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We determine the 1=N2
f and 1=N

3
f contributions to the QED beta function stemming from the closed set

of nested diagrams. At the order of 1=N2
f , we discover a new logarithmic branch cut closer to the origin

when compared to the 1=Nf results. The same singularity location appears at 1=N3
f, and these correspond

to a UV renormalon singularity in the finite part of the photon two-point function.
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I. INTRODUCTION

The discovery of asymptotically safe quantum field
theories in four dimensions [1,2] triggered renewed interest
in studying the ultraviolet fate of quantum field theories
once asymptotic freedom is lost. The original proof of
asymptotic safety made use of the Veneziano-Witten large
number of flavors and colors limit for a class of gauge-
Yukawa theories that displayed perturbatively trustable
ultraviolet fixed points. Without scalars, it is impossible
to analytically disentangle the ultraviolet fate of asymp-
totically nonfree gauge-fermion theories. Nevertheless, one
can make progress by analyzing the large Nf dynamics of
these theories at a finite number of colors [3–9] including
again a certain type of Yukawa interactions [10–13]. These
studies make use of the largeNf resummation techniques to
derive the all orders in the ’t Hooft coupling beta functions
of these theories at the order of 1=Nf. This large Nf beta
function has several interesting properties including the
emergence of singularities undermining the consistency of
the expansion, whose physical interpretation remains still
to be clarified [14]. In the meantime, first-principles lattice
simulations have begun to explore the largeNf dynamics in
a systematic manner [15]. It is therefore highly desirable to

gain insight into the subleading 1=N2
f corrections. This

task, however, turns out to be challenging. The present
work constitutes a step forward in this direction by
determining these subleading corrections for a closed class
of diagrams in QED.
To achieve our goal, we will make use of the technol-

ogies developed in our recent work [16], according to
which it is shown that it is possible to reconstruct the 1=Nf

beta function and its properties using a finite number of
coefficients of the perturbative series. We determined the
stability of the series and showed that about 30 terms were
needed to properly reconstruct the 1=Nf beta function up to
the leading singularity. The technology includes Padé
methods, combined with the study of the large-order
growth of the perturbative series.
In this paper, we employ this technology to deduce the

first complete set of 1=N2
f and 1=N

3
f corrections for theQED

nested diagrams. We discover the emergence of a novel
singularity at the order of 1=N2

f within this subset of
diagrams. The latter appears closer to the origin when
compared to the original 1=Nf singularity of the full beta
function. We refrain from speculating about the physical
content of this singularity given that the remaining diagrams
are still to be computed. The nature of the singularity is
captured by a novel logarithmic branch cut at a value of the ’t
Hooft coupling where the beta function remains finite. We
also find an intriguing correspondence between the UV
renormalons in the finite part of the photon two-point
function, appearing at multiples of 3 in the Borel plane,
and the leading singularities of the divergent part of the
photon two-point function, at the order of 1=N2

f and 1=N3
f.

The paper is organized as follows. In Sec. II, we fix the
notation and introduce the basic building blocks for our
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computation. This is followed by Sec. III, in which we
present details of the computation and uncover the beta-
function contribution and its leading singularity of the
nested diagrams. In Sec. IV, we study the appearance of
renormalons in the finite part of the photon two-point
function. We offer our conclusions in Sec. V. The details of
the various computations can be found in the Appendixes.

II. LARGE Nf QED SETUP

In QED with a large number of flavors Nf, it is natural to
introduce the ’t Hooft coupling

K ¼ g2Nf

4π2
; ð1Þ

which we keep fixed when sending Nf to infinity. This
allows organizing the beta function as a series in 1=Nf:

βðKÞ≡ μ
dK
dμ

¼
X∞
k¼0

βðkÞðKÞ
Nk

f

; ð2Þ

where we have introduced the renormalization group (RG)
scale μ. The beta function describes the change of the
coupling strength with respect to this RG scale. In Eq. (2),
each βðkÞðKÞ constitutes itself a perturbative expansion in
the ’t Hooft coupling K. With this counting, a fermion
bubble is of the order of one and each photon line in a
diagram is dressed with n fermion bubbles as depicted in
the following diagram:

ð3Þ

We indicate an n-loop bubble chain with a gray blob with
an index n referring to the number of fermion bubbles in the
photon chain. At the zeroth order in the expansion, only the
single-fermion bubble contributes to the beta function,
which reads

βð0ÞðKÞ ¼ 2

3
K2: ð4Þ

The first order is given by the diagrams

ð5Þ

We indicate the sum of these diagrams by a gray square
labeled by the same n. The diagrams in Eq. (5) were
computed for the first time in Ref. [3]. The analogous
contribution for QCD was computed in Refs. [4,6];

see Ref. [9] for a review. Since the diagrams contain
only a single bubble chain, the resulting beta function
can be resummed and expressed by a closed integral
representation:

