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We calculate the two loop correction to the quark 2-point function with the nonzero momentum insertion
of the flavor singlet axial vector current at the fully symmetric subtraction point for massless quarks in the
modified minimal subtraction (MS) scheme. The Larin method is used to handle γ5 within dimensional
regularization at this loop order ensuring that the effect of the chiral anomaly is properly included within the
construction.
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I. INTRODUCTION

One of the more curious experimental results over a
generation ago was that of the EMC Collaboration [1].
They measured the origin of the proton spin and discovered
that against expectations it was not due in a major part to
the valence quarks. As the proton is a bound state of three
quarks it was widely assumed that the combination of their
quark spins would be the source of the overall spin-1

2
of the

proton. Instead the experiment observed that the gluons
binding the quarks together give a sizable contribution.
This was surprising due to the fact that in some sense the
gluons are sea partons. While the original experiment was
subsequently refined and improved to confirm the original
observation [2–5], a clear theoretical understanding was
sought to explain the phenomenon. As such a venture
requires the use of the strong sector of the Standard Model
described by quantum chromodynamics (QCD), tools
had to be developed and refined to tackle the problem.
Moreover, to do so one has to study an energy regime
which is in the infrared and hence outside the region where
perturbation theory is valid. Therefore the only viable
approach was the application of lattice gauge theory which
can access the nonperturbative structure of the proton
through heavy use of supercomputers. Clearly such an
exercise required new methods such as the inclusion of
dynamical fermions and the field is better placed now to
answer the theoretical question of the source of the proton
spin. This is not an isolated exercise for lattice studies.

As an aside it is worth mentioning that recently the
breakdown of the proton mass in terms of its constituent
entities such as quark, gluon, weak sector and anomaly
contributions has been accurately estimated on the lattice
[6]. This entailed measuring the diagonal components of
the energy-momentum tensor. Indeed the study given in [6]
has indicated that more accurate knowledge of the internal
proton structure can be adduced theoretically in the near
future. Parenthetically it is also worth noting the related
problem of the pressure inside the proton. Experimentally
this can be deduced accurately now as demonstrated in [7].
In terms of theoretical studies and in particular those for
the lattice such a pressure problem translates into requiring
precise measurements of the off-diagonal components of
the energy-momentum tensor. Such an exercise has been
carried out recently in [8,9]. However progress on studying
the source of the proton spin on the lattice over the last few
years can be seen in a nonexhaustive set of articles [10–14],
while a more detailed overview of this and the status of
future directions of hadron physics computed on the lattice
can be found in [15–18].
Concerning proton spin measurements on the lattice the

quantum field theory formalism behind such potential
calculations originate in the work of Ji [19]. There the
relevant, in the sense of important, operators were identi-
fied and it was shown how their expectation values relate to
the overall proton spin. Indeed central to the three proper-
ties of the proton mentioned already is the need to study
matrix elements of various key operators for each observ-
able. While the energy-momentum tensor provides the
main operator in relation to mass and pressure, in the spin
case it is the flavor singlet axial vector current or ψ̄γ5γμψ
where ψ and ψ̄ are the respective quark and antiquark of the
same flavor. Indeed one of the motivations for studying
the singlet axial vector operator is that the difference
between the singlet and nonsinglet cases provides a way
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of quantifying the strange quark contribution to the proton
spin [20–22]. Over the years similar quark bilinear oper-
ators have been widely studied on the lattice [20,23–28].
Aside from the associated matrix element which determines
the nonperturbative structure, the operator renormalization
has to be understood in the lattice regularized theory in
order to implement the renormalization group running over
momentum scales. In indicating the similar operators we
mean the flavor nonsinglet quark bilinear operators which
are termed scalar, vector, tensor, axial vector and pseudo-
scalar depending on their Lorentz properties. Moreover,
the matrix elements have been computed for a variety of
configurations. These break into two classes known as
forward and nonforward where the former has the operator
inserted at zero momentum in a quark 2-point function. In
the latter case it has a momentum flowing through it and the
square of that momentum and those of the two external
quarks can take different nonzero values. This nonforward
setup allows more freedom to probe detailed structure
within nucleons. Most lattice studies of the flavor axial
singlet current have been for the forward case [20,23–28],
and in the associated lattice renormalization scheme termed
the modified regularization invariant (RI0) scheme intro-
duced in [29,30].
One aspect of making lattice measurements in general is

that of ensuring the continuum limit is taken accurately. In
recent years to assist this the process has been adopted
where the relevant matrix element is evolved to the ultra-
violet region and matched to the continuum perturbative
expansion of the same matrix element or Green’s function.
Clearly the more loop orders that are available in the
perturbative expansion means the matching will be more
accurate and hence the lattice error estimates can be
improved. For quark bilinear operators the early work in
this direction was provided in [29,30]. In the context
of lattice spin measurements there have been studies
[23–28,31] where the nucleon isovector scalar, axial vector
and tensor charges were measured. For example, the
authors of [31] built on an earlier parallel study in [27]
where the nucleon axial form factors were computed and
the issues centered on the chiral anomaly taken into account
through a nonperturbative treatment. However in the
matching to the continuum in the work of [31] only one
loop information was available for the flavor singlet axial
vector current. This is because at that loop order the matrix
element for the flavor singlet and nonsinglet axial vector
currents are the same. The difference in these only occurs at
two loop order. The main reason for this is that the flavor
singlet axial vector current is not conserved due to the
chiral anomaly and its effect in the matrix element becomes
present at two loops. In Feynman graph language there are
graphs that are zero in the flavor nonsinglet case but
nonzero for the flavor singlet operator. By contrast in lattice
language there are disconnected contributions to the proton
correlation function when probed with the axial vector

