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3Departamento de Física Teórica and Instituto de Física de Partículas y del Cosmos IPARCOS,

Universidad Complutense de Madrid, E-28040 Madrid, Spain

(Received 16 April 2020; accepted 30 June 2020; published 10 August 2020)

The LHC has confirmed the existence of a mass gap between the known particles and possible new
states. Effective field theory is then the appropriate tool to search for low-energy signals of physics beyond
the Standard Model. We adopt the general formalism of the electroweak effective theory, with a nonlinear
realization of the electroweak symmetry breaking, where the Higgs is a singlet with independent couplings.
At higher energies we consider a generic resonance Lagrangian which follows the above-mentioned
nonlinear realization and couples the light particles to bosonic heavy resonances with JP ¼ 0� and
JP ¼ 1�. Integrating out the resonances and assuming a proper short-distance behavior, it is possible to
determine or to constrain most of the bosonic low-energy constants in terms of resonance masses.
Therefore, the current experimental bounds on these bosonic low-energy constants allow us to constrain
the resonance masses above the TeV scale, by following a typical bottom-up approach, i.e., the fit of the
low-energy constants to precise experimental data enables us to learn about the high-energy scales, the
underlying theory behind the Standard Model.
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I. INTRODUCTION

The LHC has confirmed the success of the Standard
Model (SM) with the discovery of a Higgs-like1 particle
[1], with couplings compatible with the SM expectations,
and the nonobservation of new states, which establishes the
existence of a mass gap between the SM and possible new
physics (NP) fields. This gap justifies the use of effective
field theories to analyze the data, and the lack of informa-
tion about the hypothetical underlying theory behind the
SM invites us to follow a bottom-up approach, that is, to
search for fingerprints of heavy scales at low energies in a
systematic way.
In this bottom-up approach the low-energy constants

(LECs), or Wilson coefficients, are free parameters which
encode the information about the heavy scales, whereas the
construction of the effective Lagrangian (the local operators)
depends on the light-particle content, the symmetries and the
power counting. There is no doubt about the particle content

in this case, the SM states, but there are two different ways
of introducing the Higgs field, and this has consequences in
the symmetries and in the power counting to be used [2,3].
One can consider the more common linear realization of the
electroweak symmetry breaking (EWSB), assuming the
Higgs to be part of a doublet together with the three
electroweak (EW) Goldstones, as in the SM, or the more
general nonlinear realization, without assuming any specific
relation between the Higgs and the Goldstone fields. The first
option is knownas theSMeffective field theory (SMEFT) and
it is organized as an expansion in canonical dimensions, being
its leading-order (LO) approximation the dimension-four SM
Lagrangian. We follow here the second option, the EW
effective theory (EWET), also known as Higgs effective field
theory (HEFT) or EWchiral Lagrangian (EWChL), where an
expansion in generalized momenta is followed. The LO
description is given in this case by the Higgsless SM
Lagrangian plus the Oðp2Þ operators that introduce the
Higgs and the EW Goldstones. Note that the SMEFT is a
particular case of the more general EWET framework.
At higher energies we introduce massive resonance

states by using a phenomenological Lagrangian respecting
the nonlinear realization of the EWSB, i.e., respecting the
symmetries and following the chiral expansion of the EWET.
Therefore, we consider two effective Lagrangians with

different particle contents: the EWET at low energies, with
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1Although it might not be the SM Higgs boson, we will refer to
this particle as “Higgs.”
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only the SM particles, and the EW resonance theory at high
energies, with the SM particles plus heavy resonances. Both
Lagrangians can be matched in a common validity region by
integrating out the resonances; in other words, the EWET
LECs can be determined in terms of resonance parameters.
In order to obtain interesting constraints (relevant from a
phenomenological point of view), it is very convenient to
assume a given short-distance behavior of the unknown
underlying theory. This allows us to get determinations or
bounds in terms of only resonance masses.
The main purpose of this work is to combine the current

experimental bounds on the bosonic EWET LECs with
their determinations or limits in terms of resonance masses,
in order to constrain the scale of new physics. We update
the results already presented in Ref. [4], extending the
resonance Lagrangian (considering P-even and also P-odd
operators, bosonic and also fermionic resonances, color
singlets and also color octets), softening the high-energy
constraints and including the current experimental bounds.
Moreover, since precise experimental measurements of
the hWW coupling κW are now available, we no longer
consider this coupling as a nonfree parameter.2

Experimental analyses of effective contact interactions
in high-energy colliders and direct resonance searches
based on Drell-Yan production seem to discard large con-
tributions from four-fermion operators [8], not to mention
the tight constraints from flavor observables. Hence, the
goal of this article is only to test some potentially more
sizable bosonic LEC effects. A discussion about current
phenomenological limits on four-fermion operators can be
found in Ref. [8].
The theoretical framework is briefly presented in Sec. II:

the Lagrangians of the EWET and the resonance electro-
weak theory are given in Secs. II A and II B, respectively,
whereas the assumed short-distance behavior is described
in Sec. II C. Some technical details are relegated to the
Appendix. In Sec. III the current experimental bounds on
the bosonic EWET LECs are summarized. The connection
between the theoretical predictions of Sec. II and the
experimental bounds of Sec. III is done in Sec. IV, being
the plots in Figures 1 and 2 the main results of our analysis.
Some concluding remarks are finally given in Sec. V.

