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We consider the scattering of dark matter particles from superfluid liquid 4He, which has been proposed
as a target for their direct detection. Focusing on dark matter masses below ∼1 MeV, we demonstrate
from sum-rule arguments the importance of the production of single phonons with energies ω≲ 1 meV.
We show further that the anomalous dispersion of phonons in liquid 4He at low pressures [i.e.,
d2ωðqÞ=dq2 > 0, where q and ωðqÞ are the phonon momentum and energy] has the important consequence
that a single phonon will decay over a relatively short distance into a shower of lower-energy phonons
centered on the direction of the original phonon. Thus, the experimental challenge in this regime is to detect
a shower of low-energy phonons, not just a single phonon. Additional information from the distribution of
phonons in such a shower could enhance the determination of the dark matter mass.
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I. INTRODUCTION

Although the existence of dark matter has been con-
clusively established by multiple independent lines of
gravitational evidence [1], its nature remains one of the
outstanding mysteries in physics. Weakly Interacting
Massive Particle (WIMP) models of dark matter, which
rely on Standard Model interactions to produce the dark
matter relic abundance, have thus been an important
experimental target for decades [2,3]. A broad range of
experiments has been deployed to directly detect the elastic
scattering of ∼10 GeV–mass WIMPs from heavy nuclei
(see, e.g., Ref. [4] and references therein).
With WIMP dark matter now under increasing obser-

vational strain, broadening the scope of terrestrial searches
for dark matter has become ever more compelling [5,6]. If
dark matter interacts with the matter of the Standard Model
via a new, dark force, the mass range of interest for direct
detection experiments becomes much broader, and in
particular extends down to the observational warm dark
matter limit of order a few keV [7]. The direct detection of
sub-MeV dark matter poses substantial challenges, due to
the poor kinematic match with atomic nuclei and the very

low available kinetic energy, < 1 eV for sub-MeV dark
matter moving at typical galactic velocities (v=c ∼ 10−3).
Many interesting new or proposed experiments aim at dark
matter masses mχ in the range from MeV to a few GeV,
either using electronic scattering [8] in a variety of systems
such as semiconductors [9–13], liquid noble gases [14–16],
and other materials [17,18]; or using new channels to
observe nuclear scattering [19–22]. Far fewer experiments
have been proposed to detect dark matter in the challenging
sub-MeV regime. Such schemes generally involve systems
with very low-energy gapped excitations—e.g., quasipar-
ticles in superconductors [23], electrons in Dirac materials
[24], and optical phonons in polar crystals [25]. More
recently, Ref. [26] has called attention to the advantages of
using materials with high sound speeds.
Superfluid 4He is a particularly promising target for the

detection of light dark matter particles. Atomic helium
recoils from GeV-mass particles can be detected via the
resulting electronic excitations, visible as scintillation and
ionization [27]. Lighter particles can excite phonons and
rotons, the meV-scale collective excitations of the super-
fluid, as discussed in detail by Schutz and Zurek [28] and
by Knapen, Lin, and Zurek [29]. Such excitations may
further evaporate individual 4He atoms from the superfluid
surface, forming the basis of a detection scheme pro-
posed by Maris et al. [30,31] and recently explored by
Hertel et al. [32].
In this paper, we explore in detail the physics of

excitations produced by the scattering of dark matter
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particles in superfluid helium, focusing on the challenging
mass rangemχ ≲ 1 MeV. Such dark matter particles are not
energetic enough to excite helium atoms electronically. We
formulate the interaction between the dark matter particle χ
and 4He atoms in terms of a low-energy s-wave pseudo-
potential—essentially a contact interaction. Predicting the
interaction rate then reduces to understanding the density
fluctuations in the helium, which at low energy are single
phonons and rotons, as well as multiple phonon and roton
excitations. Through the use of sum rules and explicit
calculations, we constrain the production and damping of
these excitations across a wide kinematic range. Our focus
throughout is on deriving the response of the superfluid,
rather than on proposing a detector design or dark mat-
ter model.
The present analysis extends that of Zurek et al. [28,29]

in two significant ways. First, these authors limited
themselves to processes that could generate phonons with
energies above 1 meV, an assumed detection limit. Since
the maximum phonon-roton energy (the maxon) is
∼1.1 meV, this cut effectively excludes single-phonon
processes and requires multiphonon excitations. They draw
upon theoretical calculations of high-frequency density
fluctuations [33] in estimating detection rates. Here we
consider the generation and propagation of excitations over
a broader range of excitation energies, leaving aside for the
moment issues of detectability. As we discuss more fully
below, the f-sum rule for phonon fluctuations implies that
as the phonon momentum decreases, single-phonon proc-
esses become more and more dominant, exhausting
some 90% of the allowed weight even at the highest
momentum transfer.
A second feature we take into account here is the

important role played by anomalous dispersion: the slight
deviation from linearity of the low-energy phonon spec-
trum. Anomalous dispersion allows single low-momen-
tum phonons to decay into two (or more) phonons nearly
collinear with the initial phonon—the Beliaev process
[34,35]. As we show in detail, this process leads to the
rapid formation of phonon cones, analogues of cosmic ray
air showers in the atmosphere, after the creation of a single
phonon.1 Although the detection of such soft phonon
cascades is extremely challenging, their shape and extent
at the helium surface encodes information on the location
of the initial interaction and momentum direction beyond
that available from a calorimetric measurement of the
initial phonon.
This paper is organized as follows: In the next section we

introduce the cast of characters: the dark matter halo in the

neighborhood of the Earth, and the excitations of superfluid
4He. We then, in Sec. III, review the kinematics of the
interaction between dark matter particles and the helium,
and we model their interaction in terms of a low-energy
pseudopotential. In the following Sec. IV, we show that the
f-sum rule bounds the rate of multiexcitation emission
compared with the single-phonon rate to at most 10% at
q≲ 0.35 Å−1, determine the rate of single-phonon emis-
sion, and describe phonon splitting and damping in the
anomalous dispersion regime. We discuss phonon damping
in Sec. V, two-phonon production in Sec. VI, and turn in the
following Sec. VII to describing the phonon cascade
produced by an initial single phonon of low q, and we
outline how the detection of such a cascade would proceed.
Appendix A is devoted to a technical discussion of the
relation of the helium structure function, Sðq;ωÞ, and the
helium density-density correlation function, Appendix B
discusses Sðq;ωÞ at nonzero temperature, and Appendix C
discusses the q dependence of the rate of direct production
of a pair of phonons.

II. PHYSICAL SETTING

The problem of dark matter scattering in superfluid
helium lies at the intersection of quite disparate threads of
physics, spanning decades of literature across different
research communities. In this section, we briefly review the
groundwork we need on two key topics: the flux and
velocity distribution of dark matter incident upon the Earth,
and the basic phenomenology of collective excitations in
superfluid helium.

A. Dark matter halo

Estimating the rates and spectra of interactions between
dark matter and Earth-bound systems requires a model of
the density and velocity distribution of dark matter particles
in our local neighborhood. Interaction rates are directly
proportional to the local dark matter density, a relatively
uncertain quantity (see, e.g., Refs. [39–41]); we adopt here
ρ ≃ 0.4 GeV=cm3. The velocity distribution of dark matter,
fðvÞdv (normalized to unity), in the solar neighborhood is
typically modeled as Maxwell-Boltzmann, cut off at some
Galactic escape velocity, vesc; here we assume a character-
istic velocity v0 ¼ 230 km=s [42,43] in the Galactic frame,
with vesc ¼ 550 km=s [44]. This velocity distribution is
further boosted into the rest frame of the Sun
(vE ¼ 244 km=s), with further modulations from the
Earth’s motion around the Sun neglected here [45,46].
Dark matter particles are thus incident upon terrestrial
detectors at typical velocities of magnitude v ∼ 300 km=s,
but have significantly higher and lower speeds.
This simple form for the velocity distribution, the

“standard halo model,” is a useful first approximation to
the local dynamics of dark matter; its common use enables
straightforward comparison between different experimental

1Acanfora et al. present an effective field theory approach to
the problem of detecting sub-GeV dark matter in superfluid 4He
[36], in which the phonon dispersion relation is purely linear.
While parts of that discussion parallel the treatment here, their
approach does not account for the physics of anomalous
dispersion. See also Ref. [37,38].
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probes of dark matter. However, the actual phase space
distribution of dark matter at the Earth is poorly determined
experimentally, and we should not expect the standard halo
model to yield a precise description of the local dark matter
distribution. First, numerical simulations of Milky Way–
like galaxies typically predict velocity distributions broader
than Maxwellian, with more support at large speeds [47].
Second, the Milky Way is not in a steady state: smaller
systems are continuously accreting onto the Milky Way,
giving rise to substructure in the phase space distribution of
dark matter, which can produce localized enhancements of
dark matter at relatively high velocities [48,49].
The total elastic scattering rate evaluated at the mean

velocity and the rate integrated over the full velocity
distribution differ only by factors of order 1. However,
the total rates above some specified threshold can be much
more sensitive to the form of the velocity distribution,
depending on where the threshold falls relative to the mean
of the distribution. In particular, velocity averaging is
critical for determining the lowest dark matter masses that
a given experiment is sensitive to, and will be a necessary
component of any tradeoff made between, e.g., measuring
lower-energy single-phonon signals versus exposing a
higher-threshold detector for longer times. For conven-
ience, we will typically quote parameters at a single
representative velocity, but integrate over the standard halo
model when giving total rates in Secs. IV and VI.

