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If new physics contains new, heavy strongly interacting particles belonging to irreducible representations
of SU(3) different from the adjoint or the (anti)fundamental, it is a nontrivial question to calculate what is
the minimum number of quarks/antiquarks/gluons needed to form a color-singlet bound state (“hadron”),
or, perturbatively, to form a gauge-invariant operator, with the new particle. Here, I prove that for an SU(3)
irreducible representation with Dynkin label ðp; qÞ, the minimal number of quarks needed to form a
product that includes the (0,0) representation is 2pþ q. I generalize this result to SUðNÞ, withN > 3. I also
calculate the minimal total number of quarks/antiquarks/gluons that, bound to a new particle in the ðp; qÞ
representation, gives a color-singlet state, or, equivalently, the smallest-dimensional gauge-invariant
operator that includes quark/antiquark/gluon fields and the new strongly interacting matter field. Finally,
I list all possible values of the electric charge of the smallest hadrons containing the new exotic particles and
discuss constraints from asymptotic freedom both for QCD and for grand unification embeddings thereof.
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I. INTRODUCTION

In quantum chromodynamics (QCD), a gauge theory
with gauge group SU(3) that describes the strong nuclear
force in the Standard Model of particle physics, color
confinement is the phenomenon that color-charged parti-
cles cannot be isolated, i.e., cannot subsist as stand-alone
asymptotic states. From a group-theoretical standpoint,
quarks belong to the fundamental representation of
SU(3), antiquarks to the antifundamental representation,
and the force mediators, gluons, to the adjoint representa-
tion.1 Color confinement can thus be stated in group-
theoretic language as the phenomenon that asymptotic,
physical states must belong to the singlet (trivial) repre-
sentation of SU(3), which I indicate below as 1 ∼ ð0; 0Þ.

For instance, in real life physical states of strongly
interacting particles include mesons, which are quark-
antiquark states, belonging to the singlet representation
resulting from 3 ⊗ 3̄ ¼ 8 ⊕ 1; and baryons, which are
three-quark states, belonging to the singlet representation
resulting from 3 ⊗ 3 ⊗ 3 ¼ 10 ⊕ 8 ⊕ 8 ⊕ 1. In addition,
glueballs, bound states of gluons, could also exist [4],
since 8 ⊗ 8 ¼ 27 ⊕ 10 ⊕ 10 ⊕ 8 ⊕ 8 ⊕ 1.
Here, I am interested in which bound states would form

around a hypothetical new particle X charged under SU(3)
and belonging to some irreducible representation of
SU(3) with Dynkin label ðp; qÞ. In perturbative QCD,
the answer to the same question also provides the form of
the smallest-dimensional gauge-invariant operator contain-
ing quark, antiquark, and gluon fields, and the new particle
X. Here, I specifically address two questions: the first,
simple question is how many “quarks” would be needed to
form a colorless bound state; i.e., what is the minimal
number of copies of the fundamental representation such
that the direct product of those copies and of the ðp; qÞ
contains the trivial representation (0,0)? The answer is
2pþ q: I prove this in two different ways below. I then
generalize this result to SUðNÞ. Second, I pose the slightly
less trivial question of what is the minimal number of
“elementary constituents,” i.e., quarks, antiquarks, and
“valence gluons,” needed to form a colorless bound state
with the new particle X (or, again, in the language of
perturbative QCD what is the smallest-dimensional gauge-
invariant operator combining quark, antiquark, and gluon
fields and the new matter field).
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1In what follows, I will use both the notation d to indicate a
representation of dimension d and the notation d̄ to indicate the
corresponding conjugate representation and the notation ðp; qÞ
with p and q non-negative integers; I use the convention that the
bar corresponds to representations where q > p. The dimension
of representation ðp; qÞ is d ¼ ðpþ 1Þðqþ 1Þðpþ qþ 2Þ=2.
For instance, quarks belong to the irreducible representation
3 ∼ ð1; 0Þ, antiquarks to 3̄ ∼ ð0; 1Þ, and gluons to 8 ∼ ð1; 1Þ (for
details see [1,2]; for an exhaustive review on Lie groups see
e.g., [3]).
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While it ismeaningless to “count” the number of gluons in
a hadron in a nonperturbative sense, the notion of valence
gluon plays an important role in a variety of contexts,
including the study of the mass spectrum of bound states
(usually dubbed R hadrons) of gluinos in supersymmetry
[5,6] and in Yang-Mills-Higgs theories (see e.g., [7]) and,
more generally, the phenomenology of new particles
charged under SU(3) (see e.g., [8–20]).
At least in the real world, the “smallest” hadrons

