q ¼ β

4π2
X
i

gijqiBj
Z

dp3

p4
3

ω2
i
τBi f

ξ¼0
i ð1 − fξ¼0

i Þ

−
ξβ2

8π2
X
i

gijqiBj
Z

dp3

p6
3

ω3
i
τBi f

ξ¼0
i ð1 − fξ¼0

i Þ

×
	

1

βωi
þ 1 − 2fξ¼0

i



: ð80Þ

Since gluons are not influenced by the presence of a
magnetic field, the gluon part of the shear viscosity remains
unaffected by the B-driven anisotropy. So we can add the
isotropic gluon contribution to obtain the total shear
viscosity,

2The term longitudinal signifies the direction of the velocity
with respect to the direction of the magnetic field.
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ηanisoB ¼ β

4π2
X
i

gijqiBj
Z

dp3

p4
3

ω2
i
τBi f

ξ¼0
i ð1 − fξ¼0

i Þ − ξβ2

8π2
X
i

gijqiBj
Z

dp3

p6
3

ω3
i
τBi f

ξ¼0
i ð1 − fξ¼0

i Þ
	

1

βωi
þ 1 − 2fξ¼0

i




þ β

30π2
gg

Z
dp

p6

ω2
g
τgfisog ð1þ fisog Þ; ð81Þ

which can further be decomposed as

ηanisoB ¼ ηξ¼0 þ ηξ≠0

¼ ηξ¼0 −
ξβ2

8π2
X
i

gijqiBj
Z

dp3

p6
3

ω3
i
τBi f

ξ¼0
i ð1 − fξ¼0

i Þ
	

1

βωi
þ 1 − 2fξ¼0

i



: ð82Þ

The bulk viscosity due to quark contribution can also be obtained by comparing Eqs. (66) and (79),

ζanisoB;q ¼
X
i

gijqiBj
2π2

Z
dp3

p2
3

ωi
fξ¼0
i ð1 − fξ¼0

i ÞA1;i − ξ
X
i

gijqiBj
2π2

Z
dp3

p4
3

2ω3
i
fξ¼0
i ð1 − fξ¼0

i ÞA2;i

− ξ
X
i

gijqiBj
2π2

Z
dp3

p4
3

2ω2
i T

fξ¼0
i ð1 − fξ¼0

i Þð1 − 2fξ¼0
i ÞA1;i; ð83Þ

where A1;i and A2;i have the following forms:

A1;i ¼
τBi
3T

�
p2
3

ωi
− 3

�∂P
∂ε

�
ωi

�
; ð84Þ

A2;i ¼
τBi
3T

�
p2
3

ωi
þ 3

�∂P
∂ε

�
ωi

�
: ð85Þ

Applying the Landau-Lifshitz condition for the calculation of the bulk viscosity and then simplifying, we get

ζanisoB;q ¼ β

6π2
X
i

gijqiBj
Z

dp3

�
p2
3

ωi
− 3

�∂P
∂ε

�
ωi

�
2

τBi f
ξ¼0
i ð1 − fξ¼0

i Þ

−
ξβ

12π2
X
i

gijqiBj
Z

dp3

p2
3

ω2
i

�
p4
3

ω2
i
− 9

�∂P
∂ε

�
2

ω2
i

�
τBi f

ξ¼0
i ð1 − fξ¼0

i Þ

−
ξβ2

12π2
X
i

gijqiBj
Z

dp3

p2
3

ωi

�
p2
3

ωi
− 3

�∂P
∂ε

�
ωi

�
2

τBi f
ξ¼0
i ð1 − fξ¼0

i Þð1 − 2fξ¼0
i Þ: ð86Þ

As was mentioned earlier, the B-driven anisotropy has no influence on gluons, so the total bulk viscosity can be obtained by
adding the isotropic gluon contribution to the modified quark contribution as follows:

ζanisoB ¼ β

6π2
X
i

gijqiBj
Z

dp3

�
p2
3

ωi
− 3

�∂P
∂ε

�
ωi

�
2

τBi f
ξ¼0
i ð1 − fξ¼0

i Þ

−
ξβ

12π2
X
i

gijqiBj
Z

dp3

p2
3

ω2
i

�
p4
3

ω2
i
− 9

�∂P
∂ε

�
2

ω2
i

�
τBi f

ξ¼0
i ð1 − fξ¼0

i Þ

−
ξβ2

12π2
X
i

gijqiBj
Z

dp3

p2
3

ωi

�
p2
3

ωi
− 3

�∂P
∂ε

�
ωi

�
2

τBi f
ξ¼0
i ð1 − fξ¼0

i Þð1 − 2fξ¼0
i Þ

þ β

18π2
gg

Z
dpp2

�
p2

ωg
− 3

�∂P
∂ε

�
ωg

�
2

τgfisog ð1þ fisog Þ; ð87Þ
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which can be written in terms of ξ-independent and ξ-dependent parts as

ζanisoB ¼ ζξ¼0þζξ≠0

¼ ζξ¼0−ξ

�
β2

12π2
X
i

gijqiBj
Z

dp3

p2
3

ωi
τBi f

ξ¼0
i ð1−fξ¼0

i Þ
	

1

βωi

�
p4
3

ω2
i
−9

�∂P
∂ε

�
2

ω2
i

�
þð1−2fξ¼0

i Þ
�
p2
3

ωi
−3

�∂P
∂ε

�
ωi

�
2

�

:

ð88Þ

Before discussing the results on the shear viscosity and
bulk viscosity in the presence of magnetic field-induced
and expansion-induced anisotropies, it is utmost important
to understand the behaviors of the isotropic and anisotropic
distribution functions, because the behaviors of transport
coefficients mainly depend on the phase-space factor,
relaxation time, and the distribution function which in
general embraces all the information on the influence of
anisotropy. Thus, it becomes essential to explore the effects
of anisotropies on quark and gluon distribution functions
through their ratios with respect to their isotropic counter-
parts, viz. fq;exaniso=f

q
iso, f

q;B
aniso=f

q
iso, f

g;ex
aniso=f

g
iso in Fig. 1 at two

temperatures. We have employed the quasiparticle descrip-
tion in the distribution functions for the isotropic and
expansion-driven anisotropic mediums by the T-dependent
masses for gluons (1) and quarks (2), whereas the T- and
B-dependent mass (18) has been used in the distribution
function for the B-driven anisotropic medium.
It is found that the effects of anisotropy caused by the

