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Propagation of photons (or of any spin-1 boson) is of interest in different kinds of nontrivial background,
including a thermal bath, or a background magnetic field, or both. We give a unified treatment of all such
cases, casting the problem as a matrix eigenvalue problem. The matrix in question is not a normal matrix,
and therefore care should be given to distinguish the right eigenvectors from the left eigenvectors. The
polarization vectors are shown to be right eigenvectors of this matrix, and the polarization sum formula is
seen as the completeness relation of the eigenvectors. We show how this method is successfully applied to
different nontrivial backgrounds.
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I. INTRODUCTION

Propagation of electromagnetic waves through any
background is a subject of huge interest. In the language
of quantum theory, we rename this subject as the question
of photon propagation. Using the methods of quantum field
theory in thermal background, the question of photon
propagation was analyzed in a thermal background [1,2],
and well-known attributes of material medium like the
dielectric constant and the magnetic permeability were
identified in the framework of the quantum field theoretical
treatment. It was also shown how to extend this analysis to
chiral media [3] and describe natural optical activity in
quantum field theoretic terms. The propagation of photons
in pure magnetic fields was discussed later [4–6], and an
expression for the Faraday effect was derived in terms of
form factors that appear in the quantum theoretical frame-
work. The more general case of a magnetic field in a
medium, combining the two kinds of backgrounds men-
tioned earlier, has also been a subject of great interest [4,7].
In many cases the discussion does not explicitly mention
photons, but rather gluons [8–10] or even ρ-mesons [11],
but that makes no difference in the general structure of the
problem. Basically, it is the problem of the propagation of a
spin-1 boson in a nontrivial background.
For each kind of background, one introduces appropriate

parameters and notations, and obtains the photon propa-
gator and dispersion relations from there. What we propose
to do in this paper is to develop a unified approach that
works for all kinds of background. This will give us

important insight into the question of photon propagation,
which we will then apply to specific backgrounds, redis-
covering some of the old formulas with the new insight, and
finding expressions for the polarization vectors which are
sometimes difficult to find from the usual approach.

II. THE SELF-ENERGY FUNCTION

The momentum-space Lagrangian of a system is related
to the action by the relation

A ¼
Z

d4k
ð2πÞ4 LðkÞ: ð1Þ

For the photon field in the vacuum, the momentum-space
Lagrangian is given by

L0ðkÞ ¼ −
1

2
k2η̃μνAμð−kÞAνðkÞ − Aμð−kÞjμðkÞ; ð2Þ

where

η̃μν ¼ ημν −
kμkν
k2

: ð3Þ

Quantum corrections in the vacuum give an extra contri-
bution which has the same generic form, and therefore can
be absorbed in the definition of the photon field. In a
nontrivial background, however, the photon Lagrangian
will have nontrivial contributions, and will therefore be
modified to

L ¼ L0 þ L0; ð4Þ
where the quadratic part of L0 can be written as

L0ðkÞ ¼ 1

2
ΠμνðkÞAμð−kÞAνðkÞ: ð5Þ
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Here, ΠμνðkÞ represents the self-energy function. In addi-
tion to the momentum k, it can depend on other parameters
that characterize the background. Those parameters depend
on the nature of the background, and are not shown here in
order to maintain generality.
In order to proceed, we need to know some properties of

the self-energy function. We itemize them now.
Gauge invariance: Gauge invariance says that adding a
term proportional to kμ to the photon field should not
have any physical implication. This property gives the
relations

kμΠμνðkÞ ¼ 0; ð6aÞ

kνΠμνðkÞ ¼ 0: ð6bÞ

Bose symmetry: Bose symmetry is the statement that the
Lagrangian should be invariant under the interchange
of the two photon field factors. Interchange of the two
photon fields means the changes

k → −k; μ ↔ ν: ð7Þ

Clearly Eq. (2) satisfies this interchange trivially. For
the extra contribution of Eq. (5), however, it implies
that the self-energy function must satisfy the relation

ΠμνðkÞ ¼ Πνμð−kÞ: ð8Þ

So, Πμν need not be symmetric in its indices, as is
often claimed. Equation (8) only says that in Πμν, the
terms symmetric in the indices should be even in k,
whereas the antisymmetric terms should be odd [3].

