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The quadratic Casimir operator of the special unitary SUðNÞ group is used to construct projection
operators, which can decompose any of its reducible finite-dimensional representation spaces contained in
the tensor product of two and three adjoint spaces into irreducible components. Although the method is
general enough, it is specialized to the SUð2NfÞ → SUð2Þ ⊗ SUðNfÞ spin-flavor symmetry group, which
emerges in the baryon sector of QCD in the large-Nc limit, where Nf and Nc are the numbers of light quark
flavors and color charges, respectively. The approach leads to the construction of spin and flavor projection
operators that can be implemented in the analysis of the 1=Nc operator expansion. The use of projection
operators allows one to successfully project out the desired components of a given operator and subtract off
those that are not needed. Some explicit examples in SUð2Þ and SUð3Þ are detailed.
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I. INTRODUCTION

The concept of symmetry, and specially gauge sym-
metry, is crucial in elementary particle physics. Early
analyses of atomic spectra successfully implemented the
use of SUð2Þ representation theory to study the spin of
particles. Further analyses in nuclear physics struggled to
find out how protons and neutrons interact via a strong
force to bind together into nuclei. Promptly, it was
discovered that the strong force had an SUð2Þ invariance;
it was called isospin symmetry and its irreducible repre-
sentations (irreps) were labeled by isospin 1=2; 1;…A
well-known example is the two-dimensional isospin-1=2
representation made up by the proton and neutron.
In the early decade of the 60s of the past century, a large

number of new strongly interacting particles were discov-
ered so it was imperative to classify them. Gell-Mann first
suggested that they could be accommodated into irreps of
SUð3Þ, so he proposed an organizational scheme for
hadrons. It was called the eightfold way [1]; this peculiar
name, presumably, is closely related to the fact that Gell-
Mann mainly used the eight-dimensional adjoint represen-
tation of SUð3Þ.

Eventually, it was evident that the SUð3Þ symmetry found
by Gell-Mann was due to the existence of the three light
quarks, u, d, s, which fitted into the fundamental three-
dimensional representation of SUð3Þ. This symmetry has
been since referred to as SUð3Þ flavor symmetry. Hadrons
were thus organized into SUð3Þ representation multiplets—
octets and decuplets—of roughly the same mass.
The special unitary group also plays a role in the local

SUð3Þ ⊗ SUð2Þ ⊗ Uð1Þ gauge symmetry, which defines
the modern standard model (SM) of particles and their
interactions. Roughly, the three factors of the gauge sym-
metry give rise to the three fundamental interactions.
Quantum chromodynamics (QCD), the theory of the strong
interactions, is the SUð3Þ component of the SM. It is a gauge
theory of fermions—the quarks—and gauge bosons—the
gluons—and stems from the fact that each quark comes in
three completely identical states called colors; the symmetry
is thus referred to as SUð3Þ color symmetry. Unlike flavor
symmetry, which is an approximate symmetry due to the
relatively small masses of the three light quarks and plays a
marginal role in the SM, color symmetry is exact and does
play a preponderant role. At low energies, the running
coupling constant of the theory is large, and the colored
quarks and gluons must clump together to form colorless
hadrons.
Various attempts have been made so far to construct

grand unified theories of the weak, strong, and electro-
magnetic interactions. These approaches mostly use Lie
groups. Common examples are SUð5Þ in the simplest grand
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unification theory, SOð10Þ, and E6. Further applications of
SUðNÞ can also be found in shell models of nuclear and
atomic physics [2,3], the worldline approach to non-
Abelian gauge fields [4–6], to name but a few.
It should be stressed that, despite the tremendous

progress achieved in the understanding of the strong
interactions with QCD, the analytical calculation of the
structure and interactions of hadrons directly in terms of the
underlying quark-gluon dynamics is not possible because
the theory is strongly coupled at low energies. Soon after
the advent of QCD, ’t Hooft pointed out that gauge theories
based on the SUðNcÞ group simplify in the limit Nc → ∞,
where Nc is the number of color charges [7]. Baryons in
large-Nc QCDwere first studied byWitten [8]. Later, it was
shown that in the large-Nc limit the baryon sector has an
exact contracted SUð2NfÞ spin-flavor symmetry, where Nf

is the number of light quark flavors [9–12]. Physical
quantities are then considered in this limit, where correc-
tions emerge at relative orders 1=Nc, 1=N2

c, and so on; this
sequence originates the 1=Nc expansion of QCD.
The 1=Nc expansion turns out to be quite useful for

studying the interactions and properties of large-Nc color-
singlet baryons at low energies. The construction of the
1=Nc expansion of any QCD operator transforming accord-
ing to a given spin ⊗ flavor representation is expressed in
terms of n-body operators On, which can be written as
polynomials of homogeneous degree n in the spin-flavor
generators. The operators On make up a complete and
independent operator basis [13]. It should be emphasized
that for baryons at large finite Nc, the 1=Nc operator
expansion only extends to Nc-body operators in the baryon
spin-flavor generators. Although straightforward in princi-
ple, the reduction of higher-order operator structures to the
physical operator basis turns out to be quite tedious due to
the considerable amount of group theory involved. The fact
that the operator basis is complete and independent makes
those reductions possible.
Here is precisely where the aim of the present paper can

be delineated: to present a general procedure to construct
projection operators in SUðNÞ out of the corresponding
Casimir operators. The projection operators so obtained
act on tensor operators that belong to tensor products of
adjoint representation spaces, decomposing them into
different operators with specific quadratic Casimir eigen-
values. The applicability to the 1=Nc operator expansion is
immediate. The cases of physical interest for Nf ¼ 2 and
Nf ¼ 3 are worked out to show the usefulness of the
resultant projectors. In passing, it can be pointed out that
the method is not limited to the 1=Nc expansion, but it can
also be used in shell models of atomic and nuclear physics;
in this case, the projector method allows one to construct
tensor operators which, with the aid of the Wigner-Eckart
theorem, can be used to calculate transition amplitudes. The
worldline approach to non-Abelian gauge fields is also
another area where the projector method can be adapted to

fit there. All in all, the method shows some potential
applicability in areas where the SUðNÞ group is involved.
The organization of the paper is as follows. In Sec. II,

some theoretical aspects of the SUðNÞ group are briefly
summarized, starting with some rather elementary concepts
and definitions, which are provided to set notation and
conventions. A key feature in the analysis is the definition of
the adjoint space and the tensor space formed by the product
of n adjoint spaces. The latter can always be decomposed
into subspaces labeled by a specific eigenvalue of the
quadratic Casimir operator of the algebra of SUðNÞ. The
procedure to do so is discussed at the end of this section, and
the defining general expression of the projection operator is
provided. In Sec. III, the projection operators for the tensor
product space of two adjoint spaces are constructed explic-
itly. The properties that by definition projection operators
are demanded to fulfilled are rigorously verified. The
particular case N ¼ 2 is also discussed at the end of this
section. In Sec. IV, the projection operators previously
defined are specialized to the SUð2NfÞ spin-flavor sym-
metry group, which breaks to its spin and flavor groups
SUð2Þ ⊗ SUðNfÞ. Consequently, the spin and flavor pro-
jection operators are constructed and readily applied to the
1=Nc operator expansion. In Sec. V, the method is outlined
for the tensor product space of three adjoint spaces. In this
case, the explicit construction of projection operators
becomes a rather involved task, so only a few examples
are detailed. Some closing remarks and conclusions are
provided in Sec. VI. The paper is complemented by
two appendices, where some supplemental information is
provided.

