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We demonstrate that superconducting radio-frequency cavities can be used to create and detect
millicharged particles and are capable of extending the reach to couplings several orders of magnitude
beyond other laboratory-based constraints. Millicharged particles are Schwinger pair produced in driven
cavities and quickly accelerated out of the cavity by the large electric fields. The electric current generated
by these particles is detected by a receiver cavity. A light-shining-through-walls experiment may only need
to reanalyze future data to provide new constraints on millicharged particles.
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I. INTRODUCTION

One of the most natural extensions of the Standard
Model (SM) is to include a new charged particle with
charge and mass different from the electron. Particles of
this type have been discovered before (e.g., quarks) and
may be discovered again. If a new charged particle has an
electric charge much smaller than the electron, then it is
called a millicharged particle (mCP). Due to their minimal-
istic properties, they often appear in theoretical extensions
of the SM [1–8] and have often been used to explain various
experimental anomalies [9–15]. A natural way for such
effective interactions to arise is through the kinetic mixing
of a new light hidden sector dark photon, A0, with the SM
photon,

L ⊃
ϵ

2
FμνF0μν þ 1

2
m2

A0A02
μ ; ð1Þ

where ϵ is a small dimensionless parameter that controls the
strength of kinetic mixing and mA0 is the dark photon mass
[1]. On length scales much smaller than m−1

A0 , the dark
photon generates an effective millicharge under standard
electromagnetism for particles χ that are directly charged
under the A0, of the form qχ ≃ ϵe0=e where e0 is the A0

gauge coupling. From the perspective of such models, a
small millicharge is a consequence of a small kinetic
mixing parameter and/or hidden sector gauge coupling [8].

There are many ways in which to produce mCPs.
Perhaps one of the most interesting production mechanisms
is Schwinger pair production [16]. In the presence of a large
electric field, a particle and antiparticle can spontaneously
appear. If the electric field is larger than a critical value,
then such particle production is unsuppressed. This critical
electric field is

Ecr ¼
m2

χ

eqχ
∼ 50 MVm−1 ×

�
mχ

meV

�
2
�

qχ
10−7

�
−1
; ð2Þ

wheremχ is the mass of the new particle and qχ is its charge
measured in units of the electron charge. The largest
laboratory-based electric fields are currently many of orders
of magnitude too small to produce any of the known
particles at any appreciable rate.1 However, if mCPs exist,
then they might be produced by these large electric fields,
and it behooves us to look for them.
Using resonant cavities to search for new particles via

Schwinger pair production was first proposed in
Refs. [17,18]. In this paper, we propose using super-
conducting radio-frequency (SRF) cavities both to produce
and detect mCPs. The extreme environment of SRF cavities
(with characteristic field strengths of ∼50 MVm−1) makes
them ideal for searching for new particles [19–25]. We
focus on a setup where a driven “emitter” cavity operates in
a mode where its electric field points toward a shielded
“receiver” cavity. Millicharged particles are produced in the
large electric field of the emitter cavity and are quickly
accelerated out of the emitter cavity and toward the receiverPublished by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1Producing electrons would require electric fields larger than
1012 MVm−1.
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cavity, easily penetrating an electromagnetic shield due
their tiny electric charge. The oscillating electric field of the
driven emitter cavity imprints a characteristic frequency
onto the produced current of mCPs. The receiver cavity is
tuned to have the same frequency, as to be resonantly
sensitive to the oscillating mCP current. The oscillating
mCP current can ring up the resonant modes of the receiver
cavity to observable levels, constituting a discovery of
mCPs. A picture of the setup and its projected sensitivity
are shown in Figs. 1 and 2, respectively.
A very interesting aspect of this setup is that it is nearly

identical to a typical light-shining-through-walls (LSW)
experiment, such as the one currently being constructed at
Fermi National Accelerator Laboratory (FNAL) in order to
search for ultralight hidden photons [19–21]. More gen-
erally, most LSW experiments can also be reinterpreted as
an mCP search, regardless of whether or not an SRF cavity
is utilized. In this work, we show that near-future searches
of this type are many orders of magnitude more sensitive to
mCPs than other current laboratory-based searches.

II. PRODUCTION OF MILLICHARGED
PARTICLES IN CAVITIES

Schwinger pair production is the spontaneous appear-
ance of a particle and antiparticle in the presence of a large
electric field. For particles produced at rest, this whole
process conserves energy if the binding energy experienced
by the particle-antiparticle dipole in the exterior electric
field balances the rest mass energy,

eqχdE ∼mχ ; ð3Þ
where E is the external electric field and d is the distance
between the particle-antiparticle pair. In quantum mechan-
ics, everything that is allowed to happen can happen, but if
there exists a large hierarchy in length scales, the proba-
bility for such events to occur is exponentially suppressed.
The length scale associated with the virtual mCP pair is the
Compton wavelength, dC ∼ 1=mχ . It is thus expected that
Schwinger pair production is exponentially suppressed if
d≳ dC and unsuppressed if d≲ dC. This statement along
with Eq. (3) can also be interpreted as demanding that the
work performed by the electric field on the virtual mCP pair
is sufficient to put the particles on shell. From Eqs. (2) and
(3), unsuppressed production (d≲ dC) is equivalent to
demanding E≳ Ecr. This intuition is reflected in the
expression for the probability of pair-creating particles
per unit time and unit volume,

Pχ ¼
dNχ

dtdV
≃

cχ
ð2πÞ3 ðeqχEÞ

2e−ðπm2
χÞ=ðeqχEÞ∝e−πd=dC ∝e−πEcr=E;

ð4Þ

where Nχ is the number of particle pairs and cχ ¼ 1 (1=2)
for fermionic (scalar) mCPs [16]. While this equation can

FIG. 1. A cartoon picture of our setup. The large electric fields
in the emitter cavity produce millicharged particles via Schwinger
pair production. The electric field of the cavity is arranged such
that the particles are accelerated toward the shielded receiver
cavity, where the current of millicharged particles excites the
resonant modes to detectable levels.