II. THEORETICAL FRAMEWORK

A. Low energies: EWET Lagrangian

The EWET Lagrangian can be organized as an expan-
sion in powers of generalized momenta [3,8–11]:

LEWET ¼
X
d̂≥2

Lðd̂Þ
EWET: ð1Þ

Note that, as it has been stressed previously, the operators
are not ordered according to their canonical dimensions
and one must use instead the chiral dimension d̂, which
reflects their infrared behavior at low momenta [11].
Consequently, loops are renormalized order by order in
this expansion.
We collect in the Appendix the definitions of the

building blocks, used to construct operators invariant under
the electroweak symmetry group G, and the power-counting
rules that determine their chiral dimensions. The relevant
bosonic part of the LO EWET Lagrangian is given by3

ΔLð2Þ
EWET ¼ v2

4

�
1þ 2κW

v
hþ c2V

v2
h2
�
huμuμi2; ð2Þ

where h denotes the Higgs field, the uμ tensor contains the
EW Goldstones and h� � �i2 indicates an SUð2Þ trace. Thus,
κW parametrizes the hWW coupling in SM units. Assuming
invariance under CP transformations, the bosonic NLO
EWET Lagrangian reads [8,9]4:

ΔLð4Þ
EWET ¼

X12
i¼1

F iðh=vÞOi þ
X3
i¼1

F̃ iðh=vÞÕi: ð3Þ

Tables I and II display the explicit list of operators Oi

(P-even) and Õi (P-odd), respectively.
Since the Higgs is a singlet under G, the operators of (3)

can be multiplied by arbitrary analytical functions of h=v
[14], i.e., their LECs are actually Higgs-dependent func-
tions that can be Taylor-expanded in powers of h=v. Given
the current experimental status, from now on we consider
only the first term in this expansion: F i ≡ F iðh ¼ 0Þ and
F̃ i ≡ F̃ iðh ¼ 0Þ. The couplings F 2, F 11, F 12, and F̃ 2 are
not measurable, because their corresponding operators
reduce to terms already present in the electroweak and
strong Yang-Mills Lagrangians. Therefore, they can be
reabsorbed through a renormalization of the gauge cou-
plings g, g0 and gs. Within the SM, κW ¼ c2V ¼ 1 and
F i≠2;11;12 ¼ F̃ i≠2 ¼ 0.
The operator O1 contributes to the W� and Z self-

energies and can then be accessed through the measurement
of the so-called oblique parameters [7]. The trilinear and
quartic gauge couplings are sensitive to O1;3 and O1;3−5,
respectively, while Õ1 can modify both. O10 generates
custodial-breaking corrections to all Goldstone Green

2In Ref. [4], κW was determined theoretically with the second
Weinberg sum rule [5] of the W3B correlator at next-to-leading
order (NLO): κW ¼ M2

V=M
2
A [6]. This constraint was a conse-

quence of having considered only the two-Goldstone (φφ) and
the Higgs-Goldstone (hφ) cuts in the NLO determination of the
oblique parameters S and T [7].

3An alternative notation a ¼ κW , b ¼ c2V is used in some
works.

4For h ¼ 0, these F j are related to the ai couplings of the
Higgsless Longhitano Lagrangian [12,13] in the form ai ¼ F i for
i ¼ 1, 4, 5, a2 ¼ ðF 3 − F̃ 1Þ=2 and a3 ¼ −ðF 3 þ F̃ 1Þ=2.
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functions. The remaining operators, O6−9 and Õ3, contrib-
ute to Goldstone vertices involving Higgs bosons.

B. High energies: Resonance electroweak theory

Although the EWET power counting is not directly
applicable to the resonance theory, one can construct the
Lagrangian in a consistent phenomenological way, à la
Weinberg [11], which interpolates between the low-energy
and the high-energy regimes: the appropriate low-energy
predictions are generated and a given short-distance behav-
ior is imposed [15].
Taking into account that here we are interested in the

resonance contributions to the bosonic Oðp4Þ EWET
LECs, we only need to consider Oðp2Þ operators with
up to one bosonic resonance field [8,9]. Moreover, we can
drop the couplings to fermionic resonance fields because
their tree-level exchanges do not contribute to the bosonic
LECs [8].
Following the notation of Ref. [8], the dimension of the

resonance representation is indicated with upper and lower
indices in the scheme RSUð3Þ

SUð2Þ, where R stands for any of the

four possible JPC bosonic states with quantum numbers
0þþ (S), 0−þ (P), 1−− (V) and 1þþ (A). The normalization
used for the n-plets of resonances is

Rn
3 ¼

1ffiffiffi
2

p
X3
i¼1

σiRn
3;i; R8

n ¼
X8
a¼1

TaR8;a
n ; ð4Þ

with hσiσji2 ¼ 2δij and hTaTbi3 ¼ δab=2, where h� � �i3
indicates an SUð3ÞC trace.
The spin-1 resonances V and A can be described with

either a four-vector Proca field R̂μ or with an antisymmetric
tensor Rμν. Here we keep both formalisms because, as it
was demonstrated in Ref. [9], the sum of tree-level
resonance-exchange contributions from the Oðp2Þ reso-
nance Lagrangian with Proca and antisymmetric spin-1
resonances gives the complete (nonredundant and correct)
set of predictions for the Oðp4Þ EWET LECs, without
any additional contributions from local operators without
resonance fields.
The relevant resonance Lagrangian takes the form [8]:

ΔLRT ¼ v2

4

�
1þ 2κW

v
hþ c2Vh2

�
huμuμi2 þ

cdffiffiffi
2

p S11huμuμi2 þ dP
ð∂μhÞ
v

hP1
3u

μi2 þ c̃T V̂
1
1μhuμT i2 þ cT Â

1
1μhuμT i2

þ
�
V1
3μν

�
FV

2
ffiffiffi
2

p fμνþ þ iGV

2
ffiffiffi
2

p ½uμ; uν� þ F̃V

2
ffiffiffi
2

p fμν− þ
ffiffiffi
2

p
λ̃hV1 ð∂μhÞuν

��
2

þ FXV1
1μνX̂

μν þ CGV8
1μνĜ

μν

þ
�
A1
3μν

�
FA

2
ffiffiffi
2

p fμν− þ
ffiffiffi
2

p
λhA1 ð∂μhÞuν þ F̃A

2
ffiffiffi
2

p fμνþ þ iG̃A

2
ffiffiffi
2

p ½uμ; uν�
��

2

þ F̃XA1
1μνX̂

μν þ C̃GA8
1μνĜ

μν: ð5Þ

We only display the terms which contribute to the
bosonic LECs we are interested in. The first line shows
the interactions without resonances, those with a heavy
scalar or pseudoscalar boson, and the heavy vector and

axial-vector operators with Proca fields; whereas in the
second and third lines the heavy vector and axial-vector
contributions with antisymmetric resonances are given,
respectively.

TABLE I. P-even operators (Oi) of the bosonic Oðp4Þ EWET Lagrangian and the contributions to their LECs
(F i) from heavy scalar, pseudo-scalar, vector, and axial-vector exchanges [8,9].

i Oi F i i Oi F i

1 1
4
hfμνþ fþμν − fμν− f−μνi2 − F2

V−F̃
2
V

4M2

V1
3

þ F2
A−F̃

2
A

4M2

A1
3

7 ð∂μhÞð∂νhÞ
v2 huμuνi2 d2P

2M2

P1
3

þ λhA2
1

v2

M2

A1
3

þ λ̃hV21 v2

M2

V1
3

2 1
2
hfμνþ fþμν þ fμν− f−μνi2 − F2

VþF̃V
2

8M2

V1
3

− F2
AþF̃A

2

8M2

A1
3

8 ð∂μhÞð∂μhÞð∂νhÞð∂νhÞ
v4

0

3 i
2
hfμνþ ½uμ; uν�i2 − FVGV

2M2

V1
3

− F̃AG̃A
2M2

A1
3

9 ð∂μhÞ
v hfμν− uνi2 − FAλ

hA
1
v

M2

A1
3

− F̃V λ̃
hV
1 v

M2

V1
3

4 huμuνi2huμuνi2 G2
V

4M2

V1
3

þ G̃A
2

4M2

A1
3

10 hT uμi2hT uμi2 − c̃2T
2M2

V1
1

− c2T
2M2

A1
1

5 huμuμi2huνuνi2 c2d
4M2

S1
1

− G2
V

4M2

V1
3

− G̃A
2

4M2

A1
3

11 X̂μνX̂
μν

− F2
X

M2

V1
1

− F̃2
X

M2

A1
1

6 ð∂μhÞð∂μhÞ
v2 huνuνi2 − λ̃hV21 v2

M2

V1
3

− λhA2
1

v2

M2

A1
3

12 hĜμνĜ
μνi3 − ðCGÞ2

2M2

V8
1

− ðC̃GÞ2
2M2

A8
1
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Integrating out the heavy resonance fields in Eq. (5), one
recovers the EWET Lagrangian (3) with explicit values of
the LECs in terms of resonance parameters. These deter-
minations are also shown in Tables I and II [8,9]. Note that
F 4 and F 4 þ F 5 are predicted to be positive, in agreement
with the known requirements from causality, crossing and
analyticity [16].
The resonance-exchange contributions to the LECs have

the generic structure F j ∼G2
R=M

2
R. The resonance cou-

plings can be easily traded by the corresponding partial
decay widths into χχ ¼ hh, φh, φφ, which scale as
ΓR→χχ ∼ G2

RM
3
R=ð16πv4Þ. The predicted LECs take then

the form F j ∼ 16πv4ΓR→χχ=M5
R [17–21]. Since our low-

energy analysis is not able to separate the effects of ΓR→χχ

and MR, this expression does not introduce any particular
improvement. Nonetheless, writing the observable cross
sections in terms of the resonance masses and widths is
interesting to orientate present and future collider searches
of new-physics states within the few TeV range [17,22–26].

C. Short-distance constraints

As it has been spotlighted previously, assuming a good
short-distance behavior is important because of two
reasons:

(i) From a theoretical point of view, the resonance
theory tries to interpolate between the low-energy
and the high-energy regimes: by construction the
low-energy effective Lagrangian (the EWET in our
case) is recovered when the resonances are inte-
grated out, as it has been shown for the bosonic
operators in the previous subsection; however, and
in order to deal with a good interpolation with the
underlying dynamical theory at high energies, short-
distance constraints are needed to implement the
assumed high-energy limits.

(ii) Moreover, and from a practical point of view, these
constraints are very convenient to reduce the number
of resonance parameters. In other words, without
short-distance constraints Tables I and II show the
determination of the fifteen EWET LECs of (3) in
terms of the sixteen resonance couplings of (5) and
the four resonance masses, so the interest of well-
motivated constraints is evident.