II. PROJECTOR TECHNIQUE FOR SUðNÞ
ADJOINT TENSOR OPERATORS

To start with, a salient definition is that of a Lie group.
It is defined as a group in which the elements are labeled by
a set of continuous parameters with a multiplication law
that depends smoothly on the parameters themselves [14].
A compact Lie group, on the other hand, is a Lie group in
which the parametrization consists of a finite number of
bounded parameter domains; otherwise, the group is
referred to as noncompact [15]. The SUðNÞ group of all
complex unitary matrices of order N with determinant 1
and the SOðNÞ group of all real orthogonal matrices of
order N with determinant 1 are two well-known examples
of connected compact Lie groups.
The elements of a Lie group can be written as

exp

�
i
X
a

βaXa

�
; ð1Þ

where βa, a ¼ 1;…; N are real numbers and Xa are linearly
independent Hermitian operators. Hereafter, and unless
explicitly noticed otherwise, the sum over repeated indices
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will be implicit. The Xa are referred to as the generators of
the Lie group and they satisfy the commutation relations

½Xa; Xb� ¼ ifabcXc: ð2Þ

The fabc are referred to as the structure constants of the Lie
group. The vector space βaXa, together with the commu-
tation relations (2), define the Lie algebra associated with
the Lie group.
The generators satisfy the Jacobi identity,

½Xa; ½Xb; Xc�� þ cyclic permutations ¼ 0; ð3Þ

which in terms of the structure constants becomes

fbcefaeg þ fabefceg þ fcaefbeg ¼ 0: ð4Þ

The quadratic Casimir operator is defined as

C≡ XeXe; ð5Þ

so that

½C;Xa� ¼ 0: ð6Þ

As for the SUðNÞ group, let Ta be operators that generate
the Lie algebra of the group. There are N2 − 1 of such
operators, which serve as a basis for the set of traceless
Hermitian N × N matrices. The generators satisfy the
commutation relations

½Ta; Tb� ¼ ifabcTc; ð7Þ

where a, b, c run from 1 to the dimension of the Lie algebra
of SUðNÞ, i.e., from 1 to N2 − 1.
In the fundamental representation of SUðNÞ, the nor-

malization convention usually adopted for the generators
reads

TrðTaTbÞ ¼ 1

2
δab; ð8Þ

so in this convention the fabc are totally antisymmetric with
respect to the interchange of any two indices.
Let Ta

A define a set of operators such that

½Ta
A�cb ≡ ifabc; ð9Þ

i.e., the structure constants themselves constitute a matrix
representation of the operators. The representation gener-
ated by the structure constants is called the adjoint
representation.
An SUðNÞ adjoint operatorQa can thus be defined, such

that

½Ta;Qb� ¼ ifabcQc: ð10Þ

The operators Qa can make up a basis for the carrier space
where the generators of the Lie algebra of SUðNÞ in the
adjoint representation act [15]. If Ta

A are taken as the
generators in the adjoint representation, relation (10) is
equivalent to

Ta
AQ

b ¼ ifabcQc: ð11Þ

Hereafter, the carrier space generated by the operators Qa

will be referred to as the adjoint space and will be denoted
by adj ¼ fQag.
Another tensor space of interest is the one formed by the

product of the adjoint space with itself n times. It is denoted
by

Q
n
i¼1 adj ⊗. This space can usually be decomposed into

subspaces labeled by a specific eigenvalue of the quadratic
Casimir operator C of the Lie algebra of SUðNÞ. The
decomposition can be achieved by adapting the projector
technique for decomposing reducible representations intro-
duced in Ref. [16]. Following the lines of that reference, the
sought projection operators PðmÞ are thus constructed as

PðmÞ ¼
Yk
i¼1

�
C − cni
cm − cni

�
; cm ≠ cni ; ð12Þ

where k labels the number of different possible eigenvalues
for the quadratic Casimir operator and cm are its eigen-
values given by [17]

cm ¼ 1

2

�
nN −

n2

N
þ
X
i

r2i −
X
i

c2i

�
; ð13Þ

where n is the total number of boxes of the Young tableu for
a specific representation, ri is the number of boxes in the ith
row, and ci is the number of boxes in the ith column.
From the defining expression (12), it can be inferred that

if
Q

n
i¼1 Q

ai
i is an SUðNÞ tensor operator, where each Qai

i
satisfies the commutation relation (10), then

PðmÞ Yn
i¼1

Qai
i ¼ Q̃a1…an ; ð14Þ

where the tensor Q̃a1…an is an eigenstate for the quadratic
Casimir C with eigenvalue cm,

CQ̃a1…an ¼ cmQ̃
a1…an : ð15Þ

In the following sections, the decompositions of the
tensor spaces adj ⊗ adj and adj ⊗ adj ⊗ adj will be
carried out by using the projector technique described
above.
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III. PROJECTION OPERATORS IN THE TENSOR SPACE adj ⊗ adj

The Young tableau for the adjoint representation is given by

The tensor space adj ⊗ adj decomposes as

In the notation of Ref. [13], the above irreps are
designated by

adj ⊗ adj ¼ 1 ⊕ 2adj ⊕ ās ⊕ s̄a ⊕ s̄s ⊕ āa; ð16Þ

so this convenient notation will also be used here.
The quadratic Casimir eigenvalues for each representa-

tion in the decomposition of adj ⊗ adj are obtained from
Eq. (13) and are listed in the second column (from left to
right) of Table I.
Since five different eigenvalues are available, the pro-

jectors in Eq. (12) are computed as

PðmÞ ¼ α0 − α1Cþ α2C2 − α3C3 þ C4Q
4
i¼1ðcm − cniÞ

; cm ≠ cni ; ð17Þ

where

α0 ¼ cn1cn2cn3cn4 ; ð18aÞ

α1 ¼ cn1cn2cn3 þ cn1cn2cn4 þ cn1cn3cn4 þ cn2cn3cn4 ; ð18bÞ

α2 ¼ cn1cn2 þ cn1cn3 þ cn1cn4 þ cn2cn3 þ cn2cn4 þ cn3cn4 ;

ð18cÞ

and

α3 ¼ cn1 þ cn2 þ cn3 þ cn4 : ð18dÞ
A word of caution is in order here. The defining

expression of PðmÞ, Eq. (12), and its subsequent version

for the tensor space adj ⊗ adj, Eq. (17), impose the
condition cm ≠ cni in order to avoid singularities.
Particularly, note that ās and s̄a are complex-conjugated
representations, so they share the same eigenvalue of the
Casimir operator, c2 ¼ 2N, according to Table I. For this
reason, it is not only convenient but also necessary to
construct a projection operator that comprises both repre-
sentations, as it is described below.
On the other hand, a complete determination of C

demands the evaluation of the generators Ta
2A that act in

the tensor space adj ⊗ adj. In terms of TA, they are
given by

Ta
2A ¼ Ta

A ⊗ 1þ 1 ⊗ Ta
A: ð19Þ

Therefore,

C ¼ Te
2AT

e
2A

¼ Te
AT

e
A ⊗ 1þ 1 ⊗ Te

AT
e
A þ 2Te

A ⊗ Te
A: ð20Þ

Since Te
AT

e
A is the quadratic Casimir operator for the

adjoint representation, then by Schur’s lemma

Te
AT

e
A ¼ N1: ð21Þ

Thus,

C ¼ 2ðN1 ⊗ 1þ Te
A ⊗ Te

AÞ: ð22Þ

The action of C on a tensor operator Qb1
1 Qb2

2 yields,
according to Eq. (11),
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CQb1
1 Qb2