βð1ÞðKÞ ¼ K2

2

Z
K

0

dxFðxÞ: ð6Þ

The integrand function is given by

FðxÞ ¼ −
ðxþ 3Þðx − 9

2
Þðx − 3

2
Þ sinðπx

3
ÞΓð5

2
− x

3
Þ

27 · 2
2x
3
−5π

3
2ðx − 3ÞxΓð3 − x

3
Þ : ð7Þ

This beta function has logarithmic branch cuts at Kn ¼
15
2
þ 3n for n ≥ 0. The leading behavior with which it

approaches the radius of convergence is

βð1ÞðKÞ ∼ 14K2

45π2
ln

�
15

2
− K

�
þ � � � ; K →

15

2
: ð8Þ

Thus, the behavior near the first branch cut is negative,
which allows the 1=Nf contribution [Eq. (6)] to cancel the
leading contribution [Eq. (4)]. This leads to a zero in the
beta function at this order in 1=Nf, which has triggered
speculations about the existence of a UV fixed point.
Similarly in QCD, a negative logarithmic branch cut at
K ¼ 3 allows for a zero in the beta function. The potential
fixed point in QED has a diverging fermion anomalous
mass dimension [17] and is thus considered unphysical. At
the analogous fixed point in QCD, the fermion anomalous
mass dimension is instead vanishing [17], but the fixed
point suffers from glueball operators with diverging anoma-
lous dimensions [18]. In Ref. [18], the authors argued that
this fact can be interpreted as an operator decoupling and,
thus, the interacting fixed point might still be physical. The
potential existence of the fixed point has triggered already
many phenomenological studies [10,19,20]. The viability
of the fixed points has been studied on the lattice [15] and
with critical point methods [14,21].
Here we go beyond the state of the art by computing part

of the full beta function at the orders of 1=N2
f and 1=N

3
f. We

are interested in whether new singularities can appear at
this order that could shrink the overall radius of conver-
gence. The complete knowledge of the full beta function at
these orders would be ideal to test the physical nature of the
potential fixed points. Given the complexity of the task, we
focus here on QED and determine the contributions coming
from diagrams of the nested type (to be defined in the next
section) to the 1=N2

f and 1=N
3
f order. We will see that these

contributions alone show rather interesting features.
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III. NESTED DIAGRAMS

In Ref. [16], we have laid the foundations to access
crucial information regarding the singular structure of the
beta function of the theory by knowing finitely many
coefficients of the perturbative series in the coupling K. We
showed that, to extract the precise radius of convergence
and uncover the first singularity in K, roughly the first 30
coefficients of the perturbative expansions are needed.
Clearly, the task to extract so many coefficients becomes
progressively more demanding when going beyond the
leading result. Therefore, although, the procedure can, in
principle, be applied to the full 1=N2

f and 1=N3
f beta

function, already to Oð1=N2
fÞ it requires to determine four-

loop diagrams and nonplanar three-loop diagrams, for
which the master integrals with dressed propagators are
not known; see Fig. 9 in Appendix A for the full set of
diagrams.
Fortunately, there is one closed set of diagrams, the

nested ones, which is gauge and RG scale independent and
which can be tackled. The associated Feynman diagrams
are obtained iterating the 1=Nf topologies and are given by

ð9Þ

We represent the sum of these contributions with a gray
hexagon and three indices labeling the number of fermion
bubbles on each photon propagator. The full amplitude
from these diagrams is given in Eq. (A10) of Appendix A in
terms of discrete convolutions of the 1=Nf amplitude.
There is an additional counterterm contribution that stems
from inserting a 1=Nf counterterm on the photon line of the
1=Nf diagrams in Eq. (5). The explicit form of the
counterterm contribution is given in Eq. (A7). The sum
of all these contributions is gauge and RG scale indepen-
dent, which we verified by explicit computation. We
computed these contributions to the beta function sepa-
rately up to K44. The coefficients are listed in Appendix D.
At Oð1=N3

fÞ, the contributing diagrams are given by

ð10Þ

The full amplitudes for these diagrams are now given in
Eqs. (A11) and (A12) of Appendix A. We determined these
contributions to the beta function up to K32 and report the
coefficients in Appendix D, together with a comparison
with the total five-loop result from Refs. [22,23].
Determining the coefficients from the diagrams in

Eqs. (9) and (10) required a significant computational
effort. We used the Mathematica package FeynCalc [24]
to contract the diagrams and standard multiloop techniques
to evaluate them; see, for example, Refs. [25–28]. The most
computation power is needed to numerically extract
the divergent and finite part at each loop order. The
Mathematica package NumExp [29], which numerically
expands hypergeometric functions, turned out to be very
useful in this context. Hypergeometric functions naturally
appear from the evaluation of loop integrals; see
Appendix A.
In general, the β-function coefficients βðnÞ are dependent

on the used scheme. The lowest-order βð0Þ is scheme
independent, since it is a one-loop result. The order βð1Þ
is scheme independent as well if the functional relation
between the couplings in the two schemes does not involve
Nf [8]. In turn, the higher coefficients βðn>1Þ are scheme-
dependent functions of the coupling K. The singularity
structure of these functions, and thus the large-order
behavior of their series in K, is scheme invariant as long
as the functional relation between the couplings in the two
schemes is sufficiently regular. We employ dimensional
regularization in the minimal subtraction scheme.
We are now ready to analyze the large-order behavior of

the expansion coefficients of βð2ÞnestedðKÞ, in order to extract
physical information concerning possible physical singu-
larities. We apply ratio tests, and Darboux’s theorem
[30–32], as well as Padé methods to access information
about the leading singular structure of the associated beta
function. To keep the presentation light, we report the
details of the methods in Appendixes B and C.