The following high-energy constraints have been con-
sidered [9]:

(1) Well-behaved form factors. The two-Goldstone and
Higgs-Goldstone matrix elements of the vector and
axial currents can be characterized by the correspond-
ing vector and axial form factors. Assuming that they
vanish at high energies, four constraints are found:
(a) Vector form factor to two EW Goldstones (φφ):

v2 − FVGV − F̃AG̃A ¼ 0: ð6Þ

(b) Axial form factor to two EW Goldstones (φφ):

F̃VGV þ FAG̃A ¼ 0: ð7Þ

(c) Axial form factor to a Higgs and one EW
Goldstone (hφ):

κWv − FAλ
hA
1 − F̃V λ̃

hV
1 ¼ 0; ð8Þ

(d) Vector form factor to a Higgs and one EW
Goldstone (hφ):

F̃Aλ
hA
1 þ FV λ̃

hV
1 ¼ 0: ð9Þ

(2) Weinberg sum rules (WSRs). The W3B correlator is
an order parameter of the EWSB. In asymptotically-
free gauge theories it vanishes at short distances as
1=s3 [27], implying two superconvergent sum rules,
the so-called 1st and 2nd WSRs [5]:
(a) 1st WSR (vanishing of the 1=s term):

F2
V þ F̃2

A − F2
A − F̃2

V ¼ v2: ð10Þ

(b) 2nd WSR (vanishing of the 1=s2 term):

F2
VM

2
V þ F̃2

AM
2
A − F2

AM
2
A − F̃2

VM
2
V ¼ 0: ð11Þ

While the 1st WSR is expected to be also fulfilled in gauge
theories with nontrivial ultraviolet (UV) fixed points, the
validity of the 2nd WSR depends on the particular type of
UV theory considered [28].
Using these constraints, we can sharpen the determi-

nations of the EWET LECs in Tables I and II, writing them
in terms of a smaller number of resonance parameters.
Combining the two WSRs, one gets the identities

TABLE II. P-odd operators (Õi) of the bosonicOðp4Þ EWET Lagrangian and the contributions to their LECs (F̃ i)
from heavy scalar, pseudoscalar, vector, and axial-vector exchanges [8,9].

i Õi F̃ i i Õi F̃ i

1 i
2
hfμν− ½uμ; uν�i2 − F̃VGV

2M2

V1
3

− FAG̃A
2M2

A1
3

3 ð∂μhÞ
v hfμνþ uνi2 − FV λ̃

hV
1 v

M2

V1
3

− F̃Aλ
hA
1
v

M2

A1
3

2 hfμνþ f−μνi2 − FVF̃V
4M2

V1
3

− FAF̃A
4M2

A1
3
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F2
V − F̃2

V ¼ v2M2
A

M2
A −M2

V
; F2

A − F̃2
A ¼ v2M2

V

M2
A −M2

V
: ð12Þ

In the absence of P-odd couplings, these relations fix FV
and FA in terms of the vector and axial-vector masses
and, moreover, imply that MA > MV . This mass hierarchy
remains valid if F̃2

V < F2
V and F̃2

A < F2
A, which is a

reasonable working assumption that we will adopt.
Notice that Eq. (12) implies that F2

V − F̃2
V and F2

A − F̃2
A

must have the same sign. We will also assume that the
inequalityMA > MV is fulfilled in all scenarios, even when
the 2nd WSR does not apply.
The predictions obtained when only P-even operators

are considered5 are shown in Table III (most of these results
can be found in Ref. [4]). The more general results,
including contributions from both P-even and P-odd
operators, are displayed in Table IV. In order to ease the
notation, and taking into account that most contributions
come from resonances in EW triplets and in QCD singlets
(R1

3), neither superindices nor subindices are used in this
case in Tables III and IV, and from now on; that is,
MR ≡MR1

3
, unless something else is specified.

In Tables III and IV we only show those determinations
of LECs that get improved with the short-distance con-
straints. We consider two types of scenarios: theories where
the 2nd WSR applies and a more conservative setting
where it does not. The 2nd WSR sharpens considerably the
determination of F 1, and (when only P-even contributions
are included) also F 4 and F 6. In the last two cases, the

improvement is lost when the 2nd WSR is dropped, and
one gets back to the results in Table I, without further
simplification.
In Table IV the determinations are necessarily weaker

because more unknown couplings are considered.
Nevertheless, we can still obtain useful results assuming
that the LECs from odd-parity operators are suppressed
with respect to those related to even-parity operators.
Assuming F2

A > F̃2
A puts an upper bound on F 1 (indicated

with † in Table IV). The assumption jF̃AG̃Aj < jFVGV j
implies FVGV > 0 through Eq. (6), which leads to an upper
bound on F 3 (indicated with ‡). Finally, assuming
jF̃V λ̃

hV
1 j < jFAλ

hA
1 j in Eq. (8), one gets FAλ

hA
1 > 0, which

implies a lower bound on F 9 (marked with §).

III. EXPERIMENTAL CONSTRAINTS

Here we summarize the strongest experimental con-
straints on the EWET LECs from current data:
(1) κW . The ATLAS Collaboration has recently pro-

vided the most accurate measurement of the hWW
coupling (in SM units), κW ¼ 1.05� 0.04 [29], to
be compared with the CMS result, κW ¼ 1.01�
0.07 [30]. These values assume the absence of NP
contributions. The naive average of both results
gives κW ¼ 1.04� 0.03. A global fit to the LHC
Run-1 and Run-2 Higgs data, within the context of
the EWET, has determined κW ¼ 1.01� 0.06 [31].
We will adopt this last value, which implies the
95% CL range shown in Table V.

(2) c2V . The ATLAS Collaboration has given the first
experimental bound on the hhWWcoupling:−1.02 <
c2V < 2.71, at 95% confidence level (CL) [32].

(3) F 1. This LEC can be determined through its relation
with the oblique parameter S [7]: S ¼ −16πF 1

[6,13,33]. The Particle Data Group [34] quotes

TABLE III. Resonance-exchange contributions to the P-even
bosonic Oðp4Þ LECs, considering only P-even operators and the
short distance constraints. Entries marked with � � � indicate that
the result is the same as in Table I, without further simplification.