2 ¼ 2ðNδb1a1δb2a2 − fb1a1efb2a2eÞQa1
1 Qa2

2 : ð23Þ

Therefore, in components, C reads

½C�a1a2b1b2 ¼ 2ðNδb1a1δb2a2 − Fb1a1b2a2Þ

¼ 4

N

�
N2

2
δb1a1δb2a2 − δb1b2δa1a2 þ δb1a2δb2a1

�

− 2ðDb1b2a1a2 −Db1a2b2a1Þ; ð24Þ

where the second equality follows from the identities listed
in Appendix A. For the ease of notation, the symbols
Fa1a2b1b2 andDa1a2b1b2 have also been introduced; they read

Fa1a2b1b2 ¼ fa1a2efb1b2e; ð25aÞ

Da1a2b1b2 ¼ da1a2edb1b2e; ð25bÞ

where the fully symmetric coefficients da1a2a3 read

da1a2a3 ¼ 1

4
TrðfTa1 ; Ta2gTa3Þ: ð26Þ

Additionally, let us also define the operator G acting on
Qb1

1 Qb2
2 with components,

½G�a1a2b1b2 ¼ −Fa1b1a2b2 ; ð27Þ

so that the quadratic Casimir C in Eq. (22) can be
rewritten as

C ¼ 2ðN þGÞ; ð28Þ

and powers of C are straightforwardly obtained as

C2 ¼ 4ðN2 þ 2NGþG2Þ; ð29Þ

C3 ¼ 8ðN3 þ 3N2Gþ 3NG2 þ G3Þ; ð30Þ

C4 ¼ 16ðN4 þ 4N3Gþ 6N2G2 þ 4NG3 þ G4Þ: ð31Þ

By making use again of the identities listed in
Appendix A, the powers of the operator G required in
the analysis are explicitly given by

½G2�a1a2b1b2 ¼ 1

2
ð2δa1a2δb1b2 þ δa1b1δa2b2 þ δa1b2δa2b1Þ

þ N
4
ðFa1a2b1b2 þDa1a2b1b2Þ; ð32aÞ

½G3�a1a2b1b2 ¼ −Nδa1a2δb1b2 −
1

2
ðFa1b1a2b2 þ Fa2b1a1b2Þ

−
N2

8
ðFa1a2b1b2 þDa1a2b1b2Þ; ð32bÞ

and

½G4�a1a2b1b2 ¼ðN2þ1Þδa1a2δb1b2þ1

2
ðδa1b1δa2b2þδa2b1δa1b2Þ

þN3

16
Fa1a2b1b2þ 1

16
NðN2þ4ÞDa1a2b1b2 : ð32cÞ

All the necessary powers of C involved in Eq. (12) are
now explicitly determined, so the projection operator PðmÞ,
corresponding to eigenvalue cm of C, can be evaluated. For
instance, for c0 ¼ 0,

TABLE I. Quadratic Casimir eigenvalues and projectors cor-
responding to each representation in the decomposition of the
reducible tensor representation adj ⊗ adj.

Rep Eigenvalue Representation

1 c0 ¼ 0 1
adj c1 ¼ N

ās ⊕ s̄a c2 ¼ 2N

s̄s c3 ¼ 2ðN þ 1Þ

āa c4 ¼ 2ðN − 1Þ
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Pð0Þ ¼ α0 − α1Cþ α2C2 − α3C3 þ C4Q
4
i¼1ð0 − ciÞ

¼ −
NGþ 2G2 − NG3 − 2G4

N2ðN2 − 1Þ ; ð33Þ

where

α0 ¼ 8N2ðN2 − 1Þ; ð34aÞ

α1 ¼ 4Nð5N2 − 3Þ; ð34bÞ

α2 ¼ 18N2 − 4; ð34cÞ

and

α3 ¼ 7N: ð34dÞ

Thus,

½Pð0Þ�a1a2b1b2 ¼ 1

N2 − 1
δa1a2δb1b2 : ð35Þ

The procedure can be repeated for the remaining four
eigenvalues, which yields the projection operators

½Pð1Þ�a1a2b1b2 ¼ N
N2 − 4

Da1a2b1b2 þ 1

N
Fa1a2b1b2 ; ð36Þ

½Pð2Þ�a1a2b1b2 ¼ 1

2
ðδa1b1δa2b2 − δa2b1δa1b2Þ − 1

N
Fa1a2b1b2 ;

ð37Þ

½Pð3Þ�a1a2b1b2 ¼ Nþ 2

4N
ðδa1b1δa2b2 þ δa2b1δa1b2Þ

−
Nþ 2

2NðN þ 1Þδ
a1a2δb1b2 −

Nþ 4

4ðNþ 2ÞD
a1a2b1b2

þ 1

4
ðDa1b1a2b2 þDa2b1a1b2Þ; ð38Þ

½Pð4Þ�a1a2b1b2 ¼ N − 2

4N
ðδa1b1δa2b2 þ δa2b1δa1b2Þ

þ N − 2

2NðN − 1Þδ
a1a2δb1b2 þ N − 4

4ðN − 2ÞD
a1a2b1b2

−
1

4
ðDa1b1a2b2 þDa2b1a1b2Þ: ð39Þ

The above projection operators satisfy the properties

½PðmÞ�a1a2d1d2 ½PðnÞ�d1d2b1b2 ¼
�
0; m ≠ n

½PðmÞ�a1a2b1b2 ; m ¼ n;

ð40Þ

which are demanded by definition.

Also, notice that

X4
m¼0

½PðmÞ�a1a2b1b2 ¼ δa1b1δa2b2 ; ð41Þ

so they constitute a complete set of operators.
Now, given two adjoints Qb1

1 and Qb2
2 , the action of

projectors PðmÞ on the adjoint tensor operatorQb1
1 Qb2

2 yields

½Qð0Þ�b1b2 ¼ ½Pð0ÞQ1Q2�b1b2

¼ 1

N2 − 1
δb1b2Qe

1Q
e
2; ð42Þ

½Qð1Þ�b1b2 ¼ ½Pð1ÞQ1Q2�b1b2

¼ N
N2 − 4

Db1b2a1a2Qa1
1 Qa2

2 þ 1

N
Fb1b2a1a2Qa1

1 Qa2
2 ;

ð43Þ

½Qð2Þ�b1b2 ¼ ½Pð2ÞQ1Q2�b1b2

¼ 1

2
ðQb1

1 Qb2
2 −Qb2

1 Qb1
2 Þ − 1

N
Fb1b2a1a2Qa1

1 Qa2
2 ;

ð44Þ

½Qð3Þ�b1b2 ¼ ½Pð3ÞQ1Q2�b1b2

¼ N þ 2

4N
ðQb1

1 Qb2
2 þQb2

1 Qb1
2 Þ

−
N þ 2

2NðN þ 1Þ δ
b1b2Qe

1Q
e
2

−
N þ 4

4ðN þ 2ÞD
a1a2b1b2Qa1

1 Qa2
2

þ 1

4
ðDb1a1b2a2 þDb1a2b2a1ÞQa1

1 Qa2
2 ; ð45Þ

½Qð4Þ�b1b2 ¼ ½Pð4ÞQ1Q2�b1b2

¼ N − 2

4N
ðQb1

1 Qb2
2 þQb2

1 Qb1
2 Þ

þ N − 2

2NðN − 1Þ δ
b1b2Qe

1Q
e
2

þ N − 4

4ðN − 2ÞD
a1a2b1b2Qa1

1 Qa2
2

−
1

4
ðDb1a1b2a2 þDb1a2b2a1ÞQa1

1 Qa2
2 : ð46Þ

The operators on the left-hand sides in Eqs. (42)–(46) are
labeled by an index that indicates the space representation
they belong to. Therefore, when projection operator PðmÞ
acts on the tensor product of two adjoints, it projects out
precisely the component of the representation it belongs to.
Two simple examples for N ¼ 2 and N ¼ 3 suffice to
illustrate the usefulness of the projection operators so far
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constructed. These examples are worked out in the follow-
ing sections.