B. Helium excitations

The de Broglie wavelength, λdB ¼ 2πℏ=mχv, of a dark
matter particle of mass mχ between 10 keV and 1 MeV,
of order 2000 to 20 Å, is much larger than the average
spacing, ∼4.5 Å, between He atoms in the superfluid.
Therefore, the χ’s are scattered by the helium via the
creation of collective modes of the superfluid—the pho-
nons and rotons. The familiar phonon-roton dispersion
curve is shown in Fig. 1 [50]. The detection of 4He
excitations created by a χ and the measurement of their
energies and directions with respect to v⃗ are adequate to
learn the mass of the initial dark matter particle, as well as
the χ-4He cross section. In this paper, we focus primarily
on phonons.
The phonon dispersion relation, energy vs momentum,

is approximately ω ≃ sq, where s ¼ 2.38 × 104 cm=s ¼
1.56 meVÅ (at saturated vapor pressure, SVP) is the speed
of sound in the superfluid. We take ℏ ¼ 1 throughout. Dark
matter particles thus move at supersonic velocity, v ∼ 103s.
Importantly, between saturated vapor pressure (SVP) and
∼18 bar [51–53], the phonon dispersion relation curves
slightly upward initially:

ωðqÞ ≃ sqð1þ ζAq2 þ � � �Þ; ð1Þ

an effect known as anomalous dispersion. At SVP,
the upward curvature stops at phonon momentum
qinfl ≈ 0.216 Å−1, where the dispersion relation has an
inflection point.
A more detailed parametrization of the phonon dispersion

relation than Eq. (1), valid up to q ∼ 0.9 Å−1, is given by
Maris [35],2

ωðqÞ ≃ sq

�
1þ ζAq2

�
1 − q2=q2a
1þ q2=q2b

��
; ð2Þ

with the parameters ζA ¼ 1.11 Å2, qa ¼ 0.542 Å−1, and
qb ¼ 0.332 Å−1 at SVP; see also Refs. [56,57]. The para-
metrization (2) includes the negative curvature of the
dispersion relation at higher q, but it does not accurately
describe the peak in the dispersion relation, as shown in
Fig. 2. At higher phonon momentum, we will use the simple
parametrization [58]

ωðqÞ ≃ sqð1 − ζNq2 þ � � �Þ; ð3Þ

with ζN ≃ 0.27 Å2.

FIG. 1. The dispersion curve of superfluid helium [50]. The
excitations in the range below about q ¼ 1 Å−1 are phonons, and
in the vicinity of q ¼ 1.9 Å−1 are rotons. Although not visible
on this scale, the second derivative of the dispersion curve is
positive (anomalous dispersion) below momenta qinfl; at SVP
qinfl ≈ 0.216 Å−1. At pressure above ∼18 bar, the anomalous
dispersion vanishes. The scale on the right indicates the dark
matter mass, mχ , with kinetic energy corresponding to the scale
on the left, for dark matter particles moving at (minus) the
velocity, v, of the Solar System through the Galaxy.

2Expression (2) implicitly assumes that ωðqÞ2 is analytic in q2,
and consequently that a power series expansion of ωðqÞ has only
odd powers of q. However, as pointed out by Kemoklidze and
Pitaevskii [54], the r−6 falloff of the van der Waals interaction
between helium atoms implies that ωðqÞ has even powers of q,
beginning with q4. More recently, approximations to the ex-
citation spectrum that also contain even powers of q have been
made (see, e.g., Ref. [55]). The addition of such terms to the
dispersion relation is not expected to alter the basic picture we
develop, so to simplify the discussion we do not take them into
account explicitly.
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Owing to anomalous dispersion, single-phonon final states
are stable against decay only for q larger than a critical value,
qc, which depends on the details of the dispersion relation.
For the Maris dispersion relation [Eq. (2)], qc¼0.4215Å−1,
with ωðqcÞ¼7.90K¼0.68meV. (A phonon of momentum
qc can decay into two collinear equal-momenta phonons,
ωðqcÞ ¼ 2ωðqc=2Þ; see details in Sec. V.) Phonons produced
with q < qc generate a cascade of lower-momentum
phonons.

III. DARK MATTER SCATTERING ON
SUPERFLUID HELIUM

We first lay out the region of possible energy and
momentum transfer, ω and q⃗, from a dark matter particle,
χ, to the helium. The allowed energy transfer vs momentum
transfer is shown in Fig. 2 for representative mχ . For initial

momentum k⃗ ¼ mχ v⃗ of the χ, the final momentum is

k⃗0 ¼ k⃗ − q⃗, and the energy transfer is

ω ¼ v⃗ · q⃗ −
q2

2mχ
: ð4Þ

For v ≃ 230 km/s, the incident momentum is k≃
0.39mMeV Å−1, where mMeV is the mass of the χ measured
in MeV. The maximum energy transfer for given q occurs
when q⃗ is parallel to the incident k⃗; then ωmaxðqÞ ¼
ðkq − q2=2Þ=mχ , an inverted parabola ranging from 0 to
2k along the q axis, with a maximum at k ¼ q and height
ωmaxðkÞ ¼ k2=2mχ , which is the maximum energy transfer
from the dark matter particle. The momentum transfer
ranges from 0 to qmax ¼ 2k, the latter for backscattering
and no energy transfer to the medium.
Since the energy-momentum transfers of the dark matter

particle to the liquid 4He are so much smaller than the scales
associated with the expected microscopic interactions of
dark matter with the 4He nuclei or with the electrons, the
scattering is primarily s-wave, and the interaction of a dark
matter particle with a 4He atom can be described by a low
energy pseudopotential,3

Vχ4 ¼
2πa
mr

δðr⃗χ − r⃗4Þ; ð5Þ

where a is the scattering length and mr is the dark
matter–4He reduced mass; for mχ ≪ m4, the 4He mass,
mr ≃mχ . The total cross section for scattering of a dark
matter particle on an isolated 4He atom is σχ4 ¼ 4πa2. The
pseudopotential modifies the energy of a dark matter
particle in liquid 4He by 2πan4=mr, where n4 is the 4He
equilibrium number density ¼ 2.379 × 1022 cm−3. More
complicated dependence of the dark matter particle energy
on n4 and the 4He velocity fluctuations can be ignored,
since the interaction of the χ with the 4He is weak.
The differential rate at which dark matter particles of

density nχ deposit energy ω and momentum q in the 4He is
given in terms of the dynamical structure function of the
4He by

FIG. 2. The region of energy and momentum deposition
allowed by Eq. (4) for a dark matter particle of mass mχ , lies
within the inverted parabolas, labeled by mχ ¼ 1 MeV, 300 keV,
100 keV (upper panel), and mχ ¼ 100 keV, 30 keV, and 10 keV
(lower panel). The solid lines assume velocity v ¼ 230 km=s, and
the dashed curves assume v ¼ 550 km=s. For the creation of a
single phonon by the dark matter particle, the energy-momentum
transfer lies on the single-phonon dispersion curve (Fig. 1),
shown here multiplied in energy by 100. Only the mχ ¼ 1 MeV
curve, for v ¼ 550 km=s, extends beyond the maximum in the
phonon dispersion curve.

3If the interaction of the χ with baryonic matter is mediated by
a (dark) meson of mass μ, then in lowest order the interaction is a
Yukawa-like potential, VμðrÞ ¼ aμ2e−μr=r, with a scattering
amplitude of the form a=ð1þ ðμqÞ2Þ, where q is the momentum
transfer from the dark matter to the helium. The assumption of a
simple pseudopotential is valid for q ≪ μ, in which case the
scattering amplitude is simply a. On the other hand, if μ is smaller
than the range of observable phonon momenta, μ ≪ q, then the
scattering amplitude would behave as aμ2=q2, increasing strongly
with decreasing q. If one places an upper bound on the scattering
amplitude by measurements involving momentum transfers q0
larger than typical phonon momenta, then lower-momentum
processes can have a scattering amplitude larger by a factor
∼ð1þ q20=μ

2Þ=ð1þ q2=μ2Þ than the bound. For q, q0 ≪ m0, the
growth in amplitude, ∼q20=q2, can be significant.
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dΓ ¼ nχ

