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We use linear response techniques to develop the previously proposed relativistic ideal fluid limit with a
non-negligible spin density. We confirm previous results [D. Montenegroet al., Phys. Rev. D 96, 056012
(2017); Phys. Rev. D 96, 079901(A) (2017); Phys. Rev. D 96, 076016 (2017); D. Montenegro and
G. Torrieri, Phys. Rev. D 100, 056011 (2019)], obtain expressions for the microscopic transport coefficients
using Kubo-like formulas and build up the effective field theory from the computed correlation functions.
We verify that for a causal theory with spin the spin-polarization correlator’s asymptotic time dependence is
the same as for fluctuating hydrodynamics, and investigate backreaction corrections to hydrodynamic
variables using a one-loop effective action. We also confirm that polarization makes vortices acquire an
effective mass via a mechanism similar to the Anderson-Higgs mechanism in superconductors. As
speculated earlier, this could stabilize the ideal hydrodynamic limit against fluctuation-driven vortices.
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I. INTRODUCTION

An interesting problem in relativistic fluid dynamics is
the inclusion of a nonzero polarization density within the
fluid. This is a challenging problem even at an intuitive
level because several characteristics associated with ideal
fluids such as isotropy and conservation of circulation, will
not apply when spin density is nonzero. Indeed, several
approaches have been tried [1–11], with a consensus on
even the fundamental dynamics still lacking.
One virtue of the Lagrangian approach [1–3] is that it

allows us to start from local equilibrium as an assumption
and build up the Lagrangian from the free energy,
independently of the underlying microscopic theory.
Essentially, we do not know what the system looks like
microscopically but we know that its dynamics is “strongly
coupled and high temperature enough” that the system
quickly adjusts itself to local equilibrium after perturbed.
That “quickly” leads to a separation of scales with respect
to the gradient and timescale of the perturbation.
Of course this “bottom up” approach has quite a few

limitations. For example, transport coefficient’s depend-
ence on temperature, angular momentum and chemical
potential necessitate knowledge of the underlying micro-
scopic theory. Nevertheless, bottom-up reasoning has

allowed us to obtain several results in an intuitive way,
such as the necessity of parallelism between spin and
angular momentum [1] and the necessity of dissipation for
a causal theory [2,3].
In this work, we cement these previous results reformu-

lating hydrodynamics with spin in terms of linear response
and correlation functions. This develops the Lagrangians of
[1–3] into a real-bottom up effective theory, explicitly
including the response of the bulk hydrodynamic evolution
to microscopic fluctuations and correlations.
Our Lagrangian, following [12–14] (which mixes the

Keldysh-Schwinger like prescription of [15,16] with the
“many particles to continuum” approach used in [10,17,18])
contains the information of the equation of state and entropy
current in terms of the field ϕI of the Lagrangian coordinates
of the fluid element.1 The entropy of the volume element is
then proportional to the volume of the element

b ¼ ðdetIJ ½∂μϕI∂μϕJ�Þ1=2 ð1Þ

in the absence of chemical potentials this is the only
propagating degree of freedom possible. Including the
polarization tensor yμν is similar to including a chemical
potential which however transforms as a vector in the
comoving frame [1,2]. Since spin density is not conserved,
yμν is an auxiliary field interacting with b via the equation
of state rather than an extension of b (as the microscopic
phase generating the chemical potential is in [12]). For aPublished by the American Physical Society under the terms of
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1Hereafter Greek letters refer to Lorentzian 4D lab coordinates
and latin ones to comoving 3D Euclidean ones.

PHYSICAL REVIEW D 102, 036007 (2020)

2470-0010=2020=102(3)=036007(15) 036007-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.036007&domain=pdf&date_stamp=2020-08-10
https://doi.org/10.1103/PhysRevD.96.056012
https://doi.org/10.1103/PhysRevD.96.056012
https://doi.org/10.1103/PhysRevD.96.079901
https://doi.org/10.1103/PhysRevD.96.076016
https://doi.org/10.1103/PhysRevD.100.056011
https://doi.org/10.1103/PhysRevD.102.036007
https://doi.org/10.1103/PhysRevD.102.036007
https://doi.org/10.1103/PhysRevD.102.036007
https://doi.org/10.1103/PhysRevD.102.036007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


well-defined local equilibrium vorticity and polarization
need to be parallel [1],

yμν ¼ χðb;ωμνω
μνÞωμν; ð2Þ

where χðω; bÞ is the vortical susceptibility and the relativistic
vorticity [19] includes the enthalpy w

ωμν ¼ 2∇½μwuν� ¼ 2wð∇½μuν� − _u½μuν� þ u½μ∇ν� lnwÞ ð3Þ

Note that while yμν breaks local isotropy explicitly, it not
vanish at thermodynamic equilibrium when angular momen-
tum is present [20,21].
Indeed, in the case where vortical susceptibility χ is

calculated explicitly [1], the expression for magnetic and

vortaic susceptibility parallel each other, suggesting the
dynamics is the same up to charge conjugation symmetry.
In a fluid with no chemical potential one expects the spin
alignment will not produce a magnetic field (since the
magnetic moment of particles and antiparticles is opposite),
but it will break isotropy and take angular momentum out
of vorticity and vice versa.
In [1] we have shown that, for a “paravortaic” equation

of state

Fðb; yÞ ¼ Fðbð1 − cyμνyμνÞÞ ð4Þ

this Lagrangian leads to three conservation law type
equations ∂μJ

μ
I ¼ 0

JμI ¼ 4c∂ν

�
F0
�
χ

�
χ þ 2

dχ
dω2

�
ωαβgαfμP

νgβ
I

��
− F0

�
uρP

ρμ
I

�
1 − cy2 − 2cbχω2

dχ
db

��
− 2c

�
χ þ 2ω2

dχ
dω2

�
F0

×

��
χω2 −

1

b
yρσðuα∂αðbuÞρ − uα∇ρðbuÞαÞ

�
Pσμ
I −

1

6b
yρσεμραβϵIJK∇σ∂αϕ

J∂βϕ
K

�
; ð5Þ

with the projector Pμν
K ¼ ∂ðbuÞμ=∂ð∂νϕKÞ, ∇α ¼ Δαβ∂β

and ½…�; f…g corresponding to, respectively, antisymmet-
rization and symmetrization of the indices, as done in
[22,23].
This is the “ideal hydrodynamic limit with polarization,”

the equation of motion of a fluid with spin density where
local equilibrium is reached instantaneously.
However, as shown in [2,3] this equation produces

noncausal perturbations. causality means equation (3)
can only be achieved as a relaxation asymptotic limit,

τY∂τδYμν þ δYμν ¼ yμν ¼ χðb; w2Þωμν: ð6Þ

Equation (5), analogously to other Maxwell-Cattaneo
cases, needs to be updated with Yμν as an additional degree
of freedom, the “magnon.” However, this theory is still as
close to local equilibrium as possible, since the nonequili-
brium “magnon” tensor Yμν just relaxes to the equilibrium
value. Since the magnon as an independent degree of
freedom propagates and interacts, any further nondissipa-
tive dynamics for the magnon [4,5] have the potential to
bring the system arbitrarily far away from local equilib-
rium, and hence cannot lead to well-defined effective field
theories around the local equilibrium state.
The next three sections will link these results to the more

traditional linear response theory. A correlation function for
JμI , Tμν, and Yμν will be derived. A fluctuation dissipation
relation linking χ and τY will also be derived.
Using these techniques, we are able to confirm and

develop several novel results. We show that polarization’s
breaking of local isotropy can be characterized by a

