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We present new variants of the two-Higgs-doublet model where all Yukawa couplings with physical
Higgs bosons are controlled by the quark mixing matrices of both chiralities, as well as, in one case, the
ratio between the two scalar doublets’ vacuum expectation values. We obtain these by imposing
approximate symmetries on the Lagrangian which, in one of the cases, clearly reveals the model to be
the electroweak remnant of the minimal left-right symmetric model. We also argue for the benefits of the
bidoublet notation in the two-Higgs-doublet model context for uncovering new models.
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I. INTRODUCTION

In the Standard Model (SM) of particle physics,
the charged gauge currents between quarks are guided
by the Cabibbo-Kobayashi-Maskawa (CKM) mixing
matrix, while the neutral gauge currents are flavor diagonal.
The SM relies on the minimal choice of scalar fields (one
Higgs doublet), and thus the quark mass matrices become
proportional to the corresponding Yukawa matrices. Hence,
diagonalizing the quark mass matrices will automatically
ensure the simultaneous diagonalization of the Yukawa
matrices. Consequently, the SM Higgs boson has only
diagonal couplings, proportional to the quark masses.
This straightforward picturemay get perturbed even in the

minimal extensions beyond the SM such as the two-Higgs-
doubletmodels (2HDMs)[1,2]. In a 2HDM, the scalar sector
of the SM is extended by adding a replica of the SM Higgs
doublet. As a result, there are two Yukawa matrices for
fermions of a given charge, and the diagonalization of the
fermion mass matrices will no longer guarantee the diag-
onalization of the Yukawa matrices. In other words, a
2HDM, in general, will contain flavor changing neutral
currents (FCNCs) at the tree level mediated by neutral
scalars. Given that the FCNC couplings are, a priori,

unknown, the analysis of the physical implications of a
general 2HDM may contain a lot of inherent arbitrariness.
As a simple way out, one tries to avoid the tree-level

FCNCs altogether by appropriate adjustments in the
Yukawa sector. The simplest possibility was suggested by
Glashow andWeinberg [3]. According to their prescription,
fermions of a specific charge should receive contributions to
their mass from only one of the scalar doublets. In this way,
similar to the SM, the Yukawa and the mass matrices for a
particular species of fermions become proportional to each
other thereby neutralizing the possibility of FCNCat the tree
level. The general conditions for the absence of tree-level
FCNCs in a 2HDM can be found in Refs. [4,5].
An interesting alternative to completely eliminating the

tree-level FCNCs is to accommodate them in a controlled
manner. This was achieved by Branco, Grimus and Lavoura
(BGL) [6], where the scalar FCNC couplings were related to
the rows or columns of the CKMmatrix[7,8]. In these BGL
models, flavored symmetries were introduced to appropri-
ately texturize the Yukawamatrices. In this paper wemake a
similar effort to connect the scalar FCNC couplings to the
quark mixing parameters, thereby reducing the arbitrariness
in the Yukawa sector to a considerable degree. Yet, unlike
the BGL models, we will rely on symmetries that are
completely flavor blind, i.e., flavor universal.
Our current work also addresses the philosophical

relevance of 2HDMs in the present era. A major part of
the popularity of 2HDMs may be attributed to minimal
supersymmetry relying on a 2HDM scalar structure.
However, current trends in the LHC Higgs data point
towards a not so bright future for minimal supersymmetry.
In such a case, one may question the aesthetic appeal of
2HDM if it lacks the possibility to be embedded in a more
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elegant theory. However, a less known fact is that the
minimal left-right symmetric model (LRSM) also results
in a 2HDM Yukawa structure at the electroweak (EW)
scale [9]. As we will show, such a 2HDM is very different
from its canonical counterparts and can have quite distinct
implications.
This article will be organized as follows. In Sec. II we

present a brief overview of the Yukawa sector in a general
2HDM, following the usual conventions. In Sec. III an
alternative notation for the study 2HDMs is shown. This is
the usual notation of the LRSM, which helps the con-
nection between 2HDM and LRSM become clear. This
notation is particularly helpful in uncovering new models,
which is done in Sec. IV. We include a phenomenological
analysis in Sec. V. Lastly, we summarize our findings
in Sec. VI.

II. YUKAWA SECTOR IN 2HDM:
SOME GENERALITIES

A. Quark masses, mixings and couplings

We denote the quark fields in the original Lagrangian
with primes:

Q0
L ¼

�
u0L
d0L

�
; u0R ; d0R ; ð1Þ

where the generation index is suppressed. The Higgs boson
multiplets ϕ1 and ϕ2 have a hypercharge assignment that
yields the following general Yukawa couplings:

−LY ¼
X2
a¼1

½Q̄0
LΓaϕad0R þ Q̄0

LΔaϕ̃au0R� þ H:c:; ð2Þ

where Γa and Δa denote matrices in the generation space,
and

ϕ̃a ¼ iσ2ϕ�
a: ð3Þ

After spontaneous symmetry breaking, we decompose the
two SUð2ÞL scalar doublets in their component form as
follows:

ϕa ¼
1ffiffiffi
2

p
� ffiffiffi

2
p

wþ
a

va þ ha þ iza

�
; ða ¼ 1; 2Þ: ð4Þ

Wewill assume that the vacuum expectation values (VEVs)
v1 and v2 are real, and will use the notations

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

q
; ð5Þ

tan β ¼ v2=v1: ð6Þ

After the spontaneous breaking of the gauge symmetry,
the quarks become massive. The mass matrices are given by