current in the flavor singlet case. Therefore while the latter
have been incorporated in the lattice simulations [27,31],
their omission in the matching to the continuum in [31],
albeit due to taking only one loop data, means that the effect
of the chiral anomaly has not been taken into account. In
other words the central values measured on the lattice for
the hadronic matrix element will not have accommodated
the discrepancy in the continuum difference between the
flavor nonsinglet and singlet operators. This is due to the
lack of a two loop computation of the relevant Green’s
function containing the flavor singlet axial vector current.
Therefore it is the purpose of this article to close this

particular gap. By doing so we will bring all the quark
bilinear operator Green’s functions to the same loop level
for the nonforward case. Specifically we will compute the
two loop quark 2-point function with the singlet axial
vector current at nonzero momentum insertion for the fully
symmetric momentum configuration. Such a configuration
is a nonexceptional one and hence should avoid infrared
problems. The extension of the early lattice work on
operator renormalization at an exceptional point of
[29,30] was extended to the nonexceptional case in [32]
at one loop and later to two loops in a variety of articles
[33–37]. More recently in the lattice study of [38] the
operator renormalization constants for all the flavor non-
singlet quark bilinear operators were measured and it was
demonstrated that for massless quarks those for the non-
exceptional configuration were much more reliable in the
infrared limit. Therefore in focussing on the fully sym-
metric point we are aiming at minimizing other potential
sources of avoidable error for matching to lattice data.
While straightforward to state, the two loop computation
we will undertake in dimensional regularization is also
fraught with technical complications. One obvious one
concerns the treatment of γ5 but we will use the Larin
approach [39], which is valid at least to the loop orders we
are interested in. For practical multiloop computations the
method adapted the early work of [40–42] to incorporate
γ5 in dimensional regularization. Moreover, the chiral
anomaly was correctly treated in that approach beyond
one loop. As part of our study we will extend the Larin
construction in the sense that the nonforward matrix
elements are computed. So we will show how the same
finite renormalization constant emerges as that of [39] to
ensure chiral symmetry is correctly present after renorm-
alization and the subsequent lifting of the dimensional
regularization. This is a nontrivial task and in some sense
the study again substantiates the foresight and elegance of
the work of [40–42]. In saying this we will also check the
same finite renormalization constant arises for the pseu-
doscalar current in the nonforward configuration thereby
verifying that a consistent picture emerges. En route we
will discuss a minor modification of the Larin approach
for flavor nonsinglet operators. In [39] the criterion to
define the finite renormalization constant needed to
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ensure four-dimensional properties correctly emerge for
the two spin-1 (nonsinglet) quark bilinear operators was
to implement equality of the two relevant Green’s func-
tions. We show that this can also be achieved from
ensuring the currents are conserved in four dimensions
after renormalization.
The article is organized as follows. In the following

section we introduce the formalism used to carry out the
two loop computation as well as discuss the treatment of γ5

in dimensional regularization using the Larin method [39].
Included in this section is the algorithm we implement to
evaluate the singlet axial vector current Green’s function at
the symmetric point. Section III is devoted to the discussion
of our results where we quantify the difference between the
flavor nonsinglet and singlet axial vector operator Green’s
functions prior to providing concluding remarks in Sec. IV.

II. BACKGROUND

We devote this section to describing the details of the
computation and en route review previous renormalizations
of the operators in question at the symmetric point. In order
to appreciate the subtleties between the flavor nonsinglet
and singlet quark bilinear operators we consider we define
the nonsinglet operators as

Sns ≡ ψ̄ iψ j; Vns ≡ ψ̄ iγμψ j; T ns ≡ ψ̄ iσμνψ j;

Ans ≡ ψ̄ iγ5γμψ j; Pns ≡ ψ̄ iγ5ψ j ð2:1Þ

and

Ss ≡ ψ̄ iψ i; Vs ≡ ψ̄ iγμψ i; T s ≡ ψ̄ iσμνψ i;

As ≡ ψ̄ iγ5γμψ i; Ps ≡ ψ̄ iγ5ψ i ð2:2Þ

for the singlet case where i and j are flavor indices and
there is no sum over i in the latter set. Given that our main
interest is in the perturbative structure of a specific Green’s
function for a particular external momentum configuration
we define the general case, which includes the above
operators as well, by

ΓOI ¼ hψðpÞOIð−p − qÞψ̄ðqÞijp2¼q2¼ðpþqÞ2¼−μ2 ð2:3Þ

where the operator O corresponds to any one of (2.1) and
(2.2). We use a similar notation to [35–37] and follow the
general approach provided there. The two independent
external momenta, p and q, satisfy the condition for the
symmetric subtraction point which is [43,44]

p2 ¼ q2 ¼ ðpþ qÞ2 ¼ −μ2; pq ¼ 1

2
μ2 ð2:4Þ

where μ is a mass scale. This setup is a nonexceptional
configuration and therefore there are no infrared issues.
The Green’s function (2.3) is illustrated in Fig. 1 where

an operator OI of (2.1) or (2.2) is indicated by the
crossed circle.
Having defined the Green’s function the first step in its

perturbative evaluation is the generation of the two loop
Feynman graphs. To do this we have used the QGRAF

package [45], which produces 1 one loop and 13 two loop
graphs. At the former order the expressions for the
respective flavor nonsinglet and singlet Green’s functions
are the same irrespective of the subtraction point. The first
place where any discrepancy will appear as a result of flavor
symmetry in the chiral limit is at two loops and is due to the
two graphs of Fig. 2. This is because these graphs are zero
for the flavor nonsinglet case as the insertion of such an
operator into the closed fermion loop gives a trace over a
traceless flavor group generator. So such graphs will not
contribute to ΓIns

. By contrast for the flavor singlet case the
graphs of Fig. 2 will not be zero by this particular flavor
trace argument. However for the operators Ss, T s and Ps

the graphs of Fig. 2 are zero since there are an odd number
of γ-matrices in the closed loop in the chiral limit. These
graphs would correspond to the disconnected graphs in the
proton correlation function on the lattice. For Vs and As

there will be an even number of γ-matrices in the loop in the
massless case considered here. So these are the two
possible instances of the flavor symmetry producing differ-
ent two loop Green’s functions (2.3). As we will be using

FIG. 1. Momentum configuration for hψðpÞOið−p − qÞψ̄ðqÞi.