(protons, neutrons, pions) are also the lightest ones in
the spectrum, and there are good reasons to believe that the
same could be true for a new exotic heavy state.
Specifically, bag models [21–23] that include information
on valence gluons have been instrumental in estimating the
mass spectrum of R hadrons ever since the seminal work of
Ref. [5] (see also [6]); the multijet phenomenology of new
strongly interacting massive particles also depends on the
properties of the product of representations containing
multiple gluon fields; see e.g., [24]. In this (perturbative)
context, rather than the existence of a bound state, the
key is which gauge-invariant operators exist containing
the new strongly interacting state and a given number
of quark, antiquark, and gluon fields. This informs, in
turn, the multijet structure to be expected at high-energy
colliders [24].
From the standpoint of astroparticle physics, the exist-

ence of new, stable colored particles has been widely
considered as well (see e.g., [8–10,12]); under some
circumstances, such new colored states could even be
the dark matter, or a part thereof (see e.g., [11,19,20]).
Electric charge neutrality, however, restricts which irreduc-
ible representations the new strongly interacting matter
field can belong to. The questions I address here are thus
relevant to several aspects of the associated phenomenol-
ogy, such as whether the bound states are electrically
charged and which number of jets are expected from
inelastic interactions with the parton fields in nucleons
in the atmosphere, with implications for the shower
structure at ground-based telescopes [8,10,12].
Since limits on new strongly interacting states imply that

the mass of the X should be much higher than the QCD
scale ΛQCD [25–27], any state containing more than one X,
such as the color-singlet X̄X, would be significantly heavier
than any bound state of X with quarks, antiquarks, or
gluons. Additionally, the absence of new strongly interact-
ing states at the Large Hadron Collider (LHC) implies that
any such new state should be generically heavier than the
electroweak scale [25–27].
In what follows I consider the results for all SU(3)

representations with a dimension smaller than 100, includ-
ing the minimal number of quark, antiquark, and gluons
that combined with the X to provide an SU(3) singlet state,
and the lowest-possible mass dimension of gauge-invariant
operators involving the X. As a corollary, I calculate the
possible values of the electric charge of the “smallest

hadron” H containing X, and I list all possible ðp; qÞ
irreducible representation such that the “smallest” hadron
can be electrically neutral. I also outline results for N > 3,
but leave the detailed exploration of the general case to
future work.
The remainder of the paper is organized as follows: in

Sec. II, I provide two proofs that the minimal product of
fundamental representations of SU(3) is 2pþ q and gene-
ralize the result to SUðNÞ; in Sec. III, I calculate the
composition of the smallest hadrons in SU(3), which, as
mentioned, is equivalent to calculating the lowest-possible
mass dimensional gauge-invariant operators containing the
new strongly interacting state and Standard Model fields,
and outline the calculation for SUðNÞ, N > 3; in Sec. III A,
I discuss constraints from asymptotic freedom and the
embedding of the X particle in a grand unification setup,
also elaborating upon asymptotic freedom in the resulting
grand unified theory; Sec. IV concludes.

II. THE MINIMAL DIRECT PRODUCT OF
FUNDAMENTAL REPRESENTATIONS
OF SU(N) CONTAINING THE TRIVIAL

REPRESENTATION

Irreducible representations of SUðNÞ are conveniently
displayed with Young tableaux via the following rules (for
more details, see e.g., [28–31]):

(i) The fundamental representation is represented by a
single box.

(ii) Young tableaux for SUðNÞ are left-justified N − 1
rows of boxes such that any row is not longer than
the row above it.

(iii) Any column with N boxes can be crossed out as it
corresponds to the trivial (singlet) representation.

Any irreducible representation can be obtained from
direct products of the fundamental representation; the direct
product of two representations proceeds via the follow-
ing rules:

(i) Label the rows of the second representation’s tableau
with indices a; b; c;…, e.g.,

(ii) Attach all boxes from the second to the first tableau,
one at a time, following the order a; b; c;…, in all
possible ways; the resulting Young tableaux is
admissible if it obeys the rules above, and if there
are no more than one a; b; c;…, in every column.

(iii) Two tableaux with the same shape should be kept
only if they have different labeling.
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(iv) A sequence of indices a; b; c;…, is admissible if at
any point in the sequence at least as many a’s have
occurred as b’s, at least as many b’s have occurred as
c’s, etc.; all tableaux with indices in any row, from
right to left, arranged in a nonadmissible sequence
must be eliminated.

The direct product of k fundamentals is especially
simple, since it entails a repeated attachment of one
additional box up to k new boxes to any row, if that
operation produces an admissible tableau (for instance, one
cannot attach a box to a row containing as many boxes as
the row above).
In the case of SU(3), Young tableaux have only two rows

and can be labeled with the Dynkin indices ðp; qÞ, where q
is the number of boxes in the second row and p is the
number of additional boxes in the first row with respect to
the second (thus, the first row has pþ q boxes). The
dimensionality of the representation is given by

dim ¼ 1

2
ðpþ 1Þðqþ 1Þðpþ qþ 2Þ; ð1Þ

similar formulas exist for N > 3.
The direct product of the fundamental and a generic

irreducible representation ðp; qÞ generally includes

ðp;qÞ⊗ ð1;0Þ¼ ðpþ1;qÞþðp−1;qþ1Þþðp;q−1Þ;
ð2Þ

where the last two representations exist only if p ≥ 1 and
q ≥ 1, respectively. As a result, to obtain the singlet
representation (0,0) from ðp; qÞ we need exactly p copies
of the fundamental to bring p → 0 (visually, by adding the
extra boxes all to the second row); these will bring us to the
representation ð0; qþ pÞ; at that point, we attach qþ p
boxes to the third row (i.e., multiply by additional qþ p
fundamentals) to obtain the singlet representation.
The operational sequence outlined above is also the most