�
2πa
mχ

�
2

2πn4Sðq;ωÞ
d3q
ð2πÞ3 ; ð6Þ

where ω is given by Eq. (4), and the dynamical structure
function is

2πn4Sðq;ωÞ ¼
Z

d3rdte−iq⃗·ðr⃗−r⃗0Þþiωðt−t0Þhρðr⃗; tÞρðr⃗0; t0Þi

¼
X
f

jhfjρ−q⃗jiij22πδðω − Ef þ EiÞ; ð7Þ

with ρ the 4He number density operator and ρq ¼R
d3re−iq⃗·r⃗ρðr⃗; tÞ. The states i and f are those of 4He in

equilibrium, in the absence of dark matter, and a thermal
average over states i is assumed at nonzero temperature.
We assume ω > 0 always.
The Fourier transform of the 4He number density

operator, ρ−q⃗, acting on a state of the liquid, can create
one or more elementary excitations of the fluid of total
momentum q⃗, or annihilate excitations of total momentum
−q⃗. Thus, a dark matter particle interacting with the
4He can create one or more excitations of the superfluid.
The creation of a single phonon is illustrated in Fig. 3(a).
This phonon can more generally transform into two or
more phonons via the multiphonon interactions in 4He
[Fig. 3(b)]. In addition, a χ can directly create a pair of
phonons, as shown in Fig. 3(c). We note that successive
creations of phonons by a dark matter particle, as in
Fig. 3(d), are higher order in the dark matter–helium
scattering length and can be ignored.
The rate in Eq. (6) is independent of the azimuthal angle

of q⃗ about v⃗. Since the energy ω is linear in cos θq, where
θq is the angle between q⃗ and v⃗, we may replace the
differential d cos θq with dω=qv and rewrite the rate as

dΓ
dqdω

¼ Γ0

q
2k2

Sðk;ωÞ; ð8Þ

where Γ0 ¼ σχ4nχn4v is the rate of interaction per unit
volume of the χ’s with a gas of noninteracting 4He atoms
at rest. In addition, the total rate for given momentum
transfer q is

dΓ
dq

¼ Γ0

2

q
k2

Z
qv−q2=2mχ

0

dωSðq;ωÞ: ð9Þ

IV. SUM-RULE CONSTRAINTS: SINGLE-PHONON
VS MULTIEXCITATION EMISSION

Although the momentum transfers from dark matter
particles are below ∼0.7 Å−1 for mχ below 1 MeV and
v ∼ 230 km/s, energy transfers for momentum transfer q
can be much larger than ωðqÞ, the energy required to
generate a single phonon. However, for low q, the spectral
weight of the structure function Sðq;ωÞ is dominated by the
single-phonon contribution, and the most likely outcome is
that for dark matter in the sub-MeV mass range a single
phonon will be produced. We can estimate the importance
of multiexcitation processes from the f-sum rule [Eq. (10)]
obeyed by Sðq;ωÞ, which at zero temperature has the form

Z
∞

0

dωωSðq;ωÞ ¼ q2

2m4

: ð10Þ

The sum rule follows directly from the relation between
Sðq;ωÞ and the density-density correlation function in the
complex frequency plane, as we recall in Appendix A; this
relation also provides the basis for expanding Sðq;ωÞ at
low q in terms of phonon excitations. In Appendix B, we
review the structure of Sðq;ωÞ at finite temperature.
Neglecting the structure of the single-phonon peak for

anomalous dispersion, as described below, one can write,
for ω > 0,

Sðq;ωÞ ¼ ZðqÞδðω − ωqÞ þ SMðq;ωÞ; ð11Þ

where ZðqÞ is the single-phonon weight, and SMðq;ωÞ is
the remaining multiexcitation strength.
The total excitation strength is bounded by the

energy-weighted sum rule [Eq. (10)]. At zero temperature,
in the absence of significant multiexcitation strength,
ZðqÞ → q2=2m4ωðqÞ. With increasing q, the weight of
the single-phonon peak in Eq. (11) is reduced from
q2=2m4ωðqÞ by direct creation of two (or more) phonons
and rotons; the sum-rule arguments given in Refs. [59,60]
and reviewed in Ref. [53] indicate that

(a)

(d)

(b)

(c)

FIG. 3. Phonon creation by a dark matter particle. (a) Single-
phonon creation. (b) Creation of a single phonon which trans-
forms into two phonons (this process also describes direct
creation of three phonons, one of which is absorbed by the dark
matter particle). (c) Direct creation of two phonons at the dark
matter–4He vertex. (d) Successive creation of two phonons by the
dark matter particle. Process (d) is higher order in the dark
matter–helium scattering length and can be ignored in estimating
the event rate for a dark matter particle creating phonons.
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ZðqÞ ¼ q2

2m4ωðqÞ
�
1 − z2

�
q

m4s

�
2

þ � � �
�
; ð12Þ

where z2 ≃ 1.63, a value consistent with neutron scattering
experiments [61–63]; see Eq. (B14) for the expansion to
higher order in q. The correction ∼z2 is shown as the
dashed curve in Fig. 4.
The f-sum rule together with Eq. (12) then implies that

for small q,

Z
∞

0

dωωSMðq;ωÞ ¼ z2

�
q

m4s

�
2 q2

2m4

; ð13Þ

plus terms of relative order q6. Thus, multiexcitations
contribute a fraction

Z
∞

0

dωωSMðq;ωÞ=
Z

∞

0

dωωSðq;ωÞ ¼ z2

�
q

m4s

�
2

ð14Þ

to the sum rule at small q. At q≲ 0.35 Å−1, with
m4s ¼ 1.50 Å−1, the multiexcitation contribution is
≲10% of the single-phonon contribution.
Similarly, the static structure function is

SðqÞ ¼
Z

dωSðq;ωÞ ¼ ZðqÞ þ SMðqÞ; ð15Þ

where the multiexcitation contribution is

SMðqÞ ¼
Z

∞

0

dωSMðq;ωÞ: ð16Þ

Since the multiexcitation weight is at ω ≥ sq, Eq. (13)
implies that for small q,

SMðqÞ ≤
Z

∞

0

dω
ω

sq
SMðq;ωÞ ¼

z2
2

�
q

m4s

�
3

; ð17Þ

or equivalently,

SMðqÞ
SðqÞ ≤ z2

�
q

m4s

�
2

; ð18Þ

the same fraction as in the sum rule, Eq. (14).
The multiexcitation rate, dΓM=dq, for given q, compared

to the single-phonon rate, is similarly bounded. We write

dΓ
dq

¼ dΓ1

dq
þ dΓM

dq
ð19Þ

in terms of the single-phonon contribution

dΓ1

dq
¼ Γ0

2

q
k2

ZðqÞ ≃ Γ0

4m4s
q2

k2
; ð20Þ

where q ≤ 2k, and the multiexcitation contribution

dΓM

dq
¼ Γ0

2

q
k2

Z
qv−q2=2mχ

0

dωSMðq;ωÞ: ð21Þ

Since the integral is bounded above by SMðqÞ, we find from
Eq. (B12) the bound on the multiexcitation rate,

dΓM

dq
≤

Γ0

4k2
z2q4

ðm4sÞ3
: ð22Þ

Comparing with Eq. (20), we have

dΓM

dq
=
dΓ1

dq
≤ z2

�
q

m4s

�
2

; ð23Þ

the same ratio as the contributions to the sum rule. The
multiexcitation rate at q≲ 0.4 Å−1 is similarly ≲10% of
the single-phonon contribution. The sum-rule argument
implicitly takes into account the momentum dependence of
the matrix elements for producing multiphonon states as
well as the available phase space. We emphasize that this
bound does not depend on whether the dispersion is
anomalous or not.
When the phonon dispersion is normal single (on-shell)

phonons cannot decay into two or more phonons. However,
with anomalous dispersion a single phonon can decay into

FIG. 4. Neutron scattering measurements of the relative devia-
tions of the static structure function, SðqÞ ¼ R

dωSðq;ωÞ, and the
single-phonon strength ZðqÞ from their zero-temperature long-
wavelength single-phonon value, q=2m4s. Here Σ ¼ S or Z.
Points are from Robkoff and Hallock [61] at T ¼ 1.38 K (▴), and
from Cowley and Woods [62], at T ¼ 1.1 K, using the Rotating
Crystal Spectrometer (RCS, •) and the Triple Axis Crystal
Spectrometer (TACS, ▫) at Chalk River. The data have been
corrected to zero temperature by dividing the experimental STðqÞ
at finite T by 1þ 2nðωðqÞÞ and the experimental ZðqÞ by
1þ nðωðqÞÞ, where nðωðqÞÞ ¼ ðeωðqÞ=T − 1Þ−1 is the Bose
occupation factor for excitations of momentum q. See the
discussion in Appendix B. The dotted curve shows the sum-
rule-based fit [Eq. (12)].
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two, and there is no longer a clean distinction in Sðq;ωÞ
between damped single phonons and multiphonon states;
the effect, as we see below, is to spread the single-phonon
peak. Off-shell phonons can decay into two phonons if
ω − ωðqÞ > 0 for normal dispersion and if ω > 2ωðq=2Þ,
or equivalently ω − ωðqÞ > −ðωðqÞ − 2ωðq=2ÞÞ, for
normal dispersion. For ω − ωðqÞ ≫ jωðqÞ − 2ωðq=2Þj,
the decay rate becomes independent of the sign of the
dispersion.
We turn to estimating the rate of single-phonon events.