FIG. 2. Extra graphs for flavor singlet operators.
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dimensional regularization in our calculations one concern
that could be raised is whether this argument applies for
operators containing γ5. In the case of Ans and Pns we are
permitted to use the naive anticommuting γ5 [40–42], since
it always appears in Feynman integrals in an open string of
γ-matrices. It is its presence, or an odd number of them,
within a closed fermion loop that requires special treatment
in dimensional regularization [40–42]. We will discuss this
in detail later aside from noting that when γ5, or an odd
number of them, is present in a closed loop with an odd
number of ordinary γ-matrices then the spinor trace is still
zero as in four dimensions. Having taken flavor and
Lorentz symmetries into account there is one final con-
straint to be considered however which is that correspond-
ing to the color vector space. All operators of (2.1) and (2.2)
are color singlets. In other words they do not include a color
group generator. So the color trace is not the same as the
parallel graphs contributing to the quark-gluon vertex
function. In that instance if the operator insertion was
replaced by a gluon then the sum of the fermion one loop
subgraphs would be proportional to the structure constants
fabc. In the case of Vs the color trace with one fewer group
generator produces δab which together with the relative
minus sign arising from the respective γ-matrix traces means
that the two graphs of Fig. 2 sum to zero for this operator. For
As by contrast while the color argument applies equally, the
presence of γ5 in the spinor trace prevents the same
procedure giving zero since the traces sum and are not
equal and opposite. Therefore the only singlet operator that
needs to be considered at any subtraction point, and not just
the symmetric one, is As as it will produce contributions
additional to its nonsinglet partner.
Having isolated the only case we have to consider for

singlet operators then in order to evaluate ΓAs
we note that

we have taken a different path to the partner computation of
ΓAns

of [35–37]. To appreciate the contrast it is first best to
summarize the earlier approach. In [35–37] a projection
method was used whereby the Green’s function was
decomposed into a basis of tensors consistent with the
symmetries of the operator. For instance, for V this was

PV
ð1Þμðp; qÞ ¼ γμ; PV

ð2Þμðp; qÞ ¼
pμ=p
μ2

;

PV
ð3Þμðp; qÞ ¼

pμ=q

μ2
; PV

ð4Þμðp; qÞ ¼
qμ=p

μ2
;

PV
ð5Þμðp; qÞ ¼

qμ=q

μ2
; PV

ð6Þμðp; qÞ ¼ Γð3Þμpq
1

μ2
ð2:5Þ

and this Lorentz basis for each bilinear operator Green’s
function is the same whether the operator is flavor non-
singlet or singlet. Here we have introduced the generalized
γ-matrices of [42,46–50] which are denoted by Γμ1…μn

ðnÞ and

defined by

Γμ1…μn
ðnÞ ¼ γ½μ1…γμn� ð2:6Þ

for integers n with 0 ≤ n < ∞. Each matrix is fully
antisymmetric in the Lorentz indices for n ≥ 2 and the
full set span the infinite dimensional spinor space when
dimensional regularization is implemented. We note that
Γμ1μ2μ3μ4μ5
ð5Þ is not related to γ5 and in strictly four dimensions

Γμ1…μn
ðnÞ ¼ 0 for n ≥ 5. One advantage of these matrices is

that they provide a natural partition since

trðΓμ1…μm
ðmÞ Γν1…νn

ðnÞ Þ ∝ δmnIμ1…μmν1…νn ð2:7Þ

with Iμ1…μmν1…νn denoting the unit matrix in Γ-space. Here
we use the convention that when a momentum is contracted
with a Lorentz index in Γμ1…μn

ðnÞ then the momentum itself
appears in place of the index.
Once the basis for the Green’s function has been chosen

then the coefficients of each tensor is deduced by multi-
plying it by a d-dimensional linear combination of the
tensors to produce a sum of scalar Feynman integrals.
These are then evaluated by applying the Laporta algorithm
[51], which systematically integrates by parts all the
contributing graphs. This produces a linear combination
of a small set of master integrals with d-dependent rational
polynomial coefficients. For the symmetric point configu-
ration explicit expressions for the one and two loop master
integrals have been available for many years [52–55].
Though in more recent years they have been understood
in the language of cyclotomic polynomials [56]. To be
explicit to two loops the Green’s functions with the
kinematic configuration of (2.4) involve different linear
combinations of numbers from the set

�
Q; π2; ζ3; ζ4;ψ 0

�
1

3

�
;ψ 000

�
1

3

�
; s2

�
π

2

�
; s2

�
π

6

�
;

s3

�
π

2

�
; s3

�
π

6

�
;
ln2ð3Þπffiffiffi

3
p ;

lnð3Þπffiffiffi
3

p ;
π3ffiffiffi
3

p
�
: ð2:8Þ

Here ζn is the Riemann zeta function, s2ðzÞ and s3ðzÞ are
defined in terms of the polylogarithm function LinðzÞ

snðzÞ ¼
1ffiffiffi
3

p I

�
Lin

�
eizffiffiffi
3

p
��

ð2:9Þ

and ψðzÞ is the derivative of the logarithm of the Euler Γ
function. A final important aspect of the computation
was the extensive use of symbolic manipulation which
was facilitated through the use of the language FORM and
its threaded version TFORM [57,58]. Using the REDUZE