economical, since, as Eq. (2) shows, p can decrease by only
one unit for each additional fundamental representation
factor, but doing so costs an increment of one unit to q;
similarly, q can also decrease by only one unit at a time, and
thus the minimal number k of fundamental representations
needed to obtain a representation that includes the singlet
representation from the direct product of a given repre-
sentation ðp; qÞ and k copies of the fundamental repre-
sentation is k ¼ 2pþ q.
Visually, one simply needs to fill the Young tableaux of

the representation ðp; qÞ to a rectangle of 3 × ðpþ qÞ
boxes; this requires 3pþ 3q − ð2qþ pÞ ¼ 2pþ q addi-
tional boxes, or copies of the fundamental representation,
as shown in Fig. 1.
This result is easily generalized, by the same argument,

to SUðNÞ, where irreducible representations are labeled by
ðp1; p2;…; pN−1Þ, and the number of fundamental repre-
sentations is given by

kN ¼pN−1þ2pN−2þ�� �þðN−2Þp2þðN−1Þp1: ð3Þ

A more formal proof of the statement above can be
obtained from the Schur-Weyl duality2 [32]: the direct
product of k copies of the fundamental representation N of
SUðNÞ decomposes into a direct sum over irreducible
representations labeled by all ordered partitions λ1 ≥
λ2 � � � ≥ λi of k with i ≤ N. The question of whether, given
a representation X, the representation X ⊗ N⊗k contains
the trivial representation is equivalent to asking whether N̄
is contained in the Schur-Weyl duality sum. But given that
for a representation X ∼ ðp1; p2;…; pN−1Þ the conjugate
representation X̄ ∼ ðpN−1; pN−2;…; p2; p1Þ, whose Young
tableaux contains exactly kN ¼ pN−1 þ 2pN−2 þ � � � þ
ðN − 2Þp2 þ ðN − 1Þp1 boxes, the X̄ certainly belongs
to the Schur-Weyl duality decomposition; this also proves
that kN is the smallest possible number k such that
X ⊗ N⊗k contains the trivial representation, since kN − 1
would not have a sufficient number of Young tableaux to
produce X̄ in the Schur-Weyl duality decomposition.

III. THE MINIMAL NUMBER OF GLUONS,
QUARKS, ANTIQUARKS

If a hypothetical, massive new strongly interacting
particle X ∼ ðp; qÞ existed, it would hadronize into a
color-singlet hadron. Phenomenologically, it is of interest
to understand the structure of the lowest-lying (“smallest”)
hadronized state. To this end, while conclusive results can
be derived only with nonperturbative techniques such as
lattice simulations (see e.g., [33] and references therein), it
is possible, and it has historically been the preferred route,
to operate within the formalism of the MIT bag model
[21–23]. In this context, in addition to quarks and antiquarks
(and their generalizations in SUðNÞ, the lowest-lying

FIG. 1. A schematic representation of how the minimal number
of direct products of the fundamental representation [here for
27 ∼ ð2; 2Þ that number is 2pþ q ¼ 6] produces a Young tableau
containing the trivial representation.

2I am grateful to Martin Weissman for pointing this out to me.
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hadrons also include valence gluons, corresponding to
8 ∼ ð1; 1Þ or ð1; 0;…; 0; 1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

N−1

Þ for SUðNÞ.

In a perturbative context, the question above is equiv-
alent to the question of which product of quark, antiquark,
and gluon fields lead to a gauge invariant operator con-
necting the new particle X with Standard Model fields.
In the notation of Ref. [24], one can write the relevant
operators as

OðnÞ
i ¼ CðnÞ

i

Λki
XÕðnÞ

i ðg; q; q̄Þ; ð4Þ

where ÕðnÞ
i ðg; q; q̄Þ is an operator containing exactly n

Standard Model quark, antiquark, and/or gluon fields, CðnÞ
i

is a dimensionless constant, andΛki is the suppression scale

of the operator OðnÞ
i , with integer ki the mass dimension,

which additionally depends on the Lorentz structure of the
X. Therefore, our results here are not limited to bound
states, but also e.g., to the multijet phenomenology of
possibly unstable X states produced at high-energy
colliders [24].
It is convenient to define the notion of N-ality (triality in

the case N¼ 3) of an irreducible representation ðp1; p2;…;
pN−1Þ as

t ¼
�XN−1

j¼1

jpj

�
mod N: ð5Þ

Notice that for SU(3), t ¼ ðpþ 2qÞmod 3. Any product of
irreducible representations that contains the trivial repre-
sentation must have t ¼ 0. This is the starting point to build
the “smallest” SUðNÞ hadrons: the minimal addition to the
exotic X ∼ ðp1; p2;…; pN−1Þ with N-ality t is