For simplicity, we assume here that the single-phonon
spectrum cuts off at q of the order of the 4He Debye wave
vector kD ¼ 1.089 Å−1, defined in terms of the 4He number
density by n4 ¼ k3D=6π

2. Equation (20) implies that the
integrated one-phonon event rate, for a detector with a
lower energy threshold ω0 with ω0=s≤2k¼2mχv≤kD, is

Γ1ðω > ω0Þ ¼
Z

2k

ω0=s
dq

Γ0

m4s
q2

4k2

¼ 2n4ρχσχ4
3m4

v2

s

�
1 −

�
ω0

2smχv

�
3
�
; ð24Þ

while in the limit of large mχ , with ω0 ≤ kD ≤ 2k, one has

Γ1ðω > ω0Þ ¼
Z

kD

ω0=s
dq

Γ0

m4s
q2

4k2

¼ n4ρχσχ4
12m4s

k3D
m3

χv

�
1 −

�
ω0

skD

�
3
�
: ð25Þ

The prefactor of ð1 − ðω0=2smχvÞ3Þ in Eq. (24) is

≃3.0 × 10−9
�

σχ4
10−40 cm2

��
v

230 km=s

�
2

s−1 cm−3; ð26Þ

where ρχ ¼ nχmχ ≃ 0.4 GeV=cm3 is the local dark matter
density. The integrated rate for small mχv is proportional
to ρx, and depends on mχ only through the factor
ω0=2smχv. The factor 2smχv is ∼0.12 (mχ=100 keV)
(v=230 km= sec) meV.
Figure 5 shows the one-phonon rate integrated

over the standard halo model described above,R
dvfðvÞΓ1ðω > ω0Þ, for various mχ . For low mχ, the

zero-threshold rate scales with the mean square velocityR
dvv2fðvÞ ¼ ð369 km=sÞ2, and the single-phonon rate is

given by

hΓ1ðω>0Þi∼8.9×10−9 cm−3 s−1ðσχ4=10−40 cm2Þ: ð27Þ

Note that the phase space for creating single phonons falls
rapidly for mχ ≳ 500 keV, as seen in Fig. 5.
More generally, the contribution of the single-phonon

peak to the interaction rate of a dark matter particle with the
helium [with ZðqÞ → q2=2m4ωðqÞ] is

dΓ1

dqd cos θq
¼ Γ0

4m2
χv

q4

m4ωðqÞ
δðω − ωðqÞÞ: ð28Þ

Integrating over q using Eq. (4), we find the angular
distribution,

dΓ1

d cos θq
≃
2mχΓ0

vm4s
ðv cos θq − sÞ2; ð29Þ

with the restriction that 0 < v cos θq − s≲ kD=2mχ .
Figure 6 shows the one-phonon rate, Eq. (29), as a

function of cos θq, assuming a cross section, σχ4 ¼
10−40 cm2, and a nominal velocity v¼ 230 km=s,
and 2mχv≲ kD.
Measurement of the momentum and energy transfers q⃗

and ω from detection of either single-phonon or phonon-
pair production, implies that the mass of the dark matter
particle is

mχ ¼
q2

2ðqv cos θq − ωÞ : ð30Þ

For single-phonon detection, ω ≃ sq, and thus

mχ ¼
q

2ðv cos θq − sÞ : ð31Þ

Except for emission at θq ≃ π=2, one can neglect the s and
conclude thatmχ ≃ 1.36q= cos θq, wheremχ is measured in
MeV and q in Å−1.

FIG. 5. Rate of single-phonon events per kg of 4He for σχ4 ¼
10−40 cm2 and a selection of masses mχ , as a function of limiting
energy threshold ω0. Rates are integrals of Γ1ðω > ω0Þ [Eqs. (24)
and (25)] over the standard halo model, following the parameters
in Sec. II A. The vertical dotted line indicates ωðqcÞ at 1 bar,
below which phonons can split into two or more phonons. The
rapid falloff for MeV-scalemχ arises from the lack of phase space
for single-phonon production.
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V. PHONON DAMPING

The principal damping mechanism of a phonon, either
on or off shell, is decay into two phonons when kine-
matically allowed. A single phonon produced on shell will
decay into two phonons as long as its momentum is less
than the critical qc [¼ 0.4215 Å−1 for the dispersion
relation (2)]. If q > qc, the phonon is stable. However,
the production of two phonons via the process in Fig. 3(b)
remains possible for all q if the single phonon is sufficiently
off shell.
To understand the splitting of an on-shell phonon of

momentum q into a pair of phonons of momenta q1 and q2
(where in this discussion we assume q1 ≤ q2), we note that
the dispersion curve (2) has a number of critical points.
Beyond the inflection point, where ω00ðqinflÞ ¼ 0, at
qinfl ¼ 0.216 Å−1, the slope of the dispersion curve equals
the zero-momentum sound speed s at qs ¼ 0.377 Å−1; up
to qs, a phonon of momentum q can turn into a pair of
phonons, where the smaller of the momenta q1 can be
arbitrarily small. The critical momentum qc ¼ 0.422 Å−1

is where ωðqcÞ ¼ 2ωðqc=2Þ, so that one on-shell phonon
can decay into two collinear equal-momenta phonons.
Phonons of momentum beyond qc can no longer split into
pairs of phonons. Between qs and qc, phonons can still turn
into pairs, but with both q1 and q2 finite. Up to qc, q1 takes
on its maximum possible value when q1 ¼ q2 ≳ q=2, with
equality at q ¼ qc. Lastly, we note that ωðqÞ ¼ sq again
at q ¼ qa ¼ 0.542 Å−1.
In the decay of a phonon of momentum q into q1 and q2,

(again with q1 ≤ q2, so that one does not have symmetry
under q1 ↔ q2), the phonons are collinear only if
q1 ¼ q1;min. For q1 > q1;min, the two phonons are at a
finite angle with respect to q⃗. At q1 ¼ q1;max, one has
q1 ¼ q2. The range of q1 in the splitting of an on-shell

phonon of momentum q, as a function of q, is shown in the
upper panel of Fig. 7. Owing to the smallness of the
anomalous dispersion, the upper limit is only slightly above
q=2, as shown in the lower panel of Fig. 7.
We now examine the rate of decay γ2ðq;ωÞ of a phonon

of momentum q and (possibly off-shell) energy ω ≥ ωðqÞ
into two phonons. In a system of finite volumeΩ (which we
take to infinity in the end), the matrix element for a phonon
of momentum q⃗ to generate a pair of phonons q⃗1 and q⃗2 is
hq⃗1; q⃗2jVjq⃗iδq⃗1þq⃗2;q⃗=

ffiffiffiffi
Ω

p
[64], where

hq⃗1; q⃗2jVjq⃗i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2q21q
2
2s

4

8m4n4ωðqÞωðq1Þωðq2Þ

s

× ð2u − 1þ q̂1 · q̂2 þ ðq̂1 þ q̂2Þ · q̂ÞÞ;
ð32Þ

with u ¼ ðn4=sÞ∂s=∂n4 as the phonon Grüneisen param-
eter, ≈2.843 at SVP. The latter angular term is bounded
above by 2ðuþ 1Þ and below by 2ðu − 1Þ. In the following,
rather than going through a complicated calculation involv-
ing the phonon angles, we replace this factor with 2ðuþ νÞ,
where for back-to-back phonons, ν ¼ −1, and for collinear
phonons, ν ¼ 1. The rate at which a phonon of momentum

FIG. 7. The range of q1, the smaller of q1 and q2 in the single
splitting of an on-shell phonon of momentum q into phonons q⃗1
and q⃗2, as a function of q, is shown as the shaded region. The
lower panel shows the fine structure of the upper limit q1
compared with q=2, on a scale ∼0.01 of that in the upper panel.

FIG. 6. Event rate for dark matter particles producing single
phonons in the normal dispersion region, in units of events/kg/
day. The dark matter–helium cross section is taken to be
σχ4 ¼10−40 cm2, v¼ 230 km=s, and the detector acceptance
to be Δ cos θq ¼ 0.1. Kinematics requires v cos θq to lie in
the interval s to sþ kD=2mχ .
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q and energy ω decays into two phonons of momenta q⃗1
and q⃗2 is

γ2ðq;ωÞ ¼
1

2

Z
d3q1
ð2πÞ3

d3q2
ð2πÞ3 jhq⃗1; q⃗2jVjq⃗ij

2

× ð2πÞ4δðω − ωðq1Þ − ωðq2ÞÞδðq⃗ − q⃗1 − q⃗2Þ:
ð33Þ

The factor 1=2 compensates for double-counting the two-
phonon states (since jq⃗1q⃗2i ¼ jq⃗2q⃗1i). In the calculation
below, the curvature of the phonon spectrum is important
in the energy-conserving delta function, but not in the
matrix elements; thus, we replace the various ωðqiÞ’s in the
prefactors in Eq. (32) with their values for linear
dispersion, sqi.
To evaluate the integral in Eq. (33), we use momentum

conservation to do the q2 integral, so that q⃗2 → q⃗ − q⃗1, and
we find

γ2ðq;ωÞ ¼
ðuþ νÞ2
m4n4

Z
dq1
8π

d cos δ1q31q2

× δðω − ωðq1Þ − ωðq2ÞÞ; ð34Þ

where δ1 is the angle between q⃗ and q⃗1. The relation
q22 ¼ q2 þ q21 − 2qq1 cos δ1 implies that

Z
dcosδ1δðω−ωðq1Þ−ωðq2ÞÞ¼

q2
qq1dωðq2Þ=dq2

; ð35Þ

where Θ is unity if there is an angle δ1 for which the
argument of the energy delta function vanishes, and zero
otherwise; hence,