package [59,60], written in Cþþ which implements the
Laporta reduction we inserted the relations generated by
the package for the required Feynman integrals via a FORM

module so that all our computations were carried out
automatically. In addition we followed the prescription
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of [61] to implement the operator renormalization within
the same automatic framework.
As we will be considering Green’s functions involving

operators with γ5 present we need to be careful in its
treatment within dimensional regularization. Moreover the
strategy we will choose to follow has to be robust in the
sense that it should reproduce the known two loop
symmetric point results of earlier work [32–35]. For the
nonsinglet example of Ans and Pns there are several ways
one can proceed. First though we need to discuss the details
of the Larin approach [39], as general features of that
computation will be used. It was inspired by and developed
from the earlier one loop resolution of the treatment of γ5 of
[40–42,62]. In reviewing [39] it is important to note that
those calculations were carried out at an exceptional
momentum configuration where the operator is inserted
at zero momentum. In this case and also for the symmetric
point, which is nonexceptional, for open strings of γ
matrices which include γ5 matrices their naive anticommu-
tation with d-dimensional γ matrices is valid. Related to
this in [63] an extended set of (nonsinglet) quark bilinear
operators were considered in d dimensions and renormal-
ized in the dimensionally regularized theory. These were

Oμ1…μnns
ðnÞ ¼ ψ̄ iΓμ1…μn

ðnÞ ψ j ð2:10Þ

and in four dimensions they reduce to Sns, Vns and T ns

respectively for n ¼ 0, 1 and 2. For n ¼ 3 and 4 we have

Oμνσns
ð3Þ j

d¼4
¼ ϵμνσρψ̄ iγ5γρψ

j; Oμνσρns
ð4Þ j

d¼4
¼ ϵμνσρψ̄ iγ5ψ j

ð2:11Þ

where ϵμνσρ is the totally antisymmetric strictly four-
dimensional pseudotensor. Like γ5 it has no existence
outside strictly four dimensions. For n ≥ 5 the operators
of (2.10) are evanescent in the sense that they are not
present in strictly four dimensions due to their being more
free Lorentz indices than the spacetime dimension which
cannot be possible for a fully antisymmetric object.
Before concentrating on the technical details of the

application of [39] to the operators we are interested in
here, it is worth detailing the early treatment of γ5. The
problem of accommodating an object, such as γ5 that only
exists in strictly four dimensions, within dimensional
regularization was recognized in the seminal work of
[40]. In particular a formalism was developed in [40] that
consistently took into account the analytic continuation of
the spacetime dimension to a complex variable d together
with the algebraic properties of γ5 that are only applicable
in the underlying four-dimensional physical subspace.
The essence of the approach of [40] was to partition the
d-dimensional spacetime into a physical four-dimensional
spacetime and a (d − 4)-dimensional unphysical subspace.
Purely four-dimensional objects can only be elements of

the former. Clear examples are γ5 and ϵμνσρ, which are
present in (2.11), whose indices can only take values in the
physical subspace. One test of this construction was the
successful verification [40], of the one loop axial vector
anomaly of [64–66]. The full mathematical foundation for
the treatment of γ5 and ϵμνσρ in this partitioned spacetime
was subsequently established in depth in [62]. While such a
method can readily be applied at one loop level, effecting it
in higher loop computations can only proceed in a
reasonable amount of time and in practice through the
use of automatic Feynman diagram computation. Enacting
such an approach turns out to be difficult but an effective
algorithm that equates to this procedure and, moreover
can be encoded, was developed in [39] based on the
ground work of [41,42,62]. In [67,68] the definition of
γ5 in operators and currents adapted that introduced in
[40–42,62] and its relation to the renormalization procedure
introduced in [41] was explored. In particular the additional
finite renormalization that is necessary to ensure purely
four-dimensional symmetries are respected in the resulting
finite theory after the regularization has been lifted, was
determined to high loop order.
In light of this overview we now summarize its practical

application to the multiplicatively renormalizable operators
of interest, (2.10), at the symmetric point. Given the
relation (2.11) between the generalized operators and their
four-dimensional counterparts, there is a connection with
not only the renormalization of all the operators of (2.10)
but importantly the respective Green’s functions them-
selves should be in full agreement in strictly four dimen-
sions after renormalization [41]. In other words the relation
of (2.11) ought to be valid in the renormalized theory for
any scheme. This algorithm of [41] was substantiated in
[39] in the modified minimal subtraction (MS) scheme
through a two stage process. The first part was to renorm-
alize the operators Oμνσns

ð3Þ and Oμνσρns
ð4Þ , for example,

separately in the usual way in the MS scheme to produce
what is termed the naive renormalization constant for the
d-dimensional operator. Aside from the one loop scheme
independent term of the operator anomalous dimension the
renormalization constants for the respective pairs Ons

ð0Þ and
Oμνσρns

ð4Þ , andOμns
ð1Þ andOμνσns

ð3Þ disagreed. We note that while

Γμ
ð1Þ and γ

μ are equivalent we will retain the former notation

when we discuss the renormalization of the set of operators
of the form (2.10). This disagreement in the naive renorm-
alization constants is clearly not consistent with expect-
ations from the naive anticommutation of γ5 in four
dimensions [40,41,62]. However the second stage of the
process developed in [41] is to recognize that it is not
possible to retain the symmetry properties of a purely
four-dimensional entity, γ5, in the dimensionally regular-
ized theory. So to circumvent the absence of the four-
dimensional properties in the dimensionally regularized
theory, one has to augment the naive renormalization
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of Oμνσns
ð3Þ and Oμνσρns