QN−t∼ ðn1;n2;…;nN−1Þ;
nj ¼ 1 for j¼N− t; nj ¼ 0 otherwise; ð6Þ

since the N-ality of Qj is j. For instance, in SU(3) this
means that representations with triality t ¼ 2 will need one
additional “quark,” i.e., 3 ∼ ð1; 0Þ, and those with t ¼ 1 one
additional “antiquark,” i.e., 3̄ ∼ ð0; 1Þ.
Let us now calculate the result of X ⊗ QN−t. Start with

the easiest case of N ¼ 3, and X ∼ ðp1; p2Þ. If t ¼ 1, we
need to calculate

ðp1; p2Þ ⊗ ð0; 1Þ ¼ ðp1 − 1; p2Þ ðiff p1 ≥ 1Þ ð7Þ

þ ðp1 þ 1; p2 − 1Þ ðiff p2 ≥ 1Þ
þ ðp1; p2 þ 1Þ: ð8Þ

Of the representations on the right-hand side of the
equation above, the optimal one to achieve the goal of

obtaining the trivial representation with the minimal possi-
ble number of products of the adjoint is ðp1 − 1; p2Þ if
p1 > 0 and ð1; p2 − 1Þ if p1 ¼ 0, since those are the
representations corresponding to (i) the smallest number
of boxes in their Young diagrams, and (ii) the fewest boxes
in the first row [this condition minimizes the number of
copies of the adjoint representation, for diagrams with the
same number of boxes, by avoiding adding additional
columns to get to the trivial representation, making the
representation in (7), if possible, preferable to that in (8)
despite both having the same number of boxes]. Similarly, if
t ¼ 2, the optimal representation is ðp1; p2Þ ⊗ ð1; 0Þ ⊃
ðp1; p2 − 1Þ if p2 > 0 and ðp1 − 1; 1Þ if p2 ¼ 0.
Next, given a representation with null triality, say in the

case of SU(3) X0 ∼ ðp; qÞ, we ought to calculate the
minimal number of copies of gluon fields (or valence
gluons, in the language, again, of the MIT bag model)
8 ∼ ð1; 1Þ leading to an exotic colorless hadron. To this end,
let me explicitly calculate the product

X0 ⊗ ð1; 1Þ ¼ ðpþ 1; qþ 1Þ ð9Þ

⊕ ðpþ 2; q − 1Þ ðiff q ≥ 1Þ ð10Þ

⊕ ðp − 1; qþ 2Þ ðiff p ≥ 1Þ ð11Þ

⊕ ðp; qÞ ð12Þ

⊕ ðpþ 1; q − 2Þ ðiff q ≥ 2Þ ð13Þ

⊕ ðp − 2; qþ 1Þ ðiff p ≥ 2Þ ð14Þ

⊕ ðp − 3; qþ 3Þ ðiff p ≥ 3Þ ð15Þ

⊕ ðp − 1; q − 1Þ ðiff p ≥ 1 and q ≥ 1Þ: ð16Þ

Assume now that p ¼ q. In this case, from Eq (16) above,
the minimal number of valence gluons required to obtain
the trivial representation (0,0) is exactly p.
Assume instead that p > q (the conjugate case p < q

follows immediately; see below). Since the triality of X0 is
zero, p ¼ qþ 3k, with k a positive integer. First, X0 ⊗
ð1; 1Þ⊗q contains, from Eq (16) above, representation
ð3k; 0Þ. Then, from Eq. (14) above, ð3k; 0Þ ⊗ ð1; 1Þ⊗k

contains representation ðk; kÞ; finally, a further direct
product with ð1; 1Þ⊗k will then contain the trivial represe-
ntation [from Eq. (16) again]. In total, one needs qþ 2k ¼
ð2pþ qÞ=3 copies of the adjoint representation. Notice that
this is the minimal number of such copies as well, since as
shown in the previous section this corresponds to the same
number of boxes of the minimal product of the fundamental
representation that contains the trivial representation.
The demonstration for p < q is identical: let

q ¼ pþ 3k; X0 ⊗ ð1; 1Þ⊗p contains, from Eq. (13)
above, representation ð0; 3kÞ. Then, from Eq. (13),
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ð0; 3kÞ ⊗ ð1; 1Þ⊗k contains representation ðk; kÞ; and, as
above, a further direct product with ð1; 1Þ⊗k will then
contain the trivial representation [from Eq. (16) again]. In
total, this is pþ 2k ¼ ðpþ 2qÞ=3 which, as it should, is
the symmetric version of what is found above
under p ↔ q.
In summary, for SU(3) I find that the number of copies

nq of the fundamental representation 3 ∼ ð1; 0Þ, of copies
nq̄ of the antifundamental representation 3̄ ∼ ð0; 1Þ, and of
copies ng of the adjoint representation 8 ∼ ð1; 1Þ needed for
the product

ðp; qÞ ⊗ ð0; 1Þ⊗nq̄ ⊗ ð1; 0Þ⊗nq ⊗ ð1; 1Þ⊗ng ⊃ ð0; 0Þ
is as follows (I also include the lowest dimension “portal
operator” Omin for each case, and its Lorentz structure for
the minimal case; additional operators containing more
quark, antiquark, and gluon fields, and different Lorentz
structures, can be produced in a straightforward manner by
adding products of combinations containing the trivial
representation, such as q̄q, qqq, q̄q̄q̄, gg):

(i) t ¼ ðpþ 2qÞ mod 3 ¼ 0, nq ¼ nq̄ ¼ 0, and ng ¼
ð2pþ qÞ=3 if p ≥ q, ng ¼ ð2qþ pÞ=3 if p < q;

Omin ¼ C gngX
Λng−3 (X scalar or vector).