Hermiticity: There is a constraint from the Hermiticity of
the Lagrangian. Since the coordinate space version of
L must be Hermitian, we must have

½LðkÞ�† ¼ Lð−kÞ: ð9Þ

The L0 part automatically satisfies this condition. To
see what it implies for L0, let us first note that in the
co-ordinate space, the field AμðxÞ is a Hermitian field,
so that its Fourier transform satisfies the relation

ðAμð−kÞÞ† ¼ Aμðk�Þ: ð10Þ

In this paper, we discuss only the dispersive part of the
self-energy for which k is real. Then, taking the
Hermitian conjugate of Eq. (5), we obtain

½L0ðkÞ�† ¼ 1

2
ðΠμνðkÞÞ�ðAμð−kÞÞ†ðAνðkÞÞ†

¼ 1

2
ðΠμνðkÞÞ�AμðkÞAνð−kÞ: ð11Þ

Imposing the condition of Eq. (9) on the L0 part, we
get

ðΠμνðkÞÞ� ¼ Πμνð−kÞ; ð12Þ

comparing Eq. (5) with Eq. (11).
We can summarize the results of Eqs. (8) and (12) by

writing

Πμνð−kÞ ¼ ðΠμνðkÞÞ� ¼ ΠνμðkÞ: ð13Þ

Any tensor can be written as a sum of a symmetric and an
antisymmetric tensor. Equation (13) says that, for the
dispersive part,
(1) The symmetric part ofΠμν would be real and an even

function of k.
(2) The antisymmetric part of Πμν would be purely

imaginary, and odd in k.
In order to explore properties of the self-energy function,

it will be convenient to define a matrixΠðkÞwhose element
in the μth row and νth column isΠμ

νðkÞ. Note that these are
the objects with one up and one down index, not the objects
that appear in Eq. (13). The object Πμν is the element in the
μth row and νth column of the matrix ηΠ, where η is a
matrix whose element in the μth row and νth column is ημν.
In the matrix notation, Eq. (13) becomes

½ηΠð−kÞ�⊤ ¼ ½ηΠðkÞ�† ¼ ηΠðkÞ; ð14Þ

It will be easier to understand these equations if we write
them in terms of the matrix elements. For that, we only
need to raise the index μ in Eq. (13). Since

Πν
μ ¼ ηναΠ

α
βη

βμ; ð15Þ

we obtain

Πμ
νð−kÞ ¼ ðΠμ

νðkÞÞ� ¼ ηναΠ
α
βðkÞηβμ; ð16Þ

or, more explicitly,

Π0
0ð−kÞ ¼ ½Π0

0ðkÞ�� ¼ Π0
0ðkÞ; ð17aÞ

Π0
jð−kÞ ¼ ½Π0

jðkÞ�� ¼ −Πj
0ðkÞ; ð17bÞ

Πi
jð−kÞ ¼ ½Πi

jðkÞ�� ¼ Πj
iðkÞ: ð17cÞ

These equations clearly tell us which elements of the
matrix Π are real and even functions of k, and which are
imaginary and odd function of k. The implication of these
conditions on various form factors appearing in the self-
energy will be indicated when we talk about specific
backgrounds in Sec. V.
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III. POLARIZATION VECTORS

So far, we have not interpreted the gauge invariance
condition in the matrix language. We now notice that
Eq. (6b) can be written as

Πμ
νkν ¼ 0: ð18Þ

In the matrix notation, this equation becomes

Πk ¼ 0; ð19Þ

where k is the column matrix whose elements are kμ. This is
an eigenvalue equation, implying that k is an eigenvector of
the matrix Π, and the corresponding eigenvalue is zero.
This fact prompts us to look at the eigensystem ofΠ. We

can define eigenvectors of this matrix through the relation

ΠϵA ¼ ΛAϵA; ð20Þ

where the ΛA’s are eigenvalues. Note that, although we
have used the convention of implied summation on Lorentz
indices earlier, there is no implied sum on the index that
labels the eigenvectors, here or elsewhere in this article.
Also, it does not matter whether this index appears as
subscript or superscript: they mean the same thing. We just
put the index wherever it is convenient in any formula.
To be precise, Eq. (20) tells us that the ϵA’s are the right

eigenvectors of the matrix Π. To check what the left
eigenvectors are, we multiply Eq. (20) from the left by
the matrix η and take the Hermitian conjugate of the
resulting equation to obtain

ϵ†AðηΠÞ† ¼ Λ�
AðηϵAÞ†: ð21Þ

We can now use Eq. (14), and write this equation in the
form

ðηϵAÞ†Π ¼ Λ�
AðηϵAÞ†; ð22Þ

using η ¼ η†.
Equation (22) is also an eigenvalue equation, except that

here the eigenvectors multiply the matrix from the left. We
see two things from this equation. First, we see that the
eigenvalues ΛA must be real, since they are defined as the
solution of the equation

detðΠ − Λ1Þ ¼ 0; ð23Þ

an equation which makes no reference to the right or
left eigenvectors. Second, we see that, corresponding to a
particular eigenvalue ΛA, the right eigenvector RA and the
left eigenvector LA are related by the matrix η:

RA ¼ ϵA ⇒ LA ¼ ηϵA: ð24Þ

It is not surprising that the right and left eigenvectors are
not the same. In fact, this is expected for any matrix which
is not normal, i.e., which does not commute with its
Hermitian conjugate. Since Π is not a normal matrix, some
properties of the left and right eigenvectors of such matrices
are worth summarizing here [12].
Let us adopt a more general notation, and write the right

and left eigenvector equations of a matrix M as

MRA ¼ μARA; ð25aÞ

L†
BM ¼ μBL

†
B: ð25bÞ

If we multiply the first equation by L†
B from the left and

the second equation by RA from the right, the left sides of
the two resulting equations will be the same, implying the
following relation involving the right sides:

ðμA − μBÞL†
BRA ¼ 0: ð26Þ

Thus, L†
BRA ¼ 0 if μA ≠ μB, and we can choose the right

and the left eigenvectors in a way that the equation

L†
BRA ¼ ζAδAB ð27Þ

holds, where the ζA’s are normalization constants.
The second important property concerns the matrix

defined as

X ¼
X
A

1

ζA
RAL

†
A: ð28Þ

Clearly, using Eq. (27), we see that

XRB ¼ RB; ð29aÞ

L†
BX ¼ L†

B: ð29bÞ

This means that all eigenvalues of X are equal to 1,
implying that X is the identity matrix:

X
A

1

ζA
RAL

†
A ¼ 1: ð30Þ

A particularly useful outcome of this relation can be seen
by multiplying by M from the left side, and using Eq. (25)
to obtain

M ¼
X
A

μA
ζA

RAL
†
A: ð31Þ

It shows that a matrix can be written in terms of its
eigenvectors and eigenvalues.
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Let us now leave the general discussion and return to the
matrix Π obtained from the self-energy. We have already
noticed that k is one of its right eigenvectors. We denote this
fact by writing

ϵð0Þ ∝ k; ð32Þ

or, in component notation,

ϵμð0Þ ∝ kμ: ð33Þ

Leaving this one aside, there are three more eigenvectors.
These are the polarization vectors, which we will denote by
ϵa, with a lowercase roman index that runs from 1 to 3. The
corresponding left eigenvectors will be ηϵa.
Equation (27) now implies the relation

k†ηϵa ¼ 0: ð34Þ

In indexed notation, this reads

kμϵaμ ¼ 0: ð35Þ

There is also the relation of orthogonality of the polariza-
tion vectors. If the momentum vector kμ is a timelike vector,
the polarization vectors must be spacelike, and we can
impose

ϵ†aηϵb ¼ −δab; ð36Þ

which amounts to the choice

ζa ¼ −1 for a ¼ 1; 2; 3: ð37Þ

In indexed notation, Eq. (36) means

ðϵμaÞ�ϵbμ ¼ −δab; ð38Þ

and Eq. (31) gives

Π ¼ −
X
a

ΛaϵaðηϵaÞ†: ð39Þ

The Λa’s are the eigenvalues of Π, as defined earlier. Note
that the sum is only on the three polarization vectors. The
other eigenvector does not contribute since it is associated
with a null eigenvalue. In the indexed notation, we can
write the last equation as

Πμ
ν ¼ −

X
a

Λaϵ
μ
aðϵaνÞ�: ð40Þ

This relation is easier to deal with using the matrix ηΠ
which has both lower indices. We write

Πρν ¼
X
a

ΛaPa
ρν; ð41Þ

where

Pa
ρν ¼ −ϵaρðϵaνÞ�: ð42Þ

Note that these objects satisfy the relation

ηνλPa
μνPb

λρ ¼ δabPa
μρ: ð43Þ

So the Pa’s are, in some sense, projectors for the different
polarization vectors. Because of Eq. (35), they satisfy the
relations

kμPa
μν ¼ 0; ð44aÞ

kνPa
μν ¼ 0: ð44bÞ

Note that these equations are exactly similar to those in
Eq. (6). This must be the case since Πμν is a linear super-
position of these projection tensors, as shown in Eq. (41).
Equation (30) provides more information about the

polarization vectors. Applying it on the matrix Π, we
obtain the relation

kμkν
k2

−
X
a

ϵμaðϵaνÞ� ¼ δμν ; ð45Þ

which can be rewritten as

X
a

Pa
μν ¼ η̃μν: ð46Þ

This is the polarization sum formula.