ð4Þ by including a finite renormalization

constant pertinent to each operator [41]. The condition used
to define this in [39,62] for the flavor nonsinglet case was to
impose the constraint that after the naive renormalization of
the Green’s function with the n-index operator insertion the
result is equivalent to that when n is replaced by (4 − n)
[39,62]. Here 4 is chosen as it is the critical dimension of
QCD. There is a practical caveat to this in that the Lorentz
tensor basis has to be written in terms of purely four-
dimensional objects first before the finite renormalization
can be made. Also the finite renormalization constant in the
MS scheme derives from the basis tensor corresponding to
the tree term of the Green’s function.
For the fully symmetric point case we consider here we

have adapted this approach but first checked that the
previous nonsinglet results are reproduced for n ¼ 3
and 4. However for the Green’s functions of both operators
the basis of tensors is larger than at the exceptional point.
As a first step for n ¼ 3 and 4 we have taken a slightly
different tack to [35–37] and avoided using a projection
method on the Green’s function. Instead to evaluate the
contributing Feynman graphs we first removed all the γ
algebra from the Feynman integrals and evaluated the
underlying tensor integrals. One reason for this is that it
bypasses the complication of constructing a decomposition
into a Lorentz basis with 3 and 4 free indices in the case of
Ans and Pns respectively. In the latter case for instance that
basis would include Γμνσρpq

ð6Þ as one example. While this is

evanescent it would have to be included to ensure the tensor
basis was complete. So in avoiding a direct projection and
consequently reproducing the same results as previous
computations [32–35], will ensure that we have established
a valid algorithm for handling γ5 in the nonsinglet case.
This therefore will eventually be our strategy for the vector
and axial vector operators in the singlet case when the
complications due to the graphs of Fig. 2 have to be taken
into account. While the correct tensor basis will emerge
from this integral projection the four-dimensional basis of
(2.5) will not be the relevant one for the naive renormal-
ization of Ans. Using relations such as

Γμνσ
ð3Þ ¼ ϵμνσργ5γρ; ϵμνpqΓð1Þν ¼ γ5Γμpq

ð3Þ ð2:12Þ

in four dimensions, for instance, the analogous basis will
then be

PA
ð1Þμðp; qÞ ¼ γ5γμ; PA

ð2Þμðp; qÞ ¼ γ5=ppμ 1

μ2
;

PA
ð3Þμðp; qÞ ¼ γ5=qpμ

1

μ2
; PA

ð4Þμðp; qÞ ¼ γ5=pqμ
1

μ2
;

PA
ð5Þμðp; qÞ ¼ γ5=qqμ

1

μ2
; PA

ð6Þμðp; qÞ ¼ γ5Γð3Þpqμ
1

μ2
:

ð2:13Þ

Next we recall that to properly renormalize the operator Vns

requires some care. As the nonsinglet vector current is
conserved in the chiral limit

∂μðψ̄ iγμψ jÞ ¼ 0 ð2:14Þ

its renormalization constant is unity to all orders in
perturbation theory and in all renormalization schemes.
In the MS scheme context this means that the Green’s
function for Vns is completely finite. However in a
kinematic renormalization scheme where renormalization
constants can have nonzero finite parts the renormalization
constant for Vns could mistakenly be chosen by demanding
that the coefficient of PV

ð1Þμðp; qÞ is unity for instance. This
would clearly contradict the general result that physical
operators do not get renormalized. In practical terms the
conservation of the currents is encoded in the quantum
theory by a Ward-Takahashi identity. In the case of Vns this
corresponds to Green’s function of ∂μðψ̄ iγμψ jÞ being
related to the quark 2-point function. Therefore we have
checked that for our integral projection construction that
this is indeed the case in the MS scheme for the fully
symmetric and hence nonexceptional configuration. We
note that we found full agreement with the one and two
loop results of [32–35]. This was also checked in [63] for
the direct projection on the operator Green’s function.
Since the nonsinglet axial vector current is also

conserved

∂μðψ̄ iγ5γμψ jÞ ¼ 0 ð2:15Þ

similar general reasoning also applies. Calculating the
Green’s function of ∂μðψ̄ iγ5γμψ jÞ, however, it does not
agree with γ5 times the quark 2-point function. This is
consistent with Larin’s observation that treating the naive
renormalization of the generalized operatorOμνσns

ð3Þ as being

equivalent to Ans is incorrect. Instead an additional finite
renormalization constant is required to ensure the consis-
tency with symmetry properties of the strictly four-
dimensional theory. Ensuring the consistency with the
quark 2-point function in this case we find that to two
loops at the symmetric point the finite renormalization is

Zfin
Ans ¼ 1 − 4CFaþ

�
22C2

F −
107

9
CFCA þ 4

9
CFTFNf

�
a2

þOða3Þ ð2:16Þ

in full agreement with [39] where a ¼ g2=ð16π2Þ and g is
the gauge coupling constant. It should be stressed that we
have verified that the finite renormalization is independent
of the subtraction point which is a nontrivial observation.
As can be seen in earlier work [32,34–37] the two loop

explicit expression for (2.3) for each operator involves
linear combinations of (2.8). These in principle could have
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been present in the two loop finite renormalization constant
with our choice of (2.4). In the momentum configuration
used in [39] only rational numbers or ζ3 were present in the
finite parts of the Green’s function at three loops. So it is
reassuring that the polylogarithms, for instance, of (2.8) are
absent. We note that although the three loop finite renorm-
alization is also known in the MS scheme [39], in order to
verify the next term of (2.16) at the symmetric point would
require a new three loop computation. At present the three
loop master integrals are not available in order to be able
to perform this calculation. This comparison of the n ¼ 1
and 3 Green’s function is in keeping with the spirit of
[39,62,63]. However in the singlet case the presence of the
extra graphs of Fig. 2 will not make this a viable way to
proceed as was indicated in [39]. In the nonsinglet case the
corresponding Ward-Takahashi identity for the axial vector
operator provides a more field theoretic alternative method
to determine the finite renormalization. In other words the
Green’s function of ∂μðψ̄ iγ5γμψ jÞ has to be equivalent to
the quark 2-point function multiplied by γ5. To ensure this
we have checked that the same gauge parameter indepen-
dent finite renormalization constant, (2.16), is required. It
should also be noted that we have checked that once this
finite renormalization is determined from ensuring that the
current conservation is preserved then the expressions for
both Green’s functions of Vns and Ans are also in full
agreement. By this we mean that the coefficients of
PI

