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Université Laval, Quebec City, QC, G1V 0A6, Canada

(Received 21 May 2020; accepted 15 July 2020; published 4 August 2020)

In the low-energy effective theory of neutrinos, the Haar measure for unitary matrices is very likely to
give rise to something similar to the observed Pontecorvo-Maki-Nakagawa-Sakata matrix. Assuming the
Haar measure, we determine the probability density functions for all quadratic, quartic Majorana, and
quartic Dirac rephasing invariants for an arbitrary number of neutrino generations. We show that for a fixed
number of neutrinos, all rephasing invariants of the same type have the same probability density function
under the Haar measure. We then compute the moments of the rephasing invariants to determine, with the
help of the Mellin transform, the three probability density functions. We finally investigate the physical
implications of our results in function of the number of neutrinos.
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I. INTRODUCTION

In flavor physics, the passage from gauge eigenstates to
mass eigenstates encodes flavor mixing. This mixing is
encapsulated in the Cabibbo-Kobayashi-Maskawa (CKM)
matrix for the quark sector. In the Standard Model of
particle physics, there is no equivalent mixing for the lepton
sector. However, the Standard Model must be extended
to take into account neutrino oscillations [1,2], and that
extension allows for mixing in the lepton sector. In the low-
energy effective theory of neutrinos, this is encoded in the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix for
the lepton sector.
The CKM and PMNS mixing matrices, which are

unitary matrices, can be redefined by phase rotations of
the quark and lepton fields, respectively. Since physical
observables must be invariant under these field redefini-
tions, only some functions of the mixing matrix elements
can be measured explicitly. The simplest way to proceed is
to write physical observables in terms of the so-called
rephasing invariants of the mixing matrices [3,4]. As their
name implies, rephasing invariants do not change under
field redefinitions. The most celebrated rephasing invariant
is the Jarlskog invariant [3] associated to the CP-violating
Dirac phase of the CKM matrix.

Flavor physics is notoriously hard. Experimental data
show that the CKM matrix is hierarchical while the PMNS
matrix is rather random. It is very difficult to come up with
a convincing theoretical story behind the patterns observed
in the mixing matrices. One possible path forward is to
study the mixing matrices statistically. Indeed, it is possible
to determine how likely it is to draw at random a unitary
matrix resembling the CKM matrix or the PMNS matrix
from a given probability density function (PDF). If that
probability is large, then the mixing matrix is likely to
originate from the associated PDF, and the average values
of the different rephasing invariants under that PDF can be
compared with the observed experimental values, leading
to predictions for the unknown ones.
For the quark sector, the CP-violating Jarlskog invariant

mentioned above was studied statistically in [5,6].
Assuming the Haar measure, which is the most natural
measure on the space of unitary matrices, the PDF for
the Jarlskog invariant was computed analytically in [6].
Considering that the observed Jarlskog invariant is
jyDexpjCKM ¼ ð3.04þ0.21

−0.20Þ × 10−5 [1] and the probability of
obtaining it from the PDF associated to the Haar measure is
very small PfjyDj ≤ jyDexpjCKMg ≈ 0.08%, it was shown in
[6] that the CKM matrix should not be seen as being a
generic unitary matrix drawn randomly from the PDF
associated to the Haar measure.
For the lepton sector, an equivalent analysis was per-

formed in [7]. It was shown there that under the Haar
measure, the probability of generating a unitary matrix
with the observed quartic Dirac rephasing invariant
jyDexpjPMNS ¼ 0.032þ0.005

−0.005 (see, e.g., [8]) was quite large,
PfjyDj ≤ jyDexpjPMNSg ≈ 60%. Allowing for the possibility
that neutrinos are Majorana, the same was true for the
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quartic Majorana rephasing invariants. Hence, [7] con-
cluded that the statistical hypothesis that the PMNS matrix
arises randomly from the PDF associated to the Haar
measure was highly likely, contrary to the CKM matrix.
Moreover, [7] showed that the average value of the quartic
Dirac rephasing invariant hjyDjiPMNS ¼ π=105 ≈ 0.030
was in striking agreement with the observed value. Since
the Jarlskog invariant seems larger in the neutrino sector,
leptonic CP violation could be larger; therefore, the
statistical analysis of [7] thus suggests that the baryon
asymmetry of the Universe could originate from lepto-
genesis, assuming that leptonic CP violation remains large
under the renormalization group flow at high energy.
Although the Haar measure is the most natural measure