Md ¼
1ffiffiffi
2

p ðΓ1v1 þ Γ2v2Þ; ð7aÞ

Mu ¼
1ffiffiffi
2

p ðΔ1v1 þ Δ2v2Þ: ð7bÞ

These can be diagonalized through biunitary transformations:

U†
dLMdUdR ¼ Dd ¼ diagðmd;ms;mbÞ; ð8aÞ

U†
uLMuUuR ¼ Du ¼ diagðmu;mc;mtÞ: ð8bÞ

As a result, bywriting the charged current couplings of quarks
in terms of the physical fields, the combination

VL ¼ U†
uLUdL ð9Þ

emerges. This is the CKMmatrix. Similarly, we can define a
mixing matrix for the right-handed quarks:

VR ¼ U†
uRUdR: ð10Þ

Our aim in this paper is to search for models in which the
Higgs couplings to quarks are entirely determined by VL
and VR.
In order to discuss the Yukawa couplings, we first

summarize the spectrum of the scalar bosons. The charged
ðω�Þ and the neutral (ζ) Goldstone bosons can be extracted
using the following rotations:

�
ω�

H�

�
¼

�
cos β sin β

− sin β cos β

��
w�
1

w�
2

�
;

�
ζ

A

�
¼

�
cos β sin β

− sin β cos β

��
z1
z2

�
; ð11Þ

where H� and A stand for the physical charged scalar and
pseudoscalar respectively. In the CP even sector, we apply
the same rotation to obtain

�
H0

S

�
¼

�
cos β sin β

− sin β cos β

��
h1
h2

�
: ð12Þ

The states H0 and S are not mass eigenstates in general.
However, in the alignment limit [10–13], they become
physical scalars andH0 can be readily identified with Higgs
scalar observed at the LHC because it possesses SM-like
couplings at the tree level. Thus the quark couplings of H0

are entirely flavor diagonal. Without the assumption of the
alignment limit, the mass eigenstates would be super-
positions of H0 and S, controlled by the parameters of
the scalar potential. Hence, the quark couplings of the
lightest scalar field would not be flavor diagonal due to the
H0-S mixture. Nonetheless, assuming the alignment limit
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holds, only the other neutral scalars, S and A, can have
flavor-changing couplings to quarks, which will be an
important theme in the subsequent discussion.
It has been shown [14] that it is convenient to define two

matrices Nd and Nu as

Nd ¼
1ffiffiffi
2

p U†
dLðsin βΓ1 − cos βΓ2ÞUdR; ð13aÞ

Nu ¼
1ffiffiffi
2

p U†
uLðsin βΔ1 − cos βΔ2ÞUuR; ð13bÞ

whereby the quark couplings to the different Higgs bosons
can be written in the form

−LY ¼
ffiffiffi
2

p
½ūðN†

uVLPL − VLNdPRÞdHþ þ H:c:�

þ 1

v
ðūDuuþ d̄DddÞH0

− Sfd̄ðNdPR þ N†
dPLÞdþ ūðNuPR þ N†

uPLÞug
− iAfd̄ðNdPR − N†

dPLÞd − ūðNuPR − N†
uPLÞug;

ð13cÞ

where PL and PR are the chirality projection operators.

B. Reducible Yukawa couplings

From Eq. (13), we see that the couplings of the Higgs
bosons depend on the four diagonalizing matrices UuL,
UdL,UuR andUdR, as well as the matrices that appear in the
Yukawa couplings. We now show that there is a class of
models in which the Yukawa couplings are reducible, by
which we mean that the couplings are completely specified
by the quark masses, and the left and right CKM matrices,
VL and VR. The only dependence to the parameters of the
Higgs potential is through the implicit dependence on
the angle β. Clearly, this requires Nd and Nu to be able
to be written in terms of VL and VR, apart from possible
numerical factors.
The key to this reduction lies in the following observa-

tion. Suppose, in a given model, it is possible to write

sin βΓ1 − cos βΓ2 ¼
ffiffiffi
2

p

v
ðAdMd þ BdMuÞ; ð14aÞ

sin βΔ1 − cos βΔ2 ¼
ffiffiffi
2

p

v
ðAuMu þ BuMdÞ; ð14bÞ

with the numerical factors Ad, Bd, Au, Bu. Then Eq. (13a)
can be rewritten as

Nd ¼
1

v
U†

dLðAdMd þ BdMuÞUdR

¼ 1

v
ðAdDd þ BdV

†
LDuVRÞ: ð15aÞ

Similarly, from Eq. (13b) one obtains

Nu ¼
1

v
ðAuDu þ BuVLDdV

†
RÞ: ð15bÞ

Therefore, Yukawa couplings will be completely determined
by the quark masses and mixing matrices if Eq. (14) holds.
However, it should be clear that it is not possible to write

relations of the form of Eq. (14) in the most general case.
Four independent matrices, Γa and Δa for a ¼ 1, 2, cannot
be written in terms of two matrices Md and Mu. Therefore,
it is necessary to have only two independent Yukawa
matrices. In order to achieve this goal, it is necessary to
introduce some condition to restrict the Yukawa matrices.
Later in this paper, we discuss some such relations, and the
resulting Yukawa couplings.
We noticed in Eq. (13c) that the couplings of the neutral

Higgs bosons, S and A, to the up-type and down-type
quarks are governed by the matrices Nu and Nd respec-
tively. From Eq. (15), we see that the parts Au and Ad are
proportional to the diagonal mass matrices in the respective
sector, and are therefore flavor diagonal. Thus, FCNC
occurs only through the parts Bu and Bd, and are absent in a
model where these parts vanish. In such models, the Higgs
couplings are even independent of the quark mixing
matrices. The conventional type-I and type-II 2HDMs
constitute examples of this category, which will be dis-
cussed in Sec. IVA. But the aim of this paper is to uncover
other interesting models where Eq. (14) holds, and the
Yukawa couplings are governed by Eq. (15).