dynamics in some ways analogous (although dissipative)
to the Anderson-Higgs mechanism in Gauge theory, with
the polarization condensate giving an effective “mass”
(through a dissipative imaginary one [24]) to the vortex.
Thus, polarization realizes Landau’s original observation
[25] that to stabilize hydrodynamics vortices must have a
mass gap (this turned out to describe superfluidity, but not
ordinary fluids. In contrast, [13] conjectured that there is no
stable “quantum” theory of fluids and [26] argued that for
such a theory to exist only conserved observables are
allowed).
We also verify that vorticity-polarization correlation

exhibits the same long time-tail behavior that characterizes
the Maxwell-Cattaneo equation fluctuations examined in
[27,28]. And we use effective action techniques to calculate
the backreaction of sound waves and vortices on hydro-
dynamic variables.
We should reiterate that the results here come exclu-

sively from “bottom-up” reasoning, independently from
the microscopic theory: We assume we are close to local
equilibrium, and use gradient expansions, causality, and
unitarity analysis for derivation, together with the results of
[1–3]. This is in contrast with most approaches [4–7,11]
which rely on a “top-down” microscopic description,
usually using extensions of the Boltzmann equation.
Eventually, the two approaches should of course be verified
to coincide, via the matching of the free energies and
transport coefficients calculated here with those calculated
in the microscopic models, but at the moment we are far
away from this. One reason is that the different approaches
are not yet consistent, with some admitting an RTA
expansion [6] and others casting doubt this is possible
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[4,11], some admitting a gradient expansion and some
where some gradients explicitly diverge [4]. Furthermore,
expansions assuming a spinorial Wigner function neces-
sarily miss the admixture of particles with different spin.
Nevertheless, there are tantalizing hints the tow

approaches can indeed be reconciled. For instance, a
very similar conclusion to that discussed in [3] and
Sec. IV can be reached from a purely microscopic calcu-
lation [11], where it is shown that the collision term when
spin is included necessarily becomes nonlocal, precluding a
causal instantaneous local vanishing of the collision term.
We shall therefore proceed with a bottom-up linear

response analysis, but keep in mind the microscopic results
for further work.

II. LINEAR RESPONSE ANALYSIS

We start with the assumption of local equilibrium and
linear response theory. While hydrodynamics is highly
nonlinear, one assumes that any microscopically driven
perturbation starts off in the linearized stage from the
equilibrium state, hence its growth rate can be approxi-
mated by a linear response function. This is also equivalent
to assuming these changes develop slowly enough to
be considered “adiabatic,” so local thermalization can be
assumed at any moment in its evolution. Then, the
coefficient of the constitutive relation are given by taking
the low energy and long wavelength limit for the correla-
tion function of operators in different points in the space
and time. Since the system should not, in this regime,
distinguish whether the deviation came from either an
external disturbance or natural fluctuation, the transport
coefficient for linear response and autocorrelation functions
must be related. This is the basis for the relations generally
known as “fluctuation-dissipation theorem,” which here we
apply to spin-vorticity dynamics.

A. The magnon field Yμν and its vortex source

In this spirit, building on [1,3] let the vorticity-
fluctuation coupling be given by the interacting picture
Hamiltonian HI [29]

HIðtÞ ¼
Z

d3xYμνðt; x⃗Þωμνðt; x⃗Þ ð7Þ

where the vorticity ωμν is treated as a classical source to the
hermitian polarization operator Yμνðt; x⃗Þ. The unitary oper-
ator generating the temporal evolution reads

Uðt; t0Þ ¼ T ðe−i
R

t

t0
HIðt0Þdt0 Þ ð8Þ

where T is a time-ordering product. To understand howωμν

affects the field operator Yμν as a deviation from local
equilibrium, we look at the density matrix in Heisenberg
picture

ρ ¼ Uðt; t0Þρ0U†ðt; t0Þ; ρ ¼ 1

Z

X
α

e−βHα−ω⃗·J⃗=T : ð9Þ

Linearizing from the equilibrium expectation value we
get

hYμνðt; x⃗Þiω ¼ hρ0ðtÞU†ðt; t0ÞYμνðt; x⃗ÞUðt; t0Þi

≈ hYμνðt; x⃗Þiωαβ¼0 þ i
Z

dt0
Z

d3x0

× h½Yμνðt; x⃗Þ; Yαβðt0; x⃗0Þ�ieqωαβðt0; x⃗0Þ ð10Þ

with hδYμνi ¼ hYμνðt; x⃗Þiω − hYμνðt; x⃗Þiωαβ¼0. where
hYμνðt; x⃗Þiωαβ¼0 is classical average at local equilibrium,
before the vortex (source) switched on. The induced
polarization reads

hδYμνi ¼ i
Z þ∞

−∞
dt0

Z
d3x0eϵt0Θðt − t0Þ

× h½Yμνðt; x⃗Þ; Yαβðt0; x⃗0Þ�ieqωαβðt0; x⃗0Þ: ð11Þ

In order to arrive at Kubo’s formula we assume an
adiabatic change in local vorticity

ωμνðx⃗0; t0Þ ¼ eϵt
0Θð−t0Þωμνðx⃗0Þ; t < 0

ωμνðx⃗0; t0Þ ¼ 0; t > 0: ð12Þ

The adiabatic assumption allows us to add a factor eϵt,
which smears out any short-range fluctuations. In the
physical sense, it ensures a smooth evolution of spin-orbit
balance until the transport process archives thermalization.
In addition, in the absence of spontaneous symmetry
breaking (see conclusion of [3]) the 1

ϵ conducts the tran-
sition rate in which the spins interacting with each other
(later in Sec. IV we will see how to correct this prescription
to ensure causality using the relaxation time). In this case,
the linear approximation remains valid and the physical
meaning of ϵ in the source in Eq. (12) is a rate of increasing
ωμν, or density of spin aligned with vortex. Applying the
equation (12), we get the expectation value of correlation
function between two operator in different point of space-
time within a system in equilibrium

hδYμνi ¼ i
Z

t

−∞
dt0

Z
d3x0eϵt0Θðt − t0Þ

× h½Yμνðt; x⃗Þ; Yαβðt0; x⃗0Þ�ieqωαβðt0; x⃗0Þ; t < 0

¼ i
Z

0

−∞
dt0

Z
d3x0eϵt0Θðt − t0Þ

× h½Yμνðt; x⃗Þ; Yαβðt0; x⃗0Þ�ieqωαβðt0; x⃗0Þ; t > 0:

ð13Þ
The commutator above expresses the retarded Green’s

function defined as
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GR
YμνYαβðx⃗0; x⃗; t0; tÞ≡−iΘðt− t0Þh0½Yμνðx⃗; tÞ; Yαβðx⃗0; t0Þ�0ieq:

ð14Þ

The polarization-polarization correlation function gives
the amount of fluctuation correlated in space and time and
the Heaviside step functionΘðt − t0Þ assures causality in all
reference frames provided the dispersion relation is sub-
luminal. We shall rewrite the Eq. (13) as that of a single
“retarded” Green’s function GR

hδYμνi ¼ i
Z

0

−∞
dt0

Z
d3x0eϵt0GR

YμνYαβðx⃗0; x⃗; t0 − tÞωαβðt0; x⃗0Þ;

t > 0 ð15Þ

This derivation makes explicit the connection between the
transport coefficient and the “hydrodynamic pole” which in
χ ¼ 0 hydrodynamics has a dispersion relation and deter-
mines the sound modes [28]. The next subsection will use
this to calculate susceptibility.

B. Susceptibility

Susceptibility, χðb;ω2Þ in Eq. (2), tells us how polari-
zation behavior is induced from small perturbation around
equilibrium and after turning off ωαβ. We obtain the
susceptibility by taking the hydrodynamic regime, where
the comoving coordinates are perturbed against the hydro-
static coordinates XI.