A. Projection operators for N = 2

SUð2Þ is the simplest non-Abelian Lie group. It appears
in two scenarios in physics. One is as the spin double cover
of the rotation SOð3Þ group, and the other is as an internal
symmetry relating types of particles. Explicit realizations of
them are spin and isotopic spin symmetries. The generators
Ji and Ia correspond to spin and isospin, respectively, and
the corresponding conventional structure constants are ϵijk

(i, j, k ¼ 1, 2, 3) and ϵabc (a, b, c ¼ 1, 2, 3), which are
totally antisymmetric.
To construct the projection operators for N ¼ 2, an

important issue to be kept in mind is the fact that SUð2Þ
does not admit representations for the eigenvalues c2 ¼ 2N
and c4 ¼ 2ðN − 1Þ of the quadratic Casimir operator in the
space adj ⊗ adj listed in Table I, so the procedure to
construct PðmÞ must be adapted accordingly because, in
particular, Pð1Þ of Eq. (36) as it stands is ill-defined for
N ¼ 2. Therefore, the procedure must be repeated account-
ing for the eigenvalues c0, c1, and c3 only.
While the projector Pð0Þ is easily obtained as

½Pð0Þ�a1a2b1b2 ¼ 1

3
δa1a2δb1b2 ; ð47Þ

Pð1Þ is constructed as

Pð1Þ ¼ C2 − ðc0 þ c3ÞCþ c0c3
ðc1 − c0Þðc1 − c2Þ

: ð48Þ

From C and C2 given in Eqs. (28) and (29) for N ¼ 2, it
follows that

Pð1Þ ¼ 1

8
ð6C − C2Þ; ð49Þ

so that

½Pð1Þ�a1a2b1b2 ¼ 1

2
ðδa1b1δa2b2 − δa2b1δa1b2Þ: ð50Þ

Similarly,

½Pð3Þ�a1a2b1b2 ¼1

2
ðδa1b1δa2b2þδa2b1δa1b2Þ−1

3
δa1a2δb1b2 : ð51Þ

Now, given two adjoints Qb1
1 and Qb2

2 defined in spin
space, for instance, the projectors Pð0Þ, Pð1Þ, and Pð3Þ,
given by Eqs. (47), (50), and (51), acting on the adjoint
tensor operator Qb1

1 Qb2
2 , project out the J ¼ 0, J ¼ 1, and

J ¼ 2 spin components of that tensor product, respectively.
Similar conclusions can be reached for isospin space, of
course.

IV. PROJECTION OPERATORS IN SUð2Nf Þ →
SUð2Þ ⊗ SUðNf Þ SPIN-FLAVOR SYMMETRY

In the introductory section, it was pointed out that
the baryon sector of QCD has a contracted SUð2NfÞ
symmetry, where Nf is the number of light quark
flavors [9–12]. Under the decomposition SUð2NfÞ →
SUð2Þ ⊗ SUðNfÞ, the spin-flavor representation yields a
tower of baryon flavor representations with spins J ¼
1=2; 3=2;…; Nc=2 [11,13]. The spin-flavor generators of
SUð2NfÞ can be written as one-body quark operators
acting on the Nc-quark baryon states, namely,

Jk ¼
XNc

α

q†α

�
σk

2
⊗ 1

�
qα; ð52aÞ

Tc ¼
XNc

α

q†α

�
1 ⊗

λc

2

�
qα; ð52bÞ

Gkc ¼
XNc

α

q†α

�
σk

2
⊗

λc

2

�
qα: ð52cÞ

Here q†α and qα constitute a set of quark creation and
annihilation operators, where α ¼ 1;…; Nf denote the Nf

quark flavors with spin up and α ¼ Nf þ 1;…; 2Nf the Nf

quark flavors with spin down. Likewise, Jk are the spin
generators, Tc are the flavor generators, and Gkc are the
spin-flavor generators. The SUð2NfÞ spin-flavor genera-
tors satisfy the commutation relations listed in Table II [13].
The approach to obtain projection operators discussed in

the previous sections can now be implemented to the
SUð2NfÞ spin-flavor symmetry to construct spin and
flavor projection operators, which will act on well-defined
n-body operators. For the ease of notation, throughout this
section, lowercase letters (i; j;…) will denote indices
transforming according to the vector representation
of spin and (a; b;…) will denote indices transforming
according to the adjoint representation of the SUðNfÞ
flavor group.
Spin projection operators are easily adapted from

Eqs. (47), (50), and (51) as

½PðJ¼0Þ
spin �j1j2k1k2 ¼ 1

3
δj1j2δk1k2 ; ð53Þ

TABLE II. SUð2NfÞ commutation relations.

½Ji; Ta� ¼ 0;
½Ji; Jj� ¼ iϵijkJk; ½Ta; Tb� ¼ ifabcTc;

½Ji; Gja� ¼ iϵijkGka; ½Ta;Gib� ¼ ifabcGic;

½Gia; Gjb� ¼ i
4
δijfabcTc þ i

2Nf
δabϵijkJk þ i

2
ϵijkdabcGkc:

SPIN AND FLAVOR PROJECTION OPERATORS IN THE … PHYS. REV. D 102, 036010 (2020)

036010-7



½PðJ¼1Þ
spin �j1j2k1k2 ¼ 1

2
ðδj1k1δj2k2 − δj2k1δj1k2Þ; ð54Þ

½PðJ¼2Þ
spin �j1j2k1k2 ¼ 1

2
ðδj1k1δj2k2 þ δj2k1δj1k2Þ − 1

3
δk1k2δj1j2 :

ð55Þ

As for flavor projection operators, the tensor product of
two adjoints can be separated into an antisymmetric and a
symmetric product, ðadj ⊗ adjÞA and ðadj ⊗ adjÞS,
respectively. In the notation of Ref. [13], these products
are written as

ðadj ⊗ adjÞA ¼ adj ⊕ ās ⊕ s̄a ð56aÞ

and

ðadj ⊗ adjÞS ¼ 1 ⊕ adj ⊕ s̄s ⊕ āa: ð56bÞ

Thus, the explicit forms of flavor projection operators
read as

½Pð1Þ
flavor�a1a2b1b2 ¼

1

N2
f − 1

δa1a2δb1b2 ; ð57Þ

½PðadjÞ
flavor�a1a2b1b2 ¼

1

Nf
fa1a2cfb1b2c þ Nf

N2
f − 4

da1a2cdb1b2c;