FIG. 2. The projected reach of future cavity experiments
(shaded blue) to millicharged fermions for various volumes of
the emitter/receiver cavities, Vcav (the reach for millicharged
scalars is weaker by a factor of 21=3). In each case, we take the
amplitude of the driven cavity field to be Eem ¼ 50 MVm−1, the
quality factor to be Q ¼ 1012, the receiver cavity temperature to
be T ¼ 10 mK, and the integration time to be tint ¼ year. We take
the emitter and receiver cavities to both be cylinders of equal
radius and length, such that the resonant frequency of the TM010

mode is fixed to be ω ¼ α01ðπ=VcavÞ1=3, where α01 is the first
zero of J0. The shaded gray region corresponds to the best
existing laboratory bound from the PVLAS Collaboration
[26,27]. Above the solid red line, the amplitude of the driven
emitter cavity’s electric field is larger than the critical field
strength for Schwinger pair production of millicharged particles.
Not shown are astrophysical and cosmological limits derived
from considerations of, e.g., stellar cooling, SN1987A, big bang
nucleosynthesis, and the cosmic microwave background [28].
Models in which these constraints are mitigated are discussed in
Appendix C.
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only be rigorously defined in the limit when the exponential
suppression is large, we will assume that it continues to
hold even when the exponential suppression is not present.
This assumption can be shown to hold explicitly in the case
of an electric field in a periodic box [29].
For particles that are produced relativistically, Eq. (3) is

modified to

eqχdBE ∼ pχ ; ð5Þ

where pχ is the mCP momentum and dB ∼ 2πp−1
χ is its de

Broglie wavelength. Solving Eq. (5) for pχ shows that the
typical momentum of pair-produced particles is parametri-
cally

pχ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πeqχE

q
: ð6Þ

Hence, E ≫ Ecr implies that pχ ≫ mχ , i.e., electric fields
much greater than the critical value lead to the production
of relativistic particles [29].
The production rate of Eq. (4) applies to static and

uniform electric fields of large spatial extent. However, in
cavities, an oscillating electric field is confined to a finite
interior region. Hence, in addition to E≳ Ecr, efficient pair
production of mCPs requires that the characteristic length
scale associated with production is smaller than the typical
length scale over which the electric field varies by an Oð1Þ
fraction. For the lowest lying cavity modes discussed
below, the latter is roughly ω−1, where ω ∼ GHz is the
mode’s resonant frequency. Therefore, for particles pro-
duced at rest [see Eq. (3)], pair production is unsuppressed
by spatial gradients of the cavity’s electric field provided
that the typical dipole length satisfies d≲ ω−1, i.e.,

ωmχ

eqχE
≲ 1: ð7Þ

Instead, if particles are produced with large momentum,
pair production is unsuppressed provided that the de
Broglie wavelength is smaller than the length scale of field
spatial gradients (pχ ≳ ω), which is satisfied when

ω2

eqχE
≲ 1: ð8Þ

Since the time scale relevant for pair production is dictated
by the same length scales discussed above, time variations
of the oscillating electric field can be ignored as well
provided that the above criteria are met. For the parameter
space of Fig. 2, Eqs. (7) and (8) are easily satisfied,
indicating that corrections to Eq. (4) coming from the time
and spatial dependence of the resonant electric fields are
negligible.

We also note that effects from Pauli blocking or Bose
enhancement in Eq. (4) are subdominant. After being
accelerated in the cavity’s electric field for a time
tacc ∼ pχ=eqχE ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π=eqχE

p
, the momentum gained by

mCPs is larger than that at production. The probability of
producing a particle whose wave packet overlaps within a
previously produced particle’s wave packet is then
∼Pχtaccd3B ∼ cχ=ð2πÞ ≲ 1. Furthermore, for the parameter
space shown in Fig. 2, the time scale tacc is much shorter
than the oscillation period of a typical SRF cavity, i.e.,
tacc ≪ ω−1 for ω ∼ GHz and E ∼ 50 MVm−1. Hence,
mCPSs are quickly accelerated along the direction of the
electric field before escaping the cavity.
We are now in a position to calculate the production of

mCPs in a driven cavity. We will first present a toy model
calculation that ignores many effects in order to illustrate
the overall scaling behavior of the signal. A more complete
calculation is presented in the Appendices which shows
that the final results are unchanged up to ∼Oð1Þ factors. To
begin, we take the emitter cavity to be a cylinder of length L
and radius R that is driven in its TM010 mode, so that the
electric field points along the axis of symmetry (the ẑ axis).
The resonant frequency is ω ¼ α01=R where α01 is the first
zero of the Bessel function J0. The form of the driven fields
is given by

Eem ¼ EemJ0ðωrÞ sinωtẑ; Bem ¼ EemJ1ðωrÞ cosωtϕ̂;
ð9Þ

where r is the radial cylindrical coordinate.
In our toy model estimate, up toOð1Þ factors, the current

density of relativistic mCPs produced by the driven cavity
is roughly

jχðr;tÞ∼eqχLPχsignðEemðtÞ · ẑÞẑ

∼cχ

�
eqχ
2π

�
3 jEemðr;tÞj2

ω
e−πEcr=jEemðr;tÞjsignðEemðtÞ · ẑÞẑ;