F i

i with 2nd WSR without 2nd WSR

1 − v2
4
ð 1
M2

V
þ 1

M2
A
Þ − v2

4M2
V
− F2

A
4
ð 1
M2

V
− 1

M2
A
Þ < −v2

4M2
V

3 − v2

2M2
V

4 v2
4
ð 1
M2

V
− 1

M2
A
Þ � � �

5 c2d
4M2

S1
1

− F 4

6 −κ2Wv2ð 1
M2

V
− 1

M2
A
Þ � � �

7 d2P
2M2

P
− F 6

9 − κWv2

M2
A

TABLE IV. Resonance-exchange contributions to the P-even
bosonic Oðp4Þ LECs (P-even and P-odd operators included),
once the short distance constraints are considered. The inequal-
ities †, ‡ and § assume that F2

A > F̃2
A, FVGV > 0 and FAλ

hA
1 > 0,

respectively.

F i

i with 2nd WSR without 2nd WSR

1 − v2
4
ð 1
M2

V
þ 1

M2
A
Þ − v2

4M2
V
− F2

A−F̃
2
A

4
ð 1
M2

V
− 1

M2
A
Þ†< − v2

4M2
V

3 − v2

2M2
A
− FVGV

2
ð 1
M2

V
− 1

M2
A
Þ ‡< − v2

2M2
A

5 c2d
4M2

S1
1

− F 4

7 d2P
2M2

P
− F 6

9 − κWv2

M2
V
þ FAλ

hA
1 vð 1

M2
V
− 1

M2
A
Þ § > − κWv2

M2
V

5In this case all terms with tilde in Eqs. (3), (5)–(12), (A8), and
in Tables I and II should be discarded.
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the values S ¼ 0.02� 0.07 (fixing U ¼ 0) or S ¼
0.02� 0.10 (without fixing U ¼ 0), which translate
into −0.003 < F 1 < 0.002 (fixing U ¼ 0) or
−0.004 < F 1 < 0.004 (without fixing U ¼ 0) at
95% CL.

(4) F 3. The γWþW− anomalous triple gauge coupling
reads

δκγ ¼ g2ðF 3 − F 1Þ ¼
1

2
M2

W
fW þ fB

Λ2
; ð13Þ

where we have also given its expression in terms of
SMEFT operators. Therefore, F 3 − F 1 can be di-
rectly extracted from the most recent fits of LHC and
electroweak precision data, performed within the
SMEFT framework [35,36]. Reference [36] finds the
95% CL ranges −3.0 < fW=Λ2 < 3.7 and −8.3 <
fB=Λ2 < 26 (both in units of TeV−2). Taking also
into account the previous determination of F 1, one
gets −0.06 < F 3 < 0.20 (95% CL).

(5) F 4 and F 5. For these LECs we can use the recent
analysis of quartic gauge couplings by the CMS
collaboration, in the context of the SMEFT [37],
which determined jfS0=Λ4j < 2.7 TeV−4 and
jfS1=Λ4j < 3.4 TeV−4 (95% CL). Taking into ac-
count the relation between these SMEFT LECs and
the related EWET LECs [38–40],

F 4 ¼
v4

16

fS0
Λ4

; F 5 ¼
v4

16

fS1
Λ4

; ð14Þ

one gets jF 4j < 0.0006 and jF 5j < 0.0008 [40], and
combining quadratically both bounds, jF 4 þ F 5j <
0.0010. These determinations should be taken with
some caution because the experimental analysis has
neglected potential uncertainties associated with
unitarization effects [40,41].6 We will just consider
them here to illustrate how stringent become the
bounds on the resonance masses, for that level of

precision in F 4 and F 5. An improved experimental
analysis of these two LECs is needed, given the
relevance of unitarity corrections in high-energy
vector-boson scattering [24–26,40,41,43,44] and
the possible caveats concerning the validity of the
effective theory in collider analyses [45,46].

These results are summarized in Table V.
As shown in Tables I and II, the only contribution

from colored resonances to the bosonic Oðp4Þ EWET
Lagrangian originates in the exchange of spin-1 color-octet
multiplets, R8

1, and goes to the LEC F 12ðh=vÞ ¼
F 12ð0Þ þ h

vF
0
12ð0Þ þOðh2Þ, multiplying the gluon oper-

ator hĜμνĜ
μνi. The Higgsless term F 12ð0Þ is not directly

accessible since it just modifies the strong coupling gs.
A 95% CL on the corresponding hGG coupling,
−0.0009 < F 0

12ð0Þ < 0.0009, has been extracted from
a global EWET fit [31]. However, we do not consider
this bound because, in addition to the R8

1 mass and
gluonic coupling, F 0

12ð0Þ is also sensitive to the hR8
1R

8
1

and hgR8
1R

8
1 couplings, preventing any further predictive

phenomenology.

IV. PHENOMENOLOGY

The implementation of short-distance constraints has
allowed us to determine some bosonic LECs in terms of
very few resonance parameters, as shown in Tables III
and IV. These predictions are plotted in Figs. 1 and 2, as
functions of the relevant heavy resonance masses. The
green bands in Fig. 1 indicate the regions allowed by the
experimental constraints in Table V. There is still no
experimental information available on the LECs plotted
in Fig. 2.
The top-left panel in Fig. 1 displays the dependence of

F 1 on MV . For theories where the 1st WSR is obeyed, the
dark gray curve indicates the predicted upper bound
F 1 < −v2=ð4M2

VÞ. Thus, the whole region below this line
(gray and brown areas) would be theoretically allowed if
only the 1st WSR is assumed. In those scenarios where the
2nd WSR is valid, F 1 is predicted to be a function of MV
and MA, the dark gray curve corresponding to the limit
MA → ∞. The red (MA ¼ 1.2MV), blue (MA ¼ 1.1MV),
and orange (MA ¼ MV) curves show the predicted values
of F 1 for some representative axial-vector masses, the
orange line being the lower bound F 1 ¼ −v2=ð2M2

VÞ. This
range of MA ∼MV corresponds actually to the most
plausible scenario [4], since the one-loop analysis of the
oblique S parameter [6] indicates (under very soft and
reasonable assumptions) that κW ≈M2

V=M
2
A when the 2nd

WSR is valid, and the LHC experiments have found indeed
that κW ≈ 1.
The WSRs do not play any role in F 3. If one only

considers P-even operators, F 3 ¼ −v2=ð2M2
VÞ. This theo-

retical prediction is shown by the black curve in the top-
right panel of Fig. 1. Adding possible P-odd contributions,

TABLE V. Current experimental constraints on bosonic EWET
LECs, at 95% CL.