expansion on quark and gluon distributions are almost
identical (seen in Fig. 1), at least for the weak-anisotropic

limit. However, the ratios get decreased in the high
momentum regime. In the presence of a strong magnetic
field the distribution function for a quark gets affected
severely and the ratio in low momenta is tiny and increases
at higher momenta. With the aforesaid findings on the
distribution functions in the presence of anisotropies, we
have computed the shear viscosity in isotropic (38),
expansion- (52), and B-driven anisotropic (82) mediums
and the bulk viscosity in isotropic (44), expansion- (54),
and B-driven anisotropic (88) mediums.
From Fig. 2(a) we have observed that, at low temper-

atures, the difference between the values of η in an iso-
tropic medium and in the presence of weak-momentum
anisotropy (ξ ¼ 0.6) due to asymptotic expansion is almost
negligible; however, with the increase of temperature, this
difference gradually increases, i.e., η becomes smaller than
its isotropic counterpart. If the origin of weak-momentum
anisotropy is a strong magnetic field, then the magnitude
of η becomes higher than that in an isotropic medium and
with temperature, this difference increases. Thus the above
anisotropies leave different imprints on the shear viscosity,
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FIG. 1. Variation of the ratio faniso=fiso with momentum in the presence of momentum anisotropies both due to asymptotic expansion
and strong magnetic field (15m2

π) at (a) Low temperature and (b) High temperature with the quasiparticle masses for quarks and gluons.
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which are attributed mainly by the modified distribution
function, phase space factor, and relaxation time in the
absence and presence of a strong magnetic field. Similarly,
ζ gets amplified in B-driven anisotropy compared to
both isotropic and expansion-driven anisotropic cases
[in Fig. 2(b)]. However with the increase of temperature,
ζ decreases very slowly, opposite to a slow increase in
an isotropic medium. Interestingly, if the anisotropy is
originated from the initial asymptotic expansion, then
ζ becomes meager and approaches zero at a higher
temperature.

C. Ratios of the shear (η=s) and bulk (ζ=s)
viscosities to the entropy density

We are now going to study the effects of momentum
anisotropies generated at the early stages of collisions in
URHICs on the dimensionless ratios, η=s and ζ=s, because
they are useful in characterizing how close the matter
produced at URHICs is to being a perfect and conformal
fluid, respectively. The phenomenological studies by
parton transport of the collective behavior [45–48] have
reported that the QGP has a very small value of η=s ≈ 1

4π,
suggesting that the matter produced at the RHIC is a
strongly coupled fluid of quarks and gluons, contrary to the
belief of weakly interacting gas of quarks and gluons on the
basis of asymptotic freedom. Similarly, the study of
AdS=CFT correspondence [2] constrains the value of
η=s by a lower bound of 1

4π. The hydrodynamic model
[49] also with small value of η=s ranging from 1

4π to 2
4π

consistently reproduces the experimental data [50,51] and
lattice calculations [52,53]. The bulk viscosity is yet to be

developed at the early times of the hydrodynamic evolu-
tion, so some early viscous hydrodynamic simulations have
usually ignored it in the dissipative part of an energy-
momentum tensor for simplicity [96,97].
Although ζ vanishes for a thermal QCD medium of

massless flavors on the classical level due to the conformal
symmetry, the non-Abelian interactions break the con-
formal symmetry of QCD and generate a nonzero bulk
viscosity, which is found in the lattice calculation of SU(3)
gauge theory [54]. Near the critical or crossover temper-
ature of hadron to QGP phase transition, the value of ζ=s
becomes a maximum whereas that of η=s becomes a
minimum. Thus, it becomes worthwhile to observe the
behaviors of both η=s and ζ=s in the presence of B- and
expansion-induced anisotropies, which in turn gives the
effect of a strong magnetic field through the anisotropy it
generated. In order to do this, one thus requires the
expression of the entropy density (s) in the presence of
anisotropies, which could be best derived in the above-
mentioned kinetic theory approach. For the chemical
potential of quarks, μq ¼ 0, the entropy density is obtained
from the energy density and pressure by the relation

S ¼ εþ P
T

: ð89Þ

Therefore we have first calculated the energy density and
pressure in isotropic as well as in anisotropic mediums in
Appendix C, using the kinetic theory. Hence the above
relation (89) has been used to obtain the entropy densities
for isotropic, expansion-driven anisotropic, and B-driven
anisotropic mediums as
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FIG. 2. Variations of (a) The shear viscosity and (b) The bulk viscosity with temperature in the presence of momentum anisotropies
both due to asymptotic expansion and a strong magnetic field.
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Siso ¼ β

3π2
X
i

gi

Z
dpp2

�
p2

ωi
þ 3ωi

�
fisoi þ β

6π2
gg

Z
dpp2

�
p2

ωg
þ 3ωg

�
fisog ; ð90Þ

Sanisoex ¼ Siso −
ξβ2

18π2
X
i

gi

Z
dp

p4

ωi

�
p2

ωi
þ 3ωi

�
fisoi ð1 − fisoi Þ − ξβ2

36π2
gg

Z
dp

p4

ωg

�
p2

ωg
þ 3ωg

�
fisog ð1þ fisog Þ

¼ Siso − ξ

�
β2

18π2
X
i

gi

Z
dp

p4

ωi

�
p2

ωi
þ 3ωi

�
fisoi ð1 − fisoi Þ þ β2

36π2
gg

Z
dp

p4

ωg

�
p2

ωg
þ 3ωg

�
fisog ð1þ fisog Þ

�
; ð91Þ

SanisoB ¼ β

2π2
X
i

gijqiBj
Z

dp3

�
p2
3

ωi
þ ωi

�
fξ¼0
i −

ξβ2

4π2
X
i

gijqiBj
Z

dp3

p2
3

ωi

�
p2
3

ωi
þ ωi

�
fξ¼0
i ð1 − fξ¼0

i Þ

þ β

6π2
gg

Z
dpp2

�
p2

ωg
þ 3ωg

�
fisog

¼ Sξ¼0 −
ξβ2

4π2
X
i

gijqiBj
Z

dp3

p2
3

ωi

�
p2
3

ωi
þ ωi

�
fξ¼0
i ð1 − fξ¼0

i Þ; ð92Þ

respectively. The immediate observation is that the entropy
density gets decreased in the presence of momentum
anisotropy (seen in Fig. 3), especially it is lowest in
B-driven anisotropy due to the severe reduction of phase
space in the presence of a strong magnetic field.
Thus, having the knowledge of entropy density in the

presence of anisotropies, we have visualized the effects
of anisotropies on the variations of η=s and ζ=s with
temperature in Figs. 4(a) and 4(b), respectively. Since s is
always smaller than η in B-driven anisotropy, η=s is always
larger than one, but unlike η (as well as s), η=s decreases
with temperature [dashed-dotted line in Fig. 4(a)] because
entropy density increases faster with T than η. On the other

hand, η=s becomes much smaller (< 1) in an isotropic
medium as well as in an expansion-driven anisotropic
medium [denoted by solid and dotted lines, respectively in
Fig. 4(a)] than that inB-driven anisotropy, but η=s increases
with temperature monotonically, resulting finally in the
inequality: ηs jB-driven aniso >