IV. PROPAGATOR AND DISPERSION RELATIONS

The equation of motion of the photon field that follows
from Eq. (4) is

½−k2η̃μν þ ΠμνðkÞ�AνðkÞ ¼ jμðkÞ; ð47Þ

where jμ is the current that the photon couples to. The
equation for the propagator, after adding a gauge fixing
term, is

�
−k2η̃μν þ ΠμνðkÞ þ

1

ξ

kμkν
k2

�
Dνρ ¼ δρμ: ð48Þ

Substituting η̃μν from Eq. (46) and using the expression
of Eq. (41) for Πμν, we obtain the following equation that
defines the propagator:
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�X
a

ð−k2 þ ΛaÞPa
μν þ

1

ξ

kμkν
k2

�
Dνρ ¼ δρμ: ð49Þ

It can now be easily seen that the propagator is given by

DμνðkÞ ¼ −
X
a

Pμν
a

k2 − Λa
þ ξ

k2
kμkν

k2

¼
X
a

ϵμaϵνa
�

k2 − Λa
þ ξ

k2
kμkν

k2
: ð50Þ

For the polarization a, the dispersion relation is the relation
for which the propagator blows up, i.e.,

k2 ¼ Λa: ð51Þ

It has to be remembered that Λa is a function of the
momentum. Thus, this is an implicit equation that has to be
solved to obtain the dispersion relation. The polarization
vector that satisfies this dispersion relation is ϵμa.

V. EXAMPLES OF SPECIFIC BACKGROUNDS

We will now illustrate how this formalism applies to
various nontrivial backgrounds. We will always choose the
photon momentum in the x-direction, i.e., in matrix form
we will have

k ¼

0
BBB@

ω

K

0

0

1
CCCA: ð52Þ

Then the components of the matrix η̃ are given by

η̃ ¼ 1

k2

0
BBB@

−K2 ωK 0 0

−ωK ω2 0 0

0 0 k2 0

0 0 0 k2

1
CCCA; ð53Þ

remembering that the matrix form corresponds to the
components of the mixed tensor, whose first index is
contravariant and the second index is covariant. Other
tensors necessary for building up the self-energy tensor
depend on the type of background, and will be defined as
we go along.

A. Thermal background

A thermal background is characterized by a temperature
and a chemical potential, both of which are scalars. There is
one vector associated with a thermal medium, which is the
center of mass velocity of the medium. Let us call it uμ. We
can define

ũμ ¼ η̃μρuρ; ð54Þ

which satisfies the relation

kμũμ ¼ 0: ð55Þ

Using this, one can form the tensor

Lμν ¼
ũμũν
ũ2

; ð56Þ

which vanishes when contracted with either kμ or kν.
Therefore, it is a tensor that can be used for writing
Πμν. Of course η̃μν is another such tensor. So, we can
write the self-energy as [1]

Πμν ¼ aη̃μν þ bLμν; ð57Þ

where a and b are Lorentz invariants.
The matrix Π follows from Eq. (57) once we decide on

the components of uμ. Let us work in a frame where the
medium is at rest, so that the time component of uμ is equal
to 1 and all other components are zero. In this frame,
we find

Π¼ 1

k2

0
BBB@

−ðaþbÞK2 ðaþbÞωK 0 0

−ðaþbÞωK ðaþbÞω2 0 0

0 0 ak2 0

0 0 0 ak2

1
CCCA: ð58Þ

Equation (17) implies that the form factors a and b are real,
and are even functions of k.
It is easy to check that k, defined in Eq. (52), is a right

eigenvector and ηk is a left eigenvector of this matrix, with
eigenvalue equal to zero. Among the others, there is a
nondegenerate eigenvalue

ΛðLÞ ¼ aþ b; ð59Þ

whose eigenvector is ũμ. In matrix notation, we can write
the eigenvector corresponding to this mode as

ϵðLÞ ∝ ũ; ð60Þ

and we can define the projector corresponding to this
mode as

PðLÞ
μν ¼ Lμν: ð61Þ

Since the spatial component of this polarization vector is
along the direction of the photon momentum, this is called
the longitudinal mode.
In compliance with Eq. (46), the sum of the projectors of

the other two modes will be given by
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PðTÞ
μν ¼ η̃μν − PðLÞ

μν ; ð62Þ

and these two modes will be transverse and degenerate,
with eigenvalues

ΛðTÞ ¼ a: ð63Þ

Following Eq. (50), we can now write down the photon
propagator:

DμνðkÞ ¼ −
Pμν
ðTÞ

k2 − ΛðTÞ
−

Pμν
ðLÞ

k2 − ΛðLÞ
þ ξ

k2
kμkν

k2
: ð64Þ

The dispersion relations of the different modes follow
from Eq. (51).