ϕI ¼ XI þ πI ð16Þ

given a wave number kI πI can be separated into a sound-
wave and a vortex part

πI ¼ πTI ðkIÞ þ πLI ðkIÞ; kIπTI ¼ 0; kIπLI ¼ jkjjπj
ð17Þ

then the susceptibility becomes

χ ¼ lim
k→0

ð½hπTaπTbi − hπTaihπTbi� þ ½hπLaπLb i − hπLa ihπLb i�Þ=V
ð18Þ

where V is the volume of phase space in the thermodynamic
limit and χab is symmetric matrix (detðχÞ ≥ 0) whose
diagonal form is realized when aligned with the rotation
axes. The limit of small frequency

χðb;ω2Þ ¼ δYμν

δωαβ

����
ω¼0

δμαδνβ ð19Þ

where χðb;ω2Þ (thermodynamic derivative) is a statistic
thermodynamic quantity. The susceptibility is an analytical
function, which the poles lies below the real axis. Thus we
may split it

χðωþ iϵ; k⃗Þ ¼ χ0ðω; k⃗Þ þ iχ00ðω; k⃗Þ ð20Þ

in an imaginary χ00 (absorptive or dissipative) and real χ0
(symmetric in time) parts.
The relation of imaginary part of susceptibility with

retarded Green’s function

h0½Yμνðx⃗; tÞ; Yαβðx⃗0; t0Þ�0ieq

¼
Z

dωdk⃗
χ00ðω; k⃗Þ

ω
eiðωðt−t0Þ−k⃗ðx⃗−x⃗0ÞÞ ð21Þ

provides a link between a linear response described by
a linearized hydrodynamic and correlation function. The
χ00 is responsible for all information on commutator of
polarization. From the definition of Green’s function, we
have the Kramers-Konig relation [29] linking the retarded
Green’s function GR to the advanced one GA

Re½GR� ¼ Re½GA�; Im½GR� ¼ −Im½GA�: ð22Þ

To proceed further we look at the spectral representation

GR=A ¼
Z

dω0

2π

ρYY
0 ðω; k⃗Þ

ω0 − ω ∓ iϵ
: ð23Þ

The spectral density ρYY
0
is non-negative and a real

function containing the density of state at frequency ω

and k⃗.
Let us discuss the properties of correlation function

hϕIð0ÞϕKðtÞi ¼ hϕKð0ÞϕIð−tÞi. These functions are inde-
pendent of detailed configuration of the system unless an
external field is applied. The symmetry under time reversal
manifests in the form of hϕIðtÞϕKðt0Þi ¼ hϕIðt0ÞϕKðtÞi. In
our picture of fluctuation, we have to know how the fields
changed under reverse of velocity due to switch direction of
external rotating frame from Ω to −Ω. From this perspec-
tive, any even combination of longitudinal (πL) or trans-
verse (πT) are unaffected by reversal Ω and thus the
retarded Green’s function exhibits the following property

GR
abðt;ΩÞ ¼ GR

baðt;−ΩÞ ¼ GR
abð−t;−ΩÞ ¼ GR

abð−t;ΩÞ;
ð24Þ

The general formulation is GR
abðω; k⃗;ΩÞ ¼ ηaηbGR

ab ×
ðω; k⃗;ΩÞ, where S ¼ diagðη1; η2;…Þ ¼ diagð1; 1;…Þ
whereas the kinetic coefficients takes the form

γikðΩÞ ¼ γkið−ΩÞ: ð25Þ

The Hamiltonian under time reversal operator reads

ΘHðωÞΘ−1 ¼ Hð−ωÞ: ð26Þ

If we simultaneously change the signal of all charge, the
current and Ω remain in the same direction. There is no
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charge conjugation so in Eq. (5) JμI → Jμ�I and up to first
order it is easy to see that JμI ∼ kαωαIδ

μ
0 is consistent

with this symmetry. To develop the necessary tool for
the evaluation of average at disturbed system, we rewrite
the locally conserved Noether current at a variational
principle (as is done in the next Sec. III), but for now
we know that the “conserved current” of Eq. (5) are
generated by ŵα ¼ ϵαμνωμν and ωμν the vorticity field.
We want to investigate how the gradient of hydrody-

namical variable disappear by an external disturbance. This
allows us to introduce the systematic of Kubo formulas for
current. The general linear transformation reads

hJμI ðt; x⃗Þijω−hJμI ðt; x⃗Þi0¼
Z

d3x0dt0h½JIðt; x⃗Þ;JIðt0; x⃗0Þ�iω̂μ

hJμI ðt; x⃗Þi0¼2cχ2F0ðb0Þb0ω2δμI

hJμI ðt; x⃗Þijω¼2cχ2F0ω2δμI þ
χ00ijðb;ω2Þ

iω
: ð27Þ

The main consequence of Eq. (19) is that hYμνiωαβ¼0

refers to the microscopic quantum operator average before
the background field is slowly switched on.
Looking at Eqs. (16) and (17), in the limit when χ ¼ 0

[13], an applied vortex has a similar form as the magnetic
field potential in electromagnetic theory. Although the
vortex has no propagation, we can treat the flow as a
gauge covariant derivative which performs an infinitesimal
rotation in each fluid cell. It is easy to see how local
translational symmetry connects with Euler and Lagrangian
picture, thus following this line of thought, the Lagrangian
density appears invariant under local SOð3Þ symmetry. So
long as there is no dissipation, the vortex behaves exactly as
a gauge field, with the ocovariant derivative “propagating”
the gauge element along the fluid. This symmetry also
keeps the vortex massless [13].
In this respect, as shown in more detail in Sec. VA,

polarization acts as a Higgs mechanism [30] giving the
vortex a “mass” related to χ. The nonvanishing of the
vacuum expectation value of classical field is similar to
the Higgs mechanism, in that we can roughly compare
the “mass” particles get by interacting with the Higgs
expectation value with the “dissipative mass” M2 ¼
ðχ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F0ðb0Þb0
p Þ−1 where w0 is the background enthalpy.2

One can use the background value of Lagrangian
Fbðb0 ¼ 1Þ ¼ w0 and consider that w0 multiply every term
in the current. The effective mass from dissipative inter-
action between the spin and fluid volume element under the
presence of rotation isM2 ¼ ðχ2Þ−1. The residual part of ω̂μ

is not an elementary field but an excitation, and plays a role
of source (this will be examined in detail in Sec. V).
Unlike the usual Higgs mechanism, however, Gauge

symmetry does not allow us to remove Ostrogradski’s
instabilities even in the linearized limit [2]. Dissipation
therefore becomes necessary [3]. In Sec. IV we shall see the
effect it will have in correlation functions, but first we need
to commute the complete correlation structure of the
nondissipative theory. For this, functional methods will
become important.