(ii) t ¼ 1, nq ¼ 0, nq̄ ¼ 1, and ng ¼ ð2ðp − 1Þ þ qÞ=3
if p ≥ q, ng ¼ ð2ðq − 1Þ þ pÞ=3 if p < q; Omin ¼
C gng ðXΓq̄Þ

Λng−1 (X a Dirac fermion, Γ a generic Dirac
gamma matrix structure).

(iii) t ¼ 2, nq ¼ 1, nq̄ ¼ 0, and ng ¼ ð2pþ q − 1Þ=3 if

p ≥ q, ng ¼ ð2qþ p − 1Þ=3 if p < q; Omin ¼
C gng ðX̄ΓqÞ

Λng−1 (X a Dirac fermion, Γ a generic Dirac
gamma matrix structure).

Let us make a few nontrivial examples3:
(i) 10∼ð3;0Þ, t¼0, nq¼0;nq̄¼0, ng¼ð2pþqÞ=3¼2:

10 ⊗ 8 ⊗ 8 ¼ 1 ⊕ ð4 × 8Þ ⊕ ð4 × 10Þ ⊕ ð2 × 10Þ
⊕ ð5 × 27Þ ⊕ 28 ⊕ ð4 × 35Þ ⊕ 35

⊕ ð2 × 64Þ ⊕ 81;

while

10 ⊗ 8 ¼ 8 ⊕ 10 ⊕ 27 ⊕ 35;

Omin ¼ ΛCg2X, X scalar or vector.
(ii) 15∼ ð2;1Þ, t¼ 1, nq ¼ 0;nq̄ ¼ 1, ng¼ð2ðp−1ÞþqÞ=

3¼1:

15 ⊗ 3̄ ⊗ 8 ¼ 1 ⊕ ð4 × 8Þ ⊕ ð3 × 10Þ ⊕ ð2 × 10Þ
⊕ ð4 × 27Þ ⊕ ð2 × 35Þ ⊕ 35 ⊕ 64;

Omin ¼ CgðXΓq̄Þ, X a Dirac fermion, Γ a generic
Dirac gamma matrix structure.

(iii) 150∼ ð4;0Þ, t¼ 1, nq¼0;nq̄¼1, ng¼ð2ðp−1ÞþqÞ=
3¼2:

15 ⊗ 3̄ ⊗ 8 ⊗ 8 ¼ 1 ⊕ ð6 × 8Þ ⊕ ð8 × 10Þ
⊕ ð3 × 10Þ ⊕ ð11 × 27Þ
⊕ ð5 × 28Þ ⊕ ð13 × 35Þ
⊕ ð3 × 35Þ

⊕ ð8 × 64Þ ⊕ ð2 × 80Þ ⊕ ð7 × 81Þ ⊕ 81

⊕ ð2 × 125Þ ⊕ 154;

while

15 ⊗ 3̄ ⊗ 8 ¼ 8 ⊕ ð2 × 10Þ ⊕ ð2 × 27Þ ⊕ 28

⊕ ð3 × 35Þ ⊕ 81;

Omin ¼ C g2ðXΓq̄Þ
Λ , X a Dirac fermion, Γ a generic

Dirac gamma matrix structure.
(iv) 6̄∼ ð0;2Þ, t¼ 2, nq ¼ 0;nq̄¼ 1, ng¼ð2qþp−1Þ=

3¼ 1:

6̄ ⊗ 3̄ ⊗ 8 ¼ 1 ⊕ ð3 × 8Þ ⊕ 10 ⊕ ð2 × 10Þ
⊕ ð2 × 27Þ ⊕ 35;

Omin ¼ CgðXΓq̄Þ, X a Dirac fermion, Γ a generic
Dirac gamma matrix structure.

The generalization to SUðNÞ, N > 3, is relatively
straightforward, although care must be taken in handling
cases where one or more of the pi ¼ 0. Consider X ¼
ðp1; p2;…; pN−1Þ ⊗ Qj, with 1 ≤ j ≤ N − 1. If pN−j > 0,
then

X⊗Qj ⊃ ðp1;p2;…;pN−j−1;…;pN−1Þ; pN−j > 0:

If pN−j ¼ 0 but pN−j�1 > 0, then

X⊗Qj ⊃ ðp1;p2;…;pN−j−1−1;1;pN−jþ1−1;…;pN−1Þ;
pN−j¼ 0; pN−j�1> 0:

If pN−j−1 ¼ 0, then if pN−j−2 > 0,

X⊗Qj⊃ðp1;p2;…;pN−j−2−1;1;0;pN−jþ1−1;…;pN−1Þ;
etc., until, if p1 ¼ 0,

X⊗Qj ⊃ ð1;0;…;0;pN−jþ1−1;…;pN−1Þ;
pi¼ 0 ∀ i¼ 1;…;N− j; pN−jþ1> 1:

Similarly, if pN−jþ1 ¼ 0, but pN−j−1 > 0 and pN−jþ2 > 0,

X⊗Qj⊃ ðp1;p2;…;pN−j−1−1;0;1;pN−jþ2−1;…;pN−1Þ;
3Here and in what follows I acknowledge the use of the

SUSYNO package [34].
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etc., until, if pN−1 ¼ 0,

X ⊗ Qj ⊃ ðp1; p2;…; pN−j−1 − 1; 0;…; 0; 1Þ;
pi ¼ 0 ∀ i ¼ jþ 1;…; N − 1;pN−j−1 > 1:

Finally, of course, if X ¼ ðδ1;N−j; δ2;N−j;…; δN−1;N−jÞ,
then evidently X ⊗ Qj ⊃ ð0;…; 0Þ.
The generalization of the calculation of the number

of valence gluons for N > 3 is not straightforward, bar in
a few special cases. After obtaining the representationX0 ≡
X ⊗ Qj with vanishing N-ality as outlined above, the
algorithmic procedure to obtain a product of representa-
tions X0 ⊗ G⊗k

N ⊃ 1, with GN ¼ ð1; 0;…; 0; 1Þ the adjoint
representation, containing the trivial representation 1, is as
follows: first note that the Young tableau for the adjoint
representation is given by a “doublet” of boxes on the first
row, with N − 2 boxes below it; given that in a Young
tableau the length of the rows are of decreasing length from
the top, the optimal choice to locate the N − 2 boxes and
the doublet is to place the latter in the lowest possible row,
and to place the additional single boxes on the lowest
possible rows they can be placed at.
The smallest possible number of copies of the

adjoint representation needed so that the product
X0 ⊗ G⊗kmin

N ⊃ 1 is

kmin ¼
1

N

XN−1

j¼1

ðN − jÞpj;

where X0 ¼ ðp1; p2;…; pN−1Þ. One can verify that for
representations with vanishing N-ality, kmin is an integer
number that corresponds to the number of empty boxes
after subtracting those filled by the Young tableaux of
representation X0, in a rectangle of length

P
N−1
j¼1 pj and

height N, divided by N. In the generic case, additional
columns, and thus additional copies of the adjoint repre-
sentations, are needed to produce a direct product that
contains the trivial representation. I leave the full solution
of the N > 3 case to future work.
With the results outlined above, assuming the electric

charge QX of a new hypothetical strongly interacting
particle X belonging to a representation X ∼ ðp; qÞ is
known, it is possible to calculate both the electric charge
of the smallest hadron QH, and, generally, of any hadron
containing X. Given the number of quarks nq, antiquarks
nq̄, and gluons ng listed in Table I, the possible values of the
charge of the smallest hadron H are the following:

−
1

3
nq −

2

3
nq̄ ≤ QH −QX ≤

2

3
nq þ

1

3
nq̄: ð17Þ

Any other hadronH0 could only have electric chargeQH0 ¼
QH þ k for integer k.

TABLE I. List of all irreducible representations of SU(3)
with dimension smaller than 100, the corresponding triality
t ¼ 2qþ p, index of the representation TðRÞ with the normali-
zation convention of Eq. (20) [the normalization convention in
e.g., Ref. [1] would give TðRÞ=3], with the minimal number of
gluons, antiquarks, and quarks needed to form a color-singlet
hadron. The smallest hadrons for representations in italic only
contain gluons, and, if the “new physics particle” belonging to
that representation is electrically neutral, would also be electri-
cally neutral.

p q dim t TðRÞ ng nq̄ nq

0 0 1 0 0 0 0 0
1 0 3 1 3 0 1 0
0 1 3̄ 3 2 0 0 1
2 0 6 2 15 1 0 1
0 2 6̄ 1 15 1 1 0
1 1 8 0 18 1 0 0
3 0 10 0 45 2 0 0
0 3 10 0 45 2 0 0
4 0 150 1 105 2 1 0
2 1 15 1 60 1 1 0
1 2 15 2 60 1 0 1
0 4 150 2 105 2 0 1
5 0 21 2 210 3 0 1
0 5 21 1 210 3 1 0
3 1 24 2 150 2 0 1
1 3 2̄4 1 150 2 1 0
2 2 27 0 162 2 0 0
6 0 28 0 378 4 0 0
0 6 28 0 378 4 0 0
4 1 35 0 315 3 0 0
1 4 35 0 315 3 0 0
7 0 36 1 630 4 1 0
0 7 36 2 630 4 0 1
3 2 42 1 357 2 1 0
2 3 42 2 357 2 0 1
8 0 45 2 990 5 0 1
0 8 4̄5 1 990 5 1 0
5 1 48 1 588 3 1 0
1 5 4̄8 2 588 3 0 1
9 0 55 0 1485 6 0 0
0 9 55 0 1485 6 0 0
4 2 60 2 690 3 0 1
2 4 60 1 690 3 1 0
6 1 63 2 1008 4 0 1
1 6 63 1 1008 4 1 0
3 3 64 0 720 3 0 0
10 0 66 1 2145 6 1 0
0 10 66 2 2145 6 0 1
11 0 78 2 3003 7 0 1
0 11 78 1 3003 7 1 0
7 1 80 0 1620 5 0 0
1 7 80 0 1620 5 0 0
5 2 81 0 1215 4 0 0
2 5 81 0 1215 4 0 0
4 3 90 1 1305 3 1 0

(Table continued)
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Notice that all and only the representations with triality
zero exclusively contain gluons in their smallest hadron.
Thus, it is only those representations that will yield
hadronic bound states with integer charge if the “new
physics particle” is neutral or of integer charge. I indicate
those representations in italic in Table I. Notice that this set
of representations includes all real (self-adjoint) represen-
tations (p, p).