η
s jiso > η

s jex-driven aniso. Shear vis-
cosity in the isotropic case is known as collisional viscosity
and the same arising due to weak-momentum anisotropy is
called anomalous viscosity. In the theory of particle trans-
port in turbulent plasma [98], it has been argued that, due to
anomalous viscosity, even a weakly coupled but expanding
quark-gluon plasma may gain the character of a nearly
perfect fluid, thus a large anisotropy describes a small value
of anomalous viscosity. In our finding, the collisional
viscosity comes out higher than the anomalous viscosity
in expansion-driven anisotropy, thus the ratio η=s indicates
the character of a nearly perfect fluid. On the other hand,
the collisional viscosity is smaller than the anomalous
viscosity in B-driven anisotropy, so η=s takes the medium
slightly away from the fluid character. Last but not the least,
ζ=s is very small compared to η=s except that in B-driven
anisotropy, where it becomes comparable to η=s and
decreases with temperature [in Fig. 4(b)]. However, like
the variation of ζ with temperature, ζ=s in expansion-driven
anisotropy vanishes at some higher temperature, which
could have a resemblance with the temperature where the
chiral symmetry is restored.

IV. THE COEFFICIENTS AFFILIATED
TO MOMENTUM, HEAT, AND

CHARGE TRANSPORTS

In this section, we are going to study the effects of
anisotropies on the relative behaviors among momentum,
heat, and charge transports through the Prandtl number, the
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FIG. 3. Variation of the entropy density with temperature in the
presence of momentum anisotropies both due to asymptotic
expansion and a strong magnetic field.
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Reynolds number, and the ratio between momentum
diffusion and charge diffusion. To be specific, the B-driven
anisotropy in a way reveals the effect of a strong magnetic
field on the above-mentioned transport coefficients.

A. Prandtl number

The heat transfer and the momentum transfer in a
medium are diffusive processes. The relative behavior
between the momentum diffusion and the thermal diffusion
can be described in terms of the Prandtl number,

Pl ¼ η=ρ
κ=Cp

; ð93Þ

where Cp is the specific heat at constant pressure, ρ denotes
the mass density, and κ represents the thermal conductivity.
Thus, Pl describes the roles of thermal conductivity and
shear viscosity on the sound attenuation in the system and
has been calculated in a variety of systems, such as,
strongly coupled liquid helium [56], nonrelativistic con-
formal holographic fluid [56,57], and a dilute atomic Fermi
gas [58]. The Prandtl number sheds light on the sound
attenuation in the system, which in turn tells about
the energy loss while sound propagates in a medium.
The Prandtl number of magnitude less than one implies the
dominance of thermal diffusion over momentum diffusion
in the sound attenuation, whereas the opposite happens for

Pl greater than one. In this work, we wish to find out how
the presence of momentum anisotropies in a medium could
affect the competition between momentum and heat dif-
fusions, resulting in the energy dissipation of sound
propagation. In this way the effect of the magnetic field
on the sound attenuation could be explored.
While calculating the Prandtl number, the expressions

for the thermal conductivity and the specific heat at
constant pressure in a similar environment are necessary.
We have recently studied κ [8], so we closely follow our
results in Appendix D. Next we have obtained Cp from the
following thermodynamic relation:

Cp ¼ ∂ðεþ PÞ
∂T ; ð94Þ

which has been calculated from the energy density and
pressure in a similar environment. Thus we get the
expressions of Cp for isotropic, expansion-driven aniso-
tropic, and B-driven anisotropic mediums as

Ciso
p ¼ β2

3π2
X
i

gi

Z
dpp2ðp2 þ 3ω2

i Þfisoi ð1 − fisoi Þ

þ β2

6π2
gg

Z
dpp2ðp2 þ 3ω2

gÞfisog ð1þ fisog Þ; ð95Þ
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FIG. 4. Variations of (a) η=s and (b) ζ=swith temperature in the presence of momentum anisotropies both due to asymptotic expansion
and a strong magnetic field.
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Caniso
p;ex ¼ Ciso

p þ ξβ2

18π2
X
i

gi

Z
dp

p4

ω2
i
ðp2 þ 3ω2

i Þfisoi ð1 − fisoi Þ − ξβ3

18π2
X
i

gi

Z
dp

p4

ωi
ðp2 þ 3ω2

i Þfisoi ð1 − fisoi Þð1 − 2fisoi Þ

þ ξβ2

36π2
gg

Z
dp

p4

ω2
g
ðp2 þ 3ω2

gÞfisog ð1þ fisog Þ − ξβ3

36π2
gg

Z
dp

p4

ωg
ðp2 þ 3ω2

gÞfisog ð1þ fisog Þð1þ 2fisog Þ

¼ Ciso
p þ ξ

�
β3

18π2
X
i

gi

Z
dp

p4

ωi
ðp2 þ 3ω2

i Þfisoi ð1 − fisoi Þ
	

1

βωi
− 1þ 2fisoi




þ β3

36π2
gg

Z
dp

p4

ωg
ðp2 þ 3ω2

gÞfisog ð1þ fisog Þ
	

1

βωg
− 1 − 2fisog


�
; ð96Þ

Caniso
p;B ¼ β2

2π2
X
i

gijqiBj
Z

dp3ðp2
3 þ ω2

i Þfξ¼0
i ð1 − fξ¼0

i Þ þ ξβ2

4π2
X
i

gijqiBj
Z

dp3

p2
3

ω2
i
ðp2

3 þ ω2
i Þfξ¼0

i ð1 − fξ¼0
i Þ

−
ξβ3

4π2
X
i

gijqiBj
Z

dp3

p2
3

ωi
ðp2

3 þ ω2
i Þfξ¼0

i ð1 − fξ¼0
i Þð1 − 2fξ¼0

i Þ þ β2

6π2
gg

Z
dpp2ðp2 þ 3ω2

gÞfisog ð1þ fisog Þ

¼ Cξ¼0
p þ ξ

�
β3

4π2
X
i

gijqiBj
Z

dp3

p2
3

ωi
ðp2

3 þ ω2
i Þfξ¼0

i ð1 − fξ¼0
i Þ

	
1

βωi
− 1þ 2fξ¼0

i


�
; ð97Þ

respectively.
Finally the mass density (ρ) has been obtained from the product of the number densities of quarks and gluons with the