III. A NOTATIONAL DIGRESSION

In order to find nontrivial examples of 2HDMs where
Eq. (14) holds we find it convenient to write the two
doublets together, into what can be called a bidoublet:

Φ ¼ ð ϕ̃1 ϕ2 Þ: ð16Þ
The transformation properties of the Higgs doublets under
the SM gauge symmetry can be expressed in a concise
manner using the bidoublet:

Φ⟶
SUð2ÞL×Uð1ÞYΣLΦe−

i
2
σ3θðxÞ; ð17Þ

where ΣL denotes an element of SUð2ÞL and the appear-
ance of σ3 on the right takes care of the fact that the
hypercharges of ϕk and ϕ̃k are opposite. It should now be
noted that one can construct additional bidoublets as well,
all of which have the same transformation properties under
SUð2ÞL × Uð1ÞY as Φ:

Φ̃ ¼ σ2Φ�σ2 ≡ ð ϕ̃2 ϕ1 Þ; ð18aÞ
Ψ ¼ Φσ3 ≡ ð ϕ̃1 −ϕ2 Þ; ð18bÞ

Ψ̃ ¼ σ2Ψ�σ2 ≡ ð−ϕ̃2 ϕ1 Þ: ð18cÞ
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In keeping with the bidoublet notation for the Higgs
multiplets, the right-handed quark fields can be written
in a column with two components. Note that the gauge
transformation on this column can also be written in a
succinct form:

�
u0R
d0R

�
⟶
SUð2ÞL×Uð1ÞYeþi

6
θðxÞeþi

2
σ3θðxÞ

�
u0R
d0R

�
; ð19Þ

whereas the transformation of the left-handed quark dou-
blets are given by

Q0
L⟶
SUð2ÞL×Uð1ÞYΣLeþ

i
6
θðxÞQ0

L: ð20Þ

The four different Yukawa coupling matrices that
appeared in Eq. (2) are now encrypted in the couplings
of the quarks with these four different bidoublets given in
Eqs. (16) and (18):

−LY ¼
�
YΦQ̄LΦ

�
u0R
d0R

�
þ ỸΦQ̄LΦ̃

�
u0R
d0R

�

þ YΨQ̄LΨ
�
u0R
d0R

�
þ ỸΨQ̄LΨ̃

�
u0R
d0R

��
þ H:c: ð21Þ

Comparing Eqs. (2) and (21), it is easy to see the relations
between the two different sets of notations:

Γ1 ¼ ỸΦ þ ỸΨ; Γ2 ¼ YΦ − YΨ; ð22aÞ

Δ1 ¼ YΦ þ YΨ; Δ2 ¼ ỸΦ − ỸΨ: ð22bÞ

IV. THE CROSSED 2HDMS

We will now proceed to construct nontrivial examples of
2HDMs where Eq. (14) holds. But first, let us recover the
conventional 2HDMs which prevent any FCNC at the
tree level.

A. Retrieving the type-I and type-II 2HDMs

In type-I 2HDM, only ϕ1 is odd under a Z2 symmetry
while all other fields are even. Consequently, only ϕ2

couples to all the fermions. In the bidoublet notation, we
can write this Z2 symmetry as

Φ → −Φσ3: ð23Þ

The above transformation will affect the remaining bidoub-
let structures as

Ψ → −Ψσ3; Φ̃ → Φ̃σ3; Ψ̃ → Ψ̃σ3: ð24Þ

The Yukawa Lagrangian of Eq. (21) will remain unaffected
by the above transformation if

YΦ ¼ −YΨ and ỸΦ ¼ −ỸΨ; ð25Þ

which, in view of Eq. (22), implies

Γ1 ¼ Δ1 ¼ 0: ð26Þ

It is easy to see that in this model, Au ¼ Ad ¼ − cot β,
Bu ¼ Bd ¼ 0. Since the B coefficients are zero, there is no
FCNC in this model.
In type-II 2HDM, ϕ1 → −ϕ1 and d0R → −d0R under the

Z2 symmetry. Thus, ϕ1 will couple only to the down-type
quarks whereas ϕ2 will couple to the up-type quarks. This
can be ensured via the following transformations in the
bidoublet notation:

Φ → −Φσ3 and
�
u0R
d0R

�
→ σ3

�
u0R
d0R

�
: ð27Þ

It is then easily seen that to keep the Yukawa Lagrangian of
Eq. (21) invariant under the above transformations, we
must require

YΦ ¼ YΨ ¼ 0; ð28Þ

which, in view of Eq. (22), translates into

Δ1 ¼ Γ2 ¼ 0: ð29Þ

This means that Ad ¼ tan β, Au ¼ − cot β, Bu ¼ Bd ¼ 0 in
this model.
Note that we could have defined the Z2 symmetry

differently, by omitting the minus sign in the transformation
law of right-handed quarks from Eq. (27). That would not
have given us a new model: it would have just interchanged
the roles of ϕ1 and ϕ2.
None of the examples presented above belong to the

class that we call “crossed 2HDM” or “x2HDM,” for
reasons that we will explain shortly. They come next.