III. CORRELATION FUNCTIONS FROM
FUNCTIONAL METHODS

In the previous section, we saw that the Green-Kubo
relation can be defined by hydrodynamic variable which
attained the transport equation from conservation law.
However, hydrodynamics with polarization cannot [1]
entirely be written in terms of such laws. To get the more
general correlation functions allowed within the theory it is
easier to use functional methods.
In this approach, one can define a partition function lnZ

so that average quantities are derivatives with respect to
generators. We know that the energy momentum tensor
is generated by gravitational tensor perturbations hμν and
the conservation currents in Eq. (5) are generated by
ŵα ¼ ϵαμνωμν

T μνðxÞ≡ ffiffiffiffiffiffi
−g

p hTμνðxÞiω;g ¼
δ

δhμν
lnZ

����
hαβ¼ω̂α¼0

ð28Þ

J μðxÞ≡ ffiffiffiffiffiffi
−g

p hJμðxÞiω;g ¼
δ

δŵμ
lnZ

����
hαβ¼ω̂α¼0

: ð29Þ

We shall characterize long-distance dynamics properties by
a small fluctuation from off-diagonal metric around a static
background. We are essentially updating, in the polariza-
tion context discussed in [3], the analysis made in [31]
and applied to relativistic hydro in [27,28]. The Green’s
functions of the conserved currents, in our case the energy
momentum tensor and the JμI will be, by the fluctuation
dissipation theorem, the second derivatives of lnZ. Hence

GR
JμJνðxÞ ¼ −

δJ μðxÞ
δω̂νð0Þ

����
hαβ¼ω̂α¼0

;

GR
TμνJσðxÞ ¼ −

δT μνðxÞ
δω̂σð0Þ

����
hαβ¼ω̂α¼0

;

GR
JσTμνðxÞ ¼ −2

δJ σðxÞ
δhμνð0Þ

����
hαβ¼ω̂α¼0

;

GR
TστTμνðxÞ ¼ −2

δT στðxÞ
δhμνð0Þ

����
hαβ¼ω̂α¼0

: ð30Þ

The covariant derivative provide the interplay between
out-of-equilibrium hydrodynamic variable and the metric

2Unfortunately it is standard to refer to w as enthalpy as well as
frequency, and ωμν to vorticity. In most of our paper we only use
w0 for background enthalpy and w within Fourier integrals for
time frequencies. The reader should nevertheless be careful with
the context of each expression.
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and vorticity sources, with a vector and a tensor term (the
latter can be rewritten as a “graviton” hμν)

∇μuν ¼ ∂μuν þ
1

2
ηνβð∂μhβρ þ ∂ρhβμ − ∂βhμρÞuρ: ð31Þ

Beyond leading order, rather than the metric form of
Eq. (28), we shall use the canonical nonsymmetrized
tensor, as one can explicitly calculate it in terms of ϕI

(summation in indices I of ϕI and JμI omitted for brevity)

Tμν ¼
� ∂ lnZ
∂ð∂μϕÞ

− ∂β
∂ lnZ

∂ð∂μ∂βϕÞ
þ ∂β∂γ

∂ lnZ
∂ð∂μ∂β∂γϕÞ

−…

�
∂νϕ

þ
� ∂ lnZ
∂ð∂μ∂βϕÞ

− ∂γ
∂ lnZ

∂ð∂μ∂β∂γϕÞ
þ…

�
∂β∂νϕþ

� ∂ lnZ
∂ð∂μ∂β∂γϕÞ

−…

�
∂β∂γ∂νϕþ � � � − ημν lnZ ð32Þ

we note that we use the canonical rather than the symmetric (Belinfante-Rosenfeld) form of the tensor to keep track of the
diffeomorphism-dependent components that couple to yμν [32]. The integral

R
d3xT0i will of course be independent of

pseudo-gauge transformations as expected at the level of the partition function [21].
The conserved current from Noether theorem of a space-time or internal symmetries for higher order fields is

Jα ¼ iϵ

� ∂ lnZ
∂ð∂μϕÞ

− ∂β
∂ lnZ

∂ð∂μ∂βϕ
þ…

�
ϕþ

� ∂ lnZ
∂ð∂μ∂βϕÞ

þ…

�
∂βϕ ð33Þ

Given the Eqs. (1)–(4) one can derive the canonical tensor as

Tμν ¼ F0fuρPρμ
I ð1 − cy2 − 2cbyαβωαβ∂bχÞg∂νϕI

þ 2cF0ðχ þ 2ω2∂ω2χÞ
��

χω2uσ −
1

b
yρσð _Kρ − uα∇ρKαÞ

�
Pσμ
I −

1

6b
yρσεμραβϵIJK∇σ∂αϕ

J∂βϕ
K

�
∂νϕI

− ∂βð4cF0χðχ þ 2ω2∂ω2χÞωργgρfμP
βgγ
I Þ∂νϕI þ f4cF0χðχ þ 2ω2∂ω2χÞωαβgαfμP

νgβ
I g∂β∂νϕI − ημν lnZ ð34Þ

and the current, we reproduce the earlier result, the conserved current of Eq. (5).

A. Stress tensor perturbations

The basic idea is expand the variational of stress and current of the Eqs. (30) in terms of the following projectors

gμν ¼ ημν þ hμν; uμ ≃ δμ0

�
1þ 1

2
_π2
�
þ δμI ð− _πI þ _π · ∂πIÞ; ω2 ≃ −ð∂μ _πÞ · ð∂μ _πÞ − ½∂ _π · ∂ _π� ð35Þ

and use the Ward identities [33,34] from energy-momentum conservation

∂0GR
T00T00ðxÞ − ∂iGR

T0iT00ðxÞ ¼ −ϵω; ∂0GR
T00T0iðxÞ − ∂jGR

T0jT0iðxÞ ¼ kip ð36Þ

to derive all components from one, which comes from the variational principle for the principal modes.

GR
TijTklðxÞ ¼ −2

δT ijðxÞ
δhklð0Þ

����
hαβ¼ω̂α¼0

; GR
TijTklðw; kÞ ¼

Z
d4xeiwt−kxGR

TijTklðxÞ ð37Þ

(thereafter in this and the next section going from GðxÞ → Gðw; kÞ assumes this Fourier transform). applying this we find

GR
T00T00ðw; kÞ ¼ w0

iωk2 − iχ2ω3k2 þ iχ4ω5k2

χ2ðω4 þ k2ω2Þ − ω2 þ c2sk2
þ i2w0χ

2ωk2 ð38Þ

while the other correlators, as expected, agree with the Ward identity Eq. (36)

GR
T00T0zðw; kÞ ¼ w0

iω2k − iχ2ω4kþ iχ4ω6k
χ2ðω4 þ k2ω2Þ − ω2 þ c2sk2

þ i2w0χ
2ω2k ð39Þ
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GR
T0xT00ðw; kÞ ¼ 0 ð40Þ

GR
T0xT0xðw; kÞ ¼ w0

−2iω3 − 2iχ4ðω7 − ω5k2 þ ω3k4Þ þ 2iχ2ðω5 − ω3k2Þ
χ2ðω4 − k2ω2Þ − ω2

− 2iw0ωþ 2iw0χ
2ðω3 − ωk2=2Þ: ð41Þ

If χ → 0, we will recover the correlators derived previously for the theory without polarization [28], with the finite χ limit
being

GR
TxyTxyðw; kÞ ¼ iw0χ

2ω3 ð42Þ

which also respects the null energy condition

GR
T0xT0xðxÞ > GR

TyxTyxðxÞ: ð43Þ

The contact terms come from the −ημν lnZ of stress tensor. It is easy to see if we recalled that the pressure and energy
density expanding up to first order given us

ϵ ¼ −Fðb0Þ − b0Fbðb0Þ½∂π� þOðπ2Þ; p ¼ Fðb0Þ − b0Fbðb0Þ þ ½∂π�Fbbðb0Þ þOðπ2Þ: ð44Þ

The contribution of the backreaction terms, Oðπ2Þ will be explored in more detail in Sec. V.