ð58Þ

½Pðāsþs̄aÞ
flavor �a1a2b1b2 ¼ 1

2
ðδa1b1δa2b2 − δa2b1δa1b2Þ

−
1

Nf
fa1a2cfb1b2c; ð59Þ

½Pðs̄sÞ
flavor�a1a2b1b2 ¼

Nf þ 2

4Nf
ðδa1b1δa2b2 þ δa2b1δa1b2Þ

−
Nf þ 2

2NfðNf þ 1Þ δ
a1a2δb1b2

−
Nf þ 4

4ðNf þ 2Þ d
a1a2cdb1b2c

þ 1

4
ðda1b1cda2b2c þ da2b1cda1b2cÞ; ð60Þ

½PðāaÞ
flavor�a1a2b1b2 ¼

Nf − 2

4Nf
ðδa1b1δa2b2 þ δa2b1δa1b2Þ

þ Nf − 2

2NfðNf − 1Þ δ
a1a2δb1b2

þ Nf − 4

4ðNf − 2Þ d
a1a2cdb1b2c

−
1

4
ðda1b1cda2b2c þ da2b1cda1b2cÞ: ð61Þ

It should be remarked that the first and second summands
of Eq. (58) define the antisymmetric and symmetric
components of ½PðadjÞ

flavor�a1a2b1b2 , respectively.
Let us also notice that

½Pðs̄sÞ
flavor þ PðāaÞ

flavor�a1a2b1b2 ¼
1

2
ðδa1b1δa2b2 þ δa1b2δa2b1Þ

−
1

N2
f − 1

δa1a2δb1b2

−
Nf

N2
f − 4

da1a2cdb1b2c: ð62Þ

Implicit forms of the projectors (59) and (62) can be
inferred, respectively, from Eqs. (A13) and (A17) of
Ref. [13]. Both approaches yield the same results.

A. Applications of spin and flavor projection
operators in the 1=Nc operator expansion

The way spin and flavor projection operators work can
be better seen through a few examples. For definiteness, the
analysis can be confined to the physically interesting case
ofNf ¼ 3 light quark flavors; thus, the lowest-lying baryon
states fall into a representation of the SUð6Þ spin-flavor
group, which decomposes as SUð2Þ ⊗ SUð3Þ.
For the SUð3Þ flavor group, the adj, āsþ s̄a, and s̄s

representations are the 8, 10þ 10, and 27, respectively,
while the representation āa does not exist. In consequence,
it can be shown that

½PðāaÞ
flavorQ1Q2�a1a2 ¼ 0 ð63Þ

for SUð3Þ.
First, let us analyze the two-body operator Jj1Jj2, which

is a spin-2 object. It can be written as

Jj1Jj2 ¼ 1

2
fJj1 ; Jj2g þ 1

2
½Jj1 ; Jj2 �: ð64Þ

Projecting out the J ¼ 0, J ¼ 1, and J ¼ 2 components
of this product of operators is straightforwardly done with
the help of projection operators (53), (54), and (55). The
spin projections for the operator Jj1Jj2 read

½PðJ¼0Þ
spin �k1k2j1j2ðJj1Jj2Þ ¼ 1

3
δk1k2J2; ð65aÞ

½PðJ¼1Þ
spin �k1k2j1j2ðJj1Jj2Þ ¼ i

2
ϵk1k2iJi; ð65bÞ

and

½PðJ¼2Þ
spin �k1k2j1j2ðJj1Jj2Þ ¼ 1

2
fJk1 ; Jk2g − 1

3
δk1k2J2; ð65cÞ
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whereas the nonzero spin projections of the anticommu-
tator and commutator in Eq. (64) read

½PðJ¼0Þ
spin �k1k2j1j2fJj1 ; Jj2g ¼ 2

3
δk1k2J2; ð66aÞ

½PðJ¼2Þ
spin �k1k2j1j2fJj1 ; Jj2g ¼ fJk1 ; Jk2g − 2

3
δk1k2J2; ð66bÞ

and

½PðJ¼1Þ
spin �k1k2j1j2 ½Jj1 ; Jj2 � ¼ iϵk1k2iJi; ð66cÞ

where J2 ≡ JiJi. The consistency between these relations
can be checked by a simple inspection.
Less trivial examples are found when spin and flavor

are simultaneously involved so the corresponding projec-
tors can act in conjunction. For example, the operator
Xðj1b1Þðj2b2Þ ¼ fGj1b1 ; Gj2b2g þ fGj2b1 ; Gj1b2g is a spin-2
object and transforms as a flavor 27. Projecting out the

spin J ¼ 0, J ¼ 1, and J ¼ 2 components of this operator
yields

½PðJ¼0Þ
spin �k1k2j1j2ðfGj1b1 ; Gj2b2g þ fGj1b2 ; Gj2b1gÞ

¼ 2

3
δk1k2fGib1 ; Gib2g; ð67Þ

½PðJ¼1Þ
spin �k1k2j1j2ðfGj1b1 ; Gj2b2g þ fGj1b2 ; Gj2b1gÞ ¼ 0; ð68Þ

and

½PðJ¼2Þ
spin �k1k2j1j2ðfGj1b1 ; Gj2b2g þ fGj1b2 ; Gj2b1gÞ
¼ fGk1b1 ; Gk2b2g þ fGk1b2 ; Gk2b1g

−
2

3
δk1k2fGib1 ; Gib2g: ð69Þ

Now, the flavor 1, 8, 10þ 10, and 27 components of
Xðj1b1Þðj2b2Þ, for each spin, can be straightforwardly pro-
jected out. The J ¼ 0 projections read