B. First example of crossed 2HDM:
Connection with left-right symmetry

Consider a symmetry under which the nontrivial trans-
formations are

Φ → ΦΣ†
R;

�
u0R
d0R

�
→ ΣR

�
u0R
d0R

�
; ð30Þ

where ΣR is any SU(2) matrix. Since 2 × 2 unitary matrices
have the property

Σ�
R ¼ −σ2ΣRσ2; ð31Þ

it is easily seen that, under the transformation of Eq. (30), Φ̃
transforms the same way asΦ, butΨ and Ψ̃ do not, because
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of the presence of a factor of σ3 in their definitions. Thus,
the Yukawa couplings associated with Ψ and Ψ̃ are not
invariant under this symmetry. It should be noted that this
symmetry should be considered as an approximate
symmetry, since it does not commute with the hypercharge
symmetry. Imposing the symmetry of Eq. (30) on the
Yukawa Lagrangian of Eq. (21), we will obtain the
following restrictions on the Yukawa matrices:

YΨ ¼ ỸΨ ¼ 0; ð32Þ

leading to

Γ1 ¼ Δ2 ≡ Γ ðsayÞ; Γ2 ¼ Δ1 ≡ Δ ðsayÞ: ð33Þ

In this case we will have the following mass matrices:

Md ¼
vffiffiffi
2

p ðcos βΓþ sin βΔÞ;

Mu ¼
vffiffiffi
2

p ðcos βΔþ sin βΓÞ: ð34Þ

Inverting these equations and comparing with Eq. (14),
one obtains

Ad ¼ Au ¼ tan 2β; Bd ¼ Bu ¼ − sec 2β: ð35Þ

Plugging this into the definitions Eq. (15), one obtains

Nd ¼
1

v
ðtan 2βDd − sec 2βV†

LDuVRÞ; ð36aÞ

Nu ¼
1

v
ðtan 2βDu − sec 2βVLDdV

†
RÞ: ð36bÞ

As such, the FCNC couplings of the neutral Higgs bosons
are fully controlled by the quark mixing parameters
and tan β. This is a crossed 2HDM, which we will call
x2HDM-1 in subsequent discussion.
The symmetry of Eq. (30), which was used to arrive at

this model, is qualitatively different from those introduced
in Sec. IVA. The point is that the transformations produce
linear superpositions of the SM doublets ϕ̃1 and ϕ2. Since
these two objects have opposite hypercharges, such mixing
is not allowed by gauge symmetry. So, a symmetry of this
sort can be imposed on the Yukawa sector only, although it
will be violated by the gauge interactions, and therefore can
only be an approximate symmetry of the full Lagrangian.
We call these crossed symmetries because it connects
across different hypercharges.
However, the particular transformations of Eq. (30) can

easily be promoted to be a symmetry of the full Lagrangian.
These transformations are easily seen as the transforma-
tions of the relevant fields under an SUð2ÞR symmetry.
Thus, in effect, the imposition of the symmetry of Eq. (30)
implies that the Yukawa couplings have a symmetry

SUð2ÞL × SUð2ÞR ×Uð1Þ, which is the gauge symmetry
of the LRSMs [15–17]. We can therefore extend the
symmetry to the entire Lagrangian and build a LRSM.
In fact, our Yukawa couplings are no different than the
usual ones encountered in the LRSMs that involve a
bidoublet Higgs multiplet Φ transforming as the (2,2,0)
representation of the gauge group. In the context of
LRSMs, it was noted [18] that the fermion couplings with
Higgs bosons depend only on VL and VR.

C. More examples of crossed 2HDM

So far, our approach may appear as a convoluted exercise
to connect the LRSM with 2HDM. However, the notations
that we adopted in this paper can be used to uncover new
types of 2HDMs which were previously unknown.
As an example, we introduce a Z2 symmetry in the

following form:

Φ → Φσ1;

�
u0R
d0R

�
→ σ1

�
u0R
d0R

�
: ð37Þ

Note that this also does not commute with the hyper-
charge symmetry, and therefore should be considered as an
approximate symmetry. This symmetry, when imposed on
the Yukawa Lagrangian of Eq. (21), implies the following:

ỸΦ ¼ YΨ ¼ 0; ð38Þ

which means

Γ1 ¼ −Δ2 ≡ Γ ðsayÞ; Γ2 ¼ Δ1 ≡ Δ ðsayÞ: ð39Þ

This model will be called x2HDM-2. As a consequence of
Eq. (39), the quark mass matrices will now become

Md ¼ ðcos βΓþ sin βΔÞv=p2;

Mu ¼ ðcos βΔ − sin βΓÞv=p2: ð40Þ

Inverting these equations and comparing with Eq. (14), one
obtains

Ad ¼ Au ¼ 0; Bu ¼ −Bd ¼ 1: ð41Þ

As a result, the matrices Nu and Nd are given by

Nd ¼ −
1

v
V†
LDuVR; ð42aÞ

Nu ¼
1

v
VLDdV

†
R: ð42bÞ

This is an intriguing case where the Yukawa couplings with
physical Higgs bosons are independent of tan β, the ratio of
the two VEVs.
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One may consider other relations among the Yukawa
matrices YΦ, ỸΦ, YΨ and ỸΨ, which can potentially give
rise to different structures of Nu and Nd. Not all relations
will produce new models. For example, changing σ1 to σ2
in Eq. (37) produces the same restrictions on Yukawa
couplings as those shown in Eq. (39). Some other con-
ditions might result in equations which imply only an
interchange of the names ϕ1 and ϕ2, and therefore a
redefinition of β. But there is no reason why more models
cannot be produced which have different physical impli-
cations. However, it is not always straightforward to
motivate arbitrary relations between the Yukawa matrices
from symmetries.