for unitary matrices, there is a plausible theoretical story
behind its origin, namely, the anarchy principle [9–12]. The
anarchy principle states that the light neutrino mass matrix
parameters originate from the seesaw mechanism and that
the high-energy mass matrices are generated randomly
from the appropriate Gaussian ensembles. The low-energy
neutrino parameters are thus derived from these randomly
generated high-energy parameters, leading to specific
ensembles for the low-energy parameters [7,12]. It was
then proven there that the PDF for arbitrary neutrino
numbers factorizes into a PDF for the light neutrino
mass eigenvalues and a PDF for the mixing angles and
phases of the PMNS matrix. The former is given by a
complicated multidimensional integral, while the latter is
simply the Haar measure (independently of the seesaw
mechanism, as foreseen on physical grounds in [10]). The
factorization into two independent PDFs for the light
neutrino masses and mixing parameters leads to physical
implications that are independent between the masses
and the PMNS matrix. For the masses, it was shown that
the preferred seesaw mechanism is of types I–III while
the preferred mass splitting is in agreement with the
normal hierarchy.
The PDFs for the PMNS (or, for that matter, the CKM)

rephasing invariants associated to the UðNÞ Haar measure
for neutrino numbers N ¼ 2 and N ¼ 3 were obtained in
[7] based on the work of [6]. The technique employed there
was built on the knowledge of the moments being
expressed as products of beta-distributed random variables.
Although explicit, it was unclear how complicated the
PDFs would become for larger neutrino numbers which
could be of interest for extensions of the Standard Model
with sterile neutrinos. In this paper, we introduce another
technique relying on the knowledge of the moments and the
Mellin transform. This method leads to direct expressions
for all rephasing invariant PDFs for arbitrary neutrino
numbers in terms of Meijer G functions. In this unified
theoretical formalism, we will demonstrate that all rephas-
ing invariants of the same type (i.e., quadratic, quartic
Majorana, and quartic Dirac) have the same PDF. In
function of the number of neutrinos N, we will also argue

that the anarchy principle, and more generally the Haar
measure, prefers three neutrino flavors.
This paper is organized as follows: Sec. II discusses

quadratic, quartic Majorana, and quartic Dirac rephasing
invariants. The Haar measure is then introduced and some
of its properties are demonstrated. A convenient para-
metrization for unitary matrices is also described. The
equality of the PDFs for rephasing invariants of the same
type is then proven with the help of permutation matrices.
In Sec. III, the Mellin transform approach to PDFs is
discussed in all generality and some preliminary results on
Meijer G functions are given. In Sec. IV, the PDFs for the
three types of rephasing invariants are computed in function
of the neutrino number and the results are expressed in
terms of the Meijer G functions for the quartic rephasing
invariants. Section V presents a discussion of the analytic
results, with comparisons to numerical results, an analysis
of the behavior of the PDFs around the origin, and an
analysis of the average values in function of the neutrino
number. For the latter, it is shown that the observed
experimental values prefer three neutrino flavors. Finally,
Sec. VI presents our conclusion.

II. REVIEW

In this section, we discuss the quadratic, quartic
Majorana, and quartic Dirac rephasing invariants. After
reviewing the Haar measure, we demonstrate that all
rephasing invariants of the same type (quadratic, quartic
Majorana, quartic Dirac) have the same PDFs with respect
to the Haar measure. Hence, there are only three distinct
PDFs to consider for any neutrino number N.

A. Rephasing invariants

As stated in the Introduction, basis independence implies
that the proper physical observables obtained from the
PMNS matrix must be invariant under phase rotations of
the fields. These physical observables are the rephasing
invariants [3,4]. For the unitary matrix U, the quadratic xij,
quartic Majorana yMj , and quartic Dirac yDij rephasing
invariants are given by [13]

xij ¼ jUijj2;
yMj ¼ ImðUi0jUi0jU

�
i0j0

U�
i0j0

Þ;
yDij ¼ ImðUi0j0UijU�

i0j
U�

ij0
Þ; ð2:1Þ

respectively. Here, the values i0 and j0 are fixed arbitrarily
and the indices i and j labeling the different rephasing
invariants are such that i; j ≠ i0; j0. To reach a set of
independent rephasing invariants, other constraints must
be imposed on the ranges of i and j [13]. However, this
observation is of no consequence since all rephasing
invariants of the same type have the same PDFs as shown
below.
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Since the rephasing invariants (2.1) are bounded as

0 ≤ xij ≤ 1; −
1

4
≤ yMj ≤

1

4
; −

1

6
ffiffiffi
3

p ≤ yDij ≤
1

6
ffiffiffi
3

p ;

ð2:2Þ

for future convenience it is of interest to rescale them in the
following way:

xij; xMj ¼ 16jyMj j2; xDij ¼ 108jyDijj2: ð2:3Þ

Hence, the three types of rescaled rephasing invariants x
are bounded on the interval [0, 1]. We note here that the
rescaling (2.3) is motivated in parts by the fact that the odd
moments of the quartic rephasing invariants under the Haar
measure vanish.
Before proving that there are only three independent

PDFs (one per type of rephasing invariants), we now focus
on the Haar measure and discuss some of its properties.