A. Constraints from asymptotic freedom

Generally, a theory with matter fermions or scalars in a
large-dimensional representation will not be asymptotically
free [35]. Since here I assume the new particle X to be very
heavy, with a mass much larger than the typical binding
energy Eb of the X bound states with quarks and gluons
discussed here, since Eb ≈ ΛQCD, this is not a concern: the
X would effectively not contribute to the beta function of
QCD at those scales, in just the same way that only light
quark flavors, and not heavy quark flavors, contribute to the
running of the QCD coupling below ΛQCD (this fact is
sometimes referred to as the Appelquist-Carazzone decou-
pling theorem [36]). Even at very high energies of order the
mass of the X, the issue of jeopardizing asymptotic freedom
for QCD is somewhat mute, since at those high energies the
QCD gauge group might be embedded in a larger gauge
group, with additional gauge bosons that would alter any
conclusion based on additional matter fields only. We
discuss a few examples of embeddings of the X in grand
unification setups below.
The caveats above notwithstanding, and while as

explained above this would not prevent the formation of
the bound states discussed here, it is worthwhile to briefly
summarize the implications of the additional requirement
that the theory, including the new X particle, be asymp-
totically free. The weakest constraints arise if the SM is
solely augmented by a single new real scalar Xs in a
representation RðXsÞ. Notice that this is possible only if the
representation is real. The requirement of asymptotic
freedom for SU(3), after including all Nf ¼ 6 SM quark
flavors, which presumably are all lighter than the mass
scale of the new particle X, can be expressed as

11 × TðadjÞ − 4 × Nf × TðRfÞ −
1

2
TðRðXsÞÞ ≥ 0; ð18Þ

where TðRÞ is the trace normalization factor for represen-
tation R, and

TðRÞ ¼ C2ðRÞdðRÞ
dðGÞ ; ð19Þ

with dðGÞ the dimension of the adjoint representation
[dðGÞ ¼ N2 − 1 for SUðNÞ], and C2ðRÞ the quadratic
Casimir operator of the representation, which for N ¼ 3
and representation ðp; qÞ, and with the normalization
convention [37]

2NXa
RX

a
R ¼ C2ðRÞ1; ð20Þ

reads

C2ððp; qÞÞ ¼ 6pþ 2p2 þ 6qþ 2q2 þ 2pq: ð21Þ
Notice that with this normalization convention TðadjÞ ¼
C2ð1; 1Þ ¼ 18, TðRfÞ ¼ 3, and the asymptotic freedom
condition in Eq. (18), with Nf ¼ 3, becomes

TðRðXsÞÞ ≤ 252: ð22Þ
This limits the possible representations that would

leave SU(3) asymptotically free above the mX scale to
the following real representations [see the TðRÞ values,
with the normalization convention adopted here, associated
with all SU(3) representations of dimension less than 100 in
the fifth column of Table I]:

real scalar∶ 1; 8; 27: ð23Þ
For a complex scalar,4 TðRðXsÞÞ ≤ 126, giving the follow-
ing possibilities:

complex scalar∶ 1;3; 3̄;6; 6̄;8;10;10;15;15;150;150: ð24Þ
For a Weyl or Majorana fermion, the condition becomes
TðRðXWÞÞ ≤ 63, giving the following possibilities:

Weyl or Majorana fermion∶ 1; 3; 3̄; 6; 6̄; 8; 10; 10; 15; 15:

ð25Þ
Finally, for a Dirac fermion,5 TðRðXDÞÞ ≤ 31, giving the
following possibilities:

TABLE I. (Continued)

p q dim t TðRÞ ng nq̄ nq

3 4 90 2 1305 3 0 1
12 0 91 0 4095 8 0 0
0 12 91 0 4095 8 0 0
8 1 99 1 2475 5 1 0
1 8 99 2 2475 5 0 1

4Note that the use of complex scalar fields is not directly
connected with the properties of the representations involved.
After all, one can always take a complex field and by doubling the
components represent them as real fields (I thank Howard Haber
for bringing this to my attention).