ð10Þ
where Pχ follows from Eq. (4) and we have taken the length
of the cavity as L ∼ 1=ω for reasons explained below. The
factor of signðEemÞ accounts for the fact that depending on
the sign of the electric field, particles or antiparticles will be
emitted from a fixed end of the cavity. We will approximate
the above expression by taking the time dependence of jχ to
be of the form

jEemðr; tÞj2e−πEcr=jEemðr;tÞjsignðEemðtÞ · ẑÞ
∼ E2

emJ0ðωrÞ2e−πEcr=Eem sinωt; ð11Þ

which captures the time dependence when Eem ≳ Ecr, since
signðsinωtÞ sin2 ωt has an Oð1Þ Fourier overlap with
sinωt. Hence, our approximate form for the mCP current
density is
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jχðr; tÞ ∼ cχ

�
eqχ
2π

�
3 E2

em

ω
J0ðωrÞ2e−πEcr=Eem sinωtẑ: ð12Þ

The effects that our toy model neglects are as follows.
Schwinger pair production occurs constantly in the emitter
cavity (provided that Eem ≳ Ecr), but if the magnetic fields
are large compared to the electric fields, then pair pro-
duction is suppressed2 for scalar mCPs [30–32] and,
furthermore, mCPs of any spin will be deflected away
from the receiver cavity. These effects are mitigated due to
the fact that the resonant electric and magnetic fields are
maximally out of phase [see Eq. (9)]. If the emitter cavity is
long (L ≫ R), then the total current density is a sum over
mCPs that were produced at different times corresponding
to distinct phases in the time evolution of EemðtÞ. In our toy
model, we ignore these effects. Additionally, if L ≫ R,
then the electric and magnetic fields significantly evolve in
the time it takes for a typical mCP to traverse an Oð1Þ
fraction of the cavity’s length, drastically modifying its
trajectory. The toy model takes this into account by
approximating L ∼ ω−1. A more realistic and detailed
derivation of jχ is presented in Appendix A.

III. RESPONSE OF A RECEIVER CAVITY

We now briefly review how the shielded receiver cavity
responds to the oscillating current density of mCPs. The
electric field of the receiver cavity can be decomposed as

Eðx; tÞ ¼ cnðtÞEnðxÞ; ð13Þ
where En are the resonant modes of the cavity (labeled by
n) and a sum over n is implied. The cavity modes, En,
satisfy Maxwell’s equations∇2En ¼ −ω2

nEn, subject to the
standard boundary conditions, where ωn is the resonant
frequency of the nth mode. The modes also satisfy the
standard orthonormality constraints,

Z
rec

d3xE�
n · Em ¼ δnm

Z
rec

d3xjEnj2; ð14Þ

where the spatial integral is evaluated over the receiver
cavity. Taking the current to be of the form jχðr; tÞ ¼
jχðrÞeiωt and using Maxwell’s equations, the expansion
coefficients, cn, are found to satisfy the differential
equation

c̈n þ
ωn

Q
_cn þ ω2

ncn ¼ −iωeiωt
R
rec d

3xE�
n · jχðrÞR

rec d
3xjEnj2

; ð15Þ

where the dots denote time derivatives and on the left-hand
side we have included a dissipative energy loss term, as
quantified by the large quality factor3 of the cavity, Q. To
date, quality factors as large as Q ∼ few × 1011 have been
achieved in SRF cavities [33,34].
Equation (15) is simply the equation of motion of a

damped harmonic oscillator that is driven by a source term
as dictated by the mCP current density. Hence, if ω ≃ ωn, jχ
can resonantly excite power in the nth normal mode of the
receiver cavity, showing that it is advantageous to tune the
emitting and receiving cavities to have the same frequency.
The amplitude of the excited fields in the receiver cavity is
enhanced by the large quality factor and is parametrically of
the form E; B ∼Qjχ=ω. For concreteness, we take the
emitter and receiver cavities to be right cylinders of equal
dimensions and focus on the TM010 mode in both cavities,
as shown in Eq. (9) (we drop the subscript n below). In this
case, if the emitter cavity is driven with amplitude Eem, then
the electric field excited in the receiver cavity is determined
by Eq. (15) to be

Esigðr; tÞ ≃ EχJ0ðωrÞieiωtẑ; ð16Þ

where the toy model estimate for the amplitude, Eχ , is

Eχ ∼ cχ

�
eqχ
2π

�
3 QE2

em

ω2
e−πEcr=Eemηj: ð17Þ

Above, ηj is an Oð1Þ mode-dependent factor given by

ηj ¼
R
R
0 drrJ0ðωrÞ3R
R
0 drrJ0ðωrÞ2

≃ 0.72: ð18Þ

The total signal power in the receiver cavity is

Psig ≃
ω

Q

Z
rec

d3xjEsigj2 ∼
ω

Q
ηVE2

χVcav; ð19Þ

where Vcav is the total volume of the receiver cavity and ηV
is an additional Oð1Þ mode-dependent factor given by

ηV ¼ 2

R2

Z
R

0

drrJ0ðωrÞ2 ≃ 0.27: ð20Þ

An analogous version of this calculation utilizing a more
complete estimate for jχ is presented in Appendix B.