respective quasiparticle masses as

ρ ¼ 2
X
i

mini þmgng: ð98Þ

The factor “2” represents the equal contributions from quark and antiquark due to μq ¼ 0. Therefore, we get the expressions
of ρ for isotropic, expansion-driven anisotropic, and B-driven anisotropic mediums as

ρiso ¼ 1

π2
X
i

migi

Z
dpp2fisoi þ 1

2π2
mggg

Z
dpp2fisog ; ð99Þ

ρanisoex ¼ ρiso −
ξβ

6π2
X
i

migi

Z
dp

p4

ωi
fisoi ð1 − fisoi Þ − ξβ

12π2
mggg

Z
dp

p4

ωg
fisog ð1þ fisog Þ

¼ ρiso − ξ

�
β

6π2
X
i

migi

Z
dp

p4

ωi
fisoi ð1 − fisoi Þ þ β

12π2
mggg

Z
dp

p4

ωg
fisog ð1þ fisog Þ

�
; ð100Þ

ρanisoB ¼ 1

2π2
X
i

migijqiBj
Z

dp3f
ξ¼0
i −

ξβ

4π2
X
i

migijqiBj
Z

dp3

p2
3

ωi
fξ¼0
i ð1 − fξ¼0

i Þ þ 1

2π2
mggg

Z
dpp2fisog

¼ ρξ¼0 −
ξβ

4π2
X
i

migijqiBj
Z

dp3

p2
3

ωi
fξ¼0
i ð1 − fξ¼0

i Þ; ð101Þ

respectively. We have therefore computed the Prandtl number as a function of temperature (seen in Fig. 5) and this is found
to increase very slowly with the temperature. It maintains a higher magnitude in B-driven anisotropy than in an isotropic
medium and an expansion-driven anisotropic medium as well. In all cases the Prandtl number remains greater than 1,
implying that the sound attenuation is mostly governed by the momentum diffusion.
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B. Reynolds number

The Reynolds number plays a fundamental role in
determining the magnitude of the kinematic viscosity
(η=ρ) as compared to the length and velocity of the flow
of a liquid and is defined by

Rl ¼ Lv
η=ρ

; ð102Þ

where L and v are the characteristic length and velocity of
the flow, respectively. From a hydrodynamic point of view,

the Reynolds number describes the motion of the fluid and
when the nature of the flow gets converted from laminar
into turbulent. This conversion happens when Rl is much
larger than 1 or kinematic viscosity is very small in
comparison to the product of characteristic length and
velocity (Lv) [59]. In a (3þ 1)-dimensional fluid dynami-
cal model with globally symmetric, peripheral initial
conditions, the value of the Rl is estimated in the range
3–10 for initial QGP with minimal viscosity to entropy
density ratio, i.e., for η=s ¼ 0.1 [60], whereas the holo-
graphic model reports its upper bound as approximately
20 [59]. In this work, we have estimated the Reynolds
number for (isotropic) thermal medium of quarks and
gluons in kinetic theory approach in Fig. 6, which ranges
5.5–7 in the temperature range, 160–400 MeV (denoted by
solid line). In addition, we have also estimated Rl for the
same but it now exhibits momentum anisotropies, where
the expansion-driven anisotropy enhances the number and
the B-driven anisotropy does the opposite and that too
makes it less than one (labeled as dotted and dashed-dotted
lines, respectively), compared to the isotropic case.

C. Relative behavior between momentum diffusion
and charge diffusion

To understand the dominance of the momentum diffu-
sion over the charge diffusion, one needs to estimate the
ratio of the two dimensionless ratios: the first one is η=s and
the second one is σel=T, representing the momentum and
charge diffusions, respectively. Thus, the ratio is given by

γ ¼ η=s
σel=T

; ð103Þ

where σel is the electrical conductivity. Unlike gluons, only
quarks carry electric charge, hence they only contribute to
the charge transport and thus contribute to the electrical
conductivity. On the other hand, both quarks and gluons
participate in the momentum transport, and thus contribute
to the shear viscosity. Therefore, for a QGP medium, σel=T
is always smaller than η=s, resulting in the ratio γ larger
than 1. This understanding is evidenced in Ref. [99], where
it is found that the large scattering rates due to abundance
of gluons in high temperature QGP (compared to quarks)
can damp the electrical conductivity and it results in the
enhancement of the ratio γ. We now wish to compute γ for
the hot QCD matter in the presence of anisotropies and also
to observe the effect of a strong magnetic field, using the
kinetic theory approach. Therefore, we need to have the
ratio, σel=T in the identical environment, which has been
recently calculated by us [8]. So, we closely follow our
earlier calculation in Appendix E.
In Fig. 7, we have plotted γ [i.e., ðη=sÞ=ðσel=TÞ] as a