½PðJ¼0Þ
spin �k1k2j1j2 ½Pð1Þ

flavor�a1a2b1b2ðfGj1b1 ; Gj2b2g þ fGj1b2 ; Gj2b1gÞ ¼ 1

12
δk1k2δa1a2fGic; Gicg; ð70Þ

½PðJ¼0Þ
spin �k1k2j1j2 ½Pð8Þ

flavor�a1a2b1b2ðfGj1b1 ;Gj2b2gþfGj1b2 ;Gj2b1gÞ¼ 2

5
δk1k2da1a2cdb1b2cfGib1 ;Gib2g; ð71Þ

½PðJ¼0Þ
spin �k1k2j1j2 ½Pð10þ10Þ

flavor �a1a2b1b2ðfGj1b1 ; Gj2b2g þ fGj1b2 ; Gj2b1gÞ ¼ 0; ð72Þ

½PðJ¼0Þ
spin �k1k2j1j2 ½Pð27Þ

flavor�a1a2b1b2ðfGj1b1 ; Gj2b2g þ fGj1b2 ; Gj2b1gÞ

¼ 2

3
½δk1k2fGia1 ; Gia2g − 1

8
δk1k2δa1a2fGic; Gicg − 3

5
δk1k2da1a2cdb1b2cfGib1 ; Gib2g�; ð73Þ

the J ¼ 1 projections vanish, and the J ¼ 2 projections become

½PðJ¼2Þ
spin �k1k2j1j2 ½Pð1Þ

flavor�a1a2b1b2ðfGj1b1 ; Gj2b2g þ fGj1b2 ; Gj2b1gÞ

¼ 1

8
δa1a2 ½fGk1b2 ; Gk2b2g þ fGk2c; Gk1cg − 2

3
δk1k2fGic; Gicg�; ð74Þ

½PðJ¼2Þ
spin �k1k2j1j2 ½Pð8Þ

flavor�a1a2b1b2ðfGj1b1 ; Gj2b2g þ fGj1b2 ; Gj2b1gÞ

¼ 3

5
da1a2cdb1b2c½fGk1b1 ; Gk2b2g þ fGk1b2 ; Gk2b1g − 2

3
δk1k2fGib1 ; Gib2g�; ð75Þ

½PðJ¼2Þ
spin �k1k2j1j2 ½Pð10þ10Þ

flavor �a1a2b1b2ðfGj1b1 ; Gj2b2g þ fGj1b2 ; Gj2b1gÞ ¼ 0; ð76Þ

½PðJ¼2Þ
spin �k1k2j1j2 ½Pð27Þ

flavor�a1a2b1b2ðfGj1b1 ; Gj2b2g þ fGj1b2 ; Gj2b1gÞ

¼ fGk1a1 ; Gk2a2g þ fGk1a2 ; Gk2a1g − 2

3
δk1k2fGia1 ; Gia2g − 1

4
δa1a2 ½fGk1c; Gk2cg − 1

3
δk1k2fGic; Gicg�

−
3

5
da1a2cdb1b2c½fGk1b1 ; Gk2b2g þ fGk1b2 ; Gk2b1g − 2

3
δk1k2fGib1 ; Gib2g�: ð77Þ
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In particular, both sides of Eq. (77) are spin-2 objects and
transform purely as flavor 27 tensors, i.e., their spin 0 and 1
components and their flavor singlet and octet components
have been properly subtracted off by using the appropriate
spin and flavor projectors. Operators of this kind appear in
the analysis of baryon quadrupole moments [18].

V. PROJECTION OPERATORS EXTENDED
TO THE TENSOR SPACE adj ⊗ adj ⊗ adj:

A FEW EXAMPLES

Projection operators defined in the tensor space adj ⊗
adj ⊗ adj can be obtained by extending the approach used
in the construction of the corresponding ones in the tensor
space adj ⊗ adj. The starting point is the decomposition
of the tensor product adj ⊗ adj into the irreps indicated in
Eq. (16), so the tensor product of the adjoint representation
and each of these irreps can be evaluated.

The simplest construction is the tensor product of the
adjoint and the singlet representation 1, i.e., 1 ⊗ adj ¼
adj. Therefore, the projector

½PðadjÞ�a1a2a3b1b2b3 ¼ 1

N2 − 1
δa1a2δb1b2δb3a3 ð78Þ

acting on the tensor operator Qb1
1 Qb2

2 Qb3
3 yields

1

N2 − 1
δa1a2Qe

1Q
e
2Q

a3
3 ; ð79Þ

which transforms as an adjoint operator.
Increasing complexity can be found in the tensor product

s̄s ⊗ adj, which can be represented by

Let Ta
3A denote the generators for the tensor product

space s̄s ⊗ adj. These generators are given by

Ta
3A ¼ Pð3ÞTa

2A ⊗ 1þ Pð3Þ ⊗ Ta
A; ð80Þ

where Ta
2A are defined in Eq. (19). Accordingly, the

quadratic Casimir operator reads

C ¼ Pð3ÞTa
2AT

a
2A ⊗ 1þ 2Pð3ÞTa

2A ⊗ Ta
A þ Pð3Þ ⊗ Ta

AT
a
A;

ð81Þ

whose explicit form in components becomes

½C�a1a2a3b1b2b3 ¼ ð3N þ 2Þ½Pð3Þ�a1a2b1b2δa3b3
− 2f½Pð3Þ�a1a2b2eFeb1a3b3 þ ðb1 ↔ b2Þg;

ð82Þ

which follows from the use of the identity

½Pð3Þ�a1a2d1d2Fd1b1d2b2 ¼ −½Pð3Þ�a1a2b1b2 ; ð83Þ

along with Eqs. (21) and (24).
The eigenvalues of the quadratic Casimir operator for

each representation are displayed in Table III. Following
relation (12) and gathering together partial results, the
corresponding projection operators are
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P̃ðmÞ ¼
Y5
i¼1

�
C − cni
cm − cni

�

¼ −α̃0 þ α̃1C − α̃2C2 þ α̃3C3 − α̃4C4 þ C5Q
5
i¼1ðcm − cniÞ

; ð84Þ

where the coefficients α̃i read

α̃0 ¼ cn1cn2cn3cn4cn5 ; ð85aÞ

α̃1 ¼ cn1cn2cn3cn4 þ cn1cn2cn3cn5 þ cn1cn2cn4cn5
þ cn1cn3cn4cn5 þ cn2cn3cn4cn5 ; ð85bÞ

α̃2 ¼ cn1cn2cn3 þ cn1cn2cn4 þ cn1cn3cn4 þ cn2cn3cn4
þ cn1cn2cn5 þ cn1cn3cn5 þ cn2cn3cn5
þ cn1cn4cn5 þ cn2cn4cn5 þ cn3cn4cn5 ; ð85cÞ

α̃3 ¼ cn1cn2 þ cn1cn3 þ cn2cn3 þ cn1cn4 þ cn2cn4
þ cn3cn4 þ cn1cn5 þ cn2cn5 þ cn3cn5 þ cn4cn5 ; ð85dÞ

and

α̃4 ¼ cn1 þ cn2 þ cn3 þ cn4 þ cn5 : ð85eÞ

The powers of C required in Eq. (84) are obtained as

C ¼ aE0 þ 2E1; ð86aÞ

C2 ¼ a2E0 þ 4aE1 þ 4E2; ð86bÞ
C3 ¼ a3E0 þ 6a2E1 þ 12aE2 þ 8E3; ð86cÞ
C4 ¼ a4E0 þ 8a3E1 þ 24a2E2 þ 32aE3 þ 16E4; ð86dÞ

and

C5¼ a5E0þ10a4E1þ40a3E2þ80a2E3þ80aE4þ32E5;

ð86eÞ

with a ¼ 3N þ 2 and

½E0�a1a2a3b1b2b3 ¼ ½Pð3Þ�a1a2b1b2δa3b3 ; ð87aÞ

½E1�a1a2a3b1b2b3 ¼ ½Pð3Þ�a1a2d1d2 ½T�d1d2a3b1b2b3 ; ð87bÞ

½E2�a1a2a3b1b2b3 ¼ ½Pð3Þ�a1a2d1d2 ½T2�d1d2a3b1b2b3 ; ð87cÞ

TABLE III. Quadratic Casimir eigenvalues for the representations obtained in the tensor product s̄s ⊗ adj.

Eigenvalue Representation Eigenvalue Representation

c0 ¼ 3ðN þ 2Þ c3 ¼ 3N þ 2

c1 ¼ 3ðN þ 1Þ c4 ¼ 2N

c2 ¼ 2ðN þ 1Þ c5 ¼ N
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½E3�a1a2a3b1b2b3 ¼ ½Pð3Þ�a1a2d1d2 ½T3�d1d2a3b1b2b3 ; ð87dÞ

½E4�a1a2a3b1b2b3 ¼ ½Pð3Þ�a1a2d1d2 ½T4�d1d2a3b1b2b3 ; ð87eÞ

and

½E5�a1a2a3b1b2b3 ¼ ½Pð3Þ�a1a2d1d2 ½T5�d1d2a3b1b2b3 : ð87fÞ

Here E0 represents the identity for the tensor product
space under consideration and the tensor ½T�a1a2a3b1b2b3 is
defined as

½T�a1a2a3b1b2b3 ¼ ½Ta
2A ⊗Ta

A�a1a2a3b1b2b3
¼−Fa1b1a3b3δa2b2 −Fa2b2a3b3δa1b1 : ð88Þ

The final expression for the projectors P̃ðmÞ can be cast
into the compact form

P̃ðmÞ ¼ 1

hm
½eðmÞ

0 E0þeðmÞ
1 E1þeðmÞ

2 E2þeðmÞ
3 E3

þeðmÞ
4 E4þeðmÞ

5 E5�; ð89Þ

where the coefficients hm and eðmÞ
n are listed in Appendix B.