2In the presence of a magnetic field, the energy of a particle is
increased by the energy of its lowest lying Landau level, ωL. In
this case, the right-hand side of Eq. (3) should have ωL added to
the rest mass, mχ . For a spin-zero particle, ωL ∼ eqχB=mχ so that
d → dþ B=ðmχEÞ and the expression in Eq. (4) has an additional
exponential suppression of expð−πB=EÞ. For spin-1=2 (anti)
particles (anti-)aligned with an external magnetic field, the first
Landau level has zero energy (up to corrections from the
anomalous magnetic moment), such that Eq. (3) is unmodified
to leading order in Oðαemq2χÞ.

3We have assumed that energy loss from Schwinger pair
production itself is negligible compared to standard processes.
This is a good approximation for the parameter space shown in
Fig. 2 [17].
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IV. SENSITIVITY

The signal-to-noise ratio scales as SNR ¼ Psig=Pnoise ∝
q6χ where Pnoise is the total noise power. In calculating the
reach of a future cavity experiment, we assume that noise is
controlled by thermal fluctuations of the receiver cavity,
which is expected to dominate over the intrinsic noise of the
readout device, such as a SQUIDmagnetometer [19–21]. In
this case, the noise power is approximately Pnoise ≃ T=tint,
where T is the temperature of the receiver cavity and tint is
the total integration time of the experiment. The fact that
the SNR increases linearly with integration time (as
opposed to SNR ∝

ffiffiffiffiffiffi
tint

p
, as is the case for, e.g., resonant

axion searches for a background dark matter field) is due to
the fact that one can measure the frequency and phase of the
emitter cavity which in turn allows for a determination of

the signal phase in the receiver cavity. As discussed in
Ref. [19], this allows for a measurement of the signal field
(as opposed to power) which grows as

ffiffiffiffiffiffi
tint

p
and thus a

signal power that scales linearly in total integration time.
Without a measurement of the emitter phase, the noise
power is instead Pnoise ∼ T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω=ðQtintÞ

p
, which results in

noise levels roughly ∼100 times larger for the experimental
parameters adopted in this work. Here, we assume that the
emitter phase has been measured. However, since
Psig ∝ q6χ , not doing so only leads to a factor of ∼2
decrease in the projected reach of Fig. 2.
Assuming that the electric field of the driven emitter

cavity is much larger than the critical field strength for
Schwinger pair production of mCPs (Eem ≫ Ecr), a signal-
to-noise ratio of SNR≳ 1 is equivalent to

qχ ≳Oð10−13Þc−1=3χ

�
Eem

50 MV=m

�
−2=3

�
Q
1012

�
−1=6

�
ω

GHz

�
1=2

�
Vcav

m3

�
−1=6

�
T

10 mK

�
1=6

�
tint
year

�
−1=6

: ð21Þ

To date, the most stringent existing laboratory-based
constraints are derived from searches for vacuum magnetic
birefringence by the PVLAS experiment [26,27]. The
projected reach of Eq. (21) is sensitive to couplings
∼106 smaller than those currently excluded by PVLAS.
In estimating the reach of SRF cavities, we have assumed
that the driving and resonant frequencies of the emitter and
receiver cavities are degenerate. Controlling this degen-
eracy for the extremely narrow resonances of SRF cavities
is one of the main experimental feats that the FNAL setup is
expected to overcome. In particular, mechanical vibrations
of the cavity from seismic noise and vibrations from the
liquid helium cryogenic system can lead to small time-
dependent variations of the cavity’s resonant frequencies.
Mitigating this mode wobbling to one part inQ necessitates
controlling the positions of the cavity walls to subnano-
meter precision [21].

V. DISCUSSION AND CONCLUSIONS

In this work, we have shown that light-shining-through-
walls experiments can have world-leading sensitivity to
light millicharged particles that are Schwinger pair pro-
duced due to the large electric fields of superconducting
radio-frequency cavities. A qualitatively similar discussion
to the one illustrated here is presented in Refs. [17,18]

(where the notation ϵ was used instead of qχ for the size of
the millicharge coupling in units of the electron charge).
These previous studies considered cavities of smaller
geometric size and weaker field gradients. In starker
contrast is the fact that Ref. [18] quantified detectable
signal levels as total millicharge currents greater than
∼nA − μA. Adopting these criteria for quantifying detect-
ability, we agree with Refs. [17,18] which found that this
corresponds to qχ ≳ 10−7–10−6, respectively. In particular,
the parametric expression in Eq. (10) implies that

jχR2∼μA×cχ

�
qχ
10−6

�
3
�

Eem

15MVm−1

�
2
�

ω

GHz

�
−1
�

R
10 cm

�
2

;

ð22Þ

which is normalized to the cavity parameters in Ref. [18].
In this study, we have provided a detailed estimate, which
shows that a thermal-noise limited superconducting radio-
frequency setup will in fact be sensitive to much smaller
couplings. The generalized version of the toy model
calculation of Sec. III shows that near-future experimental
setups will attain sensitivity to oscillating currents as
small as

jχR2 ∼ 10−24A ×

�
Q
1012

�
−1=2

�
ω

GHz

�
1=2

�
Vcav

500 cm3

�
−1=2

�
T

10 mK

�
1=2

�
tint
year

�
−1=2

�
R

10 cm

�
2

: ð23Þ

The many orders of magnitude in difference between Eqs. (22) and (23) serve to partially explain why the
projections shown in Fig. 2 are enhanced by a factor of ∼1018=3 ∼ 106 compared to the estimate in
Refs. [17,18].
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It is important to note that while terrestrial experiments
utilizing superconducting radio-frequency cavities could
provide the best laboratory constraints on new electrically
charged particles, very powerful limits have also been
derived from the consideration of various astrophysical and
cosmological processes, such as stellar cooling, SN1987A,
big bang nucleosynthesis, and the cosmic microwave
background (see Ref. [28] and references therein). In
Appendix B, we discuss models that significantly alleviate
these bounds, opening up the parameter space shown in
Fig. 2. We stress that independent of such model building, it
is sufficiently motivating that near-future light-shining-
through-walls experiments could provide the best terrestrial
constraints on light millicharged particles without modi-
fying their planned geometry or data acquisition.
It is very exciting that a light-shining-through-walls