function of temperature for isotropic medium as well as
for expansion-driven and B-driven anisotropic mediums.
The ratio η=s is influenced by both gluon-gluon and
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FIG. 6. Variation of the Reynolds number with temperature in
the presence of momentum anisotropies both due to asymptotic
expansion and a strong magnetic field for L ¼ 3 fm.
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FIG. 5. Variation of the Prandtl number with temperature in the
presence of momentum anisotropies both due to asymptotic
expansion and a strong magnetic field.
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quark-quark scatterings, while σel=T is influenced only by
the quark-quark scattering as only charged particles
contribute to the electrical conductivity. Thus, the varia-
tion of γ with temperature can explain the contest between
gluon and quark contributions to the total scattering cross
section. We have found that for an isotropic medium, γ
(denoted by the solid line) is maximum around Tc
(Tc ¼ 0.16 GeV) and decreases very slowly with temper-
ature. This is due to the fact that although the magnitude
of η=s is higher than σel=T the latter increases relatively
faster than the former. In the presence of expansion-driven
anisotropy (denoted by the dotted line), γ becomes smaller
than the isotropic case which is due to the relative decrease
of η=s than σel=T caused by the anisotropy. On the
contrary, in the presence of a strong magnetic field, the
ratio becomes much larger than the isotropic case, which
could be understood as follows: Although the gluon phase
space remains unaltered, the quark phase space gets
reduced severely in a strong magnetic field, resulting in
an overall decrease in total entropy density. Hence η=s
gets enhanced by 2 orders of magnitude. On the other
hand, the large increase of collisional relaxation time in a
strong magnetic field compensates the reduction in quark
phase space, resulting in an increase in σel=T ratio, but it is
now increased by 1 order of magnitude. Therefore the
ratio, γ gets increased by 1 order of magnitude. In brief,
γ remains larger than unity, so the momentum diffusion
prevails over the charge diffusion.

V. CONCLUSIONS

In the present work, we have first studied the momentum
transports through the shear and bulk viscosities of a hot

QCD matter and then the interplays among momentum,
charge and heat transports are delved by the Prandtl
number, the Reynolds number, and the relative behavior
between momentum diffusion and charge diffusion. Most
importantly, the above-mentioned studies have been
extended to the medium with weak momentum anisotro-
pies, which in turn explore the effects of a strong magnetic
field and asymptotic expansion which are thought to be
present at the initial stages of ultrarelativistic heavy ion
collisions. We have calculated the aforesaid coefficients in
the kinetic theory approach via the relativistic Boltzmann
transport equation in the relaxation-time approximation and
the interactions among partons are subsumed through the
quasiparticle masses at finite temperature and a strong
magnetic field.
For that purpose, we have started with computing the

shear and bulk viscosities in the absence and presence of
expansion- and B-driven anisotropies of a thermal QCD
medium. The overall observation is that the presence of
anisotropy due to a strong magnetic field enhances both η
and ζ substantially, facilitating the transports of momentum
across and along the layer, compared to either an isotropic
scenario or an expansion-driven anisotropic scenario.
Moreover, the aforesaid anisotropies affect η and ζ differ-
ently with respect to the isotropic medium as a reference;
therefore, the viscosities can in principle distinguish the
above-mentioned anisotropies. Next we have computed the
η=s and ζ=s ratios to see how the fluidity and the location of
the transition point (related to the chiral symmetry) get
affected by the anisotropies, respectively. This enriches a
competition between the enhancement of momentum trans-
port and the reduction of phase space (entropy density) in
the presence of B-induced anisotropy, resulting in the ratios
η=s and ζ=s much greater than one, but unlike η and ζ,
the ratios now decrease with the temperature. On the other
hand, in the presence of expansion-driven anisotropy, both
ratios become much smaller and specifically ζ=s vanishes
around T ¼ 0.28 GeV.
In the next part, we have looked into the interplay of

transports between momentum and heat by the Prandtl
number, between momentum and size of the medium by the
Reynolds number, and between momentum and charge by
the ratio γ in the presence of anisotropies. The presence of a
strong magnetic field makes Pl much larger than its values
in the absence of a magnetic field (isotropic) as well as
expansion-driven anisotropy. Thus, in the strong magnetic
field regime, the sound attenuation is mostly governed by
the momentum diffusion. However, the magnetic field
drops the Reynolds number to the value less than unity,
i.e., the kinematic viscosity dominates over the character-
istic length and velocity of the system, which is just
opposite of the effect caused by the expansion-driven
anisotropy. Our final observation is that the dominance
of momentum diffusion over charge diffusion is more
pronounced in a strong magnetic field than in other
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FIG. 7. Variation of γ ¼ ðη=sÞ=ðσel=TÞ with temperature in the
presence of momentum anisotropies both due to asymptotic
expansion and a strong magnetic field.
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scenarios. However, the former one always prevails over
the latter one.
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APPENDIX A: THERMAL QUARK MASS
AT FINITE MAGNETIC FIELD

To compute the self-energy (6) at finite temperature, we
have obtained the forms of quark and gluon propagators at
finite temperature in the imaginary time formalism, where
the continuous energy integral (

R dp0

2π ) is replaced by the
discrete Matsubara frequency sum. Due to the presence of a
strong magnetic field (along the z direction), the transverse
component of momentum k⊥ ≈ 0, so, e−k

2⊥=jqiBj in Eq. (9)
becomes unity and the integration over the transverse
component of the momentum gives the factor jqiBj.
So the quark self-energy (6) in the SMF limit takes the
following form:

ΣðpkÞ ¼
2g2

3π2
jqiBjT

×
X
n

Z
dkz

½ð1þ γ0γ3γ5Þðγ0k0 − γ3kzÞ− 2mi�
½k20 −ω2

k�½ðp0 − k0Þ2 −ω2
pk�

¼ 2g2jqiBj
3π2

Z
dkz½ðγ0 þ γ3γ5ÞL1 − ðγ3 þ γ0γ5ÞkzL2�;

ðA1Þ

where ω2
k ¼ k2z þm2

i , ω
2
pk ¼ ðpz − kzÞ2, and L1 and L2

represent two frequency sums, whose forms are given by

L1 ¼ T
X
n

k0
½k20 − ω2

k�½ðp0 − k0Þ2 − ω2
pk�

; ðA2Þ

L2 ¼ T
X
n

1

½k20 − ω2
k�½ðp0 − k0Þ2 − ω2

pk�
: ðA3Þ

After using the values of the above frequency sums, the
form of the self-energy (A1) turns out to be

ΣðpkÞ ¼
g2jqiBj
3π2

Z
dkz
ωk

�
1

eβωk − 1
þ 1

eβωk þ 1

�

×

�
γ0p0 þ γ3pz

p2
k

þ γ0γ5pz þ γ3γ5p0

p2
k

�
; ðA4Þ

which after the integration over kz, becomes

ΣðpkÞ ¼
g2jqiBj
3π2

�
πT
2mi

− lnð2Þ
�

×

�
γ0p0

p2
k

þ γ3pz

p2
k

þ γ0γ5pz

p2
k

þ γ3γ5p0

p2
k

�
: ðA5Þ

The covariant structure of the quark self-energy at finite
temperature and finite magnetic field is written as