γ2ðq;ωÞ ¼
ðuþ νÞ2s
8πm4n4

Z
dq1

q21q
2
2

∂ω2=∂q2 ð36Þ

¼ ðuþ νÞ2sω
8πm4n4

Z
1

0

dx
q21q

2
2Θ

dω1=dq1dω2=dq2
: ð37Þ

In the lower equation, we integrate with respect to x≡
ω1=ω at fixed ω. Note that ω2=ω ¼ 1 − x. The range of q1
is determined by the requirement that there be an angle δ1
for which the argument of the energy delta function
vanishes, and Θ includes the same restrictions in terms
of x.
Were the dispersion normal, the decay of one phonon to

two could only take place for ω > ωðqÞ. We explicitly
evaluate the integral in Eq. (36) for small q and
ω − ωðqÞ ≪ sq, using the dispersion relation in the form
of Eq. (3). For given ω − ωðqÞ, the minimum q1 is achieved
for q⃗1 antiparallel to q⃗, and from energy conservation,
qmin
1 ≈ ðω − ωðqÞÞ=2s. On the other hand, the maximum q1

is achieved for q⃗1 parallel to q⃗; again from energy

conservation, qmax
1 ≈ 3ðω − ωðqÞÞ=sζNq2. For small q in

both limits, q2 ≈ q, and the integral in Eq. (36) is
approximately ðqmax

1 Þ3=3s. Altogether, then,

γ2ðq;ωÞ ¼ ðuþ 1Þ2 πq
2

2m4

�
ω − ωðqÞ
skDκN

�
3 ≡ Cðω − ωðqÞÞ3

ð38Þ

for ω≳ωðqÞ; here κN≡3ζNq2; at SVP, κN ¼ 0.98ðq=kDÞ2.
In deriving Eq. (38), we have replaced ν with þ1 since for
small q the integral is dominated by collinear phonons. The
damping vanishes at ω ¼ ωðqÞ, as expected. For ω suffi-
ciently close to ωðqÞ, S [from Eq. (A7) with R neglected]
reduces to a delta function

Sðq;ωÞ → q2

2m4ωðqÞ
δðω − ωðqÞÞ ð39Þ

plus a continuum, corresponding to multiphonon excita-
tions, which, as is schematically illustrated in Fig. 8, goes
to zero as ω − ωðqÞ when ω → ωðqÞ from above [see
Eq. (46) below].
On the other hand, the direct two-phonon contribution to

S2ðq;ωÞ, determined by the matrix element (51) below, has
the same structure in ω as γ2ðq;ωÞ, and is of the order
ðω − ωðqÞÞ3. The delta function, Eq. (39), corresponds to a
sharp single-phonon line, which exhausts the f-sum rule
[Eq. (10)]. In the f-sum rule, the integral over the multi-
phonon background is canceled by renormalization cor-
rections to the delta function from the real part of the
phonon self-energy, R, neither of which we consider here.
With a purely linear spectrum, decay of one phonon into

two is allowed for all energies greater than sq and forbidden

FIG. 8. Schematic behavior of Sðq;ωÞ near ωðqÞ. At higher q,
where the phonon dispersion is normal, (dashed), S, has a zero-
width delta function at ω ¼ ωðqÞ and a multiphonon contribution
initially linearly increasing for ω > ωðqÞ [Eq. (46)], while at
lower q, where the dispersion is anomalous (solid), the delta
function is spread out; see Eq. (40).
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for energies less than sq, so γ2ðω; qÞ is discontinuous
at ω ¼ sq.
For anomalous dispersion with q ≤ qs, all low-

momentum on-shell phonons can decay, and the range
of the x integral in Eq. (37) is 0 to 1. For small q, and
0 ≤ ω − ωðqÞ ≪ sq, we find

γ2ðq;ωÞ ¼ ðuþ 1Þ2 πq5

40m4k3D
≡ q5s

η
: ð40Þ

As ω decreases below ωðqÞ, decay is still possible, with γ2
vanishing for ω ≤ 2ωðq=2Þ, as illustrated in Fig. 8.
While in this calculation we assume anomalous dispersion

in the simplified form [Eq. (1)], this result is independent
of the details of the anomalous dispersion, as long as it is
small, and holds equally well for the more accurate
dispersion relation [Eq. (2)].
The corresponding phonon mean free path as limited by

decay into two phonons is

lðqÞ ¼ s
γ2

¼ η

q5
¼ 1.67 Å

q5
; ð41Þ

with q measured in Å−1 in the final expression.4,5

Near ω ¼ ωðqÞ, Sðq;ωÞ for anomalous dispersion is
essentially Lorentzian; the spread in the peak at ω ¼ ωðqÞ
is found by noting that the phonon peak is effectively
shifted to

ω ¼ ωðqÞ − i
2
γ2ðq;ωðqÞÞ: ð42Þ

The peak, which is relatively narrow, again exhausts the
f-sum rule, with contributions of the tail of S to the sum
rule being canceled by renormalization corrections; see
Appendix A. The Beliaev process spreads what would be a
sharp single-phonon peak atω ¼ ωðqÞ into the two-phonon
continuum.
The single-phonon peak in Sðq;ωÞ for anomalous

dispersion does not cut off abruptly with decreasing ω at
ω ¼ ωðqÞ. Rather, with ω increasing from zero, the first
possible decay of a phonon of momentum q is into two
equal-momentum phonons; thus, the minimum ω at which
γ2 is nonzero is ωmin ¼ 2ωðq=2Þ, or

ωmin ¼ ωðqÞ − 3

4
sζAq3: ð43Þ

The structure of S near ω ¼ ωðqÞ for anomalous as well as
normal dispersion is shown in Fig. 8.
The rate of excitation of 4He via the process in Fig. 3(b)

(denoted by the subscript b) is

dΓb ¼ nχ

�
2πa
mr

�
2

2πn4Sbðq;ωÞ
d3q
ð2πÞ3 ; ð44Þ

where

Sbðq;ωÞ ¼
q2

πm4

ωðqÞγ2ðq;ωÞ
ðω2 − ωðqÞ2Þ2 þ ωðqÞ2γ2ðq;ωÞ2

ð45Þ

is the structure function, as derived in Appendix A, with
only the contribution from two-phonon states in γðq;ωÞ
included, and self-energy effects R in the denominator of
Eq. (A7) neglected. With γ2 from Eq. (40), we find that
the relative half-width of the single phonon peak at half
height is jω − ωðqÞj=ωðqÞ ∼ q4=2η, which is ∼0.3q4 with
q measured in inverse angstroms; the peak is very narrow.
In the limit in which the width γ2 goes to 0, Sbðq;ωÞ
becomes simply the one-phonon structure function,
Eq. (39).
For normal dispersion, Eq. (45), with Eq. (38), implies

that for ω just above ωðqÞ,

Sbðq;ωÞ ≃
q2C

4πm4ωðqÞ
ðω − ωðqÞÞ: ð46Þ

We note that for anomalous dispersion for small q, the
integrand in Eq. (37) gives the relative probability of
the initial phonon q decaying to phonons with momenta
q1 and q2. The normalized probability for small q is

dP
dx

¼ 30x2ð1 − xÞ2; ð47Þ

where 0 ≤ x ≤ 1.

4Similarly, the rate of absorption of a phonon on a thermal
phonon (the Landau process of two phonons to one) is given
by Eq. (40), only with q5 replaced by qð2πT=sÞ4 for q ≪ T=s
[34,65,66]. For phonon energies large compared with those of
thermal phonons, the absorption rate varies as q2ðT=sÞ3, and this
process can be ignored.

5This mean free path is the length for a single phonon of
momentum q⃗ in liquid helium to decay into two almost collinear
phonons when no other excitations are present initially. When
many phonons are present, this mean free path determines the rate
at which phonons moving in approximately the same direction
come into thermal equilibrium with each other due to one phonon
decaying into two, and the inverse process in which two almost
collinear phonons create a single phonon. The characteristic
mean free paths for thermal conductivity or viscosity [51,67] are
very much larger because processes involving nearly collinear
phonons are ineffective in degrading heat currents or stresses: to
dampen these disturbances requires establishing equilibrium
between phonons moving in directions differing by angles ∼1
radian, and this can only be done by a sequence of decays and
coalescences that equilibrate phonons moving in slightly different
directions [35,68]. The difference between l and the mean free
path for thermal conduction or viscosity is similar to the differ-
ence between the total cross section for scattering of a particle and
the transport cross section in the kinetic theory of gases and the
theory of impurity resistivity in metals [69].
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VI. TWO-PHONON EMISSION

Production of multiple phonons proceeds by the creation
of an initial off-shell phonon which converts into multi-
phonon states, the process in Fig. 3(b), or else by direct
production of a multiphonon state by the dark matter
particle, the process in Fig. 3(c). These two processes
are coherent. The emission of two phonons via an inter-
mediate single phonon has the amplitude

A1
2 ¼

2πa
mχ

hq⃗1; q⃗2jρj0ione phonon ð48Þ

times δq⃗1þq⃗2;q⃗=
ffiffiffiffi
Ω

p
, where j0i is the 4He ground state, and

hq⃗1; q⃗2jρj0ione phonon

¼
�

q2n4
2m4ωðqÞ

�
1=2 2ωðqÞhq⃗1; q⃗2jVjq⃗i

ω2 − ωðqÞ2 þ iωðqÞγðq;ωÞ : ð49Þ

The factor ðq2n4=2m4ωðqÞÞ1=2 is the amplitude for the
density operator to create a phonon of momentum q;
the following factor corresponds to the combination of
the energy denominators ðω − ωðqÞ þ iγðq;ωÞ=2Þ−1 −
ðωþ ωðqÞ þ iγðq;ωÞ=2Þ−1 describing the propagation of
the phonon.
The direct production of two phonons by the dark matter

particle, Fig. 3(c), has the amplitude

Ad
2 ¼

2πa
mχ

hq⃗1; q⃗2jρj0idirect ð50Þ

times δq⃗1þq⃗2;q⃗=
ffiffiffiffi
Ω

p
. While the amplitude for the density

operator to create two phonons directly is not well
determined over the relevant range of momenta, its leading
dependence at low q is ∼q2; this result has previously been
demonstrated for specific models [29,37,38], but, as we
show in Appendix C, it is a straightforward consequence of
translational invariance. Thus, we write

hq⃗1; q⃗2jρj0idirect ≡ q2

m4

M
skD

: ð51Þ

We estimate that its strength is M ∼ 1 from sum-rule
arguments in Appendix C.
The total matrix element for creating two phonons, the

sum of Eqs. (49) and (51), takes the form ðq2=m4Þ
hq⃗1; q⃗2jMj0i, where with linear phonon dispersion,

hq⃗1; q⃗2jMj0i≡ s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p ðuþ νÞ
ω2 − ωðqÞ2 þ iωðqÞγ2ðq;ωÞ

þ M
skD

: ð52Þ

Near the resonance [ω ≃ ωðqÞ in the denominator], the
one-to-two phonon process is dominant. However, for

q1; q2 ∼ kD away from resonance, the two amplitudes A1
2

and Ad
2 are comparable in magnitude.