B. Chiral thermal medium

It was pointed out [3,13] that Eq. (57) is not the most
general self-energy tensor that one can write using the two
4-vectors kμ and uμ. Rather, the general form would be

Πμν ¼ aη̃μν þ bLμν þ icCμν; ð65Þ

where

Cμν ¼
1

κ
εμνλρkλuρ: ð66Þ

where

κ ¼
����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk · uÞ2 − k2

q ����; ð67Þ

a Lorentz invariant factor inserted to ensure that Cμν is
dimensionless, at par with the other tensors that appear in
Eq. (65). With our choice of Eq. (52), κ ¼ jKj.
Note that the extra term in the self-energy is not symmetric

in the Lorentz indices. But this symmetry was never one of
the requirements mentioned in Sec. II. The factor of i
accompanying this tensor in Eq. (65) ensures that the
associated form factor c is real, according to Eq. (12).
The matrix Π can now be easily constructed, and it is

Π¼ 1

k2

0
BBB@

−ðaþbÞK2 ðaþbÞωK 0 0

−ðaþbÞωK ðaþbÞω2 0 0

0 0 ak2 ick2K=κ

0 0 −ick2K=κ ak2

1
CCCA:

ð68Þ

Equation (17) shows that all three form factors, a, b, and c,
are even functions of k, and all are real.
The longitudinal eigenvector and its eigenvalue are

exactly the same as that found in the earlier case. But

the transverse eigenvalues are no more degenerate. They,
and their corresponding eigenvectors, are as follows:

Λð�Þ ¼ a� cK=κ; ϵð�Þ ∝

0
BBB@

0

0

1

∓ i

1
CCCA: ð69Þ

Thus, the propagating modes are circularly polarized modes,
and the left and right circular polarized waves have different
dispersion relations [3,13]. The linearly polarized transverse
waves are not eigenvectors of propagation. If one sends in a
linearly polarized wave, its direction of polarization will
rotate. This is the phenomenon of optical activity.

C. Background magnetic field

Optical activity can also be induced by a background
magnetic field. This phenomenon is called the Faraday
effect. In order to investigate it, we first need to find tensors
built from the background field tensor Bμν whose con-
traction vanishes with the photon momentum vector. Two
such tensors were identified [4]:

Mμν ¼
1

k2
εμνστkσkλBλτ;

M0
μν ¼ Bμν −

kμkλBλν

k2
þ kνkλBλμ

k2
: ð70Þ

In this article, just to keep the formulas simple-looking, we
will assume that the self-energy tensor does not have a term
proportional to M0

μν, i.e., we have

Πμν ¼ aη̃μν þ ibMμν: ð71Þ

Note that we have put a factor of i in the second term,
in order to make sure that the form factor b is real, as
demanded from Eq. (13). It is also to be noted that the form
factor b has to be an odd function of k, which follows
from Eq. (8).
In order to write the matrix Π explicitly, let us say that

the background magnetic field is in the x-y plane, making
an angle β with the x-axis. Then the only nonzero
components of the background field tensor Bμν are the
following:

B23 ¼ −B32 ¼ cos β;

B31 ¼ −B13 ¼ sin β; ð72Þ

where we have normalized the magnitude of the magnetic
field to be unity. The matrixΠ that follows from Eq. (71) is
then easily calculated:
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Π ¼ 1

k2

0
BBB@

−aK2 aωK −ib0K2 0

−aωK aω2 −ib0ωK 0

−ib0K2 ib0ωK ak2 0

0 0 0 ak2

1
CCCA; ð73Þ

where

b0 ¼ b sin β: ð74Þ

Note that if the magnetic field is parallel to the photon
momentum, i.e., if sin β ¼ 0, there is no effect. For what
follows, we assume that b0 ≠ 0, i.e., the magnetic field is
not parallel to the photon momentum.
Apart from the trivial eigenvector which is the photon

momentum, we can easily see that there is one eigenmode
with

Λð3Þ ¼ a; ϵð3Þ ¼

0
BBB@

0

0

0

1

1
CCCA: ð75Þ

This is the mode that is perpendicular to both the magnetic
field and the photon 3-momentum. The other two eigenm-
odes can be easily solved, with the result:

Λð�Þ ¼ a� b0Kffiffiffiffiffi
k2

p ; ϵð�Þ ¼

0
BBB@

K

ω

�i
ffiffiffiffiffi
k2

p

0

1
CCCA: ð76Þ

These are in general elliptically polarized states. As in the
case of chiral thermal medium, we see that the linearly
polarized states are not eigenmodes of propagation. Thus, if
a linearly polarized wave is sent through a magnetic field,
its polarization vector will rotate as it moves. This is
Faraday rotation [4].