LEC Ref. Data

0.89 < κW <1.13 [31] LHC
−1.02 < c2V <2.71 [32] LHC
−0.004 < F 1 <0.004 [34] LEP via S
−0.06 < F 3 <0.20 [36] LEP & LHC
−0.0006 < F 4 <0.0006 [37] LHC
−0.0010 < F 4 þ F 5 <0.0010 [37] LHC

6A more recent CMS measurement ofWZ andWW production
in association with two jets finds indeed significantly less
stringent constraints when the unitarity condition is taken into
account [42].
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we can only put the upper bound F 3 < −v2=ð2M2
AÞ, which

is represented by the same curve but this time with
MR ¼ MA. Thus, the whole region below this line (gray
area) would be allowed in the most general case.
The bottom-left panel in Figure 1 shows the predicted

values of F 4, assuming the two WSRs and considering
only P-even operators, as function of MV . It depends on
both MV and MA, with the upper bound (dark gray curve)
obtained at MA → ∞. Thus, the theoretically allowed
region is the gray area below that curve. The red (MA ¼
1.2MV), blue (MA ¼ 1.1MV) and orange (MA ¼ MV)
curves show again the predicted values for different axial
masses. The vector and axial-vector contributions have
different signs and exactly cancel each other in the equal-
mass limit.
Independently of any assumptions concerning WSRs or

P-odd operators, the contributions from vector and axial-
vector resonance exchanges cancel exactly in the combi-
nationF 4þF 5¼c2d=ð4M2

S1
1

Þ≡v2=ð4M̂2
SÞ. Thus, one gets a

clean prediction that is shown by the black curve in the
bottom-right panel of Fig. 1, as function of M̂S ¼ MS1

1
v=cd.

A similar cancellation takes place in the combination
F 6 þ F 7 ¼ d2P=ð2M2

PÞ≡ v2=ð4M̂2
PÞ, which is plotted in

the top-right panel of Fig. 2, as function of M̂P ¼ MPv=dP.
Although our analysis did not include contributions

from spin-2 tensor resonances, their impact on the
Higgsless bosonic operators can be easily obtained from
previous studies within chiral perturbation theory. Taking
into account the short-distance constraints on forward
Goldstone-Goldstone scattering, the only LEC sensitive
to tensor-exchange is F 5, which receives a positive con-
tribution [18,19].7 Thus, the presence of an exotic tensor
resonance would reinforce the positive prediction for

FIG. 1. Predicted values for the LECs F 1, F 3, F 4 and F 4 þ F 5, from Tables III and IV, as a function of the corresponding resonance
mass (MV ,MA orMS1

1
v=cd). The green area covers the experimentally allowed region, at 95% CL, and it is further extended by a dashed

green band that accounts for our estimated one-loop running uncertainties in Eq. (16). If there is a dependence onMV andMA, the gray
and/or brown regions cover all possible values for MA > MV. If the 2nd WSR has been considered, it is explicitly indicated in the plot,
with the corresponding lines for MA ¼ MV (orange), MA ¼ 1.1MV (blue), MA ¼ 1.2MV (red) and MA → ∞ (dark gray). In the case
without the 2nd WSR, the theoretically allowed region for F 1 is given by the gray and brown regions. In case of using only the even-
parity operators, we indicate it in the plot.

7Spin-2 tensor studies that do not incorporate short-distance
relations lead to tensor contributions to both F 4 and F 5,
satisfying ΔF T

4 ≥ 0 and ΔF T
4 þ ΔF T

5 ≥ 0 [17,20].
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F 4 þ F 5, shown in Figure 1. In addition, there are also
potential contributions to the F 6;7;8 LECs, which should be
explored in future works. The impact of tensor resonances
in LHC searches has been studied in Refs. [17,22,23].
The top-left panel in Fig. 2 displays the coupling F 6, as

function of MV , assuming the two WSRs to be valid and
considering only P-even operators. The theoretical predic-
tion is always negative and depends on MV , MA, and κW ,
with its lower bound attained atMA → ∞ (dark gray band).
The light-gray area above this bound represents the whole
allowed region with MA ≥ MV . The red (MA ¼ 1.2MV),
blue (MA ¼ 1.1MV) and orange (MA ¼ MV) bands corre-
spond to different axial masses. The thickness of the bands
reflects the current experimental 95% CL uncertainty on
κW . The upper bound onF 6 is obtained atMA ¼ MV where
the vector and axial-vector contributions exactly cancel.
Finally, the predicted values of F 9 are shown in the

bottom panel in Fig. 2. Considering only P-even operators,
F 9 ¼ −κWv2=M2

A, which corresponds to the black band. Its
thickness reflects again the experimental error on κW . When
P-odd operators are taken into account, this prediction
transforms into a lower bound that is represented by the

same band, but this time as function of MR ¼ MV . The
whole gray area above the band is then theoretically
allowed.
Our tree-level predictions from resonance exchange are

actually expected to apply at a high scale around the
resonance masses, while the experimental constraints on
the LECs in Table V have been obtained at lower energy
scales. The one-loop running of the LECs with the
renormalization scale is known [47], and the explicit
expressions are given in the Appendix, in Eq. (A8).
These running contributions are of order 1=ð4π2Þ ∼ 10−3

and depend on the LO couplings κW and c2V . They vanish
in the SM limit, κW ¼ c2V ¼ 1, as they should. Therefore,
for resonances in the few TeV range, MR ∼ 4πv ≈ 3 TeV,
we can estimate the potential numerical size of this running
effect through the differences