D. Some specificities on the x2HDMs

It has been pointed out that, unlike the symmetries in
Eqs. (23) and (27), the ones shown in Eqs. (30) and (37)
mix fields with different hypercharges. Therefore, these
symmetries do not commute with the Uð1ÞY part of the SM
gauge symmetry. Thus, as previously stated, it should be
considered as an approximate symmetry, imposed only on
the Yukawa sector, and can prevail in the Lagrangian only
in the limit when the Uð1ÞY gauge coupling (g0) vanishes.
This approximate character or, in other words, the inter-
ference with the SM hypercharge gauge group can be
explicitly seen through the computation of the renormal-
ization group equations of the Yukawa couplings. If the
relations of Eq. (33) or Eq. (39) are imposed at a certain
scale, then they will evolve with the change of scale
according to the formulas [1]

16π2
d

d ln μ
ðΔ1 − Γ2Þ ¼ −g02Δ;

16π2
d

d ln μ
ðΓ1 ∓ Δ2Þ ¼ g02Γ; ð43Þ

where we assume the presence of right-handed neutrinos
with appropriate Yukawa interactions involving the doublet
Higgs bosons, and extend the symmetry to the leptonic

sector. In Eq. (43), the minus and plus signs in front of Δ2

correspond to x2HDM-1 and x2HDM-2, respectively. The
couplings without any subscripts on the right sides have
been defined in Eqs. (33) and (39).
By taking a closer look at the relations of both x2HDMs,

it is possible to extract one characteristic which is general
to all x2HDMs. Suppose the inversion of Eq. (7) yields the
solutions

Γ ¼ p1Mu þ p2Md; Δ ¼ q1Mu þ q2Md; ð44Þ

for some assignment of Γ and Δ from among the four
Yukawa matrices. We can now form the traces of the
Hermitian matrices Γ†Γ and Δ†Δ, each of which will
contain four terms. Since TrðM†

uMuÞ ≈m2
t , we expect this

term to dominate. If it indeed does, then

TrðΓ†ΓÞ
TrðΔ†ΔÞ ¼

p2
1

q21
þ ðsmall termsÞ: ð45Þ

This means that there should a strong correlation between
the square root of the left side of this equation and jp1=q1j.
For all x2HDMs presented here, jp1=q1j ¼ j tan βj. The
correlation is shown in Fig. 1.
What we do to plot the graphs is this. We take the quark

masses as given, and also the components of VL. We then
randomly generate UuL, UuR and UuR, find UdL from
Eq. (9), and, with each random choice, generateMd andMu
from Eq. (8) and use Eq. (44), as applicable to a particular
model, to find Γ and Δ. These are then used to make the
plot, and the correlation clearly shows.
We notice from Fig. 1 the weakening of the correlation as

we move away from tan β ¼ 1. This can be understood as a
direct consequence of the strong hierarchy between the up-
and down-quark masses. For tan β ≈ 1, we need to arrange a
cancellation in the expression for Md to reproduce such a
strong hierarchy. This will approximately fix tan β.
However, for tan β far away from unity (i.e., for either
sin β or cos β close to zero), the matrices Γ and Δ in
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FIG. 1. Plot of tan β vs R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðΓ†ΓÞ=TrðΔ†ΔÞ

p
for randomly generated Γ and Δ. The shaded region is consistent with the observed

quark masses and mixings, in the x2HDM-1 (left) and x2HDM-2 (right). We impose a perturbativity limit of jΓabj; jΔabj ≤ 1.
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Eqs. (34) and (40) effectively serve as independent sources
of masses for the up- and down-type quarks.
One particular aspect of the x2HDM-1 can easily be seen

by looking at Eq. (34). Namely, for tan β ¼ 1 we will have
Mu ¼ Md leading to unacceptable phenomenological
results. Therefore we must be away from tan β ¼ 1 to
reproduce realistic values for the physical quark masses and
mixings. Additionally, problems in the region surrounding
tan β ¼ 1 can be understood by inverting Eq. (34) to obtain
Γ and Δ in terms of Mu and Md. These expressions will
have terms proportional to sec 2β, which is large near the
tan β ¼ 1 region, leading to nonperturbative Yukawa cou-
plings. One may then naturally wonder how close can tan β
be to unity so that the observed values of the quark masses
and mixings are recovered while, at the same time, the
elements of Yukawa matrices in Eq. (33) are kept under the
perturbative limit, jΓabj; jΔabj ≤ 1. From Fig. 1 (left), we
can read the forbidden region in tan β as follows:

0.75≲ tan β ≲ 1.33: ð46Þ

We argued earlier that the model presented in Sec. IV B is
the low-energy limit of the left-right symmetric model. In
this connection, it should be pointed out that our results on
tan β are equally applicable in the case of LRSM where
tan β will obviously be redefined as the ratio of the two
VEVs of the bidoublet. It should also be noted that despite
the LRSM being in existence for decades, such constraints
on tan β have not been emphasized earlier.