D. Magnetic field in a thermal medium

We now go to the more complicated case where there
is a thermal bath as well as a magnetic field. Because of
the presence of the 4-vector uμ, we can define now [7] a
4-vector for the magnetic field by the relation

nμ ¼ 1

2
εμνλρuνBλρ: ð77Þ

It is easier to work with this vector rather than with the
background field tensor.
We can define an associated vector

ñμ ¼ η̃μνnν; ð78Þ

which satisfies the relation

kμñμ ¼ 0: ð79Þ

So, in Πμν, we can have a term proportional to

nμν ¼
ñμñν
ñ2

; ð80Þ

because the said term will satisfy Eq. (6). There are other
tensors which will satisfy Eq. (6). For example, one can
consider

Sμν ¼
ũμñν þ ñμũνffiffiffiffiffiffiffiffiffiffi

ũ2ñ2
p : ð81Þ

Detailed analysis of photon dispersion was made [7] with
these four tensors. However, there can be many other
tensors, including some which are antisymmetric in the
indices. The list is quite long [4]. Here, we will take one of
the antisymmetric tensors for the purpose of illustration:

Dμν ¼
ũμñν − ñμũνffiffiffiffiffiffiffiffiffiffi

ũ2ñ2
p : ð82Þ

So we will define the self-energy tensor as a sum involving
these tensors:

Πμν ¼ aη̃μν þ bLμν þ cnμν þ dSμν þ id0Dμν: ð83Þ

With the velocity 4-vector of the thermal bath defined as
in Sec. VA, and the magnetic field in this frame assumed
to have the components specified in Sec. V C, we can
construct the matrix Π easily, using Eq. (83). It will be
given by

Π ¼ 1

k2

0
BBBBB@

−σK2 σωK γ K
ω k

2 0

−σωK σω2 γk2 0

−γ� K
ω k

2 γ�k2 σ0k2 0

0 0 0 ak2

1
CCCCCA
: ð84Þ

where we have used the shorthand

σ ¼ aþ bþ c cos2 αþ 2d cos α; ð85aÞ

σ0 ¼ aþ c sin2 α; ð85bÞ

γ ¼ ½c cos αþ ðdþ id0Þ� tan β cos α: ð85cÞ

The angle α appearing in these equations is related to the
angle β that appears in Eq. (72) through the formula

cos α ¼ ω cos βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 cos2 β þ k2 sin2 β

p : ð86Þ
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One eigenvalue and the corresponding eigenvector is
exactly the same as that given in Eq. (75). The other
two nonzero eigenvalues satisfy the equation

Λ2 − ðσ þ σ0ÞΛþ
�
σσ0 − jγj2 k

2

ω2

�
¼ 0; ð87Þ

so that

Λ ¼ 1

2

�
σ þ σ0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ − σ0Þ2 þ 4jγ2jk2=ω2

q �
: ð88Þ

The eigenvectors corresponding to these two eigenvalues
are of the form

ϵðaÞ ∝

0
BBB@

γK

γω

ðΛðaÞ − σÞω
0

1
CCCA for a ¼ 1; 2: ð89Þ

In fact, the results of both Secs. VA and V C can be seen as
special cases of the result given here.

VI. AXISFREE NOTATION

Throughout Sec. V, we have made specific choices for
the directions of the photon momentum and other vectors
such as uμ and bμ. This fact should not be seen as a
limitation of the method described. Often, the choices
meant no loss of generality. For example, consider the
choices made in Sec. V C. We can always choose the
axes in such a way that the 3-momentum of the photon is
in the x-direction, and then define the x-y plane to
contain the direction of the magnetic field. There is
no loss of generality in assuming the forms given in
Eqs. (52) and (72).
If onewants different directions for some reason, one just

needs to write the relevant vectors in the appropriate form.
For example, if one wants to keep the direction of the
photon 3-momentum arbitrary in the coordinate axes,
one just needs to redo the exercise by replacing Eq. (52)
with a different matrix, whose last three elements should
be the Cartesian components of a 3-vector in terms of the
magnitude κ and the polar and azimuthal angles. It will just
make the matrices look a bit more cumbersome, but the task
remains the same in principle.
However, it is not difficult to take an alternative route,

viz., to write the results in a form that is free from the
choices of the axes. All we need to do is to recast the
equations in terms of the vectors and tensors that appear in
the problem. This was already done for the case of a
thermal background, where we saw that the longitudinal
polarization vector is just ũμ. Here, we outline how such
a treatment can be extended to problems with a magnetic
field.

The important task is to find a set of four vectors which
are linearly independent, and can therefore serve as a basis.
One of them is surely kμ, and we define the notation

eμð0Þ ¼ kμ: ð90Þ

There is no pressing need for normalizing any of the basis
vectors, so we will not bother.