ðiÞμðp; qÞ for Ons ¼ Vns and Ans are equal for each i ¼ 1

to 6 and thus establishes the equivalence with Larin’s
strategy in strictly four dimensions after renormalization.
One of the reasons for reviewing the nonsinglet operator

renormalization and indicating an alternative way of
defining the finite renormalization constant is that it avoids
the need to connect Green’s functions for different oper-
ators. For the singlet axial vector operator there is clearly no
analogous partner. Instead as highlighted in [39,62] the
associated finite renormalization is derived from ensuring
that the chiral anomaly is correctly restored in four-dimen-
sional Green’s function after renormalization. The non-
singlet axial vector current is nonanomalous. Specifically
the anomaly for the singlet case is given by

∂μðψ̄ iγ5γμψ iÞ ¼ aTFNfϵ
μνσρGa

μνGa
σρ ð2:17Þ

where the right-hand side can be written as a derivative
of a gluonic current and (2.14) and (2.15) become
partners in this alternative view of [39,62]. In [39] the
two loop finite renormalization constant was computed and
is given by

Zfin
As ¼ 1 − 4CFaþ

�
22C2

F −
107

9
CFCA þ 31

9
CFTFNf

�
a2

þOða3Þ ð2:18Þ

which differs from (2.16) in the final two loop term. We
have not reproduced this expression beyond one loop here
due to a subtlety in (2.17). This is to do with the fact that
both operators of (2.17) have first to be renormalized and
the triangular mixing matrix of the operators determined
[39,62]. Then to find Zfin

As the anomaly equation itself,
(2.17), has to be inserted in a Green’s function and
evaluated in strictly four dimensions. In [39] this was
carried out by inserting in a gluon 2-point function where
the momentum flowing into one of the external gluon legs
vanishes. With a total derivative present due to having to
take the divergence of the current, the momentum flow into
the operator cannot be nullified. This momentum configu-
ration allows one to use the MINCER algorithm [69], which
evaluates three loop massless 2-point functions in dimen-
sional regularization. A three loop calculation is in fact
required to determine (2.18) due to the presence of the
coupling constant a on the right-hand side of (2.17). This
means that the loop order of the anomaly Green’s function
and its coupling constant expansion are mismatched by
one. Since this will also be the case for the symmetric point
setup, the absence of the three loop master integrals for
such Green’s function evaluations means that that calcu-
lation cannot be carried out at present. This also means that
for the same reasons one cannot compute the two loop
corrections to the singlet axial vector current conversion
or matching function calculated at one loop in [32]. This
function allows one to translate results between two
different renormalization schemes and in the case of [32]
the respective schemes were MS and the symmetric
momentum subtraction (SMOM) scheme. As the conver-
sion function is computed from the singlet axial vector
current renormalization constants in the two schemes then
the finite renormalization constant for restoring four-
dimensional symmetries through the Larin method will
also be needed for this. In turn this requires the finite parts
of the three loop Green’s function in both schemes. The
absence of the three loop symmetric masters means that this
cannot be carried out here. Having demonstrated, however,
that the nonsinglet axial vector finite MS renormalization
constant consistently emerges in the symmetric point
configuration, instead we merely accept the result (2.18)
and use it for our MS computations. In other words we
include the extra graphs of Fig. 2 where OAs

is inserted.
The γ algebra is removed and the Lorentz tensor integrals
evaluated by projection and the naive axial vector operator
renormalization constant determined which is

ZAs ¼ 1þ
�
22

3
C2
F þ 10

3
CFTFNf

�
a2

ϵ
þOða3Þ: ð2:19Þ

This is in full agreement with the expression given in [39].
Reproducing this is a check on our different projection
strategy since the Oða2Þ term arises purely from the graphs
of Fig. 2. After this naive renormalization the tensors of the
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Green’s function are mapped to their four-dimensional counterparts and then the finite renormalization constant (2.18) is
included. This ensures that the properties of the chiral anomaly are properly taken into consideration in the expression we
have computed for the Green’s function of interest.

III. RESULTS

Having discussed the computational strategy in detail we now present our results for the singlet axial vector Green’s
function. In order to give an indication of the structure of the final expression in four dimensions after the implementation of
the Larin method we note that in the Landau gauge for Nf ¼ 3 we have