V. PHENOMENOLOGY OF THE X2HDMS

Our goal was to relate the FCNC parameters to the left-
handed and right-handed quark mixing parameters. Having
achieved that goal, we now briefly turn our attention to the
consequences of experimental constraints on the models.
More specifically, by relating Nd with VR, we greatly
reduce the free parameters of the model, yet these FCNC
contributions are still present at the tree level. As such, as
our first objective, we set out to neutralize these contribu-
tions to minimize the impact they have on neutral meson
mixing. We expect this to lead to a very constrained VR,
due to the high experimental precision of ΔMP, where
P ¼ K;Bs; Bd. Interestingly, the coupling structure of the
x2HDMs is such that these are the same couplings that
drive the fermionic decays of the nonstandard scalars
of the model. Thus, by finding one VR compatible with
ΔF ¼ 2 flavor observables, the models will have a distinct
prediction for the ratio of fermionic non-SM scalar decays:
BrðS; A → f̄fÞ=BrðS; A → b̄bÞ. As mentioned earlier, we
work under the assumption of the alignment limit, where
H0 is a SM-like Higgs particle with flavor-diagonal
couplings. Thus, all new physics’ (NP) FCNC contribu-
tions come exclusively from S and A.
To tame the tree-level effects of the nonstandard scalars

in ΔMP, we first write the relevant expression for the

NP contribution to the meson mass difference (ΔMNP
P )

as [19,20]

2MPΔMNP
P ¼

����
�

1

M2
A
−

1

M2
S

�
½ððN�

dÞjiÞ2 þ ððNdÞijÞ2�
5

3
M0;F

P

−
�

1

M2
A
þ 1

M2
S

�
2ðNdÞijðN�

dÞij

×

�
M0;F

A

3
− 2M0;F

P

�����; ð47Þ

where P ¼ q̄iqj, and

M0;F
P ¼ −f2P

M4
P

ðmqi þmqjÞ2
; M0;F

A ¼ f2PM
2
P: ð48Þ

In the above, mqi is the mass of the quark qi, whereas fP
and MP are the decay constant and the mass of the meson
P, respectively.
Clearly, in the limit MS ¼ MA, there is a cancellation in

the first term of Eq. (47). In order to sufficiently dilute the
contribution of the second term of Eq. (47), we require, as
an example, ðNdÞ21 ∼ ðNdÞ31 ∼ ðNdÞ23 ∼ 0, which leads to
ΔMNP

P ∼ 0. Ignoring, for now, the possible phases of VR,
we can constrain the three Euler angles through the three
conditions above. This fixes VR to a very precise degree,
where one specific example is (assuming the Wolfenstein
parametrization of VL [21])

VR ≈

0
BB@

1 6.65 × 10−5 3.86 × 10−4

−3.92 × 10−4 0.169 0.986

1.20 × 10−7 −0.986 0.169

1
CCA:

ð49Þ

Using this VR, we have explicitly checked that the ΔF ¼ 2
contributions toK, Bs, and Bd oscillations are under control
for MS ¼ MA ∼O ðTeVÞ. It is interesting to note that, in
this particular example, some of the off-diagonal terms are
quite large.
Now that we have established that TeV-scale nonstand-

ard scalars can successfully negotiate the stringent ΔF ¼ 2
flavor constraints, it is interesting to find distinctive
features of these scalars. To this end, we notice that the
decays S; A → q̄iqj will be governed by the elements
of Nu and Nd which are now almost fixed because VR
is approximately defined in Eq. (49). This is a consequence
of the reducible Yukawa parameters structure of the
x2HDMs, leaving all flavor couplings to be governed by
VL and VR. Thus, we can wonder what are the effects of
flavor data in the non-SM scalar branching ratios. By taking
Eq. (49), we are fully equipped to compute the relevant
two-body scalar decays into a quark antiquark pair. For
benchmark values of MS ¼ MA ¼ 1.5 TeV, the results are
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shown in Table I for x2HDM-2, where the FCNCs are
independent of tan β, leading to fixed values of the
branching ratios for any particular VR. The results for
x2HDM-1 are shown in Fig. 2, due to the explicit
dependence on tan β. In the case of x2HDM-2, the
nonstandard scalars will preferably decay into down-type
quarks, because the couplings are proportional to the up-
type masses, whereas the up-type decays are proportional
to the down-type masses, as seen in Eq. (42). For the
x2HDM-1, the same does not necessarily hold, as there are
two contributions for flavor-diagonal decays, as shown in
Eq. (36). The different dependence on tan β of both
contributions will make the S → t̄t or S → b̄b predomi-
nance be fully determined by tan β. In fact, in the x2HDM-1
we find that the b̄b final state only surpasses t̄t for values of
tan β ≳ 10. In the limit tan β → ∞, the Yukawa couplings
of x2HDM-1 and x2HDM-2 are equal, apart from sign
differences which are irrelevant here, as can be seen from
Eqs. (36) and (42). We can see the predominance of b̄b
decays over t̄t in Table I. From Fig. 2, we see that the b̄s
final state dominates over the b̄b. This can easily be
understood in the light of Nd, where for the particular
example of VR used, the entry ðNdÞ32 is 1 order of
magnitude above ðNdÞ33. This occurs because of the large
(23) element of VR, as shown in Eq. (49), which means a
large ts element of VR, because of which the s quark
channel gets an enhancement with respect to the b quark
channels from the t-quark mass. By inspecting Fig. 2, we
can also see the interplay between the two terms of
Eq. (36), which gives different behaviors to S → t̄t
and S → t̄c.

The features shown in this section are a distinctive
characteristic of the x2HDMs, which can be used to falsify
the models here shown.