The differential rate of two-phonon emission per unit
volume of 4He is

dΓ2 ≃
πΓ0

2mχkn4

Z
d3q1
ð2πÞ3

d3q2
ð2πÞ3

q4

m2
4

jhq⃗1; q⃗2jMj0ij2

× 2πδðω − ωðq1Þ − ωðq2ÞÞ; ð53Þ

where the factor 1=2 again compensates for double-
counting of phonon final states; here q⃗ ¼ q⃗1 þ q⃗2.
Comparing Eq. (53) with Eq. (6), we see that the dynamic
structure factor for two-phonon states is

S2ðq;ωÞ ¼
3q4

8πk3Dm
2
4

Z
d3q1d3q2δðω − ωðq1Þ − ωðq2ÞÞ

× δðq⃗ − q⃗1 − q⃗2Þjhq⃗1; q⃗2jMj0ij2: ð54Þ

We first evaluate S2ðq;ωÞ for ω large compared with ωðqÞ.
With the momentum delta function used to eliminate the q2
integral, the cos δ1 integral, as in Eq. (35), gives a factor
q2=qq1s, so that

S2ðq;ωÞ ¼
3q3

4k3Dm
2
4s

Z
ω=s

0

dq1q1q2jhq⃗1; q⃗2jMj0ij2: ð55Þ

Doing the q1 integral with q1 ¼ ωx and q2 ¼ ð1 − xÞω as
above, we find

S2ðq;ωÞ ¼
q3

8k3D

ω

ðm4s2Þ2

×

��
ωM
skD

�
2

þ 9π

32

ωM
skD

ðu − 1Þ þ ðu − 1Þ2
5

�
;

ð56Þ

where we let ν → −1 for approximately back-to-back
phonons. In the regime of ω that can produce two phonons,
Sðq;ωÞ has approximately linear, quadratic, and cubic
terms in ω.
The rate of two-phonon emission in this regime is given

by Eq. (9) with Eq. (56), with the upper limit on the ω
integral essentially 2skD. Thus,

dΓ2

dq
¼ Γ0q4

4k2kDðm4sÞ2
�
M2 þ 3π

16
Mðu − 1Þ þ ðu − 1Þ2

10

�
;

∼
rq2

kDm4s
dΓ1

dq
; ð57Þ

where the two values r ¼ 0.7 and 0.9 reflect the two
allowed values of M. This estimate is consistent with the
sum-rule result [Eq. (23)].
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Integrating over q from 0 to kD and averaging the
velocity v using the halo model as above, we find that
the total zero-threshold two-phonon rate is given by

hΓ2ðω > 0Þi ¼ 8r
5

σχ4n4ρχ
kDðm4sÞ2

m2
χI; ð58Þ

where I¼R
dvv4fðvÞ≃ð409 km=sÞ4. Numerically,

hΓ2ðω> 0Þi∼ 7.7r×10−9 cm−3 s−1
σχ4

10−40 cm2

�
mχ

1MeV

�
2

:

ð59Þ

The two-phonon rate is less than 1% of the one-phonon
rate for mχ ≲ 120 keV; the two averaged rates are approx-
imately equal for mχ ∼ 1 MeV.

VII. PHONON CASCADES IN THE ANOMALOUS
DISPERSION REGIME

We next describe the behavior of individual phonons
produced in superfluid 4He by a dark matter particle. Owing
to anomalous dispersion, phonons up to the critical
momentum, qc, decay rapidly into two phonons (the
Beliaev process). The lifetime of a single on-shell phonon
of momentum q to decay into a pair of phonons is given by
Eq. (40), and the corresponding phonon mean free path is
given in Eq. (41). As a consequence of this rapid decay,
a phonon of momentum below qc will generate a cascade
of lower-momentum phonons, as illustrated in Fig. 9.
Appendix C gives an extended description of the decay
of a single phonon into two.
We first derive the opening angle in the three-phonon

process, q⃗1 → q⃗3 þ q⃗4. For simplicity, we present the
calculation only in terms of the simplified anomalous
dispersion relation, ωðqÞ ≃ sqð1þ ζAq2Þ. Since the devia-
tions from linear dispersion in the anomalous dispersion
regime are small, the angles δ3 and δ4 of the daughter
phonons with respect to q⃗1 are also small. Using
q24 ¼ ðq⃗1 − q⃗3Þ2 ¼ q21 þ q23 − 2q1q3 cos δ3, in the energy
conservation condition, ω3 þ ω4 ¼ ω1, we find that to
leading order (neglecting small terms ∼ζAq21δ23, etc.),

δ23 ≃ 6ζAq24; δ24 ≃ 6ζAq23: ð60Þ

The mean hδ23i of the phonon q⃗3 is given by the integral
of Eq. (60) weighted by the probability [Eq. (47)] that
the daughter phonon carries a fraction x of the original
phonon energy:

hδ23i ¼
Z

1

0

dx6ζAq21ð1 − xÞ2 dPðxÞ
dx

¼ 12

7
ζAq21: ð61Þ

In a dark matter experiment, an initial phonon of momen-
tum ∼0.1 Å−1 in its first decay into two phonons would
lead to an rms opening angle ≃7.9° between the initial
phonon and each daughter.6

To see the general structure of the cascade of an initial
phonon of momentum q0 that is large compared with the
momentum of thermal phonons, ∼T=s, at the ambient
temperature T, we make the simplifying assumption that
in each decay process a single phonon of momentum qi
divides into two phonons each of momentum qi=2. [This is
a reasonable approximation, given the peaking of the
probability (47) about x ¼ 1=2; the mean square deviation
from 1=2 is hðx − 1=2Þ2i ¼ 1=28.] The phonons will be at a
slight angle with respect to each other, as calculated above.
Were the mean free path a constant, l0, the number of
phonons NðzÞ present at a distance z from the initial
phonon production point would be NðzÞ ≃ 2z=l0 . The mean
free path depends, however, on q as lðzÞ ¼ sτ3 ¼ η=q5,
and thus we can more generally write

dNðzÞ
dz

¼ NðzÞ
lðzÞ ln 2 ¼ ln 2

η

�
q0

NðzÞ
�

5

NðzÞ; ð62Þ

since the initial phonon energy becomes spread among
N phonons, with average phonon momentum q0=N.
The solution of Eq. (62) is

FIG. 9. Schematic drawing of a cascade of phonons in the
anomalous dispersion region. The initial phonon energy is 0.5 meV
(q ¼ 0.32 Å−1); the average phonon energy in the third (purple)
generation is about 0.06 meV, where the mean free path is of order
cm. Path lengths and energy splittings in the figure correspond to
Eqs. (41) and (47), respectively. The horizontal scale is logarith-
mic, and the vertical scale is essentially the distance from the
extension of the path of the initial phonon, divided by z. For
illustration, the paths are drawn as straight lines.

6The present calculation is roughly consistent with the meas-
urement of Wyatt et al. [52] in which they applied a collimated
heat pulse at temperature Tp (not the ambient helium temper-
ature) and measured the opening angle of the phonon cone
produced, finding angles of order 8° for a thermal distribution of
initial phonons at Tp ¼ 2.2 K.
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NðzÞ ¼
�
1þ ð5 ln 2Þ z

l0

�
1=5

; ð63Þ

where l0 ¼ η=q50 is the mean free path of the initial
phonon. For q0 ¼ 0.5 Å−1 (or phonon energy 9 K), we
have l0 ∼ 53 Å, and in a cascade of length 30 cm, the final
number of phonons in the cascade is N ∼ 42. The mean
phonon energy is ∼0.21 K, an order of magnitude larger
than the expected ambient temperature of ∼10 mK. The
phonon mean free path exceeds the radius, R, of the helium
container, only for q ≲ 0.014 Å−1ð30 cm=RÞ1=5.
We next estimate the widening of the cascade with

subsequent decays, again with the simplifying assumption
that phonons split only into pairs of equal energy. We keep
only the ζA term in the dispersion. Then, after n splittings,
the angle δn of an nth-generation phonon with respect to its
progenitor phonon of momentum q⃗n−1 is

δ2n ≃
3

2
ζA

�
q

2n−1

�
2

; ð64Þ

and its momentum is given by

q⃗n ¼
1

2
ðq⃗n−1 þ δnqn−1m̂nÞ; ð65Þ

where m̂n is a unit vector orthogonal to q⃗n−1. The opening
angle measured with respect to the initial phonon q⃗0 is then
given by cos θn ≡ q̂n · q̂0, so that to leading order,