B. Haar measure

The Haar measure for the N × N unitary matrix U is
obtained straightforwardly by taking the wedge product of
each independent elements of the matrix U†dU,1 which
arises naturally from singular value decomposition [14].
By definition, the Haar measure is both left and right
invariant, i.e., it satisfies U†dU → U†dU when U → LUR
for L and R constant unitary matrices. This property is
easily proven since U†dU → R†U†dUR and the wedge
product leads to

ðU†dUÞ≡ ⋀
1≤i≤j≤N

ðU†dUÞij → ðR†U†dURÞ

¼ pðRÞðU†dUÞ;

where pðRÞ is a polynomial in R. A simple computation
shows that for R ¼ R2R1, we must have pðR2R1Þ ¼
pðR1ÞpðR2Þ; therefore, the polynomial pðRÞ must be a
positive power of the determinant. Clearly, since the
Jacobian of any transformation must be real, the
Jacobian of the transformation U → LUR must be given
by the norm of a positive power of the determinant, i.e.,
pðRÞ ¼ j detRjk for some positive number k. Hence,
considering that R is unitary, pðRÞ ¼ 1 irrespective of
the value of k and the Haar measure is both left and right
invariant, as stated previously.
For future convenience, we now introduce a specific

parametrization for unitary matrices based on [15]. In this
parametrization, an N × N unitary matrix U is expressed as

U ¼
Y

1≤j<k≤N
expðiϕjkPkÞ expðiθjkΣjkÞ

Y
1≤j≤N

expðiφjPjÞ;

ð2:4Þ

where the matrices Pj and Σjk are given explicitly by

ðPjÞik ¼ δjiδjk; ðΣjkÞil ¼ −iδjiδkl þ iδjlδki:

Here, the NðN − 1Þ=2 mixing angles θjk, the NðN − 1Þ=2
phases ϕjk, and the N phases φj are restricted to the
intervals

θjk ∈ ½0; π=2Þ; ϕjk ∈ ½0; 2πÞ; φj ∈ ½0; 2πÞ;

respectively [implying the ranges (2.2)]. Finally, the Haar
measure in the parametrization (2.4) is given by

U†dU ¼
Y

1≤i<j≤N
sinðθijÞ½cosðθijÞ�2ðj−iÞ−1dϕijdθij

Y
1≤i≤N

dφi

ð2:5Þ

and depends nontrivially only on the mixing angles.
In the context of the PMNS matrix and the rephasing

invariants [13], the phases φi are not the unphysical phases
that can be absorbed by redefinitions of the fields.
Therefore, the usual CP-violating Majorana and Dirac
phases are complicated functions of the phases φi and
the remaining phases ϕij.

C. Equality of PDFs

We now want to prove that all rephasing invariants of
the same type have the same PDF. To proceed, we focus on
the moments of the rescaled rephasing invariants (2.3),
given by

hðxijÞs−1i ¼
1

VolðV2
NÞ

Z
U∈V2

N

U†dUðxijÞs−1;

hðxMj Þs−1i ¼
1

VolðV2
NÞ

Z
U∈V2

N

U†dUðxMj Þs−1;

hðxDijÞs−1i ¼
1

VolðV2
NÞ

Z
U∈V2

N

U†dUðxDijÞs−1; ð2:6Þ

respectively. Here, V2
N is the Stiefel manifold for the group

of N × N unitary matrices UðNÞ and its volume is given by

VolðV2
NÞ ¼

Z
U∈V2

N

U†dU ¼ 2NπNðNþ1Þ=2Q
1≤i≤NΓðiÞ

:

First, we introduce the permutation matrices

ðΠabÞij ¼ δij − δiaδaj − δibδbj þ δiaδbj þ δibδaj: ð2:7Þ
1Although U†dU is a matrix, we use the same notation for the

measure. The meaning should be clear from the context.
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It is easy to see that ΠabM permutes the ath and bth rows ofM whileMΠab permutes the ath and bth columns ofM. Since
Π†

ab ¼ Πab, then U → ΠabUΠcd is unitary and the Haar measure does not change, U†dU → U†dU.
Therefore, with an appropriate change of integration variables using the permutation matrices (2.7), we have