ΣðpkÞ ¼ Aγμuμ þ Bγμbμ þ Cγ5γμuμ þDγ5γμbμ; ðA6Þ

where A, B, C, and D denote the form factors, and uμ

(1, 0,0, 0) and bμ (0, 0, 0, −1) represent the preferred
directions of the heat bath and the magnetic field, respec-
tively. Due to the introduction of these vectors the Lorentz
and rotational symmetries are broken. In LLL approxima-
tion, the form factors are obtained as

A ¼ 1

4
Tr½Σγμuμ� ¼

g2jqiBj
3π2

�
πT
2mi

− lnð2Þ
�
p0

p2
k
; ðA7Þ

B ¼ −
1

4
Tr½Σγμbμ� ¼

g2jqiBj
3π2

�
πT
2mi

− lnð2Þ
�
pz

p2
k
; ðA8Þ

C ¼ 1

4
Tr½γ5Σγμuμ� ¼ −

g2jqiBj
3π2

�
πT
2mi

− lnð2Þ
�
pz

p2
k
; ðA9Þ

D ¼ −
1

4
Tr½γ5Σγμbμ� ¼ −

g2jqiBj
3π2

�
πT
2mi

− lnð2Þ
�
p0

p2
k
;

ðA10Þ

where we found that C ¼ −B and D ¼ −A.
In terms of the right-handed (PR ¼ ð1þ γ5Þ=2) and left-

handed (PL ¼ ð1 − γ5Þ=2) chiral projection operators, the
quark self-energy (A6) is written as

ΣðpkÞ ¼ PR½ðAþ CÞγμuμ þ ðBþDÞγμbμ�PL

þ PL½ðA − CÞγμuμ þ ðB −DÞγμbμ�PR; ðA11Þ

which for C ¼ −B and D ¼ −A, turns out to be

ΣðpkÞ ¼ PR½ðA − BÞγμuμ þ ðB − AÞγμbμ�PL

þ PL½ðAþ BÞγμuμ þ ðBþ AÞγμbμ�PR: ðA12Þ

In the strong magnetic field regime, the effective
quark propagator can be derived from the following self-
consistent Schwinger-Dyson equation:

S−1ðpkÞ ¼ γμpkμ − ΣðpkÞ; ðA13Þ
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which, in terms of projection operators, is rewritten as

S−1ðpkÞ ¼ PRγ
μXμPL þ PLγ

μYμPR; ðA14Þ

where

γμXμ ¼ γμpkμ − ðA − BÞγμuμ − ðB − AÞγμbμ; ðA15Þ

γμYμ ¼ γμpkμ − ðAþ BÞγμuμ − ðBþ AÞγμbμ: ðA16Þ

Now the effective propagator takes the following form:

SðpkÞ ¼
1

2

�
PR

γμYμ

Y2=2
PL þ PL

γμXμ

X2=2
PR

�
; ðA17Þ

where

X2

2
¼ X2

1 ¼
1

2
½p0 − ðA − BÞ�2 − 1

2
½pz þ ðB − AÞ�2; ðA18Þ

Y2

2
¼ Y2

1 ¼
1

2
½p0 − ðAþBÞ�2 − 1

2
½pz þ ðBþAÞ�2: ðA19Þ

After taking the p0 ¼ 0; pz → 0 limit of either X2
1 or Y

2
1

(which are equal in this limit), we get the thermal
mass (squared) at finite temperature and a strong magnetic
field as

m2
iT;B ¼ X2

1jp0¼0;pz→0 ¼ Y2
1jp0¼0;pz→0

¼ g2jqiBj
3π2

�
πT
2mi

− lnð2Þ
�
: ðA20Þ

APPENDIX B: FORM OF ΔT̃ij IN THE PRESENCE
OF A STRONG MAGNETIC FIELD

In the presence of a strong magnetic field, T̃μν and ñμ are
defined as

T̃μν ¼ ðϵþ PÞuμuν − Pgμνk þ ΔT̃μν

¼ ωuμuν − Pgμνk þ ΔT̃μν; ðB1Þ

ñμ ¼ nuμ þ γ̃μ; ðB2Þ

where ΔT̃μν, ω, n, and γ̃μ are the viscous stress tensor,
the enthalpy, the particle number density, and the
dissipative correction to ñμ, respectively in the presence
of a strong magnetic field. In addition, gμνk is defined as

gμνk ¼ ð1; 0; 0;−1Þ. Equations of motion are written as

∂T̃ν
μ

∂x̃ν ¼ 0; ðB3Þ

∂ñμ
∂x̃μ ¼ 0; ðB4Þ

where x̃μ ¼ ðx0; 0; 0; x3Þ is redefined for the calculation in a
strong magnetic field.
From Eqs. (B1) and (B3), we obtain

uμ
∂
∂x̃ν ðωu

νÞ þ ωuν
∂ũμ
∂x̃ν −

∂
∂x̃ν ðPg

ν
kμÞ þ

∂ΔT̃ν
μ

∂x̃ν ¼ 0: ðB5Þ

Now multiplying uμ on both sides of the above equation
and simplifying, we get

∂
∂x̃ν ðωu

νÞ − uν
∂P
∂x̃ν þ uμ

∂ΔT̃ν
μ

∂x̃ν ¼ 0: ðB6Þ

From Eqs. (B2) and (B4), we get

∂
∂x̃μ ðnu

μÞ ¼ −
∂ γ̃μ
∂x̃μ : ðB7Þ

Equation (B7) is known as the “equation of continuity.”
Using the identity ωuν ¼ nuν ω

n in Eq. (B6), we have

ω

n
∂
∂x̃ν ðnu

νÞ þ nuν
∂
∂x̃ν

�
ω

n

�
− uν

∂P
∂x̃ν þ uμ

∂ΔT̃ν
μ

∂x̃ν ¼ 0;

ðB8Þ

which with the help of the equation of continuity (B7)
becomes

−
ω

n
∂γ̃ν
∂x̃ν þ nuν

∂
∂x̃ν

�
ω

n

�
− uν

∂P
∂x̃ν þ uμ

∂ΔT̃ν
μ

∂x̃ν ¼ 0: ðB9Þ

With the thermodynamic relation, dðωnÞ ¼ TdðsnÞ þ 1
n dP,

we have ∂
∂x̃ν ðωnÞ ¼ T ∂

∂x̃ν ðsnÞ þ 1
n
∂P
∂x̃ν, where s is the entropy

per unit proper volume. Now, Eq. (B9) takes the following
form:

−
ω

n
∂ γ̃ν
∂x̃νþnuν

�
T

∂
∂x̃ν

�
s
n

�
þ1

n
∂P
∂x̃ν

�
−uν

∂P
∂x̃νþuμ

∂ΔT̃ν
μ

∂x̃ν ¼0;

ðB10Þ

which after simplification becomes

−
ω

n
∂ γ̃ν
∂x̃ν þ nuνT

∂
∂x̃ν

�
s
n

�
þ uμ

∂ΔT̃ν
μ

∂x̃ν ¼ 0: ðB11Þ

The second term in the left-hand side of the above
Eq. (B11) can be written as

SHUBHALAXMI RATH and BINOY KRISHNA PATRA PHYS. REV. D 102, 036011 (2020)

036011-22



nuνT
∂
∂x̃ν

�
s
n

�
¼ T

∂
∂x̃ν

�
s
n
nuν

�
− T

s
n

∂
∂x̃ν ðnu

νÞ

¼ T
∂
∂x̃ν ðsu

νÞ þ T
s
n
∂ γ̃ν
∂x̃ν : ðB12Þ

Using Eq. (B12) in Eq. (B11), we get

−
ω

n
∂ γ̃ν
∂x̃ν þ T

∂
∂x̃ν ðsu

νÞ þ T
s
n
∂ γ̃ν
∂x̃ν þ uμ

∂ΔT̃ν
μ

∂x̃ν ¼ 0: ðB13Þ

After rearranging the terms, the above equation turns out
to be

�
ω − Ts

n

� ∂ γ̃ν
∂x̃ν − T

∂
∂x̃ν ðsu

νÞ − uμ
∂ΔT̃ν

μ

∂x̃ν ¼ 0; ðB14Þ

where ω−Ts
n ¼ μ ¼relativistic chemical potential. So, in

terms of μ, Eq. (B14) is rewritten as

∂
∂x̃ν ðsu

νÞ − μ

T
∂ γ̃ν
∂x̃ν þ

uμ

T

∂ΔT̃ν
μ

∂x̃ν ¼ 0; ðB15Þ

which can be further simplified into

∂
∂x̃ν ðsu

νÞ − ∂
∂x̃ν

�
μ

T
γ̃ν
�
þ γ̃ν

∂
∂x̃ν

�
μ

T

�

þ 1

T
∂
∂x̃ν ðu

μΔT̃ν
μÞ −

ΔT̃ν
μ

T
∂uμ
∂x̃ν ¼ 0: ðB16Þ

Using uμΔT̃ν
μ ¼ 0 in the above Eq. (B16), we get

∂
∂x̃ν ðsu

νÞ − ∂
∂x̃ν

�
μ

T
γ̃ν
�
þ γ̃ν

∂
∂x̃ν

�
μ

T

�
−
ΔT̃ν

μ

T
∂uμ
∂x̃ν ¼ 0;

ðB17Þ

which after simplification becomes

∂
∂x̃ν

�
suν −

μ

T
γ̃ν
�

¼ −γ̃ν
∂
∂x̃ν

�
μ

T

�
þ ΔT̃ν

μ

T
∂uμ
∂x̃ν : ðB18Þ

In Eq. (B18), suν − μ
T γ̃

ν ¼ s̃ν ¼ entropy flux density
4-vector in the presence of a strong magnetic field. So,
in terms of s̃ν, Eq. (B18) is rewritten as

∂s̃ν
∂x̃ν ¼ −γ̃ν

∂
∂x̃ν

�
μ

T

�
þ ΔT̃ν

μ

T
∂uμ
∂x̃ν : ðB19Þ

Here ∂s̃ν
∂x̃ν is the 4-divergence of the entropy flux density in a

strong magnetic field. According to the law of increase of
entropy, the right-hand side of Eq. (B19) must be positive.

Thus, a most general form ofΔT̃μν that satisfiesΔT̃μνuν¼0
and the law of increase of entropy is written as

ΔT̃μν¼−ηB
�∂uμ
∂x̃νþ

∂uν
∂x̃μ−uνuλ

∂uμ
∂x̃λ −uμuλ

∂uν
∂x̃λ−

2

3
Δμν

k
∂uλ
∂x̃λ

�

−ζBΔμν
k
∂uλ
∂x̃λ ; ðB20Þ

where Δμν
k ¼ gμνk − uμuν, ηB, and ζB are the shear viscosity

and the bulk viscosity, respectively in the presence of a
strong magnetic field. In the local rest frame, the spatial
component of velocity is zero, but its spatial derivative
remains finite. Therefore, the spatial component of
Eq. (B20) is written as

ΔT̃ij ¼ −ηB
�∂ui
∂x̃j þ

∂uj
∂x̃i −

2

3
δij

∂ul
∂x̃l

�
− ζBδij

∂ul
∂x̃l

¼ −ηB
�
∂iuj þ ∂jui −

2

3
δij∂lul

�
− ζBδij∂lul

¼ −ηBWij − ζBδij∂lul: ðB21Þ

APPENDIX C: ENERGY DENSITY
AND PRESSURE

The thermodynamic quantities such as the energy
density (ε) and the pressure (P) can be obtained from
the energy-momentum tensor (Tμν). In the absence of a
magnetic field, we have

ε ¼ uμTμνuν; ðC1Þ

P ¼ −
1

3
ðgμν − uμuνÞTμν; ðC2Þ

whereas in the presence of a strong magnetic field, the
definitions of the energy density and the pressure get
modified as

ε ¼ uμT̃μνuν; ðC3Þ

P ¼ −ðgkμν − uμuνÞT̃μν: ðC4Þ

Expressions of energy density for isotropic, expansion-
driven anisotropic, and B-driven anisotropic mediums are
calculated as

εiso ¼ 1

π2
X
i

gi

Z
dpp2ωifisoi þ 1

2π2
gg

Z
dpp2ωgfisog ;