B. Current and vorticity perturbations

The Green’s function of an energy momentum current can be obtained by a perturbation of the metric (fixed by the Ward
identity with respect to other)

GR
JiTjkðxÞ ¼ −2

δJ iðxÞ
δhjkð0Þ

����
hαβ¼ω̂α¼0

ð45Þ

so

GR
J0T0zðw; kÞ ¼ w0

2iχ4ðω6kþ ω5k2Þ − iχ2ð6ω5 þ 2ω3k2 − ω4k − 2ω3k2c2sÞ − 2ic2sωk2

χ2ðω4 þ k2ω2Þ − ω2 þ c2sk2
: ð46Þ

We need to clarify that the “interaction” of vorticity field with the current arises by the coupling on the plane of vortex
instead of the axial vector ŵμ ¼ ϵμαβωαβ.
Equations (46) can be combined with the Ward-like identity coming from the conservation of both J and the energy-

momentum tensor

∂0GR
J0T00ðw; kÞ − ∂iGR

J0T0iðw; kÞ ¼ 0 ð47Þ

and the useful formulas

GR
Jzωxzðw; kÞ ¼ −GR

Jzωzxðw; kÞ; GR
Jiωijðw; kÞ < GR

Jiω0iðw; kÞ ð48Þ

to obtain information about all the vorticity field correlators. Given that a generic propagator is

GR
JjωjkðxÞ ¼ δJ iðxÞ

δωjkð0Þ
����
hαβ¼ω̂α¼0

the following table gives the full list of components

Propagator Jzω0z J0ω0z Jzω0z Jxω0x J0ω0x Jxωxz Jzωxz Jμωνσ

GR

w0χ
2

2iω3þ2iωk2c2s
ω2−c2sk2

4ik2ω−4ic2sk2ω
ω2−c2sk2

8c2sω2k
ω2−c2sk2

−6iω 0 4iωk2þ2iω3

ω2 2iω 0

JμI 0 z z 0 z x x any

ð49Þ

LINEAR RESPONSE THEORY AND EFFECTIVE ACTION OF … PHYS. REV. D 102, 036007 (2020)

036007-7



This last column is related to the no-anomaly condition,
which might be broken in theories such as [35] combining
local equilibrium with chiral magnetic and vortaic effects.
Similarly, the Ward identity for vorticity

∂0GR
T00ω0zðxÞ − ∂iGR

T0iω0zðxÞ ¼ 0 ð50Þ

yields the stress-vorticity correlators

GR
T00ω0zðw; kÞ ¼ w0

2iχ2ωk2 þ iχ2kω2 − c2sχ2k3

ω2 − c2sk2
: ð51Þ

Taking the Fourier transform of this quantity yields the
characteristic “t−α=2” tail behavior seen in [28]

δT0x ∝
Z

d3k⃗
ð2πÞ3 e

ik⃗ x⃗e−jtj=χ−
χk2

2
jtj

∼
T2

ð4πÞ3=2
�
χ5=2

jtj3=2 −
χ3=2

ðjtjÞ1=2 þ…

�
ð52Þ

which shows the tail described in [27]. Note that the short-
time divergence t → 0 generally does not commute with
the limit of lack of polarization, χ → 0. The introduction

of the relaxation time, in the next Sec. IV will cure this
divergence.

IV. RELAXATION TIME

As shown in [2,3], the polarization responding immedi-
ately to small external field according to Eq. (2) generally
violates causality. As consequence, polarization cannot
appear immediately when a vorticity field is turned on.
We have to specify a “minimal” time delay, in analogy with
the Maxwell-Cattaneo equation [22,23].
Adjusting the previous formalism to this realization, the

Hermitian operator has to decay in absence of a vorticity
field with a characteristic time scale τY . Equation (6),
derived in [3] would then appear by linking the expectation
value of the magnon to a classical vorticity source.
Differentiating this equation in relation to time, we can

write the equation of motion. According to conservation of
total angular momentum at thermodynamic equilibrium,
∂λSλ;μν ¼ −2Tμν

A , where Sλ;μν is the spin tensor and Tμν
A the

canonical antisymmetric energy-momentum tensor [32],
and a partial integration substitution from Laplace trans-
form. We get

hYμνðk⃗; zÞi ¼ ðizþ τYz2Þ−1

0
BBB@−ð1 − izτYÞχðb0; 0Þωμνðk⃗; 0Þ − 4w0χ

2ðb0; 0ÞgρfμPβgγ
ν

Z
∞

0

dteizt∂βω
ργðk⃗; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

→ð1−δβ0Þðk× ⃗π̃Þργβ =ðizÞ

1
CCCA ð53Þ

the underbrace defines the linearized limit where ⃗π̃ is
perpendicular to the vorticity plane defined by ργ, assuming
the initial condition with no polarization hYμνð0; jk⃗jÞi ¼
χωμνðkÞ ∂

∂t hYμνijt¼0 ¼ 0.
Given the dynamics of Eqs. (6) and (53) we redefine in

Fourier space polarization to an asymptotic state to which
the fluid relaxes. In the linear approximation, we can
substitute Yμν by a correction on χ.

Yμν ¼ yμν

1þ iωτY
⇒ χ →

χ

1þ iωτY
ð54Þ

To appreciate the power of this substitution, we should
recall the hydrodynamics poles from polarizable fluid suffer
from unphysical behavior as well as unstable one [3] and
relaxation (unlike Maxwell-Cattaneo, it is first order) is
needed to stabilize the behavior. Let us focus in the trans-
verse Green’s function and apply the above substitution

GR
TxyTxyðw; kÞ ¼ 4iBω3 →

iw0χ
2ω3

ð1þ iωτYÞ2
ð55Þ

This correction turns the group velocity modes bounded
and provides a stable solution. For instance, after enforcing

causality the poles of Eq. (38) corresponds to the same
evaluated in [3]. The transport coefficient from the imagi-
nary part of retarded Green’s function of Eq. (38), we have

lim
ω→0

1

ω3
ImGR

Txy;Txyðω; k⃗Þ ¼ w0χ
2;

lim
ω→0

lim
kz→0

−
ω

k2
ImGR

T00;T00ðω; k⃗Þ ¼ w0 ð56Þ

lim
ω→0

∂ω

3
lim
kz→0

−
∂2
k

2
GR

J0T00ðw; kÞ ¼ w0χ
2;

lim
ω→0

lim
kz→0

−
ω2

2
ImGR

Jzω0zðw; kÞ ¼ w0χ
2

τ2Y
ð57Þ

as discussed in [34], limω→0 limk→0 ≠ limk→0 limω→0. The
integral representation of retarded polarization-polarization
correlator introduces variational of energy-momentum in
response from metric or vorticity field perturbation Sγλ.

δTμνðt; xÞ ¼
Z

dωd3ke−iωtþik⃗·x⃗Gμν;γλðω; k⃗ÞSγλ: ð58Þ

The structure of the Green’s function allows us to extract
singular modes whose dispersion relation determine the
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behavior of system in the hydrodynamic limit ω, k ≪ T for
G00;00 and G01;01

The transverse perturbation is

δT0x ∝
Z

d3k⃗
ð2πÞ3 e

ik⃗ x⃗e−jtj=χ−
k2 jtj
2χ ðτ2Yþχ2Þþiτk2

∼
T2

ð4πÞ3=2
�

χ5=2

ððτ2Y
χ2
þ 1ÞjtjÞ3=2

−
χ3=2

2ðτ2Y
χ2
þ 1Þ3=2ðjtjÞ1=2

þ…

�

ð59Þ

The causality bound derived in [3] implies τ2Y
χ2
> 1, so when

χ → 0 Eq. (59) goes to zero as required.
Since we are most likely dealing with a nonrenormalize-

able theory, where the cutoff is physical, we factorize the
exponential e−jtj=χ in Eq. (59) up to first order 1=χ. This
exponential play an important role of mass in the dispersion
relation. Higher order terms should be dropped in the
infrared limit because they are irrelevant. The next leading
term of the integral with the expansion of cosðk2τYtÞ above
will be ∼ T2τYχ

2=3

ðτ2
χ2
þ1Þ5=2jtj3=2.

Note that the dependence of the correlator on time, with
the long time tail is the same as was calculated in [27],
using similar methods but applied to thermodynamic
fluctuations. This is not so surprising: As noted earlier
[1] fluctuations and polarization depend on the same
dimension of operators, and hence it is natural to expect

their correlation to scale similarly. The difference is that in
this case we are correcting a nondissipative theory, rather
than an already dissipative one as in [27].