θ2n ¼ δ2n þ θ2n−1 − 2δnq̂0 · m̂n: ð66Þ

When averaged over m̂n, the last term goes away, and using
Eq. (64) at q1 ¼ q0=2, we find

θ2n ¼
3

2
ζA

�
q0
2n−1

�
2

þ θ2n−1; ð67Þ

a recursive relation with the solution

θ2n ¼ 2ζAq20

�
1 −

1

4n

�
: ð68Þ

This simple estimate implies that the opening angle of
the cone increases with subsequent phonon decays only
by a factor ≲2=

ffiffiffi
3

p
; the basic physics is that the smaller the

momentum of the phonons, the smaller the opening angle
in the decay.
As is shown in Fig. 10, which assumes that the daughter

phonons have equal energy, the phonon mean free path
in the anomalous dispersion region, Eq. (41), increases
rapidly as 25n, where n is the generation index as the
phonons split into pairs; at the same time, the angle
between the daughter phonons decreases as 2n. As a result,
the number of phonons in the shower depends strongly on

the initial phonon momentum and increases only slowly
after traveling distances of order 1 cm in the detector, as
shown in Fig. 11.
A detector that measures simply the total energy of an

excitation at the container wall does not provide informa-
tion on where the excitation was produced. The geometry
of a phonon cascade, however, carries with it such
information. The characteristic signature of a phonon
cascade is that its energy deposition in detectors on the
surface of the helium will be elliptically shaped. This
signature provides discrimination against background
events in the detectors. The orientation angle of the major
axis of the ellipse, together with the ratio of the minor to

FIG. 10. The mean free path, l (dashed, left axis), and the rms
angle in degrees of the daughter phonons, δ (solid, right axis),
as a function of phonon momentum, q for the case of phonons
split evenly in energy. Note that the mean free path varies rapidly,
from a few hundred Å at q ¼ 0.4 Å−1 (somewhat below the
maximum momentum that can decay into two phonons) to
∼2 cm at q ¼ 0.4=24 ¼ 0.025 Å−1.

FIG. 11. The number of phonons, NðzÞ, produced as a function
of path length, z, for a number of initial momenta, q0, and for the
case of phonons split evenly in energy. The number of phonons in
the shower increases rapidly for the first few cm of the path and
thereafter increases relatively slowly.
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major axes, tells one the direction cosines of the original
velocity vector with respect to the surface. The size of the
minor axis tells one the opening angle of the phonon
cascade, from which one can deduce the distance from the
center of the ellipse to the original vertex; see Eq. (68).
A typical pattern of energy deposition on the surface of a
sphere is shown in Fig. 12. The total energy deposition is a
measure of the energy transferred by the dark matter
particle. With sufficient detector sensitivity on the surface,
one can take advantage of the anomalous dispersion to pin
down the event.
The energy of the initial phonon equals the total energy

of phonons arriving at the detector, and therefore a
measurement of the latter would determine the energy as
well as the magnitude of the momentum of the initial
phonon. A natural question to ask is whether, for an initial
phonon produced with momentum in the anomalous region
of the dispersion curve, the spatial distribution of secondary
phonons arriving at the detector can provide information
about the origin of the initial phonon. Each such event
produces a pair of daughter phonons with a relatively wide
opening angle and a random azimuthal orientation; sub-
sequent splittings of the phonons in the cascade proceed
with successively smaller opening angles. The overall
elliptic pattern that an event would produce at the surface
(schematically shown in Fig. 12 for an event with many
phonons) contains information about the location of the
original event, but it is a quantitative question as to whether
the uncertainties obscure the significance of such location
information. In principle, one would like to do a simulation,
starting with a candidate dark matter mass, to determine
the extent to which the event patterns at the detector surface
can constrain the extracted mass, a task we leave for
future work.

VIII. CONCLUSIONS

We have discussed here the processes that will occur
when a low-mass dark matter particle scatters from
liquid 4He. As we have shown, the total strength of the
excitation function for states with two or more phonons is
tightly constrained by sum-rule arguments; these become
increasingly severe as the momentum transfer to the helium
declines, and thus at lower dark matter particle masses. For
dark matter masses ≲1.2 MeV, the most probable outcome
is the creation of a single phonon, and this process becomes
overwhelmingly dominant at keV masses. Moreover, at
liquid pressures less than ∼18 bar, this situation is made
more interesting by the fact that a single phonon can decay
into a cascade of lower-energy phonons. Consequently, the
distinction between single-phonon and multiphonon scat-
tering is blurred; a two-phonon state, for example, can be
reached from the ground state of 4He either by direct
creation of two phonons or by creation of a single phonon
which subsequently decays, and the net rate of production
of phonon pairs is a coherent superposition of these two
processes. As these arguments indicate, and as discussed in
Refs. [28,29], two-phonon processes that can produce
phonons in the several-meV range grow in relevance for
dark matter masses ≳MeV. Our discussion complements
that of Zurek and collaborators by exploring the processes
relevant at lower-momentum transfers and nearer to the
dispersion curve.
Our findings present both experimental challenges and

opportunities. Although a thorough consideration of detec-
tion techniques is beyond the scope of the paper, we
address briefly two key aspects relevant to sub-MeV dark
matter. In this mass regime, the bulk of the events will
appear in the form of creation of single phonons, pointing
to the need to detect phonons of energy 1 meV or lower.
Above ωðqcÞ ∼ 0.7 meV such phonons travel ballistically,
and can be detected via surface evaporation or direct
absorption by bolometric detectors [32]. This technique
could be extended to lower energies by using a pressurized
helium vessel to suppress anomalous dispersion.
At low pressures, phonons of energy below ∼0.7 meV

will decay into a cascade of even lower-energy phonons,
so it becomes necessary to develop methods to detect such
showers. Such decays will occur even if a pair of such
phonons is created initially. If detectable, the resulting
shower would contain information about the direction and
magnitude of the total momentum imparted to the helium,
in much the same way as the direction of the incoming
primary that creates a cosmic ray shower is determined.
That said, even with sensitive detectors, such information
would be very difficult to obtain. The probability of a
phonon escaping from liquid He and depositing its energy
in a detector is substantially reduced by Kapitza resistance:
Tanatarov et al. [70] note ∼1.5% transmission at best, and
then only at normal incidence.

FIG. 12. A schematic illustration of the pattern of elliptical
energy deposition on the surface of a spherical container of
helium resulting from a phonon cascade. The dashed lines
symbolically indicate the phonon cone, which expands according
to Eq. (68), and the vertex of the interaction of the dark matter
with the helium.
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To assess detection possibilities, it is instructive to
consider detection of the energy deposited by low-energy
photons. In an example from this rapidly developing
field, the authors of Ref. [71] used a quantum capacitance
detector to measure, with high efficiency, single photons
from a 5 K blackbody source which has a most probable
photon energy of about 2 meV. Similar techniques may
point the way to direct detection of low-energy phonons.
Although current progress is encouraging, broadly speak-
ing, the use of superfluid 4He detectors for dark matter
detection awaits further development of detection tech-
niques. With improved detection capabilities, superfluid
4He may have the potential not only to record events
produced by low-mass dark matter particles, but also to pin
down the particle mass and interaction cross section with
baryonic matter.
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APPENDIX A: RELATION OF THE DYNAMICAL
STRUCTURE FUNCTION TO THE 4He DENSITY

CORRELATION FUNCTION

We recall here the relation of Sðq;ωÞ for real frequency
ω to the density-density correlation function in the complex
frequency plane. In general, at temperature T, the density
correlations hρρiðq; zÞ, where in standard condensed matter
notation z is the complex frequency, are defined by [72]

hρðr⃗; tÞρðr⃗0; t0Þi

¼ iT
X∞
n¼−∞

e−iznðt−t0ÞÞ
Z

d3q
ð2πÞ3 e

iq⃗·ðr⃗−r⃗0Þhρρiðq; znÞ;

ðA1Þ

where zn ¼ 2πiTn are the Matsubara frequencies. Then
hρρiðq; zÞ, the analytic continuation of hρρiðq; znÞ to the
complex frequency z plane, has the form

hρρiðq; zÞ ¼ n4q2=m4

z2 − Πðq; zÞ ; ðA2Þ

and is given in terms of the structure function by

hρρiðq; zÞ ¼ n4

Z
∞

−∞
dω

Sðq;ωÞ − Sðq;−ωÞ
z − ω

ðA3Þ

¼ 2n4

Z
∞

−∞
dω

ωSðq;ωÞ
z2 − ω2

: ðA4Þ

Comparison of the large-z limit of Eqs. (A4) and (A2)
yields the f-sum rule, Eq. (10). At zero temperature,
S vanishes for negative frequency. The following appendix
discusses Sðq;ωÞ at finite temperature.
We write Π in terms of its real and imaginary parts,

Πðq;ωþ iϵÞ ¼ ℜΠþ iℑΠ, where þiϵ, with ϵ → 0, indi-
cates a limit to the real axis from the upper half-plane.
In this limit, ℑΠ ≤ 0, for ω ≥ 0. The imaginary parts of
Eqs. (A3) and (A2) then imply