A. Background magnetic field

Here, we need to construct some vectors which are
orthogonal to kμ. We can construct a series of vectors,
contracting kμ with different powers of the magnetic field
tensor, like

ðk · BÞμ ¼ kλBλμ;

ðk · B · BÞμ ¼ ðk · BÞλBλμ ¼ kρBρλBλμ; ð91Þ

and so on. We can use these vectors to form a mutually
orthogonal set of vectors. Starting with kμ, we can apply the
Gram-Schmidt orthogonalization process to obtain the next
two in the set:

eμð1Þ ¼ kλBλμ ≡ ðk · BÞμ; ð92aÞ

eμð2Þ ¼ ðk · B · BÞμ þ kμ

k2
ðk · BÞ2: ð92bÞ

We can go on with the next member of the type shown
in Eq. (91). But it is much easier to complete the set by
introducing the vector

eμð3Þ ¼
1

k2
εμνλρkνðk · BÞλðk · B · BÞρ; ð92cÞ

because for any three 4-vectors Aμ, Bμ, Cμ, the object

Vμ ¼ εμνλρAνBλCρ ð93Þ

will be orthogonal to all three. The prefactor 1=k2 has
been put in Eq. (92c) just to ensure that eμð3Þ has the same

physical dimension as the other two. It is not really
necessary to ensure that, but it is convenient.
We can now see the effect of contracting the self-energy

tensor, given in Eq. (71), with these basis vectors.
Contraction with kμ will give zero, of course. For the other
ones, we get

Πμ
νeνð1Þ ¼ aeμð1Þ; ð94aÞ

Πμ
νeνð2Þ ¼ aeμð2Þ þ ibeμð3Þ; ð94bÞ

Πμ
νeνð3Þ ¼ aeμð3Þ þ ib

ðk · BÞ2
k2

eμð2Þ: ð94cÞ
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Equation (94a) shows that eμð1Þ is an eigenvector, with

eigenvalue a. For the choice of the axes made in Sec. V C,
this eigenvector happened to be along the z-axis, which is
what shows in Eq. (75). The other two eigenvectors are
linear combinations of the basis vectors eμð2Þ and e

μ
ð3Þ. These

eigenvectors can easily be found, and the result is

Λð�Þ ¼ a� rb; ϵð�Þ ¼ eð3Þ � ireð2Þ; ð95Þ

where

r2 ¼ −
ðk · BÞ2

k2
: ð96Þ

Despite the negative sign in this formula, r is a real number,
because k · B is a spacelike vector whereas k is timelike. We
have not made any effort for writing the eigenvectors in
normalized form.
Equations (94a) and (95) give the axisfree definition of

the eigenvalues and eigenvectors. With the choices made
in Sec. V C, we have ðk · BÞ2 ¼ −K2 sin2 β, and so the
eigenvalues shown in Eq. (76) follow. The eigenvectors
also reduce to the ones showed there, apart from the overall
normalization which has not been adjusted in Eq. (95)
anyway.

B. Magnetic field in a thermal medium

Here also, we can start with the vector kμ. Then, in the
list, we can add

eμð1Þ ¼ ũμ; ð97aÞ

which is orthogonal to kμ. The next one can involve ñν. In
order that it is orthogonal to both eμð0Þ and eμð1Þ, we choose

eμð2Þ ¼ ñμ −
ũ · ñ
ũ2

ũμ: ð97bÞ

And the final one can be chosen as

ϵμð3Þ ¼ εμνλρkνũλñρ ¼ εμνλρkνuλnρ; ð97cÞ

which is obviously orthogonal to the other ones defined
earlier. We do not care about the normalization at this stage,
because it is not necessary.
We now contract the self-energy tensor with these basis

vectors. It will of course show that kμ is an eigenvector with
zero eigenvalue. On the other three, first of all, we will find
one which stands out, viz.,

Πμ
νeνð3Þ ¼ aeμð3Þ: ð98Þ

It means that eνð3Þ is an eigenvector of the matrix Πμ
ν, with

eigenvalue a. This was the result shown in Eq. (75).
For the other two basis vectors, we get equations of the

form

Πμ
νeνð1Þ ¼ P1e

μ
ð1Þ þQ1e

μ
ð2Þ;

Πμ
νeνð2Þ ¼ P2e

μ
ð1Þ þQ2e

μ
ð2Þ; ð99Þ

where

P1 ¼ aþ bþ c
ðũ · ñÞ2
ũ2ñ2

þ 2d
ũ · ñffiffiffiffiffiffiffiffiffiffi
ũ2ñ2

p ;