A long and tedious but otherwise standard calculation is
required to prove that

½P̃ðmÞ�a1a2a3d1d2d3 ½P̃ðnÞ�d1d2d3b1b2b3

¼
�
0; m≠ n

½P̃ðmÞ�a1a2a3b1b2b3 ; m¼ n
ð90Þ

and

X5
m¼0

½P̃ðmÞ�a1a2a3b1b2b3 ¼ Ea1a2a3b1b2b3
0 : ð91Þ

A. An example of projection operators in SUð2Þ
In this case, the projector Pð3Þ corresponds to the repre-

sentationwithspin-2giveninEq. (51).Therefore, theprojector
P̃ð5Þ which, according to Table III, corresponds to an adjoint
representation (spin-1 with three indices) and is given by

P̃ð5Þ ¼ eðmÞ
0 E0þ eð5Þ1 E1þ eð5Þ2 E2þ eð5Þ3 E3þ eð5Þ4 E4þ eð5Þ5 E5

h5

¼−4E1þ 4E2þ 9E3 −E4− 2E5

210
: ð92Þ

Using the expressions for Ei given in (87a)–(87f) for
N ¼ 2, P̃ð5Þ in components can be rewritten as

½P̃ð5Þ�a1a2a3b1b2b3 ¼ 1

15
δa1a2δb1b2δa3b3 þ 3

20
fδa1a3δa2b2δb1b3 þ δa1a3δa2b1δb2b3 þ ða1; b1Þ ↔ ða2; b2Þg

−
1

10
fδa3b2δa1a2δb1b3 þ δa1b3δa2c3δb1b2 þ ða1; b1Þ ↔ ða2; b2Þg: ð93Þ

B. An example of projection operators in SUð3Þ
Formally, given three SUð3Þ adjoints Qa1

1 , Qa2
2 , and Qa3

3 ,
the tensor product between them, Qa1

1 Qa2
2 Qa3

3 , possesses all
flavor 1, 8, 10þ 10, 27, 35þ 35, and 64 components.
Operators transforming in the flavor 64 representation, for
instance, are relevant in the analysis of baryon mass
splittings of the spin-1=2 octet and spin-3=2 decuplet
baryons in the 1=Nc expansion combined with perturbative
flavor breaking at order Oðϵ2Þ, where ϵ ∼ms is a (dimen-
sionless) measure of SUð3Þ breaking [19].
In order to subtract off all but the flavor 64 component,

the projection operator P̃ðmÞ, for m ¼ 0, is constructed
following the lines of Eq. (89); this procedure leads

to P̃ð64Þ
flavor. The eigenvalue of the Casimir operator is

c0 ¼ 3ðNf þ 2Þ, and the corresponding Young tableau
can easily be obtained from the corresponding one depicted
in Table III for Nf ¼ 3.
Let Qð64Þ be the operator that transforms as a genuine

flavor 64. It is thus given by

½Qð64Þ�a1a2a3 ¼ ½P̃ð64Þ
flavorQ1Q2Q3�a1a2a3 : ð94Þ

The projection operator P̃ð64Þ
flavor itself has a rather involved

form, containing several hundreds of terms. Because of the
length and unilluminating nature of the resultant expres-
sion, it is more convenient to list a few components of
Qð64Þ. For instance,
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½Qð64Þ�888 ¼ 1

70
½3Q8

1Q
1
2Q

1
3 −

ffiffiffi
3

p
Q6

1Q
4
2Q

1
3 −

ffiffiffi
3

p
Q7

1Q
5
2Q

1
3 −

ffiffiffi
3

p
Q4

1Q
6
2Q

1
3 −

ffiffiffi
3

p
Q5

1Q
7
2Q

1
3 þ 3Q1

1Q
8
2Q

1
3

þ 3Q8
1Q

2
2Q

2
3 þ

ffiffiffi
3

p
Q7

1Q
4
2Q

2
3 −

ffiffiffi
3

p
Q6

1Q
5
2Q

2
3 −

ffiffiffi
3

p
Q5

1Q
6
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Note in expressions (95)–(98) the symmetry under inter-
change of any two flavor indices, as required for flavor-64
operators.
Returning to the issue of the analysis of baryon mass

splittings in the 1=Nc expansion combined with perturbative
flavor breaking at order Oðϵ2Þ [19], relations (95)–(98) can
be adapted and used in the evaluation of operator structures
such as the three-body operator fTa; fTb; Tcgg, or even
higher-order operators such as fTa; fTb; fJi; Gicggg,
fTa; ffJi; Gibg; fJj; Gjcggg, and so on. Therefore, the
method introduced here becomes a useful tool to effectively
project out spin and flavor representation components in the
analysis of large-Nc baryons.

VI. CONCLUDING REMARKS

In this paper, the quadratic Casimir operator of the
SUðNÞ group is employed to construct projection operators
that can decompose any of its reducible finite-dimensional
representation spaces contained in the tensor product of two
and three adjoint spaces into irreducible components. The
method was first introduced for the Lorentz group in
Ref. [16] and has proven to be quite effective for SUðNÞ.
The projection operators were computed first for the

tensor space adj ⊗ adj. For N > 3, there are five irreduc-
ible representations contained in adj ⊗ adj, with well-
defined eigenvalues of the Casimir operator C. This
information is summarized in Table I. The corresponding
projectors are explicitly given in Eqs. (35)–(39). For the
tensor space adj ⊗ adj ⊗ adj, the complexity raises
considerably, so only the subspace s̄s ⊗ adj is studied
in detail. This information is summarized in Table III. The
corresponding projectors are provided in Eq. (89).
Although the method is general enough, it is specialized

to the SUð2NfÞ → SUð2Þ ⊗ SUðNfÞ spin-flavor sym-
metry. The approach thus leads to the construction of spin
and flavor projection operators, which can be implemented
in the analysis of the 1=Nc operator expansion. The use of
projection operators allows one to successfully project out
the desired components of a given operator and subtract off
those that are not needed. To exemplify the method, the
projection operators are applied to adjoint tensor operators
with two and three flavor indices which, for SUð3Þ, fall
into flavor-27 and flavor-64 representations, respectively.
The projectors effectively project out spin and flavor
representations of operator structures present in analyses
of baryon mass splittings or baryon quadrupole moments,
for instance.
The applicability of the approach is not limited to

large-Nc QCD. The approach presented here paves the
way to potential applications in shell models of atomic and
nuclear physics to construct tensor operators which, with
the aid of the Wigner-Eckart theorem, can be used to
calculate transition amplitudes. Further applications to the
worldline approach to non-Abelian gauge fields should
also be seriously considered. In particular, for models that