5As explained in Ref. [38], given a collection of two-
component fermions grouped into a sum of multiplets that
transform irreducibly under SU(3), if a multiplet transforms
under a real representation of SU(3) then the corresponding
fermion mass eigenstates are Majorana fermions, while if a
multiplet transforms under a complex representation, then the
corresponding mass eigenstates are Dirac fermions. (I again thank
Howard Haber for reminding me of this fact.) I therefore do not
list real representations for the Dirac fermion case.
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Dirac fermion∶ 3; 3̄; 6; 6̄: ð26Þ

As mentioned above, the asymptotic freedom constraints
for SU(3) are relaxed when considering embeddings of
Standard Model gauge interactions in a larger grand
unification (GUT) gauge group, since the additional gauge
fields tend to further stabilize the gauge coupling(s). Notice
that the requirement that a GUT be asymptotically free is,
however, not limited to gauge couplings, but also to
Yukawa couplings and scalar quartic couplings, which
we do not consider hereafter (in any case, the asymptotic
freedom of gauge couplings is a necessary condition).
Finally, I also note that, as mentioned above, the extrapo-
lation of asymptotic freedom to GUT scales may not be
required due to the Appelquist-Carazzone theorem [36];
nonetheless, there might be exceptions to this, including
speculation that asymptotic freedom is necessary for any
consistent field theory [39,40].
I consider here three grand unification setups, for

illustrations:
(i) Georgi-Glashow SU(5) [41]: the matter fermions

Weyl fields are embedded in (three copies of) the
representations 5̄ and 10, the up and down Higgses in
a 5 and 5̄, and the real “GUT scalars” that cause the
breaking of SU(5) in the adjoint representation
24 [41].

(ii) For SO(10) I assume the matter fermions are
contained in (three copies of) the 16, the Higgses
in the 10, and the “GUT scalars” in the 45 [42].

(iii) For E6 matter fields are in (three copies of) the 27,
and I consider (following Ref. [43]) two possible
symmetry breaking patterns with the following
scalar content: (i) 650, 2 × 78, 27, and 351, and
(ii) 2 × 27, 351.

The requirement of asymptotic freedom for any of the
theories listed above is

11 × TðadjÞ − 2 × 3 × TðRfÞ −
X

i

NSi × TðRSiÞ

¼ qGUT ≥ 0; ð27Þ
where Rf identifies the representation to which the
Standard Model (Weyl) matter fermions belong, and Si
the (complex) scalars in the theory (real scalars contributing
half that). The additional X particle under consideration
here would need to fit in an additional GUT multiplet with
dimension at least as large as the dimension RX to which the
X belongs; the requirement of asymptotic freedom for the
GUT under consideration is then TðRGUT

X Þ ≤ qGUT.
I find the following results:

qSUð5Þ ¼ 11 × 10 − 2 × 3 × 1 − 2 × 3 × 3 − 2 × 1 − 10=2

¼ 79; ð28Þ
qSOð10Þ ¼ 11 × 8 − 2 × 3 × 2 − 1 − 8=2 ¼ 71; ð29Þ

qE6ðiiÞ ¼ 11×4−2×3×1−50=2−4=2×2−1¼ 8; ð30Þ

qE6ðiiÞ ¼ 11 × 4 − 2 × 3 × 1 − 25 − 2 × 1 ¼ 11: ð31Þ

As a result, from Table II, I find that the maximal
dimension for the SU(3) representation to which the X
belongs is
(1) SU(5): 75 for a real scalar [the X would be

accommodated in the real representation 75 of
SU(5)], 70 for a complex scalar [the X would be
accommodated in the complex representation 70 of
SU(5), etc.], 50 for a Weyl fermion, and 15 for a
Dirac fermion.

(2) SO(10): 320 for a real scalar, 210 for a
complex scalar, 144 for a Weyl fermion, and 16
for a Dirac fermion (the 45 or 54 would imply
Majorana mass eigenstates since they are real
representations).

(3) E6 (i) and (ii): 78 for a real scalar or a Weyl
fermion, 27 for a complex scalar or a Dirac
fermion.

IV. CONCLUSIONS

I proved that the smallest number of copies k of the
fundamental representation (1,0) of SU(3) such that the
direct product of irreducible representation X∼ ðp;qÞ⊗
ð1;0Þ⊗k contains the trivial representation (0,0) is k ¼ 2pþ
q; I generalized this result to SUðNÞ, where for irreducible
representation ðp1;p2;…;pN−1Þ, kN¼pN−1þ2pN−2þ���þ
ðN−2Þp2þðN−1Þp1. I outlined the structure of the
smallest-possible product of representations containing

TABLE II. Lowest-dimensional nontrivial representations
for SU(5), SO(10), and E6, and the corresponding values for
TðRÞ=TðfundÞ. Real representations are indicated with a *.

SU(5)
TðRÞ=T
ðfundÞ SO(10)

TðRÞ=T
ðfundÞ E6

TðRÞ=T
ðfundÞ

5 1 10* 1 27 1
10 3 16 2 78* 4
15 7 45* 8 351 25
24* 10 54* 12 3510 28
35 28 120* 28 650* 50
40 22 126 35
45 24 144 34
50 35 210* 56
70 49 2100* 77
700 84 320* 96
75* 50 560 182
105 91
126 105
1260 210
160 168
175 140
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quark, antiquark, and gluon fields as well as the X, which
corresponds to the smallest bound-state hadron, or to the
minimal QCD gauge-invariant operator connecting the new
strongly interacting particle to Standard Model fields. I
gave exact results forN ¼ 3 and outlined theN > 3 case. A
corollary of these results is the calculation of the electric
charge of the resulting bound states. Finally, I discussed
constraints stemming from demanding asymptotic freedom
both in the case of pure QCD, and in the case of a few
example embeddings of the new particle in a grand
unification setup.
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