hðxijÞs−1i ¼
1

VolðV2
NÞ

Z
U∈V2

N

U†dUjUijj2ðs−1Þ ¼
1

VolðV2
NÞ

Z
U∈V2

N

U†dUjðΠiaUΠjbÞijj2ðs−1Þ

¼ 1

VolðV2
NÞ

Z
U∈V2

N

U†dUjUabj2ðs−1Þ ¼ hðxabÞs−1i;

as well as

hðxMj Þs−1i ¼
1

VolðV2
NÞ

Z
U∈V2

N

U†dUj4ImðUi0jUi0jU
�
i0j0

U�
i0j0

Þj2ðs−1Þ

¼ 1

VolðV2
NÞ

Z
U∈V2

N

U†dUj4Im½ðUΠjbÞi0jðUΠjbÞi0jðUΠjbÞ�i0j0ðUΠjbÞ�i0j0 �j2ðs−1Þ

¼ 1

VolðV2
NÞ

Z
U∈V2

N

U†dUj4ImðUi0bUi0bU
�
i0j0

U�
i0j0

Þj2ðs−1Þ ¼ hðxMb Þs−1i;

and finally

hðxDijÞs−1i ¼
1

VolðV2
NÞ

Z
U∈V2

N

U†dUj6
ffiffiffi
3

p
ImðUi0j0UijU�

i0j
U�

ij0
Þj2ðs−1Þ

¼ 1

VolðV2
NÞ

Z
U∈V2

N

U†dUj6
ffiffiffi
3

p
Im½ðΠiaUΠjbÞi0j0ðΠiaUΠjbÞijðΠiaUΠjbÞ�i0jðΠiaUΠjbÞ�ij0 �j2ðs−1Þ

¼ 1

VolðV2
NÞ

Z
U∈V2

N

U†dUj6
ffiffiffi
3

p
ImðUi0j0UabU�

i0b
U�

aj0
Þj2ðs−1Þ ¼ hðxDabÞs−1i:

Again, in each of these equations, we simply implemented
a change of integration variables, changing U → ΠabUΠcd
with the appropriate a, b, c, and d. Moreover, we relied on
the left and right invariance of the Haar measure. Also, we
note that since i; j ≠ i0; j0, the indices i0 and j0 did not
change under the permutations.
We now conclude that under the Haar measure, the

moments (2.6) of the rephasing invariants of the same type
are all equal. Since the PDF is completely determined by its
moments, this demonstration implies that all the rephasing
invariants of a particular type have the same PDF.
Therefore, there are only three PDFs to determine: one
for the quadratic rephasing invariants x, one for the quartic
Majorana rephasing invariants xM, and one for the quartic
Dirac rephasing invariants xD.

III. MELLIN TRANSFORM

This section reviews the Mellin transform. We first
discuss in all generality how to compute PDFs from their
moments with the help of the Mellin transform. We then
focus on moments of the particular type that occur for our
rephasing invariants and express the relevant PDFs in terms
of Meijer G functions.

A. Mellin transform method

The Mellin transform of a function fðxiÞ is defined as

fMfgðs1;…; snÞ≡
Z

∞

0

�Yn
k¼1

dxkx
sk−1
k

�
fðx1;…; xnÞ

¼ gðs1;…; snÞ; ð3:1Þ

where the Mellin transform gðs1;…; snÞ is a function of the
variables si, the conjugate variables associated to the xi.
The inverse Mellin transform is given by

fM−1ggðx1;…; xnÞ≡
Z

γþi∞

γ−i∞

�Yn
k¼1

dsk
2πi

x−skk

�
gðs1;…; snÞ

¼ fðx1;…; xnÞ ð3:2Þ

for an appropriate choice of γ.
The Mellin transform (3.1) is a powerful tool to

determine a PDF from the knowledge of its moments.
Indeed, for an unknown PDF fðx1;…; xnÞ of n random
variables xi with support on the positive axes, by definition
the Mellin transform gðs1;…; snÞ corresponds to its
moments. Hence, it is possible to obtain the unknown
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PDF by operating an inverse Mellin transform (3.2) on
the moments.
More precisely, the moments, which are given by

hxs1−11 � � � xsn−1n i ¼
Z

∞

0

�Yn
k¼1

dxkx
sk−1
k

�
fðx1;…; xnÞ

¼ fMfgðs1;…; snÞ;

are simply the Mellin transform (3.1). Therefore, the
inverse Mellin transform (3.2) of the moments

fM−1hxs1−11 � � � xsn−1n igðx1;…; xnÞ ¼ fðx1;…; xnÞ

leads directly to the PDF of interest fðx1;…; xnÞ.