V. INTERACTIONS OF HYDRODYNAMIC
MODES

A. One loop effective action

Now we try to compute backreaction corrections to lnZ,
introduced in Sec. III using perturbative techniques. One
can do this by means of an effective field theory one, where
the symmetries and light degrees of freedom are the
essential ingredients to analyze the form of the effective
Lagrangian. As a starting point, we examine the structure of
the full action setting by slow sound perturbations (ϕI) and
fast microscopic (yμν) degrees of freedom. Here, we
consider a weak interaction between them. So the “bare”
local action reads

S½ϕI; yμν� ≃
Z

d4x½L0½ϕI� þ Ly½yμν� þ Lint½ϕI; yμν��: ð60Þ

The L0½ϕI� encodes, alone, the general idea of “stan-
dard” hydrodynamic, while Ly½yμν� regulates the dynamics
of polarization variable. Now, we will concentrate our
efforts to work out on Lint sector. Conventionally, the
couplings between light and heavy should be treated as
small in order to not break down the perturbative expan-
sion. Let us now integrate out the fast y sector

lnZ ¼ ln
�Z

DyμνDϕIeS½ϕ
I ;yμν�

�
→ ln

�Z
DπLDπT exp

�
i
Z

d3xdtðLo þ Lint þ Lself-intÞ
��

ð61Þ

where and πL;T will be defined as [1,26]. Magnon fields will be incorporated with existing degrees of freedom via the
prescription of Sec. IV.
We expand the action up to fourth order, using Eq. (16) and following [2], for linear terms of up to 2 gradients we have

lnZ0 ≃ 1þ A

�
½∂π� − 1

2
½∂πT · ∂π� − 1

2
_π2
�
þ
�
1

2
Aþ C

�
½∂π�2: ð62Þ

where the constants A, C are

c2s ¼
2F00ðbÞ
F0ðbÞ|fflfflffl{zfflfflffl}
<0

þ 1; A ¼ T0F0ðb0Þ; C ¼ 1

2
b20F

00ðb0Þ;

ð63Þ

where the enthalpy is w0 ¼ −Fbðb0Þ, b0 ¼ 1 and has the
dimension ½M4�. Note that here ∂πT means the transpose of
the matrix of πs rather than the transverse direction. The
first term of Lagrangian Eq. (62) indicates the minimized
potential byw0, the second one vanishes by integration. The
third and fourth are the well known free propagation of

sound waves and the fifth transverse (strong coupling)
excitations of ϕI . Of course there are vortex-sound inter-
actions, however, they must be neglected if we compared
with other terms of Lagrangian ∼χ2.
Inverting Eq. (62) will give the propagator for the sound

waves in momentum space G∂πi;∂πj [26] (∂π represents the
general matrix ∂iπj, including both πT and πL, [π] is the
trace, defining the sound wave

G½∂π�½∂π� ¼
ik2

w2 − c2sk2
; G _πl½∂π� ¼

iwkl
w2 − c2sk2

;

G _πl _πm ¼ iδlm þ ic2sklkm
w2 − c2sk2

ð64Þ
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It can be seen by inspection that the infrared limit w → 0 of transverse mode propagators diverges, confirming the potential
instability of [13].
The interaction term between cell fluid and polarization ∼Fð−by2Þ.

lnZint ≃ w0χ
2ðb0; 0Þ

�
ð½∂π�½∂ _π · ∂ _π� þ ½∂π�ð∂μ _πÞ · ð∂μ _πÞÞ

�
1þ c2s þ

2χb
χ|{z}

self-int

�

−
�
1

2
_π⃗2 þ 1

2
½∂πT∂π�

�
½ð∂μ _πÞ · ð∂μ _πÞ þ ½∂ _π · ∂ _π��

�
1þ f00

2f0
þ 2χb

χ|{z}
self-int

�

× ½∂π�2ðð∂μ _πÞ · ð∂μ _πÞ þ ½∂ _π · ∂ _π�Þ
�
f000

2f0
þ 2χb

χ
c2s þ

c2s
2
þ c2s þ

2χb
χ

þ 1þ 2χb
χ

þ χ2b
χ2

þ χbb
χ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

self-int

�

× ð2_π · ∂π̈ · _π þ ½∂ _π · ∂ _π · ∂π� þ ð∂μ _πÞ · ð∂μ _π · ∂πÞ − _π · ∂ð∂IπJÞ∂J _πI − _π · ∂ð∂μπ
IÞ∂μ _π

I

þ π̈ · π̈ · ∂π þ 2π̈ · _π · ∂ _π þ 2_π · ∂ _π · π̈Þ
�

1|{z}
self-int

þ ½∂π�c2s þ ½∂π� þ 2χb
χ|{z}

self-int

��
: ð65Þ

In the following paragraphs we shall link each line to
Feynman diagrams. The “gluon” (springlike) lines will be
used for longitudinal modes, and the “photon” (wavy) lines
for transverse ones (respectively sound and vortices when
χ → 0). In the limit where polarization vanishes the former
correspond to vortices and the latter to sound waves. Note
that the Feynman diagrammatic structure does not change
when the relaxation time τY is present. One must just
update the vertex and propagator terms to those of Eq. (54),
χ → χð1þ wτYÞ−1, following Sec. IV, as Maxwell-
Cattaneo is a constitutive equation, not entering in the
bare Lagrangian but, through the dissipation-fluctuation
theorem, the correlation function and hence lnZeff .
The perturbation expansion breaks down when the

energy E2 ∼ χ−2 where the dimension of ½χ� ¼ M−1 and
πI ¼ M−1. We will analyze the leading terms in according
with E ≪ χ−1. The strength interaction for a typical tree

level process is MTT→TT ∼ p6

w0χ
−2.

The Feynman rules are as follows: each vertex a w0χ
2,

1=w0 internal line, and 1=
ffiffiffiffiffiffi
w0

p
external line. We extract

fourth order terms whose tree level diagram has one legs as
longitudinal perturbation propagation ∼½∂π�Oðπ3Þ by sym-
metry arguments, and terms without spatial derivative must
vanish since they do not contribute on vortex amplitude but
for longitudinal one.
The representation of the first line of Eq. (65) corre-

sponds to the Feynman diagram in Fig. 1. The vertical and
horizontal lines are space and time arrow. The process is
similar to Rayleigh scattering in electrodynamics where a
nonlinear physical object (vortex) absorbs and emits one
or more sound waves by a nonlinear harmonic process.
Only an unsteady vortex rather than a stationary one
perpendicular to scattering plane provides variation of
longitudinal velocity, so that vortex can participate of this
process where the emitted sound wave has the same
frequency of the incident one.
The second and third line of Eq. (65) in Feynman

diagram language are shown in Fig. 2. They represent a
process studied nonrelativistically in [36], the production of
vortices by sound waves and the associated sound wave
scattering. The first diagram indicates the cross section
between sound waves and vorticity distribution of a
turbulent flow. The vertical and horizontal lines determine

FIG. 1. Sound-vortex scattering.
FIG. 2. Production of vortices by sound-waves (left) and
scattering of sound waves by an intermediate vortex state.
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the space and time arrow. The interaction of vortex and
sound describes convective propagation of a weak vorticity
fluctuation. In [37], it was shown that the absence of the
energy gap and propagation velocity of [13] lead to a badly
divergent loop. As is shown here, as hypothesized in [1,3]
the divergence is mitigated by polarization, as the ratios
with χ as denominator cut off the divergences.
Note that there are some variations at the orientations of

these diagrams as t; u—channel due to the lack of Lorentz
covariance in the IJ indices, see [13] for a discussion
on this.
The sound vorticity coupling (Fig. 3) arises when non-

linear perturbative hydrodynamical variables are taken
into account in the fluid equations of motion, and has
the potential to produce both vortices out of sound waves
and vice versa (when the diagram is split). Looking at
the third line of Eq. (65) it is however clear that quanti-
tatively usually vortex production dominates over sound
production.
Finally, the coupling affects convection, expansion and

stretching of vorticity configuration: The second-to-last and

last lines of Eq. (65) describe the interaction of third order
in π and gives the leading radiative order diagrams.
The Vorticity-Vorticity interaction has been analyzed

by [38], as has the generation of sound by vorticose
sources. In a relativistic setting this interaction produces
infrared divergences, as the vortex has no energy gap and
no propagation speed [13]. Once we include, and integrate
out, spin-spin interaction, the respective orders of spin-spin
interaction in the effective theory become ∼ ffiffiffiffiffiffi

w0
p −1χ2

and ∼w−1
0 χ4.