ΓAs

μ jNf¼3

α¼0 ¼
�
−1þ

�
8

3
þ 16

81
π2 −

8

27
ψ 0
�
1

3

��
a

þ
�
887

9
−
12520

27
s3

�
π

6

�
þ 10016

27
s3

�
π

2

�
þ 2504

9
s2

�
π

6

�
−
5008

9
s2

�
π

2

�
−
1528

27
ζ3

−
3040

243
π2 −

760

729
π4 þ 1520

81
ψ 0
�
1

3

�
þ 32

243
ψ 0
�
1

3

�
π2 −

8

81
ψ 0
�
1

3

�
2

þ 91

243
ψ 000

�
1

3

�
−

9077

4374
ffiffiffi
3

p π3 −
626

27
ffiffiffi
3

p lnð3Þπ þ 313

162
ffiffiffi
3

p ln2ð3Þπ
�
a2
�
γ5γμ þ

��
32

9
þ 32

81
π2 −

16

27
ψ 0
�
1

3

��
a

þ
�
2428

27
−
6080

9
s3

�
π

6

�
þ 4864

9
s3

�
π

2

�
þ 1216

3
s2

�
π

6

�
−
2432

3
s2

�
π

2

�

−
808

9
ζ3 −

5336

243
π2 −

3680

2187
π4 þ 2668

81
ψ 0
�
1

3

�
þ 128

729
ψ 0
�
1

3

�
π2

−
32

243
ψ 0
�
1

3

�
2

þ 148

243
ψ 000

�
1

3

�
−

2204

729
ffiffiffi
3

p π3 −
304

9
ffiffiffi
3

p lnð3Þπ

þ 76

27
ffiffiffi
3

p ln2ð3Þπ
�
a2
�
½γ5=ppμ þ γ5=qqμ�

1

μ2

þ
�
16

9
aþ

�
1214

27
−
6800

27
s3

�
π

6

�
þ 5440

27
s3

�
π

2

�
þ 1360

9
s2

�
π

6

�
−
2720

9
s2

�
π

2

�

−
1280

27
ζ3 −

1400

81
π2 −

880

2187
π4 þ 700

27
ψ 0
�
1

3

�
þ 64

729
ψ 0
�
1

3

�
π2

−
16

243
ψ 0
�
1

3

�
2

þ 34

243
ψ 000

�
1

3

�
−

2465

2187
ffiffiffi
3

p π3 −
340

27
ffiffiffi
3

p lnð3Þπ þ 85

81
ffiffiffi
3

p ln2ð3Þπ
�
a2
�
½γ5=pqμ þ γ5=qpμ�

1

μ2

þ
��

32

81
π2 −

16

27
ψ 0
�
1

3

��
aþ

�
80s3

�
π

6

�
− 64s3

�
π

2

�
− 48s2

�
π

6

�
þ 96s2

�
π

2

�
−
112

9
ζ3 þ

64

27
π2 þ 224

729
π4

−
32

9
ψ 0
�
1

3

�
þ 64

243
ψ 0
�
1

3

�
π2 −

16

81
ψ 0
�
1

3

�
2

−
4

27
ψ 000

�
1

3

�
þ 29

81
ffiffiffi
3

p π3

þ 4ffiffiffi
3

p lnð3Þπ −
1

3
ffiffiffi
3

p ln2ð3Þπ
�
a2
�
γ5Γð3Þpqμ

1

μ2
þOða3Þ ð3:1Þ

for SUð3Þ where the restriction also means that the symmetric point conditions of (2.4) have been implemented and α is the
covariant gauge parameter. As a further check on the computation we note that the symmetry due to the interchange of the
external legs of Fig. 1 is present. This is the reason why pairs of basis tensors appear in the second and third terms and is
consistent with the structure that emerged in the projection method used to evaluate ΓAns

. The full expressions for the
Green’s function for arbitrary Nf, linear covariant gauge parameter and general color group are given in the Supplemental
Material [70]. However to appreciate the relative size of the coefficients of each tensor for nonzeroNf and αwe note that the
Landau gauge numerical value of ΓAs

μ j for SUð3Þ is
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ΓAs

μ j ¼ ½−1þ ½−0.583194αþ 1.624930�aþ ½−1.811999α2 − 3.222901αþ 3.889852Nf þ 6.124832�a2�γ5γμ
þ ½½0.305695αþ 1.472082�aþ ½1.095408α2 þ 4.595782α − 7.001046Nf þ 18.797491�a2�½γ5=ppμ þ γ5=qqμ� 1

μ2

þ ½½1.194584αþ 1.777778�aþ ½4.280593α2 þ 12.109050α − 7.550907Nf þ 44.380585�a2�½γ5=pqμ þ γ5=qpμ� 1
μ2

þ ½−2.083473aþ ½−0.173623α2 − 0.3484662αþ 1.390610Nf − 39.787370�a2�γ5Γð3Þpqμ
1

μ2
þOða3Þ: ð3:2Þ

Clearly the coefficient of the γ5γμ term of the two loop Landau gauge Yang-Mills expression has the smallest magnitude in
the MS scheme. In order to gauge the effect the inclusion of the graphs of Fig. 2 have in comparison with the flavor
nonsinglet axial vector Green’s function it is instructive to compute the difference ðΓAns