experiment utilizing superconducting radio-frequency
cavities is currently under construction at FNAL. The
ability to search for ultralight dark photons has been the
main physics motivation for such a setup up to this point
[19,20]. In fact, an emitter-receiver cavity geometry iden-
tical to that shown in Fig. 1 is also optimal for detecting the
enhanced longitudinal mode of dark photons much lighter
than ω ∼ GHz. Importantly, how this signal scales with
various experimental parameters differs compared to the
millicharge induced one discussed in this work. In par-
ticular, while the electric field signal in the receiver cavity
scales as Esig ∝ E2

em for millicharges in Eq. (17), for light
dark photons this is modified to Esig ∝ Eem [19]. Hence, in
the exciting event of an observed signal, various new
physics explanations could be differentiated by slightly
varying the power that is driven into the emitter cavity.
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APPENDIX A: DERIVATION OF
MILLICURRENTS FROM SCHWINGER PAIR

PRODUCTION

In this Appendix, we calculate the charge and current
density of pair-produced mCPs, χ�. The starting point of
this calculation assumes that after production, mCPs follow

localized trajectories in spacetime. This is equivalent to the
classical limit of a continuous fluid. Later, in Appendix D,
we comment on the generalization of this calculation when
this assumption is not valid within the context of quantum
mechanical fluids.
The number of particles of charge αeqχ (α ¼ �1) that

are produced per unit volume and unit time is denoted as

Pαðx; tÞ ¼
dNα

d3xdt
: ðA1Þ

Therefore, the infinitesimal number density of point parti-
cles that are created at an initial position xi at time ti is

dnαðx; tiÞ ¼ dNαðxi; tiÞδ3ðx − xiÞ
¼ d3xidtiPαðxi; tiÞδ3ðx − xiÞ: ðA2Þ

In order to time evolve this number density to later times
(t > ti), in Eq. (A2), we promote xi to a time-dependent
coordinate, i.e.,

δ3ðx − xiÞ → δ3ðx − xαðxi; ti; tÞÞ; ðA3Þ

where xαðxi; ti; tÞ is the trajectory of a particle of charge
αeqχ at time t, given that is was produced at position xi and
time ti. Time-evolving Eq. (A2) in this manner, we have

dnαðx; tÞ ¼ d3xidtiPαðxi; tiÞδ3ðx − xαðxi; ti; tÞÞ: ðA4Þ

The total number density, nχ , is then obtained by summing
over species of either charge (α ¼ �1) and all possible
initial positions (xi) and times (ti < t),

nχðx; tÞ ¼
X
α¼�1

Z
d3xidtiPαðxi; tiÞδ3ðx − xαðxi; ti; tÞÞ:

ðA5Þ

In general, the xi integral is to be performed over all of
space. However, for particles that are pair produced from
the large electric fields of resonant cavities, the spatial
integral only has significant weight over the interior of the
cavity itself since Pα is exponentially suppressed else-
where. In order to take into account that χ� are pair
produced with a spread of initial velocities (vi) and that
their trajectories (xα) depend explicitly on vi, we also add to
Eq. (A5) a weighted sum over vi,

nχðx; tÞ ¼
X
α¼�1

Z
d3xidtid3vifαðvi;xi; tiÞPαðxi; tiÞδ3ðx − xαðxi; vi; ti; tÞÞ; ðA6Þ

where fαðvi;xi; tiÞ is the unit-normalized distribution of initial velocities. The total current density, jχ , is derived in a nearly
identical manner. Compared to Eq. (A6), the only difference is that the sum over α inherits a factor of charge (αeqχ) and the
integrand involves an overall factor of the time-evolved velocity, vαðxi; vi; ti; tÞ,
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jχðx; tÞ ¼
X
α¼�1

αeqχ

Z
d3xidtid3vifαðvi;xi; tiÞvαðxi; vi; ti; tÞPαðxi; tiÞδ3ðx − xαðxi; ti; vi; tÞÞ: ðA7Þ

The above discussion is accurate in the limit that the
number density, nχ , is large and the produced χ� population
can be approximated as a continuous collisionless fluid.
However, Eq. (A7) in its current form is not immediately
useful in providing an analytic handle on jχ . As discussed
in Sec. II, in most regions of parameter space in Fig. 2, χ�
pairs are produced and accelerated to ultrarelativistic
speeds along the direction of the electric field. For the
TM010 resonant modes of Eq. (9), the electric field of the
driven cavity is purely in the longitudinal (ẑ) direction and
is z independent. Hence, in order to simplify Eq. (A7), we

approximate the initial velocity, vi, and the time-evolved
trajectories, xα, as purely relativistic along the ẑ direction,
i.e.,

fαðvi;xi; tiÞ ≃ δ3ðvi − α signðEemðxi; tiÞ · ẑÞÞ
xαðxi; ti; vi; tÞ ≃ xi þ α signðEemðxi; tiÞ · ẑÞðt − tiÞẑ: ðA8Þ