Equation (61) shows that, without loss of generality,
we can take upon the Lagrangian Eq. (4) only the spin
interactions with the background b0, in other words,
∼Fð−b0y2ðπÞÞ. Thus the spin interacts with the vacuum
of fluid (hydrostatic configuration) when the physical
coordinate are aligned with the comoving one at given
pressure. After turning on the external field the vacuum’s
original symmetry of SOð3Þ is broken to SOð2Þ. The πx and
πy eat two Goldstone boson and become massive, whereas
the πz remains massless. The Lorentz boost is broken. The
self-interacting Lagrangian up to fourth order is (Fig. 4)

Lself-int ∼ w0χ
2ðb0; 0Þf½ð∂μ _πÞ · ð∂μ _πÞ þ ½∂ _π · ∂ _π��

þ _π · ∂π · ∂π̈ · _π þ _π · ∂π · ∂ _π · π̈ þ 2π̈ · ∂π · ∂ _π · _π þ _π · ∂ _π · ∂π · π̈ þ 2ðπ̈ · ∂πIÞð _π · ∂ _πIÞ − π̈ · _π · ∂π · _π

þ 2_π · ∂ð∂JπIÞ _πJπ̈I þ ½ _π · ∂ð∂JπIÞ�½ _π · ∂ð∂IπJÞ� − ½ _π · ∂ð∂JπIÞ�½∂I _π · ∂πJ� þ ð∂μ _π · ∂πÞ · ð∂μ _π · ∂πÞ
þ ½∂ _π · ∂π · ∂ _π · ∂π� þ ½∂μ _π · ∂πI�½ _π · ∂ð∂μπIÞ� − ð∂μ _π · ∂πÞ · ð _π · ∂ð∂μπÞÞg

þ χ4ðb0; 0Þ
�
½2ð∂μ _πÞð∂μ _πÞ½∂ _π · ∂ _π� þ ð∂μ _πÞ2 · ð∂μ _πÞ2 þ ½∂ _π · ∂ _π�2�

�
c2s
2
þ ∂ω2χðb0; 0Þ

χ3

��
: ð66Þ

These results will be cemented by the explicit calculation of
the propagator in the next subsection.
While this theory is nonrenormalizeable and non-

Lorentz-covariant, and it is the spacetime diffeomorphism
that is broken, the above process (some directions of the
Goldsone boson are “eaten” via interaction with the con-
densate) has a similarity to the Higgs mechanism [30].
Instead of internal Gauge SUð2Þ the condensate breaks

spacetime “gauge” SOð3Þ, and, as we will see in the
next section, the broken generators correspond to the
“Goldstone” components “eating” vortex polarizations that
aquire a mass gap, although, because of relaxation, it
becomes a “dissipative gap” similar to [24].
It is useful to consider diagrams for the following

correlator at Oðw−2
0 χ4ðb0; 0ÞÞ and Oðw−2

0 χ2ðb0; 0ÞÞ to self-
interaction and vortex and “fluid” interaction, respectively.

FIG. 4. Sound-sound backscattering and scattering.
FIG. 3. Vortex formation by sound waves.
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hyijðx1; t1Þ; ypqðx2; t2Þi ¼ h∂i _πj; ∂p _πqi
− h∂iπj; ∂p _π · ∂πqi þ… ð67Þ

hbu0ðx1; t1Þ; yijðx2; t2Þi ¼ hyijðx2; t2Þi þ h½∂π�; ∂iπji

þ 1

2
h½∂π2�; _πl∂j∂lπ

ii þ…

ð68Þ

This is a diagrammatic way to understand how the
divergence in Eq. (64) is regularized by polarization.
Via the terms of Oðw−2

0 χ2ðb0; 0ÞÞ, Fig. 5 converts sound
waves into vortices, and is also peculiar to mediums with
a spin. Physically, what happens is that the change in
temperature during the compression of a sound perturba-
tion changes χ, which in turn modifies the vorticity. The
reversed process, where a vortex perturbation changes
the compressibility and releases sound is of course also
there. Hence, nonpropagating vorticity fluctuations are now
associated with an energy change of the background that
can be used to emit sound and dissipate. This resolves the
singularity in the S-matrix definition pointed out in [13].

The extra gradient terms, when included in the pro-
pagator definition Eq. (64), will lead to higher powers
of w in the numerator which will cancel the divergence.
Equation (76) in the next section does this explicitly.
We close by noting that the pressure generation by small

vorticity fluctuation is irrelevant since the former depends
upon the later by a higher order at vðt; x⃗Þ, by EFT language
∼c2sFbb½∂π�2 field fluctuation.
In the next subsection, we will use the diagrammatic

insights obtained here together with the results of Sec. III to
compute the interaction part of the propagator explicitly.

B. Propagator correction due to
hydrodynamic interactions

In this subsection, we use our intuition from the previous
section and the calculations in Sec. III to extend the
dissipative phenomena investigated to backreaction from
interactions between fluid modes. In doing so, we examine
the effect on transport coefficient of hydrodynamic fluc-
tuation-generated collective excitations. We start from the
linearization of Eqs. (34) and (5)

Tμν ∼ 2F0ðb0Þχ2ðb0; 0ÞðgI½ρ∂0� _πI π̈ρ þ _πIHIJ _π
JÞδμν þ 2F0ðb0Þχðb0; 0Þyρνδμ0 þ

1

3
F0ðb0Þyρσϵμραϵ0νJ∂σ∂απJ þ…

JμI ∼ F0ðb0Þχðb0; 0Þ∂0ω
μ
I − 2F0ðb0Þðy2 − b0χ∂bχω

2ÞδμI… ð69Þ
where we used the projector

HIJ
KL ¼ ðδIJδKL þ δIKδ

J
LÞ ð70Þ

the second order contribution to the propagators, labeled by Gð2Þ henceforward, are

Gð2Þ
JiJk

ðt; x⃗Þ ¼ 1

w2
0

hπmðt; x⃗Þπnðt; x⃗Þπqð0Þπpð0Þieq ¼
1

w2
0

hπmðt; x⃗Þπqð0Þieqhπnðt; x⃗Þπpð0Þieq; ð71Þ

Gð2Þ
TijTkl

ðt; x⃗Þ ¼ 1

w2
0

Hij
mnHkl

qphπmðt; x⃗Þπnðt; x⃗Þπqð0Þπpð0Þieq ¼ Hij
mnHkl

qp
1

w2
0

hπmðt; x⃗Þπqð0Þieqhπnðt; x⃗Þπpð0Þieq ð72Þ

with the structure of the coefficients determined via Eqs. (67) and (68). Note that SOð3Þ symmetry keeps vortex-sound and
sound-vortex coupling, hπLðxÞπTð0Þi and hπTðxÞπLð0Þi, equal.
Even though the correlation functions in Eqs. (71) and (72) may appear similar, it is important to remember that they

come from varying with respect to different generators.
By treating the fluctuations as Gaussian, we can order the operator in correlation function in such a way

GRð2Þ
TijTkl

ðω;kÞ ¼ 2

w2
0

Hij
mnHkl

pq

Z
dω0

2π

ddk0

ð2πÞd G
Rð1Þ
T0mT0pðω0; k0ÞGRð1Þ

T0nT0qðω0; k0Þ ¼ …þOðM4Þ þ… ð73Þ

FIG. 5. Sound-vortex conversion.
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where M is an ultraviolet cutoff and we use the approximate process of symmetrization of imaginary Green’s function
described in [28].