ðC5Þ
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εanisoex ¼ εiso −
ξβ

6π2
X
i

gi

Z
dpp4fisoi ð1 − fisoi Þ − ξβ

12π2
gg

Z
dpp4fisog ð1þ fisog Þ

¼ εiso − ξ

�
β

6π2
X
i

gi

Z
dpp4fisoi ð1 − fisoi Þ þ β

12π2
gg

Z
dpp4fisog ð1þ fisog Þ

�
; ðC6Þ

εanisoB ¼ 1

2π2
X
i

gijqiBj
Z

dp3ωif
ξ¼0
i −

ξβ

4π2
X
i

gijqiBj
Z

dp3p2
3f

ξ¼0
i ð1 − fξ¼0

i Þ þ 1

2π2
gg

Z
dpp2ωgfisog

¼ εξ¼0 −
ξβ

4π2
X
i

gijqiBj
Z

dp3p2
3f

ξ¼0
i ð1 − fξ¼0

i Þ; ðC7Þ

respectively.
Expressions of pressure for isotropic, expansion-driven anisotropic, and B-driven anisotropic mediums are calculated as

Piso ¼ 1

3π2
X
i

gi

Z
dp

p4

ωi
fisoi þ 1

6π2
gg

Z
dp

p4

ωg
fisog ; ðC8Þ

Paniso
ex ¼ Piso −

ξβ

18π2
X
i

gi

Z
dp

p6

ω2
i
fisoi ð1 − fisoi Þ − ξβ

36π2
gg

Z
dp

p6

ω2
g
fisog ð1þ fisog Þ

¼ Piso − ξ

�
β

18π2
X
i

gi

Z
dp

p6

ω2
i
fisoi ð1 − fisoi Þ þ β

36π2
gg

Z
dp

p6

ω2
g
fisog ð1þ fisog Þ

�
; ðC9Þ

Paniso
B ¼ 1

2π2
X
i

gijqiBj
Z

dp3

p2
3

ωi
fξ¼0
i −

ξβ

4π2
X
i

gijqiBj
Z

dp3

p4
3

ω2
i
fξ¼0
i ð1 − fξ¼0

i Þ þ 1

6π2
gg

Z
dp

p4

ωg
fisog

¼ Pξ¼0 −
ξβ

4π2
X
i

gijqiBj
Z

dp3

p4
3

ω2
i
fξ¼0
i ð1 − fξ¼0

i Þ; ðC10Þ

respectively.

APPENDIX D: THERMAL CONDUCTIVITY

For isotropic medium, thermal conductivity is given by

κiso ¼ β2

3π2
X
i

gi

Z
dp

p4

ω2
i
ðωi − hiÞ2τifisoi ð1 − fisoi Þ: ðD1Þ

For expansion-driven anisotropic medium, thermal conductivity is given by

κanisoex ¼ κiso þ ξ

�
β2

18π2
X
i

gi

Z
dp

p6

ω4
i
ðω2

i − h2i Þτifisoi ð1 − fisoi Þ

−
β3

18π2
X
i

gi

Z
dp

p6

ω3
i
ðωi − hiÞ2τifisoi ð1 − 2fisoi Þð1 − fisoi Þ

�
: ðD2Þ

For B-driven anisotropic medium, thermal conductivity is given by
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κanisoB ¼ β2

2π2
X
i

gijqiBj
Z

dp3

p2
3

ω2
i
ðωi − hBi Þ2τBi fξ¼0

i ð1 − fξ¼0
i Þ

þ ξβ2

4π2
X
i

gijqiBj
Z

dp3

p4
3

ω4
i
ðω2

i − hBi
2ÞτBi fξ¼0

i ð1 − fξ¼0
i Þ

−
ξβ3

4π2
X
i

gijqiBj
Z

dp3

p4
3

ω3
i
ðωi − hBi Þ2τBi fξ¼0

i ð1 − 2fξ¼0
i Þð1 − fξ¼0

i Þ: ðD3Þ

This can be decomposed into ξ ¼ 0 and ξ ≠ 0 parts as

κanisoB ¼ κξ¼0 þ κξ≠0

¼ κξ¼0 þ ξ

�
β2

4π2
X
i

gijqiBj
Z

dp3

p4
3

ω4
i
ðω2

i − hBi
2ÞτBi fξ¼0

i ð1 − fξ¼0
i Þ

−
β3

4π2
X
i

gijqiBj
Z

dp3

p4
3

ω3
i
ðωi − hBi Þ2τBi fξ¼0

i ð1 − 2fξ¼0
i Þð1 − fξ¼0

i Þ
�
: ðD4Þ

APPENDIX E: ELECTRICAL CONDUCTIVITY

For isotropic medium, electrical conductivity is given by

σisoel ¼ 2β

3π2
X
i

giq2i

Z
dp

p4

ω2
i
τifisoi ð1 − fisoi Þ: ðE1Þ

For expansion-driven anisotropic medium, electrical conductivity is given by

σanisoel;ex ¼ σisoel − ξ

�
β2

9π2
X
i

giq2i

Z
dp

p6

ω3
i
τifisoi ð1 − fisoi Þ

	
1 − 2fisoi þ 1

βωi



−

β

9π2
X
i

giq2i

Z
dp

p4

ω2
i
τifisoi ð1 − fisoi Þ

�
: ðE2Þ

For B-driven anisotropic medium, electrical conductivity is given by

σanisoel;B ¼ β

π2
X
i

giq2i jqiBj
Z

dp3

p2
3

ω2
i
τBi f

ξ¼0
i ð1 − fξ¼0

i Þ

−
ξβ2

2π2
X
i

giq2i jqiBj
Z

dp3

p4
3

ω3
i
τBi f

ξ¼0
i ð1 − fξ¼0

i Þ
	
1 − 2fξ¼0

i þ 1

βωi




þ ξβ

2π2
X
i

giq2i jqiBj
Z

dp3

p2
3

ω2
i
τBi f

ξ¼0
i ð1 − fξ¼0

i Þ: ðE3Þ

This can be decomposed into ξ ¼ 0 and ξ ≠ 0 parts as

σanisoel;B ¼ σξ¼0
el þ σξ≠0el

¼ σξ¼0
el − ξ

�
β2

2π2
X
i

giq2i jqiBj
Z

dp3

p4
3

ω3
i
τBi f

ξ¼0
i ð1 − fξ¼0

i Þ
	
1 − 2fξ¼0

i þ 1

βωi




−
β

2π2
X
i

giq2i jqiBj
Z

dp3

p2
3

ω2
i
τBi f

ξ¼0
i ð1 − fξ¼0

i Þ
�
: ðE4Þ
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