B. Meijer G functions and generalized
harmonic numbers

In the computation of the moments (2.6) from the explicit
Haar measure (2.5), we come across ξk ¼ ½1þ ð−1Þ2k�=2
and the moments

hxni ¼
Ym
k¼1

ðαkÞn
ðαk þ βkÞn

; ð3:3Þ

where αk and βk are real and positive (see [7] for more
detail). We thus investigate the PDF associated to the
moments (3.3) before proceeding with the explicit moments
for the rescaled rephasing invariants (2.3).
From the discussion above, the PDF fðxÞ for the

moments (3.3) is simply the inverse Mellin transform
(3.2), which gives

fðxÞ ¼ fM−1hxs−1igðxÞ ¼
�Ym
k¼1

Γðαk þ βkÞ
ΓðαkÞ

�
1

2πi

Z
γþi∞

γ−i∞
ds x−s

Ym
k¼1

Γðαk − 1þ sÞ
Γðαk þ βk − 1þ sÞ

¼
�Ym
k¼1

Γðαk þ βkÞ
ΓðαkÞ

�
Gm;0

m;m

�
α1 þ β1 − 1; …; αm þ βm − 1

α1 − 1; …; αm − 1

����x
�
; ð3:4Þ

where the last equality necessitates
P

1≤i≤m βi < −1 for convergence. This result is expressed in terms of the Meijer G
function,

Gm;n
p;q

�
a1; …; an; anþ1; …; ap
b1; � � � ; bm; bmþ1; …; bq

����z
�

¼ 1

2πi

Z
L
ds z−s

Q
m
k¼1 Γðsþ bkÞ

Q
n
k¼1 Γð1 − ak − sÞQp

k¼nþ1 Γðsþ akÞ
Qq

k¼mþ1 Γð1 − bk − sÞ ; ð3:5Þ

where L is the proper contour.
In the analysis of the behavior of the Meijer G function

(3.5) around the origin, we encounter the generalized
harmonic numbers Hn;m, which are defined as

Hn;m ¼
Xn
k¼1

1

km
; Hn ≡Hn;1: ð3:6Þ

Therefore, the PDF for the moments (3.3) is simply
given by (3.4) which is written in terms of the Meijer G
function (3.5), and its behavior around the origin leads to
the generalized harmonic numbers (3.6).

IV. REPHASING INVARIANT PDFs FOR
ARBITRARY NEUTRINO NUMBER

In this section, we finally determine the three different
PDFs for the rephasing invariants using the results of the
previous sections. For each case, we first find the simplest
rephasing invariant with the parametrization (2.4) and use
the Haar measure (2.5) to determine the moments (see [7]).
Then we find the associated PDF with the help of the
inverse Mellin transform (3.2). For the quartic rephasing

invariants, the results are expressed in terms of Meijer G
functions (3.5).

A. Quadratic invariants

The simplest quadratic rephasing invariant in the para-
metrization (2.4) appears when we set i ¼ N and j ¼ 1. In
that case, we have

x ¼ jUN1j2 ¼ sin2ðθ1NÞ; 0 ≤ x ≤ 1:

With the Haar measure (2.5), the moments are easily
computed and are given by

hxs−1i ¼ ΓðNÞΓðsÞ
ΓðN − 1þ sÞ :

Hence, from (3.4), the PDF is

PðxÞdx ¼ fM−1hxs−1igðxÞdx ¼ ðN − 1Þð1 − xÞN−2dx

ð4:1Þ

for all quadratic rephasing invariants.
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B. Quartic majorana invariants

In the parametrization (2.4), the simplest quartic Majorana invariant is obtained by setting i0 ¼ N, j0 ¼ 1, and j ¼ 2.
From (2.1), the rephasing invariant takes the form

yM ¼ ImðUN2UN2U�
N1U

�
N1Þ ¼

�
cos2ðθ12Þsin2ðθ12Þ sinð−2φ1 þ 2φ2Þ N ¼ 2

cos2ðθ1NÞsin2ðθ1NÞsin2ðθ2NÞ sinð2ϕ2N − 2φ1 þ 2φ2Þ N > 2
;

with the rephasing invariant defined in the interval

−
1

4
≤ yM ≤

1

4
:

Clearly, the odd moments under the Haar measure vanish, justifying the switch to the rescaled quartic Majorana
invariant (2.3).
A direct computation with the explicit form of the Haar measure leads to the moments

hðxMÞs−1i ¼ 2
5
2
−2Nξs−1ΓðNÞΓðs − 1

2
Þ3ΓðsÞ

Γðsþ N−4
4
ÞΓðsþ N−3

4
ÞΓðsþ N−2

4
ÞΓðsþ N−1

4
Þ ; ∀ N ≥ 2:

Thus, using the inverse Mellin transform and (3.4), the PDF for the rescaled quartic Majorana rephasing invariant (2.3) can
be expressed as