Decomposing x ¼ ðx⊥; zÞ and using the delta functions in
Eqs. (A7) and (A8) to perform the integrals over vi, x⊥i,
and ti, we find

jχðx⊥; z; tÞ ≃ eqχ ẑ
Z

L

0

dziPðx⊥; zi; t − ðz − ziÞÞsignðEemðx⊥; t − ðz − ziÞÞ · ẑÞ; ðA9Þ

where the length of the cylindrical cavity is taken to run
from z ¼ 0 to z ¼ L. Note that within the integral over zi in
Eq. (A9), the production rate and the electric field of the
emitter cavity are evaluated at the retarded time t − ðz − ziÞ.
Since Schwinger pair production is independent of the sign
of the millicharge, we have also dropped the α subscript for
the production rate, P.
The rate for Schwinger pair production scales as the

electric field squared, P ∝ jEemj2. In order to analytically
simplify Eq. (A9), we parametrize the Schwinger produc-
tion rate as

Pðx; tÞ ¼ cχ
ð2πÞ3 ðeqχÞ

2jEemðx; tÞj2e−πEcr=jEemðx;tÞj; ðA10Þ

where cχ ¼ 1ð1=2Þ for fermionic (scalar) χ and Ecr is the
critical electric field strength. For an oscillating TM010

electric field of the form

Eemðx; tÞ ¼ EemðrÞ sinωtẑ; ðA11Þ

we then approximate the integrand of Eq. (A9) using

Pðx; tÞsignðEemðx; tÞ · ẑÞ ≃
cχ

ð2πÞ3 ðeqχÞ
2EemðrÞ2e−πEcr=EemðrÞ sinωt; ðA12Þ

which accurately captures the full time dependence, as discussed in Sec. II. Using Eq. (A12) in Eq. (A9), we then find

jχðx; tÞ ≃
cχ
4π3

ðeqχÞ3EemðrÞ2
sinφ
ω

e−πEcr=EemðrÞ sin ðωðt − zÞ þ φÞẑ; ðA13Þ

where the overall phase is given by φ ¼ ωL=2.
We have checked that in the absence of magnetic fields,

Eq. (A13) is an accurate approximation to Eq. (A7).
However, the presence of magnetic fields can significantly
alter the pair-production rate as well as the trajectories of
mCPs before escaping the emitter cavity. In particular,
Schwinger pair production of spin-0 particles is exponen-
tially suppressed when Bem ≫ Eem [30,32]. Furthermore,
even for particles that are efficiently pair produced when
Eem ≫ Bem, they may encounter field configurations for

which Bem ≫ Eem before they escape the cavity. If pair-
produced particles encounter fields such that Bem ≫ Eem
and if their gyroradius is much smaller than the geometric
size of the cavity, then their velocities typically develop
significant radial components before exiting the cavity. For
such trajectories, the radial diffusion of χ� significantly
reduces the size of the millicurrent, jχ , near the downstream
receiver cavity.
These effects are mitigated by the fact that Maxwell’s

equations imply that electric and magnetic fields are
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maximally out of phase in a resonant cavity. Hence,
maximal pair production occurs when magnetic fields
are at a temporal minimum. Taking full numerical account
of the magnetic fields is beyond the scope of this work.
Instead, we numerically evaluate the current density,
assuming that mCPs negligibly contribute to jχ if they

encounter regions in which BemðtÞ≳ EemðtÞ at any moment
before escaping the emitter cavity. We then find that for a
cylindrical cavity of similar radius and length (R ≃ L) that
is driven in the TM010 mode, Eq. (A7) is well approximated
numerically if the expression of Eq. (A13) is restricted to
the radial region r≲ R=2. Hence, we take

jχðx; tÞ ≃
cχ
4π3

ðeqχÞ3EemðrÞ2
sinφ
ω

e−πEcr=EemðrÞΘðR=2 − rÞ sin ðωðt − zÞ þ φÞẑ; ðA14Þ

where Θ is the Heaviside step function. This expression for
jχ , which approximately accounts for the requirement that
Eem ≳ Bem before an mCP escapes the emitter cavity, is
used to calculate the projected sensitivities shown in Fig. 1.

APPENDIX B: CAVITY RESPONSE

In this Appendix, we derive the response of the receiver
cavity to the oscillating mCP current. The calculation is
nearly identical to that shown in Sec. III, except that instead
of using the toy model expression for jχ in Eq. (12), we
use Eq. (A14).
In this case, if the emitter cavity is driven with amplitude

Eem, then the electric field excited in a receiver cavity
placed a distance d from the front end of the emitter cavity
is approximately

Esigðx; tÞ ≃ EχJ0ðωrÞieiðωðt−dÞ−φÞẑ: ðB1Þ

where the amplitude of the field is given by

Eχ ≃
ηjQ

2π3
cχðeqχÞ3E2

eme−πEcr=Eem
sin2 φ
ω3L

: ðB2Þ

ηj is a mode-dependent Oð1Þ factor. For the TM010 mode,
as considered here, it is given by

ηj ¼
R R=2
0 drrJ0ðωrÞ3R
R
0 drrJ0ðωrÞ2

≃ 0.55: ðB3Þ

Note that the region of integration in this expression for ηj
is slightly modified compared to that of Eq. (18), due to the
inclusion of the Heaviside step function in Eq. (A14). The
signal power is then approximately

Psig ≃
ω

Q

Z
em

d3xjEsigj2 ≃
ω

Q
ηVE2

χVcav; ðB4Þ

where ηV is the same as in Eq. (20). The rest of the
calculation is identical to Sec. III, which ultimately leads to
a projected reach that is nearly identical to Eq. (21) up to
≲Oð1Þ factors.