VI. SUMMARY

In this paper, we studied some properties of a minimal
extension of the SM, the 2HDM, and, in particular, focused
on the study of the FCNCs of the model. We studied
different variants of the 2HDM, resulting from the impo-
sition of different symmetries on the Yukawa interactions
of the model. Since these symmetries do not commute with
the full gauge group of the SM Lagrangian (in practice,
they are broken by the hypercharge), the imposed sym-
metries are effectively approximate symmetries of the
theory. Taking advantage that the renormalization group
equations of the 2HDM are well known, assuming the
symmetry to be a true symmetry of the Lagrangian at an
energy scale μ, it is possible to compute the evolution of the
deviation from the symmetric situation with respect to the
energy scale.
We advocate the bidoublet notation, widely popular in

the context of left-right symmetric theories, applied to the
context of the 2HDM. While it may seem a convoluted
exercise which increases the problem’s complexity, we
argue for its benefits. Namely, imposing simple symmetries
on the bidoublet, we are able to recover the paradigmatic
type-I and type-II 2HDM models, as well as formulate two
new 2HDM variants, which until now remained unstudied.
Through this paper, our main goal was to search for

models where the general arbitrariness of the FCNC
couplings was reduced, following the motivation of BGL
models, by relating these couplings with the quark mixing
matrices. We find a class of new models, where the FCNCs
are controlled by the left- and right-handed quark mixings.
Due to the particular relations between the Yukawa
matrices of the model, we name this new class of models
the crossed 2HDM (x2HDM). In one of these such models,
the x2HDM-1, we show that it is possible to impose a
symmetry on the Yukawa sector such that the FCNCs are
fully controlled by the left- and right-handed CKMs, as
well as the ratio between the scalar doublets VEVs. We also
point out that, while this symmetry is approximate in the

FIG. 2. Log-log plot of relative branching ratios for the S decay
into quark-antiquark pairs, normalized by its branching ratio into
a b̄b quark pair, as a function of tan β, for the x2HDM-1, for
MS ¼ MA ¼ 1.5 TeV. The region for tan β which was excluded
in Fig. 1 is intentionally kept out in these plots. The relative
branching ratios for A are very similar.

TABLE I. Relative branching ratios for the two-body fermionic
decays of S and A for the x2HDM-2, normalized by the branching
ratio of the decay into a b̄b pair, forMS ¼ MA ¼ 1.5 TeV. One of
the quarks in each process is to be taken to be an antiquark. We
have not marked which one, because the result is independent of
this choice.

x2HDM-2 H → ss
H → bb

H → bs
H → bb

H → cc
H → bb

H → tc
H → bb

H → tt
H → bb

H ≡ S
6 × 10−2 17 4 × 10−5 10−2

5 × 10−4

H ≡ A 6 × 10−4
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2HDM context, it is automatically imposed when dealing
with the LRSM. As such, this model can be taken as the
electroweak scale incarnation of the LRSM, given that the
LRSM relies on a 2HDM structure. Following up on this
intimate connection between the x2HDM-1 and the LRSM,
a comprehensive flavor analysis, when paired up with the
renomalization group analysis, may lead to valuable insight
on the validity of some LRSMs, which we wish to explore
in a future work. Furthermore, it is important to note that
some of the conclusions obtained for the x2HDM-1 are
equally valid or extendable to the LRSM, such as the
excluded region for the Higgs doublets’ (the bidoublet’s in
the LRSM context) VEVs. We also present a second model,
dubbed x2HDM-2, where the FCNC structure is further
simplified, being entirely controlled by the left- and right-
handed CKMs, independent of the VEV ratio. While we do
not present a UV completion for this model, we consider
this model as a valuable argument for the benefits of a
change of outlook (in this case, notations), to uncover new
interesting possibilities.
We have also performed a phenomenological analysis of

the x2HDMs, to showcase their predictive power. In the
paradigm of the alignment limit, as well as assuming
MS ¼ MA, the tree-level contributions to the ΔF ¼ 2
processes are simplified, but still remain. As such, the
restrictive flavor data onΔMK ,ΔMBs

, andΔMBd
, constrain

the model. However, the same couplings are responsible
not only for the neutral meson oscillations, but also for
other flavor processes such as the two-body fermionic

decays of the nonstandard scalars of the theory. As such, a
specific example for VR is shown, which was obtained by
requiring the compatibility of the models with ΔF ¼ 2
data. It leads to specific values for the branching ratios of
both S and A for the x2HDM-2, and a distinctive pattern
of these quantities as a function of tan β for the x2HDM of
type 1.
As a final note, hopefully, the explicit relation between

the x2HDM-1 and the LRSM, together with the economical
structure of the FCNCs of both x2HDMs, as well as the
benefits of a change in notation for uncovering models, will
lead to a renewed aesthetic motivation for the study of
2HDMs, apart from the supersymmetric embedding.

ACKNOWLEDGMENTS

The work of G. B. was supported by Fundação para a
Ciência e a Tecnologia (FCT, Portugal) through Projects
No. CFTP-FCT Unit 777 (UID/FIS/00777/2013 and UID/
FIS/00777/2019), No. CERN/FIS-PAR/0004/2017, and
No. PTDC/FIS-PAR/29436/2017 which are partially funded
through POCTI (FEDER), COMPETE, QREN and EU. The
work of M. L. is funded by Fundação para a Ciência e
Tecnologia-FCT Grant No. PD/BD/150488/2019, in the
framework of the Doctoral Programme IDPASC-PT. The
research of P. B. P. was supported by the SERB Grant
No. EMR/2017/001434 of the Government of India.
D. D. and P. B. P. gratefully acknowledge the warm hospita-
lity of CFTP, Lisbon where part of this work was done.

[1] G. Branco, P. Ferreira, L. Lavoura, M. Rebelo, M. Sher,
and J. P. Silva, Theory and phenomenology of two-Higgs-
doublet models, Phys. Rep. 516, 1 (2012).

[2] G. Bhattacharyya and D. Das, Scalar sector of two-
Higgs-doublet models: A minireview, Pramana 87, 40
(2016).

[3] S. L. Glashow and S. Weinberg, Natural conservation laws
for neutral currents, Phys. Rev. D 15, 1958 (1977).