P2 ¼
ũ2ñ2 − ðũ · ñÞ2

ũ4ñ2

�
cũ · ñþ ðdþ id0Þ

ffiffiffiffiffiffiffiffiffiffi
ũ2ñ2

p 	
;

Q1 ¼
1

ñ2

�
cũ · ñþ ðd − id0Þ

ffiffiffiffiffiffiffiffiffiffi
ũ2ñ2

p 	
;

Q2 ¼ aþ c

�
1 −

ðũ · ñÞ2
ũ2ñ2

�
: ð100Þ

This means that the eigenvectors will be linear combina-
tions of eμð1Þ and eμð2Þ. If we ignore the task of normalizing

the eigenvectors and call an eigenvector eμð1Þ þ reμð2Þ, then r
will be given by

r ¼ 1

2P2

�
Q2 − P1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2 − P1Þ2 þ 4Q1P2

q 	
; ð101Þ

and the eigenvalue will be given by

Λ ¼ 1

2

h
Q2 þ P1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2 − P1Þ2 þ 4Q1P2

q i
: ð102Þ

It is easy to see that, with the choice of axes made in
Section V, this expression reduces to that in Eq. (88).

VII. COMMENTS

We started this article by saying that we want to proceed,
as much as possible, without committing ourselves to any
specific background. We laid down our formalism in Sec. II
through Sec. IV, where we showed that the problem can be
cast in the form of a problem in matrix algebra. In Sec. V,
we illustrated the method with some choices of background
and choices of specific axes. In Sec. VI, we went one
step further and found the polarization vectors and the
dispersion relation in a completely axisfree notation in the
cases of a background magnetic field, with or without a
background medium.
Of course in the process one has to identify some tensors

which are orthogonal to the photon 4-momentum. This part
is the same as that in a conventional treatment [1–4,7]. The
difference in our approach is that, because we identify the
polarization vectors as eigenvectors of a matrix, it is easier
to find the polarization vectors. Our approach also shows
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that, no matter how many tensors participate in the making
of the self-energy, it is guaranteed that one will obtain three
polarization vectors, as is expected because the photon is a
spin-1 particle.
There is another piece of information that is easily

derived from the approach of Sec. VI. This is the question
of degeneracy of the dispersion relations. This question is
related to the possibility of defining the basis vectors in
the matrix formulation. We can always take the photon
momentum kμ as one of the basis vectors. If the background
is nontrivial, we will be able to add at least one more vector
to this list. That is not enough for lifting degeneracy of the
dispersion modes. If we have a third vector, then we can
also find a fourth one through the prescription of Eq. (93).
But even this is not enough: the four vectors so defined
must be linearly independent in order that they can form
a basis.
There is an easy check for linear independence. In the

demonstrative examples, we always chose the fourth basis
vector through Eq. (93). Clearly, this fourth vector cannot
be linearly dependent on the other three. We therefore need
to check whether the first three basis vectors are linearly
independent. If they are dependent, then the vector Vμ,
defined in Eq. (93), will be the null vector.
Clearly, eμð0Þ cannot be proportional to either e

μ
ð1Þ and e

μ
ð2Þ,

because the former is a timelike vector whereas the latter
ones are spacelike. Thus, our task reduces to finding
whether any combination of eμð1Þ and eμð2Þ can be the null
vector. Either any of them will have to be the null vector by
itself, or they must be proportional to each other.
For the case dealt with in Sec. VI A, one of these

possibilities mean that k · B is itself a null vector. This
means that the magnetic field is parallel to the spatial
direction of the photon momentum vector. In the notation

of Sec. V C, this means that β ¼ 0, and definitely it shows
degenerate modes. In the axisfree notation as well, we
see that this state of affairs imply r ¼ 0 in Eq. (96), so that
we have degenerate modes. Another alternative, viz. the
vanishing of eμð2Þ, is impossible because that requires

k · B · B, a spacelike vector, to be proportional to kμ, a
timelike vector.
For the case described in Sec. VI B, the basis vectors are

linearly dependent if ũμ and ñμ are proportional. In the
notation of Sec. V D, this means that the angle β vanishes,
and therefore so does α through Eq. (86). Then, from
Eq. (85), we find that γ ¼ 0, which means that the
eigenvalues obtained from Eq. (88) are σ and σ0. But,
for α ¼ 0, we get σ0 ¼ a from Eq. (85), so that this root is
degenerate with the root noted down in Eq. (75).
Overall, we find that the matrix formulation of the

photon propagation problem clears up many aspects of
the polarization vectors and dispersion relations which are
otherwise not easy to understand from the usual approach.
And, although we used the photon all along to describe the
methods, they are applicable to gluons, or any other spin-1
boson for which there is an associated gauge invariance.
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