require the construction of a Hamiltonian with an SUðNÞ
symmetry, the method can provide a mechanism to obtain
the different irreducible contributions of the operators that
appear in such a Hamiltonian. This way the relevance of
each different contribution to the spectra can be studied.
A clear example can be found in the interacting boson
model of nuclear physics [20].
A well-known procedure advocated in the literature to

deal with the direct products of irreps of SUðNÞ (mosty for
N ¼ 2 and 3) is based on the derivation of Clebsh-Gordan
(CG) coefficients, either analytically [21,22] or numerically
[23]. CG coefficients arise in the decomposition of the
tensor product of the representation spaces of two irreps of
some group into a direct sum of irreducible representation
spaces. The utility of CG coefficients in characterizing
hadronic decays is irrefutable. States are usually labeled by
jN; Y; I; I3i, where Y and I stand for hypercharge and
isospin, respectively, and I3 represents the third component
of isospin. The method discussed here encodes the infor-
mation on these coefficients in the components of the
projectors, although there is neither an obvious nor a direct
relation between them. For example, for SUð2Þ, in order to
find the relations that connect the CG coefficients with the
projectors, the first step would consist in changing, after
projection, the spin generators to a spherical tensor basis.
Afterward, the CG coefficients could be found. In appli-
cations where there are operators that satisfy Eq. (10), the
method presented here has the advantage of working
directly with these operators rather than the states men-
tioned above. In contrast, using CG coefficients requires to
change first to a basis where these coefficients are defined.
In addition, the projector method gives general expressions
in terms of the fabc and dabc symbols, without having to
specify a value of N.
To close this paper, it should be pointed out that, for a

given representation, constructing the whole set of projec-
tion operators might seem uninviting for computational
difficulty; nonetheless, the technique represents a powerful
tool to project out flavor components rigorously.
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APPENDIX A: IDENTITIES INVOLVING
STRUCTURE CONSTANTS OF THE LIE

ALGEBRA OF SUðNÞ
In this section, some relations between the structure

constants of the Lie algebra of SUðNÞ used repeatedly in
the present analysis are provided. The list by no means is
exhaustive, but it ranges from the Jacobi identity up to the
product of 8 f’s. The relations read

Fa1a2b1b2 þ Fb1a1a2b2 þ Fa2b1a1b2 ¼ 0; ðA1Þ
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Fa1a2b1b2 ¼ 2

N
ðδa1b1δa2b2 − δa1b2δa2b1Þ

þDa1b1a2b2 −Da1b2a2b1 ; ðA2Þ

Fa1e1a2e1 ¼ Nδa1a2 ; ðA3Þ

Fa1a2e1e2Fb1e1b2e2 ¼ N
2
Fa1a2b1b2 ; ðA4Þ

Da1a2e1e2Fb1e1b2e2 ¼ N
2
Da1a2b1b2 ; ðA5Þ

Da1e1a2e2Fb1e1b2e2 ¼ δa1a2δb1b2 −
1

2
δa1b1δa2b2 −

1

2
δa1b2δa2b1

þ N
4
Da1a2b1b2 þ N2 − 8

4N
Fa1b1a2b2

−
N
4
Fa1b2a2b1 ; ðA6Þ

Fa1e1a2e2Fb1e1b2e2 ¼ δa1a2δb1b2 þ 1

2
δa1b1δa2b2 þ 1

2
δa1b2δa2b1

þ N
4
ðDa1a2b1b2 þ Fa1a2b1b2Þ; ðA7Þ

Fa1e1a2e2Fe1e3e2e4Fb1e3b2e4

¼ Nδa1a2δb1b2 þ N2

8
ðDa1a2b1b2 þ Fa1a2b1b2Þ

þ 1

2
ðFa1b1a2b2 þ Fa1b2a2b1Þ; ðA8Þ

Fa1e1b1e2Fa2e3b2e4Fe3e5e4e6Fe1e5e2e6

¼ N2 þ 6

8
δa1a2δb1b2 þ 7N2 þ 4

8
δa1b1δa2b2 þ 3

4
δa1b2δa2b1

þ NðN2 þ 2Þ
16

ðFa1a2b1b2 þDa1a2b1b2Þ

þ N
8
ðDa1b2a2b1 − Fa1b2a2b1Þ: ðA9Þ

APPENDIX B: DEFINING COEFFICIENTS
OF THE PROJECTORS P̃ðmÞ

The final form of the projection operators P̃ðmÞ, defined
in Eq. (89), is written in terms of a few coefficients hm and

eðmÞ
n . The former is explicitly given by

h0 ¼ 6ðN þ 3ÞðN þ 4ÞðN þ 6Þ;
h1 ¼ 3ðN þ 1ÞðN þ 3Þð2N þ 3Þ;
h2 ¼ NðN þ 1ÞðN þ 2ÞðN þ 4Þ;
h3 ¼ 2NðN þ 1ÞðN þ 2Þ;
h4 ¼ NðN þ 2ÞðN þ 3ÞðN þ 6Þ;

and

h5 ¼ NðN þ 1ÞðN þ 2ÞðN þ 3Þð2N þ 3Þ;

and the latter is given by

eð0Þ0 ¼ 0;

eð0Þ1 ¼ −NðN þ 1ÞðN þ 2Þ;
eð0Þ2 ¼ 2N3 þ N2 − 6N − 4;

eð0Þ3 ¼ 2Nð5N þ 6Þ;
eð0Þ4 ¼ 4ð4N þ 3Þ;
eð0Þ5 ¼ 8;

eð1Þ0 ¼ 0;

eð1Þ1 ¼ 16NðN2 þ 3N þ 2Þ;
eð1Þ2 ¼ −8ðN3 − 7N2 − 18N − 8Þ;
eð1Þ3 ¼ −8ð5N2 − 6N − 12Þ;
eð1Þ4 ¼ −64N;

eð1Þ5 ¼ −32;
eð2Þ0 ¼ 0;

eð2Þ1 ¼ −8ðN þ 1ÞðN þ 2Þ;
eð2Þ2 ¼ 4ð5N2 þ 9N þ 2Þ;
eð2Þ3 ¼ −4ð2N2 − 9N − 12Þ;
eð2Þ4 ¼ −8ð3N − 1Þ;
eð2Þ5 ¼ −16;
eð3Þ0 ¼ 2NðN2 þ 3N þ 2Þ;
eð3Þ1 ¼ −5N3 − 5N2 þ 10N þ 8;

eð3Þ2 ¼ 2N3 − 19N2 − 30N − 4;

eð3Þ3 ¼ 2ð5N2 − 10N − 12Þ;
eð3Þ4 ¼ 16N − 4;

eð3Þ5 ¼ 8;

eð4Þ0 ¼ 0;

eð4Þ1 ¼ 8NðN þ 1Þ;
eð4Þ2 ¼ −4ðN − 1Þð5N þ 4Þ;
eð4Þ3 ¼ 4ð2N2 − 13N − 6Þ;
eð4Þ4 ¼ 24ðN − 1Þ;
eð4Þ5 ¼ 16;

eð5Þ0 ¼ 0;

eð5Þ1 ¼ −Nð2N þ 4Þ;
eð5Þ2 ¼ 5N2 þ 2N − 8;

eð5Þ3 ¼ −2ðN2 − 8N − 6Þ;
eð5Þ4 ¼ −4ð2N − 3Þ;
eð5Þ5 ¼ −8:
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