[4] D. Das, 2HDM without FCNC: Off the beaten tracks,
Eur. Phys. J. C 78, 650 (2018).

[5] F. J. Botella, F. Cornet-Gomez, and M. Nebot, Flavor
conservation in two-Higgs-doublet models, Phys. Rev. D
98, 035046 (2018).

[6] G. C. Branco, W. Grimus, and L. Lavoura, Relating the
scalar flavor changing neutral couplings to the CKMmatrix,
Phys. Lett. B 380, 119 (1996).

[7] G. Bhattacharyya, D. Das, and A. Kundu, Feasibility
of light scalars in a class of two-Higgs-doublet models
and their decay signatures, Phys. Rev. D 89, 095029
(2014).

[8] F. Botella, G. Branco, A. Carmona, M. Nebot, L. Pedro, and
M. Rebelo, Physical constraints on a class of two-Higgs

doublet models with FCNC at tree level, J. High Energy
Phys. 07 (2014) 078.

[9] R. N. Mohapatra, G. Yan, and Y. Zhang, Ameliorating
Higgs induced flavor constraints on TeV scale WR, Nucl.
Phys. B948, 114764 (2019).

[10] G. Bhattacharyya, D. Das, P. B. Pal, and M. Rebelo, Scalar
sector properties of two-Higgs-doublet models with a global
U(1) symmetry, J. High Energy Phys. 10 (2013) 081.

[11] D. Das and I. Saha, Search for a stable alignment limit in
two-Higgs-doublet models, Phys. Rev. D 91, 095024
(2015).

[12] P. B. Dev and A. Pilaftsis, Maximally symmetric two Higgs
doublet model with natural Standard Model alignment,
J. High Energy Phys. 12 (2014) 024; Erratum, J. High
Energy Phys. 11 (2015) 147.

[13] D. Das and I. Saha, Alignment limit in three Higgs-doublet
models, Phys. Rev. D 100, 035021 (2019).

[14] F. J. Botella, G. C. Branco, and M. N. Rebelo, Minimal
flavor violation and multi-Higgs models, Phys. Lett. B 687,
194 (2010).

[15] R. Mohapatra and J. C. Pati, A natural left-right symmetry,
Phys. Rev. D 11, 2558 (1975).

CROSSED TWO-HIGGS-DOUBLET MODELS … PHYS. REV. D 102, 035007 (2020)

035007-9

https://doi.org/10.1016/j.physrep.2012.02.002
https://doi.org/10.1007/s12043-016-1252-4
https://doi.org/10.1007/s12043-016-1252-4
https://doi.org/10.1103/PhysRevD.15.1958
https://doi.org/10.1140/epjc/s10052-018-6145-x
https://doi.org/10.1103/PhysRevD.98.035046
https://doi.org/10.1103/PhysRevD.98.035046
https://doi.org/10.1016/0370-2693(96)00494-7
https://doi.org/10.1103/PhysRevD.89.095029
https://doi.org/10.1103/PhysRevD.89.095029
https://doi.org/10.1007/JHEP07(2014)078
https://doi.org/10.1007/JHEP07(2014)078
https://doi.org/10.1016/j.nuclphysb.2019.114764
https://doi.org/10.1016/j.nuclphysb.2019.114764
https://doi.org/10.1007/JHEP10(2013)081
https://doi.org/10.1103/PhysRevD.91.095024
https://doi.org/10.1103/PhysRevD.91.095024
https://doi.org/10.1007/JHEP12(2014)024
https://doi.org/10.1007/JHEP11(2015)147
https://doi.org/10.1007/JHEP11(2015)147
https://doi.org/10.1103/PhysRevD.100.035021
https://doi.org/10.1016/j.physletb.2010.03.014
https://doi.org/10.1016/j.physletb.2010.03.014
https://doi.org/10.1103/PhysRevD.11.2558


[16] R. N. Mohapatra and J. C. Pati, Left-right gauge symmetry
and an isoconjugate model of CP violation, Phys. Rev. D
11, 566 (1975).

[17] G. Senjanović and R. N. Mohapatra, Exact left-right sym-
metry and spontaneous violation of parity, Phys. Rev. D 12,
1502 (1975).

[18] N. G. Deshpande, J. F. Gunion, B. Kayser, and F. I. Olness,
Left-right symmetric electroweak models with triplet Higgs,
Phys. Rev. D 44, 837 (1991).

[19] D. Atwood, L. Reina, and A. Soni, Phenomenology of two
Higgs doublet models with flavor changing neutral currents,
Phys. Rev. D 55, 3156 (1997).

[20] M. Nebot and J. P. Silva, Self-cancellation of a scalar in
neutral meson mixing and implications for the LHC, Phys.
Rev. D 92, 085010 (2015).

[21] L. Wolfenstein, Parametrization of the Kobayashi-Maskawa
Matrix, Phys. Rev. Lett. 51, 1945 (1983).

BRANCO, DAS, LEVY, and PAL PHYS. REV. D 102, 035007 (2020)

035007-10

https://doi.org/10.1103/PhysRevD.11.566
https://doi.org/10.1103/PhysRevD.11.566
https://doi.org/10.1103/PhysRevD.12.1502
https://doi.org/10.1103/PhysRevD.12.1502
https://doi.org/10.1103/PhysRevD.44.837
https://doi.org/10.1103/PhysRevD.55.3156
https://doi.org/10.1103/PhysRevD.92.085010
https://doi.org/10.1103/PhysRevD.92.085010
https://doi.org/10.1103/PhysRevLett.51.1945