μ − ΓAs

μ Þ. For example when Nf ¼ 3

then for SUð3Þ we have

½ΓAns

μ − ΓAs

μ �jNf¼3 ¼
�
72 −

1120

3
s3

�
π

6

�
þ 896

3
s3

�
π

2

�
þ 224s2

�
π

6

�
− 448s2

�
π

2

�
−
112

3
ζ3

−
416

27
π2 −

32

81
π4 þ 208

9
ψ 0
�
1

3

�
þ 4

27
ψ 000

�
1

3

�
−

406

243
ffiffiffi
3

p π3 −
56

3
ffiffiffi
3

p lnð3Þπ þ 14

9
ffiffiffi
3

p ln2ð3Þπ
�
a2γ5γμ

þ
�
32

3
−
1600

3
s3

�
π

6

�
þ 1280

3
s3

�
π

2

�
þ 320s2

�
π

6

�
− 640s2

�
π

2

�
−
160

3
ζ3

−
800

27
π2 −

64

81
π4 þ 400

9
ψ 0
�
1

3

�
þ 8

27
ψ 000

�
1

3

�
−

580

243
ffiffiffi
3

p π3

−
80

3
ffiffiffi
3

p lnð3Þπ þ 20

9
ffiffiffi
3

p ln2ð3Þπ
�
½γ5=ppμ þ γ5=qqμ� a

2

μ2

þ
�
16

3
−
640

3
s3

�
π

6

�
þ 512

3
s3

�
π

2

�
þ 128s2

�
π

6

�
− 256s2

�
π

2

�
−
64

3
ζ3

−
416

27
π2 þ 208

9
ψ 0
�
1

3

�
−

232

243
ffiffiffi
3

p π3 −
32

3
ffiffiffi
3

p lnð3Þπ þ 8

9
ffiffiffi
3

p ln2ð3Þπ
�
½γ5=pqμ þ γ5=qpμ� a

2

μ2

þ
�
320

3
s3

�
π

6

�
−
256

3
s3

�
π

2

�
− 64s2

�
π

6

�
þ 128s2

�
π

2

�
þ 32

3
ζ3 −

64

27
π2

þ 64

81
π4 þ 32

9
ψ 0
�
1

3

�
−

8

27
ψ 000

�
1

3

�
þ 116

243
ffiffiffi
3

p π3 þ 16

3
ffiffiffi
3

p lnð3Þπ −
4

9
ffiffiffi
3

p ln2ð3Þπ
�
γ5Γð3Þpqμ

a2

μ2
þOða3Þ

ð3:3Þ

which is independent of α or

½ΓAns

μ − ΓAs

μ �jNf¼3 ¼
h
10.960779μ2γ5γμ − 17.013282½γ5=ppμ þ γ5=qqμ� − 14.060128½γ5=pqμ þ γ5=qpμ�

− 4.856554γ5Γð3Þpqμ
i a2
μ2

þOða3Þ ð3:4Þ

numerically.
Given this in order to appreciate the effect of the finite renormalization associated with the chiral anomaly in a clear way,

it is instructive to plot (3.3) as a function of a dimensionless momentum variable. To achieve this we recall that solving the
two loop β function as a function of the squared momentum Q2 and the QCD Λ parameter gives

a2ðQ;ΛÞ ¼ 1

b0L

�
1 −

b1 lnðLÞ
b20L

�
ð3:5Þ
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where the β function coefficients are [71–74]

b0 ¼
11

3
CA −

4

3
TFNf;

b1 ¼
34

3
C2
A − 4TFCFNf −

20

3
TFNfCA ð3:6Þ

in the MS scheme and we use the shorthand

L ¼ ln

�
Q2

Λ2

�
ð3:7Þ

for the logarithm which is present. In Fig. 3 we have plotted
the two loop coefficient of γ5γμ for ΓAns

and ΓAs
for several

values of Nf where the dimensionless variable x is defined
by x ¼ Q2=Λ2. At x ¼ 3 for example, the difference
between the coefficients of this particular tensor range
from around 2% to 7% at x ¼ 3 from Nf ¼ 3 to 6
respectively. As an alternative to the explicit values
Fig. 4 shows the difference for the same values of Nf

against x. Clearly at very high energy the discrepancy tends
to zero.

FIG. 3. Comparison of two loop coefficient of γ5γμ in ΓAns
and ΓAs

for Nf ¼ 3 to 6.
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IV. DISCUSSION

We have evaluated the two loop quark 2-point function
with the flavor singlet axial vector current inserted at
nonzero momentum at the nonexceptional symmetric point.
The main feature of this result is that unlike the one loop
Green’s function we have had to ensure that our construction
is consistent with the nonconservation of the singlet axial
current due to the chiral anomaly. This was a nontrivial task
since the use of dimensional regularization means that the
purely four-dimensional γ5 matrix has to reconciled. To
achieve this we implemented the Larin method [39,62],
which was originally developed for the quark bilinear
operators and founded upon [40–42,62]. However, the finite

renormalization constant associated with each γ5 dependent
operator was determined in [39,62] for an exceptional
momentum configuration. Here we have confirmed that
these expressions for the flavor nonsinglet operators are
independent of the subtraction point for the renormalization
scheme that we have used which is MS. If one were to use
another scheme such as the momentum subtraction scheme
of [43,44] then a different finite renormalization constant
would emerge. For the flavor singlet axial vector case one
would have to extend our two loop computation to three
loops at the symmetric point to verify Larin’s two loop finite
renormalization constant for that operator. This is due to the
nonconserving part of the anomaly equation being propor-
tional to the coupling constant.

FIG. 4. Two loop coefficient of γ5γμ in ½ΓAns − ΓAs � for Nf ¼ 3 to 6.
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Concerning the comparison of the axial vector flavor
nonsinglet and singlet corrections at two loops, the differ-
ence at a representative momentum scale is of the order of a
few percent depending on the value of Nf. It is not clear
whether such a value would make a significant difference to
the analysis already carried out in [27,32] for instance. It
would depend on whether there is a clear signal in the
lattice measurements to differentiate between the various
Green’s functions. Of course this situation could be
improved by extending to three loops which is the next
natural step in the process. Aside from the absence of the
three loop master integrals at the symmetric point, one
would still have to be careful with the treatment of γ5 in
dimensional regularization. For instance, the finite renorm-
alization constant for the axial vector current is known to
three loops for the nonsinglet case but only two loops for
the singlet case. To put the latter on the same level as the
former would require a four loop evaluation. While the
computational tools are available through the development
of the FORCER package [75,76], the treatment of γ5 at four
loops possibly requires detailed care. Recently there
has been progress in this direction through the careful

determination of the four loop Standard Model β functions
[77]. This was achieved by ensuring general quantum field
theory consistency conditions were satisfied for the γ5

sector. By contrast for any treatment of γ5 that uses the
Larin approach where spinor traces involve a large number
of γ matrices it has been noted in [78] that one has always to
be fully aware of potential hidden evanescence issues. In
our case since we use (2.6) in dimensional regularization
the latter point would need to be accommodated at three
and higher loops.
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