APPENDIX C: ALLEVIATING ASTROPHYSICAL
AND COSMOLOGICAL BOUNDS

Powerful limits on mCPs have been derived from various
astrophysical and cosmological processes [28]. The most
stringent of these come from considerations of stellar
cooling, which is sensitive to millicharges qχ ≳ few ×
10−14 for the simplest of such models. In this Appendix,
we briefly discuss a specific model of mCPs presented in
Ref. [35] that alleviates such constraints. As mentioned in
Sec. I, small millicharge couplings can naturally emerge
from the kinetic mixing of a light dark photon. In this
section, we instead focus on a model that involves two dark
photons, A0

1 and A0
2 of mass m1 and m2, and a vectorlike

pair of fermions χ and χc with charges ð1;−1Þ and ð−1; 1Þ
under each dark photon, respectively. For concreteness, we
assume that m2 ¼ 0, although our conclusions are quali-
tatively unchanged for m2 ≲meter−1 ∼ 10−7 eV ≪ m1.
This theory therefore has a Z2 symmetry under which
A0
1 ⇔ A0

2 and χ ⇔ χc, which is softly broken by m1 ≠ 0.
Since the breaking is soft, any correction to the symmetry
will be suppressed by the dimension-two mass-squared
parameter.
Denoting the SM photon as Aγ , the most general

Lagrangian allowed by these symmetries is

L ¼ −
1

4
FT
μν

0
B@

1 ϵ ϵ

ϵ 1 0

ϵ 0 1

1
CAFμν þ

1

2
AT
μ

0
B@

m2
γ 0 0

0 m2
1 0

0 0 0

1
CAAμ

þ eJμemA
μ
γ þ e0Jμ1A

0μ
1 þ e0Jμ2A

0μ
2 ; ðC1Þ

where we have used the notation Aμ ¼ ðAμ
γ A

0μ
1 A0μ

2 ÞT for the
gauge fields and Fμν ¼ ðFμν

γ F0μν
1 F0μν

2 ÞT for the correspond-
ing field strengths.4 Jμem is the SM electromagnetic current
density, while Jμ1;2 corresponds to A0

1;2. For the charge

4In the Lagrangian above, we have assumed that any small
amount of kinetic mixing between A0

1 and A0
2, denoted as ϵ̃,

is diagonalized away by shifting the massless A0
2 field, which then

modifies the A0
2 interaction term in Eq. (C1). Ignoring this effect

amounts to dropping Oðϵϵ̃Þ terms in Eq. (C3) below, which we
assume are subdominant.
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assignment above, in four-component notation, they are
given by Jμ1 ¼ χ̄γμχ and Jμ2 ¼ −χ̄γμχ. In Eq. (C1), the
presence of the mass parameter, mγ , is a stand-in for either
the plasma or Debye mass of the SM photon, depending on
the process of interest [36,37]. The kinetic and mass terms
can be diagonalized after replacing Aμ → UAμ, where

U ¼

0
BBB@

1 ϵ
m2

1

m2
γ−m2

1

0

ϵ
m2

γ

m2
1
−m2

γ
1 0

−ϵ 0 1

1
CCCA ðC2Þ

to leading order in ϵ. From this, we can see that the effective
charge of χ under the SM photon is

qχ ≃
ϵe0

e

�
m2

1

m2
1 −m2

γ

�
≃
ϵe0

e
×

�
1 when mγ ≪ m1 ðin vacuumÞ
ðm1=mγÞ2 when m1 ≪ mγ ðin plasmaÞ ðC3Þ

due to the partial cancellation of the photon component of
A0
1 − A0

2, the same linear combination of fields to which χ
couples. Therefore, since a laboratory is approximately
void of charged particles, the plasma/Debye mass is
negligible (mγ ≪ m1) and the effective millicharge of χ
depends on the kinetic mixing and hidden sector gauge
coupling as expected. On the other hand, in a dense plasma,
such as the interior of a star, supernova, or in the early
Universe, we can choose m1 ≪ mγ such that qχ is very
suppressed, alleviating the constraints derived from the
considerations of such systems. In this case, if additionally,
m1 ≫ meter−1 ∼ 10−7 eV, then on laboratory length scales
only A0

2 is long ranged and qχ is not screened. In this
manner, astrophysical and cosmological constraints are
weakened by a factor of ðm1=mγÞ2, while laboratory-based
experiments are unaffected.
A critical feature of this mechanism that allows for the

cancellation in Eq. (C3) is the fact that the kinetic mixing
parameter, ϵ, and the hidden sector gauge couplings, e0, are
the same between the two hidden sectors. The soft

Z2-breaking nature of m1 implies that any corrections to
these relations must vanish as m1 → 0. For example, if
m1 > mχ ; q (where q ∼ keV is the energy scale associated
with stellar constraints), then there is additional RG
running for the A2 gauge field coupling so that ΔαD∼
α2D logðm2

1=maxðm2
χ ; q2ÞÞ. The region of parameter space

that suffers the least from the soft symmetry breaking is
when q > mχ ; m1. By dimensional analysis, the corrections
scale as ΔαD ∼ αDm2

1=q
2 or smaller, and the Z2 symmetry

breaking can be easily suppressed to sufficient levels.