ΔF i ¼ jF iðμ ¼ mhÞ − F iðμ ¼ 3 TeVÞj: ð15Þ

Taking into account the current experimental errors on κW
and c2V , we obtain

FIG. 2. Predicted values for the LECs F 6,F 6 þ F 7 andF 9, from Tables III and IV, as a function of the corresponding resonance mass
(MV , MA or MPv=dP). If there is a dependence on MV and MA, the gray regions cover all possible values for MA > MV. The F 6 plot
assumes the 2nd WSR and shows the corresponding lines for MA ¼ MV (orange), MA ¼ 1.1MV (blue), MA ¼ 1.2MV (red) and
MA → ∞ (dark gray). The lines are thick due to the experimental uncertainty on κW . In case of using only the even-parity operators, we
indicate it in the plot.
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ΔF 1 ¼ ΔF 3 ¼ 0.9 × 10−3; ΔF 4 ¼ 3 × 10−5;

ΔðF 4 þ F 5Þ ¼ 1.7 × 10−3; ΔF 6 ¼ 3 × 10−3;

ΔðF 6 þ F 7Þ ¼ 0.6 × 10−2; ΔF 9 ¼ 1.4 × 10−2: ð16Þ

The impact of these running contributions is indicated in
Fig. 1 with the dashed green bands that enlarge the experi-
mentally allowed regions. Our estimates in Eq. (16) show
that the numerical size of the running uncertainty is much
more important for the couplings in Fig. 2, which are not
yet constrained experimentally. This is mainly due to the
current poor knowledge on the hhWþW− coupling, since
the anomalous dimensions of these LECs are sensitive
to c2V : the uncertainties ΔF 6, ΔF 6þ7 and ΔF 9 in (16)
strongly decrease, becoming Oð10−3Þ, if we neglect the
uncertainty on c2V . Thus, this error could be sizeably
reduced with future data.

V. CONCLUSIONS

Taking into account the great experimental success of the
SM, at the currently explored energies, and the emerging
evidence about the existence of a mass gap between the SM
particles and hypothetical NP states, we have considered a
model-independent effective field theory approach to catch
any possible deviations from the SM predictions at low
energies. Specifically, we have adopted the general non-
linear electroweak effective theory (EWET) formalism.
The main aim of this work has been to constrain the

scale of the heavy states, which are not directly accessible
at current experiments. We have followed a bottom-up
approach, where the experimental determination of the
LECs of the EWET is used to get imprints of the heavy
resonances.
As a consequence, the lightest resonances need to be

incorporated in the EWET formalism at higher energies:
we have considered here a phenomenological Lagrangian
which interpolates between the low-energy and the high-
energy regimes [8,9]. In this way, and after integrating out
the resonances, the bosonic LECs of the EWET have been
determined in terms of resonance parameters, as it is shown
in Tables I and II [8,9]. These theoretical predictions can be
considerably improved by assuming a proper short-distance
behavior of the UV theory, which has allowed us to
determine or constrain the bosonic LECs in terms of only
resonance masses and the hWW coupling κW , as it is shown
in Tables III and IV.
Combining our theoretical predictions with the current

experimental bounds on the bosonic LECs, we have
obtained the results shown in Figs. 1 and 2. These plots
push the resonance mass scale to the TeV range,
MR ≥ 2 TeV, in good agreement with our previous theo-
retical estimates in Refs. [4,6], based on a NLO calculation
of the S and T oblique parameters within a simplified
version of the resonance Lagrangian of Eq. (5).

The oblique S-parameter produces the most precise LEC
determination at NLO (F 1), which implies the resonance-
mass lower bounds MV;A ≳ 2 TeV, at the 95% CL. On the
other hand, the anomalous triple gauge couplings provide a
much weaker limit on F 3, which translates in the softer
constraint MV;A ≳ 0.5 TeV.
A recent CMS study has led to very stringent bounds on

the couplings that rule WW, WZ, and ZZ scattering [37],
jF 4;5j≲ 10−3 in the context of the EWET. In spite of its
possible issues regarding unitarity [40,41], it is illustrative
to study the implications of such level of precision on the
anomalous quartic gauge couplings. The limit on F 4 þ F 5

implies that the singlet scalar resonance would have a mass
MS1

1
≳ 2 TeV for a S11WW coupling close to the hWW one

(cd ∼ v). This lower bound would increase if there were
additional contributions from spin–2 tensor resonances,
since ΔF T

4 þ ΔF T
5 ≥ 0 [17–20]. Likewise, in the case of

BSM extensions with only P-even operators and obeying
the two WSRs, the bounds on F 4 constrain the mass of
the vector resonance to the range MV ≳ 2 TeV if
MA=MV > 1.1. Nonetheless, lower vector masses would
be still allowed if the vector and axial-vector states
happened to be very degenerate (1 < MA=MV < 1.1).
Currently, there is no data on the remaining NLO LECs.