GR
T0iT0jðω;kÞ ¼ ðw0TÞ

2

��
δij −

kikj

k2

�
16χ4ðω4k2 − ω2k4Þ − 2χ2ðω4 − k2ω2Þ

4χ2ðω4 − k2ω2Þ − ω2

þ
�
kikj

k2

�
ω2 − χ2ð3ω4 þ 2ω2c2sk2Þ þ χ4ð3ω6 þ 2ω4k2Þ

χ2ðω4 þ k2ω2Þ − ω2 þ c2sk2

�
: ð74Þ

When interactions are turned on the SO(3) symmetry
breaks down and the π becomes massive. The transverse
part becomes strongly dependent of χ. If χ → 0, then it
yields G0x;0x → 0. The transverse part may be then sim-
plified

GR
T0iT0iðw; kÞ ¼ −

w0

2

�
1 −

ðkiÞ2
k2

�

×
ððω2 þ k2Þχ2k2 þ 1Þðω2 − k2Þ

ðω2 − k2Þ − 1
χ2

: ð75Þ

It is easy to see the denominator part of retarded Green’s
function above corresponds to p2 −m2, where the mass
m ∼ ð2χÞ−1. We must remember that, because of the
symmetries of fluid dynamics our Green’s function will
never look like a Green’s function of “free particle” but

rather as interacting Green’s function, where the numerator
is different from i. As we have justified previously the
propagator is, in the infrared limit, that of a massive vector
particle, thereby realizing the effective vortex mass con-
jectured in [25].

GR
T0iT0i ¼ −w0

�
1 −

ðkiÞ2
k2

� ðω2 − k2Þ
ðω2 − k2Þ − 1

χ2
ð76Þ

Note the similarity of this propagator to one of a massive
vector particle, confirming the analogy with the Higgs
mechanism argued for in the previous subsection.
Equation (76) can be used in Eq. (73) to obtain the

propagators of all the other components of the energy-
momentum tensor. Using dimensional regularization we
obtain, in the k ¼ 0 frame GRð2Þ

TijTkl
ðω;k ¼ 0Þ ¼

¼ T2χ4Hij
kl

ð4πÞ2 μ2ϵ
�
1

ϵ̂
ð2M2 þM2p2 þM4Þ þ 2

3

�
p4

5
−M2p2 − 3M4

�
þ
Z

1

0

dxð3a4 þ 6a2x2p2 þ x4p4Þlnða2=μ2Þ
�

ð77Þ

where a ¼ p2xðx − 1Þ þM2, 1=ϵ̂ ¼ 1=ϵþ γe þOðϵÞ, μ2ϵ ¼ 1þ 2ϵ ln μ. After algebra manipulations, the cutoff-
independent part of the propagator reduces to

GRð2Þ
TijTkl

ðwÞ ¼ T2Hij
kl

ð4πÞ2
�
−1 −

2

3
χ2 þ

�
6þ 2ω2χ2 þ χ4

4

�
ln

�
1

χ2μ2

��
ð78Þ

which remains finite for any nonzero χ2 but diverges at
χ → 0.
Thus we have explicitly confirmed the intuition of [1] at

the level of the propagator: once 1-loop corrections are
included, the presence of vortical susceptibility, by giving a
mass-like gap determined by χ to vortices, stabilizes the
vorticity divergences described in [13].

VI. DISCUSSION AND CONCLUSION

We used some common effective field theory techniques
to study the correlation function of hydrodynamic varia-
bles. In the Sec. II, the Green’s functions arising from the
linear response theory established an easy way to character-
ize the dynamics of a system with spin and vorticity close to
equilibrium. Thus, we could relate transport coefficients of

polarization χ (examined in Sec. II B) and τy (examined in
Sec. IV) to correlators. In order to generalize to correlation
functions of nonconserved quantities, in Sec. III we used
variational approach where the background perturbation of
the vortical field and the metric produce all possible
fluctuations in according with the symmetry of the system.
These Green’s functions contain information on how the

presence of external vortex field modify the structure of our
hydrodynamic with spin, which as we find can give an
effective mass to the vortices. Under the presence of an
external vortical source the symmetry under reversal time,
homogeneity and isotropy are no longer valid. Initially, we
have hxx ¼ hyy ¼ hzz due to SOð3Þ group and after turning
on the source, the pressure changes from the usual form
of ideal fluid. Therefore, the direction along the axial
rotation axes is P⊥ ¼ 1

2
Ta
a ¼ 1

2
ðTx

x þ Ty
yÞ, whereas the
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perpendicular direction corresponds to Pk ¼ 1
2
Tz
z. Each

perturbation relates different process of such a system,
the transverse direction contributes to aligning of spins
(polarization), while the longitudinal one corresponds to
standard convective processes. In Secs. VA and V B we
relate these to the one-loop effective action and higher order
corrections of linear hydrodynamics.
Dissipation, given by the magnon relaxation to equilib-

rium, has proven to be necessary to preserve causality.
Including it results in long time-tails of the correlators
involving vorticity, in analogy to the correlators involving
thermal fluctuations of the type studied in [27]. This
confirms the intuition, described in [1], that polarization
from vorticity and hydrodynamic backreaction from ther-
mal fluctuations arise at the same order in effective theory
expansion. Given the concurrent experimental discovery of
hydrodynamic phenomena in small systems [39] and
polarization [20], these relations give us hope to pin down
quantitatively the effect of microscopic fluctuations on
hydrodynamic evolution from experimental data.
An obvious extension is to include the microscopic shear

and bulk viscosities, and study their interplay with the
transport coefficients examined in this section. This could
be done within a Schwinger-Keldysh formalism [14,16,18],
and will have to be left to a forthcoming work.
Another issue left for further work is the discussion of

microscopic non-Abelian gauge symmetry, which is in
practice the interchange between angular momentum (car-
ried by vorticity) and polarization (carried by yμν and Yμν.
Mathematically, this would be achieved by making sure all
correlation functions are gauge-covariant. Earlier literature
[40] showed that this cannot be achieved so easily, and
indeed the left-hand side of equations such as (10) would

have different transformation properties from the right-
hand side. As [40] suggests, nonhydrodynamic modes
might be necessary to resolve this ambiguity.
Finally, a connection with kinetic theory techniques, of

the type used in [4–7,11] will be necessary to provide a
microscopic description of the coefficients described in this
work. As written in the introduction, this needs to be left for
a forthcoming work, although progress in this area is rapid.
For example, the nonlocality of the collision term derived in
[11] imposes limits on relaxation time comparable to the
causality requirements discussed here.
In conclusion, in this work we investigated the linear

response and fluctuation-dissipation properties of the theory
developed in [1–3], We found that these early results are
consistent with linear response theory, derived fluctuation-
dissipation relations and built an effective Lagrangian to one-
loop, confirming that microscopic polarization can act as a
“Higgs mechanism” for vorticity, giving a mass to vortices
and stabilizing the theory. This confirms the intuition of [25],
and could lead to a stable theory which includes microscopic
fluctuations. We also found that the long-time tales in the
correlators between vortical variables behave analogously to
the fluctuation tails studied in [27], confirming the relation
between thermodynamic fluctuations and polarization.
Phenomenological applications of this theory to heavy ion
collisions and cosmology can now be developed.
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