Sðq;ωÞ ¼ q2

πm4

−ℑΠ
ðω2 −ℜΠÞ2 þ ℑΠ2

: ðA5Þ

At low q, where single-phonon excitations dominate,
Π has the structure

Πðq;ωÞ ¼ ωðqÞ2 þRðq;ωÞ − iωðqÞγðq;ωÞ; ðA6Þ

where R is real; then Sðq;ωÞ for ω ≥ 0 becomes

Sðq;ωÞ ¼ q2

πm4

ωðqÞγðq;ωÞ
ðω2 − ωðqÞ2 −RÞ2 þ ωðqÞ2γðq;ωÞ2 :

ðA7Þ

The function γðq;ωÞ, which is non-negative, determines
the damping rate of the density excitations. With R in the
denominator of Eq. (A7) neglected, and γ → γ2 in
the numerator, Eq. (A7), derived from the structure of
the density-density correlation function, reduces to the
“one-to-two” phonon contribution to Eq. (45) with γ2 given
by Eq. (33).
In the limit γ → 0, the structure function for ω ≥ 0

reduces to

Sðq;ωÞ ¼ q2

m4

δðω2 − ωðqÞ2 −Rðq;ωÞÞ2Þ

¼ q2

2m4ωðqÞR
δðω − ωðqÞRÞ

ð1 − ∂R=∂ω2jω¼ωðqÞRÞ
: ðA8Þ

The term Rðq;ωÞ serves to renormalize the excitation
energy from ωðqÞ to the solution, ωðqÞR, of ω2 ¼
ωðqÞ2 þRðq;ωÞ. We neglect such renormalization effects
throughout. The factor ZðqÞ in the decomposition
[Eq. (11)] is the coefficient of the δ function in
Eq. (A8). Renormalization of the excitation energy and
the decrease of the contribution of the single-phonon peak
to the f-sum rule are intimately related. In the limit γ → 0
with R neglected, the structure function reduces to the
single-phonon result, Eq. (39).
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APPENDIX B: Sðq;ωÞ IN HeII AT FINITE
TEMPERATURE

Since in general at finite T, STðq;−ωÞ ¼ e−ω=TSTðq;ωÞ,
we can write

STðq;ωÞ ¼ ð1þ nðωÞÞBðq;ωÞ; ðB1Þ

where nðωÞ ¼ 1=ðeω=T − 1Þ is the Bose occupation factor
at energy ω, and Bðq;ωÞ is odd in ω and non-negative
for ω > 0.
The f-sum rule becomesZ

∞

−∞
dωωð1þ nðωÞÞBðq;ωÞ

¼
Z

∞

0

dωωBðq;ωÞ ¼ q2

2m4

; ðB2Þ

while the static structure function becomes

STðqÞ ¼
Z

∞

−∞
dωð1þ nðωÞÞBðq;ωÞ

¼
Z

∞

0

dωð1þ 2nðωÞÞBðq;ωÞ: ðB3Þ

Separating out the single-phonon contribution to B, we
write for ω > 0,

Bðq;ωÞ ¼ ZðqÞδðω − ωðqÞÞ þ BMðq;ωÞ; ðB4Þ

where BM ≥ 0 is the multiexcitation contribution. Then

STðq;ωÞ ¼ ð1þ nðωðqÞÞÞZðqÞδðω − ωðqÞÞ
þ ð1þ nðωÞÞBMðq;ωÞ; ðB5Þ

and the weight of the phonon pole at finite temperature is

ZTðqÞ ¼ ð1þ nðωðqÞÞZðqÞ: ðB6Þ

The f-sum rule then implies that the multiexcitation
contribution obeys

Z
∞

0

dωωBMðq;ωÞ ¼
q2

2m4

− ωðqÞZðqÞ: ðB7Þ

In addition,

STðqÞ ¼ ð1þ 2nðωðqÞÞÞZðqÞ

þ
Z

∞

0

dωð1þ 2nðωÞÞBMðq;ωÞ: ðB8Þ

This equation enables us to place bounds on STðqÞ.
Since ð1þ 2nðωÞÞ is a decreasing function of ω, and the
support of BMðq;ωÞ is essentially for ω ≥ ωðqÞ, we have,
with Eq. (B7),

Z
∞

0

dωð1þ 2nðωÞÞBMðq;ωÞ

< ð1þ 2nðωðqÞÞÞ
Z

∞

0

dωBMðq;ωÞ
ω

ωðqÞ

¼ ð1þ 2nðωðqÞÞÞ
�

q2

2m4ωðqÞ
− ZðqÞ

�
: ðB9Þ

Thus, from Eq. (B8) we have

STðqÞ ≤
q2

2m4ωðqÞ
ð1þ 2nðωðqÞÞÞ; ðB10Þ

while if we neglect the multiexcitation contribution to SðqÞ,
we see that

STðqÞ ≥ ZðqÞ½1þ 2nðωðqÞ�: ðB11Þ

Altogether,

ZðqÞ ≤ STðqÞ
1þ 2nðωðqÞ ≤

q2

2m4ωðqÞ
: ðB12Þ

Liu and Woo [60] give the expansions at T ¼ 0:

SðqÞ ¼ x
2
ð1 − 1.63x2 þ 1.42x3 þ 0.51x4Þ; ðB13Þ

ZðqÞ ¼ x
2
ð1 − 1.63x2 − 0.78x3 þ 0.51x4 − 2.46x5Þ;

ðB14Þ

where x ¼ q=m4s.
For small q, Eq. (B12) becomes

1 − z2

�
q

m4s

�
2

≤
SðqÞ

ð1þ 2nðωðqÞÞÞðq=2m4sÞ
≤ 2; ðB15Þ

with z2 ≃ 1.63. Then, to order x4,

SðqÞ − ZðqÞ ¼ 1.1

�
q

m4s

�
3

; ðB16Þ

which, to within the error bars, is consistent with the ZðqÞ
data from Cowley and Woods, lying below that for SðqÞ
given by Robkoff and Hallock, as seen in Fig. 4.
We note furthermore that the single-phonon contribution

to STðqÞ at finite temperature is ð1þ 2nðωðqÞÞÞZðqÞ, while
the weight of the pole is ZTðqÞ ¼ ð1þ nðωðqÞÞÞZðqÞ,
where ZðqÞ is essentially the zero-temperature weight of
the pole. The finite-temperature effects on STðqÞ are twice
as large as those on ZTðqÞ.
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APPENDIX C: MATRIX ELEMENT FOR
PRODUCTION OF TWO PHONONS

We review how the matrix element for the two-phonon
process in Fig. 3(c) is constrained, for small momentum
transfers, by the particle number conservation law [73].
With the basic interaction between a dark matter particle
and the helium atoms represented by a contact interaction,
Eq. (5), the 4He part of the matrix element is proportional to
the Fourier transform ρ−q⃗ of the density operator. Particle

number conservation, ∂ρ−q⃗=∂t − iq⃗ · j⃗−q⃗ ¼ 0, where ρ−q⃗
and j⃗−q⃗ are the Fourier transforms of the number and
number current density operators, implies that the matrix
element of ρ between the initial and final states obeys

hfjρ−q⃗j0i ¼
q⃗ · hfjj⃗−q⃗j0i
Ef − E0

: ðC1Þ

The E’s are the energies of the initial and final states. Since
the system is translationally invariant, the energy eigen-
states may be also be taken to be eigenstates of the total
momentum, which implies that, for q⃗ → 0, j⃗−q⃗ has no off-
diagonal matrix elements. Thus, one expects that for small
q, and for different initial- and final-state energies,
hfjj⃗−q⃗j0i ∝ qαq̂, with α > 0 and

hfjρ−q⃗j0i ∼
q1þα

Ef − E0

; ðC2Þ

when the magnitudes of the phonon momenta in the final
state are held fixed. As q → 0, the energy denominator
remains finite for two (or more) phonon excitations.
Analyticity in q implies that the smallest value of α is

unity, and so hfjρ−q⃗j0i ∝ q2, as in Eq. (51). By contrast, the
matrix element of the current operator for the creation of a
single phonon is anomalous, varying as q1=2, as explained
in Ref. [73].
We now estimate the dimensionless matrix element M

using the sum-rule result, Eq. (23). We let q → 0 in the
integral in Eq. (54), so that q⃗2 ¼ −q⃗1, i.e., the phonons are
back to back; then

S2ðq → 0;ωÞ

¼ 3q4

8πk3Dm
2
4

Z
d3q1δðω − 2ωðq1ÞÞjhq⃗1;−q⃗1jMj0ij2

¼ 3q4

16k3Dm
2
4s

3

�
1

2
ðu − 1Þ þMω

skD

�
2

; ðC3Þ

with the factor (u − 1) for back-to-back phonons.
Including phonons up to momenta skD, we find the

contribution to the f-sum rule from S2ðq;ωÞ for small q:Z
2skD

0

dωωS2ðq;ωÞ

¼ 3q4

4kDm2
4s

�
1

8
ðu − 1Þ2 þ 2

3
ðu − 1ÞMþM2

�
: ðC4Þ

Comparing with Eq. (13), we have

1

8
ðu − 1Þ2 þ 2

3
ðu − 1ÞMþM2 ¼ 2

3
z2

kD
m4s

; ðC5Þ

numerically, M ¼ −1.47 or þ0.25. Using Eq. (C5), we
find that the combination of terms, M2 þ ð3π=16Þ
Mðu − 1Þ þ ðu − 1Þ2=10 in Eq. (57) is 0.7 or 0.9.
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