PMðxMÞdxM ¼ fM−1hðxMÞs−1igðxMÞdxM

¼ 2
5
2
−2NΓðNÞG4;0

4;4

� N−4
4

; N−3
4

; N−2
4

; N−1
4

− 1
2
; − 1

2
; − 1

2
; 0

����xM
�
dxM;

or, in terms of the quartic Majorana rephasing invariant yM,

PMðyMÞdyM ¼ 2
13
2
−2NΓðNÞjyMjG4;0

4;4

� N−4
4

; N−3
4

; N−2
4

; N−1
4

− 1
2
; − 1

2
; − 1

2
; 0

����16jyMj2
�
dyM; ð4:2Þ

for all quartic Majorana rephasing invariants.

C. Quartic Dirac invariants

Finally, the simplest quartic Dirac invariant in the parametrization (2.4) originates from setting i0 ¼ N − 1, j0 ¼ 2,
i ¼ N, and j ¼ 1. With this choice, the associated rephasing invariant (2.1) is expressed as

yD ¼ ImðUN−1;2UN1U�
N−1;1U

�
N2Þ

¼
�
cos2ðθ13Þ sinðθ13Þ cosðθ12Þ sinðθ12Þ cosðθ23Þ sinðθ23Þ sinðϕ23Þ N ¼ 3

cos2ðθ1NÞ sinðθ1NÞ cosðθ1;N−1Þ sinðθ1;N−1Þ cosðθ2NÞ sinðθ2NÞ sinðθ2;N−1Þ sinðϕ2;N−1 − ϕ2NÞ N > 3
;

with the rephasing invariant defined in the interval

−
1

6
ffiffiffi
3

p ≤ yD ≤
1

6
ffiffiffi
3

p :

Once again, we can directly see that under the Haar measure, the odd moments vanish. This observation justifies using the
rescaled quartic Dirac invariant (2.3).
Following [7] with the help of the Haar measure (2.5), the moments are easily computed to be

hðxDÞs−1i ¼ 23−N3
1
2
−Nπξs−1ðN − 2ÞΓðNÞΓðs − 1

2
ÞΓðsÞ3Γðsþ N − 3Þ

Γðsþ N−3
2
ÞΓðsþ N−2

2
ÞΓðsþ N−3

3
ÞΓðsþ N−2

3
ÞΓðsþ N−1

3
Þ ; ∀ N ≥ 3:
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From (3.4), the rescaled quartic Dirac rephasing invariant (2.3) has for PDF

PDðxDÞdxD ¼ fM−1hðxDÞs−1igðxDÞdxD ¼ 23−N3
1
2
−NπðN − 2ÞΓðNÞG5;0

5;5

� N−3
2

; N−2
2

; N−3
3

; N−2
3

; N−1
3

− 1
2
; 0; 0; 0; N − 3

����xD
�
dxD;

which translates into

PDðyDÞdyD ¼ 25−N3
7
2
−NπðN − 2ÞΓðNÞjyDjG5;0

5;5

� N−3
2

; N−2
2

; N−3
3

; N−2
3

; N−1
3

− 1
2
; 0; 0; 0; N − 3

����108jyDj2
�
dyD ð4:3Þ

for all quartic Dirac rephasing invariants yD.

V. DISCUSSION

This section compares the analytic PDFs obtained above with numerical results, investigates the behavior of the PDFs
around the origin (vanishing rephasing invariants), and discusses the physical implications of the PDFs (considering jyj
instead of y for the quartic rephasing invariants due to their PDF invariance under y → −y).

A. Analysis of the PDFs

The three PDFs as a function of the neutrino number N for the quadratic, quartic Majorana, and quartic Dirac rephasing
invariants are given in (4.1), (4.2), and (4.3), respectively. We reproduce the results here for convenience,

PðxÞdx ¼ fM−1hxs−1igðxÞdx ¼ ðN − 1Þð1 − xÞN−2dx;

PMðyMÞdyM ¼ 2
13
2
−2NΓðNÞjyMjG4;0

4;4

� N−4
4

; N−3
4

; N−2
4

; N−1
4

− 1
2
; − 1

2
; − 1

2
; 0

����16jyMj2
�
dyM;