Triplet pseudoscalar resonances with masses M̂P ¼ MPv=
dP ≲ 2 TeV would imply a lower bound F 6 þ F 7 ≳
5 × 10−3, a LEC combination related with WW → hh at
NLO. Likewise, a triplet vector resonance with mass
MV ∼ 2 TeV leads to the constraint F 6 < −2 × 10−3 (also
relevant for WW → hh scattering) for MA=MV > 1.1, in
P-even theories with two WSRs. Finally, the coupling F 9,
related to the hWW vertex at NLO, could be Oð10−2Þ in
absolute value for MV;A ∼ 2 TeV (notice the negative sign
in Fig. 2). However, one-loop corrections introduce cor-
rections of a similar size in F 6, F 6 þ F 7, and F 9,
respectively, due to the poor knowledge on the hhWW
LO coupling c2V . Any further progress on these three LECs
requires a similar improvement in the c2V precision and the
incorporation of one-loop EWET contributions in these
experimental analyses.
In summary, the experimental LHC constraints start

already to be competitive. This type of analysis will gen-
erate much more precise information, once the expected
high-statistics data samples from the upgraded LHC runs
will be available.
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APPENDIX: CONSTRUCTING THE EWET

At low energies we consider the nonlinear EWET
Lagrangian, where one has the particle content of the
SM, but with the Higgs h as a scalar singlet. The main
assumption is that the underlying high-energy theory and
the EWET possess the EWSB pattern of the SM:

G≡ SUð2ÞL ⊗ SUð2ÞR → H≡ SUð2ÞLþR: ðA1Þ

The remaining symmetry group H is the so-called
“custodial” symmetry [48], since it protects the ratio of
the W and Z masses from large corrections.
The EW Goldstones can be described in the CCWZ

formalism [49] through the G=H coset representative
uðφÞ ¼ expfiσ⃗ φ⃗ =ð2vÞg, which transforms under the sym-
metry group element g≡ ðgL; gRÞ ∈ G as

uðφÞ → gLuðφÞg†h ¼ ghuðφÞg†R;
UðφÞ≡ uðφÞ2 → gLUðφÞg†R; ðA2Þ

being the compensating transformation gh ≡ ghðφ; gÞ ∈ H.
By promoting G to a local symmetry, the auxiliary SUð2ÞL
and SUð2ÞR matrix fields, Ŵμ and B̂μ respectively, and their
field-strength tensors are introduced:

Ŵμ → gLŴ
μg†L þ igL∂μg†L;

B̂μ → gRB̂
μg†R þ igR∂μg†R;

Ŵμν ¼ ∂μŴν − ∂νŴμ − i½Ŵμ; Ŵν� → gLŴμνg
†
L;

B̂μν ¼ ∂μB̂ν − ∂νB̂μ − i½B̂μ; B̂ν� → gRB̂μνg
†
R;

fμν� ¼ u†Ŵμνu� uB̂μνu† → ghf
μν
� g†h: ðA3Þ

The covariant derivatives are provided by these fields:

DμU ¼ ∂μU − iŴμU þ iUB̂μ → gLðDμUÞg†R;
uμ ¼ iuðDμUÞ†u ¼ −iu†DμUu† ¼ u†μ → ghuμg

†
h; ðA4Þ

The identification [50]

Ŵμ ¼ −g
σ⃗

2
W⃗μ; B̂μ ¼ −g0

σ3
2
Bμ; ðA5Þ

explicitly breaks the chiral symmetry group G while
preserving the SUð2ÞL ⊗ Uð1ÞY gauge symmetry, as in
the SM.

Once the fermion doublets are considered, the fields Ĝμ

and X̂μ are introduced to keep the covariance under local
SUð3ÞC and Uð1ÞX transformations, respectively. The
definitions of these fields, their field-strength tensors Ĝμν

and X̂μν and the identifications required to break G while
preserving the SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY gauge sym-
metry can be found in Ref. [8].
The explicit breaking of custodial symmetry can be

incorporated by means of a right-handed spurion:

T R → gRT Rg
†
R; T ¼ uT Ru† → ghT g†h: ðA6Þ

The identification

T R ¼ −g0
σ3
2
; ðA7Þ

allows one to obtain the custodial symmetry breaking
operators induced through quantum loops with internal
Bμ lines.
The power counting of chiral dimensions adopted to

organize the operators of the EWET can be summarized
as: h∼Oðp0Þ, uμ, ∂μ, T ∼Oðp1Þ and f�μν,Ĝμν, X̂μν∼
Oðp2Þ [8,9].
The Oðp4Þ operators in Eq. (3) renormalize the UV

divergences from one-loop diagrams with LO vertices. The
running of the renormalized parameters F i and F̃ i,

∂F i

∂ ln μ ¼ −
Γi

16π2
;

∂F̃ i

∂ ln μ ¼ −
Γ̃i

16π2
; ðA8Þ

has been calculated using the background field method
[47]:

Γ1 ¼ Γ3 ¼ −
1

6
ð1 − κ2WÞ; Γ2 ¼ −

1

12
ð1þ κ2WÞ;

Γ4 ¼
1

6
ð1 − κ2WÞ2; Γ5 ¼

1

8
ðκ2W − c2VÞ2 þ

1

12
ð1 − κ2WÞ2;

Γ6 ¼ −
1

6
ðκ2W − c2VÞð7κ2W − c2V − 6Þ;

Γ7 ¼
4

9
Γ8 ¼

2

3
ðκ2W − c2VÞ2; Γ9 ¼ −

1

3
κWðκ2W − c2VÞ:

ðA9Þ

where only the first term in the expansion of Γi in powers of
h=v is given, i.e., Γiðh ¼ 0Þ. Note that Γ1 ¼ Γ3−9 ¼ 0 and
Γ2 ≠ 0 for the SM values, κW ¼ c2V ¼ 1, as it should be.
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