APPENDIX D: QUANTUM MECHNAICAL
DESCRIPTION

An important and implicit part of the derivation of the
response of the receiver cavity is that there was never a
measurement of the number of emitted mCPs. The reason
can be seen by observing the average number of mCPs per
volume of the cavity,

Nχ ∼
ðeqχÞ2cχ
ð2πÞ3

E2
em

ω
Vcav ∼Oð0.1Þ × cχ

�
qχ

10−12

�
2
�

Eem

50 MVm−1

�
2
�

ω

GHz

�
−1
�

Vcav

10−3 m3

�
: ðD1Þ

From this, one can see that over a large swath of the
parameter space shown in Fig. 2, there is on average less
than one mCP within the receiver cavity volume at a fixed
time. In this case, if the mCPs were projected onto a
number eigenstate, then the resulting Poisson fluctuations
would constitute a crucial noise source when Nχ ≲Oð10Þ.
However, it is only when the mCPs interact that they can be
projected onto a number eigenstate. As the mCPs pass
through any shielding with negligible interactions, the
only opportunity to be projected onto a number state
occurs when the mCPs are accelerated by the electric
fields in the emitter cavity. For example, if the mCPs
completely discharge the electric field of the emitter cavity,

it constitutes a “measurement” of the number of mCPs that
are produced.
As Poisson fluctuations are potentially substantial when

Nχ is small, the relevant question is if the source cavity can
detect the production of a single mCP, since this determines
whether the produced mCP state can be described in terms
of number eigenstates. Upon production, an mCP is
accelerated to an energy ∼eqχEemL after traversing a
distance L and hence absorbing

Nabsorb ∼
eqχEemL

ω
ðD2Þ
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photons from the cavity. The emitter cavity has a large
electric field and is not in a photon number eigenstate. The
average number of photons in an emitter cavity of volume
Vcav is

Ncavity ∼
E2
emVcav

ω
: ðD3Þ

From a quantum mechanical viewpoint, a state in which the
cavity possesses Ncavity photons and Ncavity þ Δ photons
are indistinguishable (and hence have a large overlap)
provided that Δ≲ ffiffiffiffiffiffiffiffiffiffiffiffi

Ncavity
p

. In this case, the cross terms
describing the interference between such states are non-
negligible and a measurement is not made.5 Hence, the
emitter cavity cannot distinguish between the number
of mCPs produced if Nabsorb ≲ ffiffiffiffiffiffiffiffiffiffiffiffi

Ncavity
p

, which corre-
sponds to

qχ ≲
ffiffiffiffiffiffiffiffiffiffiffiffi
ωVcav

p
eL

∼Oð1Þ ×
�

ω

GHz

�
1=2

�
Vcav

m3

�
1=2

�
L
m

�
−1
:

ðD4Þ

The upper bound in Eq. (D4) is consistent with the fact that
the production of a single mCP cannot be inferred from the
measured energy loss of the emitter cavity, as encapsulated
in its quality factor, Q. In particular, demanding that a
single mCP is a smaller energy sink than standard processes
leads to

qχ≲EemV
2=3
cav

eQ
∼Oð103Þ×

�
Eem

50MVm−1

��
Vcav

m3

�
2=3
�

Q
1012

�
−1
:

ðD5Þ

Hence, when Eq. (D4) holds (which is the case for the
entire parameter space shown in Fig. 2), the proper treat-
ment is to consider the stream of pair-produced mCPs as a
quantum mechanical wave (e.g., as giving rise to a fixed

electromagnetic field) rather than as a discrete flow of
localized point particles.
In this regime, the produced current of mCPs matches

that of the classical particle-based result derived in
Appendix A, even if Nχ ≲Oð1Þ. To see this, note that
the main difference between the evolution of classical and
quantum phase space stems from the uncertainty principle;
“quantum pressure” resists the localization of a particle
with momentum p on length scales smaller than 1=p. For
instance, this is well-known in the context of fuzzy dark
matter (see, e.g., Ref. [38]), where the quantum pressure
prevents localization of dark matter on scales smaller than
the de Broglie wavelength.
In the nonrelativistic limit, it has been shown that the

quantum phase space distribution (as dictated by the
Schrödinger equation) is the same as the classical phase
space distribution (as dictated by the Hamilton-Jacobi
equation) up to a contribution from the quantum potential,
UQ ∼ ð∇2 ffiffiffiffiffinχp Þ=ðmχ

ffiffiffiffiffinχp Þ ∼ ω2=mχ , where nχ is the mCP
number density. For nonrelativistic mCPs, the classical
fluid formalism outlined in Appendix A is valid provided
that ∇UQ ∼ ωUQ is subdominant compared to the classical
electromagnetic force (eqχEem), which occurs when

mχeqχEem ≳ ω3: ðD6Þ

This equation can be understood intuitively. Consider the
length scale Ln ∼ 1=ω over which nχ changes by an Oð1Þ
fraction. After traversing a distance Ln, mCPs gain a
kinetic energy of p2

χ=2mχ ∼ eqχEemLn such that pχ≳ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mχeqχEemLn

p
. Requiring that pχ ≳ 1=Ln so that the de

Broglie wavelength does not wash out particle localization
within the scale of density gradients then leads directly to
Eq. (D6). This same intuition can be applied to the
parameter space in Fig. 2, most of which lies in the
relativistic regime. Analogous to before, but now requiring
that pχ ∼ eqχEemLn ≳ 1=Ln, we obtain

qχ ≳ ω2

eEem
∼Oð10−14Þ ×

�
ω

GHz

�
2
�

Eem

50 MVm−1

�
−1
;

ðD7Þ

which is valid for the couplings shown in Fig. 2. Thus, we
expect Eq. (A14) to hold over the parameter space
considered in this work.

5A useful analogy is the double slit experiment, where the
interference pattern vanishes if a detector can detect which slit the
electron travels through. In this language, it is clear that a
measurement occurs if the detector eigenstates corresponding
to when the electron goes through either path are orthogonal to
each other, thereby removing the interference cross term.
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