PDðyDÞdyD ¼ 25−N3
7
2
−NπðN − 2ÞΓðNÞjyDjG5;0

5;5

� N−3
2

; N−2
2

; N−3
3

; N−2
3

; N−1
3

− 1
2
; 0; 0; 0; N − 3

����108jyDj2
�
dyD: ð5:1Þ

We can now compare the analytic results (5.1) with numerical results and investigate the behavior of the PDFs (5.1) around
the origin. For the numerical results with a given N, we simply generate a large sample of random N × N unitary matrices
and determine their rephasing invariants. In each case (quadratic, quartic Majorana, and quartic Dirac), we did verify
numerically that all rephasing invariants of the same type have the same PDF.
We first begin with the quadratic rephasing invariant. Their PDFs (4.1) for different N are shown in Fig. 1 and their

behavior around x ¼ 0 is given by

PðxÞ ∼ ðN − 1Þ½1 − ðN − 2Þx�:

Clearly, the quadratic rephasing invariant PDFs peak around x ¼ 0 as the number of neutrinos N increases. This feature is
common to all types of rephasing invariants.
The quartic Majorana rephasing invariant PDFs (4.2) for different N are shown in Fig. 2. Their behavior around yM ¼ 0

can be written as

PMðyMÞ ∼
ðN − 2ÞðN − 1Þ

8π

�
ln2ð16jyMj2Þ þ 4ð2HN−3 − 3 ln 2Þ ln ð16jyMj2Þ

− 12ð4HN−3 − 3 ln 2Þ ln 2þ 16H2
N−3 þ 16HN−3;2 −

5π2

3

�
;

where we used (3.6). We note that the caseN ¼ 2must be evaluated with the help of the limitN → 2. Moreover, contrary to
the two other PDFs, the PDF for the quartic Majorana rephasing invariants blows up at the origin.
Finally, for different choices of N, the quartic Dirac rephasing invariant PDFs (4.3) are illustrated in Fig. 3. Using (3.6)

again, around the origin yD ¼ 0, the PDFs behave as
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PDðyDÞ ∼ 4π þ 24jyDj½ln2ð108jyDj2Þ − 3 ln 3 − 2�

for N ¼ 3 and

PDðyDÞ ∼
2πðN − 2Þ2ðN − 1Þ

2N − 5
− ðN − 3ÞðN − 2Þ2ðN − 1ÞjyDj½ln2ð108jyDj2Þ þ 2ð4HN−4 − 2 − 3 ln 3Þ ln ð108jyDj2Þ

− 3ð8HN−4 − 4 − 3 ln 3Þ ln 3þ 16H2
N−4 − 16HN−4 þ 12HN−4;2 þ 8 − π2�

for N > 3. The case N ¼ 3 must be considered separately
since the limit N → 3 does not commute with the limit
yD → 0.
We note that the analytic results (5.1) are in perfect

agreement with the numerical results, validating our
approach based on the Mellin transform. Moreover,
although they are not expressed in the same way, we have
checked that the explicit PDFs (5.1) match the ones found
in [7] for N ¼ 2 and N ¼ 3.2

B. Analysis of the average values

By analyzing the PDFs and the average values of jyMj
and jyDj, it was argued in [7] that the 3 × 3 PMNS matrix
was likely to have been drawn randomly from a probability
experiment distributed following the Haar measure.
Moreover, it was found that the N ¼ 3 average value
hjyDji ¼ π=105 ≈ 0.030 was in very good agreement with
the experimental value jyDexpj ¼ 0.032� 0.005.3 It is of
interest here to investigate the average values for arbitrary

FIG. 1. Quadratic rephasing invariant PDFs for different values of N. The red curves correspond to the analytic results while the
histograms correspond to the numerical results with a sample of 5 × 104 unitary matrices.

2The equality of the PDFs implies identities between the
Meijer G functions obtained here and the expressions in terms
of hypergeometric functions and Meijer G functions computed
in [7].

3Here and in the following, we always assume N ¼ 3 in
extracting the rephasing invariants.
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neutrino number N, which could be relevant for physics
beyond the Standard Model with sterile neutrinos.
Using (5.1) or the associated moments, the average

values of the absolute values of the rephasing invariants
and the average values of the rephasing invariants square
are given by

hxi ¼ 1

N
; hx2i ¼ 2

NðN þ 1Þ ;

hjyMji ¼ 2

πNðN þ 1Þ ;

hjyMj2i ¼ 2

NðN þ 1ÞðN þ 2ÞðN þ 3Þ ;

hjyDji ¼ πðN − 2Þ
ð2N − 3Þð2N − 1Þð2N þ 1Þ ;

hjyDj2i ¼ N − 2

2ðN − 1ÞN2ðN þ 1ÞðN þ 2Þ : ð5:2Þ

A comparison of the averages (5.2) as a function of the
neutrino number N and the experimental values is provided
is Fig. 4. Here the solid red lines are the average values
(5.2), while the blue and the green dots correspond to
values calculated from the experimental values for the

mixing angles and phases. For the two quartic Majorana
rephasing invariants, the values correspond to maximum
allowed yM1 (blue) and yM2 (green) while for the Dirac
rephasing invariant, the blue and the green dots correspond
to the best-fit observed value and the maximum allowed
value respectively.4 We see that under the probabilistic
approach used here with the Haar measure, the case N ¼ 3
is the best-case scenario to match with nature when
considering the quartic Dirac rephasing invariants. For
the quartic Majorana invariants, our statistical approach
also points toward N ¼ 3 when considering the maximum
allowed values for both invariants (N ¼ 2 would be better,
since it allows for the very large jyM1 j, but that case is
excluded). We thus conclude that in our framework, there
would not be any extra sterile neutrino (apart, e.g., from the
three heavy neutrinos responsible for the type I seesaw
mechanism).

FIG. 2. Quartic Majorana rephasing invariant PDFs for different values of N. The red curves correspond to the analytic results, while
the histograms correspond to the numerical results with a sample of 5 × 104 unitary matrices.

4By best-fit value, we mean the rephasing invariants computed
from the best-fit mixing angles and phases extracted from
observations assuming N ¼ 3. By maximum allowed values,
we mean the rephasing invariants computed from the best-fit
mixing angles extracted from observations assuming N ¼ 3.
Hence, in the latter, the phases are kept free.

MELLIN TRANSFORM APPROACH TO REPHASING INVARIANTS PHYS. REV. D 102, 036001 (2020)

036001-9



Before concluding, it is of interest to point out that
the largest rephasing invariants obtained from the Haar
measure originate from the smallest neutrino number.
Hence, CP violation is larger for smaller N. This
matches with our observation that all three PDFs

peak around the origin as the number of neutrinos N
increases, leading to vanishing moments as N → ∞.
In fact, it is now easy to perform a large N analysis.
For example, from the average values (5.2), we
see that

FIG. 3. Quartic Dirac rephasing invariant PDFs for different values of N. The red curves correspond to the analytic results, while the
histograms correspond to the numerical results with a sample of 5 × 104 unitary matrices.

FIG. 4. Quartic rephasing invariant average values (solid red lines and black dots) in function of the neutrino number for Majorana
(left panel) and Dirac (right panel) rephasing invariants. In the left panel, the blue and green dots represent the maximum allowed values
(forN ¼ 3) calculated from the experimental values for the mixing angles. In the right panel, the blue dot represents the best-fit observed
value (for N ¼ 3) and the green dot represents, as in the left panel, the maximum allowed value (for N ¼ 3) also calculated from the
experimental values for the mixing angles.
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hxi ¼ 1

N
; hjyMji ≈ 2

πN2

�
1 −

1

N
þ � � �

�
;

hjyDji ≈ π

8N2

�
1 −

1

2N
þ � � �

�
: ð5:3Þ

Therefore, the leading term in the large N approxima-
tion leads to exact results for the quadratic rephasing
invariant average values but for N ¼ 3 it overestimates
the quartic Majorana average values by a factor of 4=3
and the quartic Dirac average values by a factor of
35=24. Hence, higher order corrections in 1=N are
necessary to obtain good approximations for the quartic
rephasing invariants when N ¼ 3.

VI. CONCLUSION

In this paper, we studied analytically the statistical
implications of the Haar measure for the rephasing invar-
iants of the PMNS matrix as a function of the number of
neutrinos. After a review of the rephasing invariants and
the Haar measure, we introduced the Mellin transform
approach to determine the PDFs with the help of the
moments. We calculated the latter from a given para-
metrization for unitary matrices and showed that under
the Haar measure, all PDFs for rephasing invariants of the
same type are equivalent. We then computed the three
independent PDFs in terms of the Meijer G functions and
studied their physical implications.

We first compared our analytical results with numerical
results by generating a large sample of unitary matrices and
computing their rephasing invariants. We also studied the
behavior of the PDFs around the origin, showing that they
peak at that point, implying that the average values of the
absolute values of the rephasing invariants tend to zero as
the neutrino number increases.
We then investigated the average values of the absolute

values of the rephasing invariants by comparing them with
experimental values. We argued that the N ¼ 3 case is
preferred in our statistical analysis. However, to take into
account all rephasing invariants at the same time, it would
be necessary to consider the joint PDF for all rephasing
invariants.
With this work, we now have the PDFs for all rephasing

invariants under the Haar measure, which appears in the
anarchy principle. The PDF for the light neutrino masses
originating from the anarchy principle is also known for
arbitrary neutrino number, but it is expressed in terms of a
complicated multidimensional integral. It would be of
interest to determine an analytic form for these PDFs,
maybe in a large N setting.
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