A. Leading singularity of βð2Þnested

To extract the leading singularity, we must first and
foremost demonstrate that the number of terms at our
disposal is sufficient to see convergence. This is performed
by running the ratio test bnþ1=bn, with bn the coefficients

of the βð2Þnested series. For sufficiently large n, the ratio
approaches the inverse radius of convergence. We report
the results in the left panel in Fig. 1 and give the detailed
analysis in Appendix B. To accelerate the convergence, we
further employed Richardson extrapolation. From the left
plot in Fig. 1, one learns that about 30 coefficients are
sufficient to approach the convergence of the series.
One learns that the radius of convergence isK ¼ 3. From

the right plot in Fig. 1, we further learn that in total the
coefficients have leading decay bn ∼ −1=ð2 · 3nn2Þ. This
allows us to subtract from each bn its leading large n
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contribution, allowing us to determine its subleading large
n behavior which is discovered to go as −1=ð2 · 3nn3Þ. This
trend repeats after each subtraction, and, therefore, we can
determine the large-order behavior of the nested QED beta
function coefficients at Oð1=N2

fÞ to be

bn ∼ −
1

2

1

3n

�
1

n2
þ 1

n3
þ � � �

�
¼ −

1

2

1

3n
1

nðn − 1Þ : ð11Þ

It is interesting that with just 30 expansion coefficients we
can clearly distinguish the correct subleading large n
behavior, as shown in the right plot in Fig. 1. Note that
the behavior in Eq. (11) is the natural subleading behavior
for a logarithmic singularity; see Appendix B. This exact
large n order behavior determines the nature of the first
singularity once we resum the series

−
1

2

X∞
n¼4

1

nðn − 1Þ
Kn

3n
¼ 1

6
ðK − 3Þ ln

�
1 −

K
3

�
þ regular:

ð12Þ

This implies that, in the vicinity of the leading singularity
at K ¼ 3,

βð2ÞnestedðKÞ ∼ −
1

2

�
1 −

K
3

�
ln

�
1 −

K
3

�
þ � � � ; K → 3;

ð13Þ

where the subleading terms are analytic at K ¼ 3.
This is a remarkable result for a number of reasons:

(i) The nested QED beta function at Oð1=N2
fÞ has a

logarithmic branch cut at K ¼ 3 while remaining finite
there. (ii) Once the large-order behavior is subtracted, the
remaining contribution at K ¼ 3 is regular. (iii) The sin-
gularity occurs at a value of K which is smaller than the

leading singularity of QED occurring for K ¼ 15=2 at the
first order in 1=Nf. (iv) The singularity occurs at the same
value as the leading one for QCD.
It is worth mentioning that, because of the simple

structure of the function multiplying the logarithmic
singularity in Eq. (12), it is possible to confirm this
behavior by analyzing the series obtained by a second
derivative with respect to K of the nested beta function.
This is so because the logarithmic singularity turns into a
simple pole that it is more easily accessed by the test. In
fact, in this case, the onset of the converge occurs already
for ∼K28 as detailed in Fig. 10 in Appendix B.
We can now use Padé approximants to deduce the full

form of the nested beta function up to the singularity, which
is depicted in Fig. 2. More information about the Padé
analysis is provided in Appendix C.

B. Subleading singularity of βð2Þnested

We now turn to the subleading singular behavior of

βð2Þnested. To that end, we subtract the leading logarithmic

FIG. 1. Left: The ratio test applied to the expansion coefficients of βð2ÞnestedðKÞ reveals that the radius of convergence is K ¼ 3. A
Richardson extrapolation is used to accelerate the convergence of the series. Right: The prefactor of the leading large-order behavior is
determined to be − 1

2nðn−1Þ3n, which leads to a much faster convergence than − 1
2n23n. See Appendix B.

FIG. 2. Nested QED beta function at Oð1=N2
fÞ. At K ¼ 3 the

beta function is finite, but it has a logarithmic branch cut.
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branch-cut behavior from the nested beta function:

β̃ð2Þnested ¼ βð2Þnested þ
1

2

X∞
n¼4

1

nðn − 1Þ
Kn

3n
: ð14Þ

With the coefficients at hand, no further singular behavior
is revealed by the ratio test. From the naive expectation that
the next singularity arises at K ¼ 15

2
, which is the point

where the leading order full beta function is singular, we
estimate that roughly 55 coefficients would be needed,
which goes beyond the scope and resources of this
investigation.
Since the ratio test is not sufficiently precise to display

any subleading singular behavior, we use Padé methods
instead. The three highest Padé approximants are displayed
in Fig. 3. They converge well up to K ≈ 7, and, thus, we
know that there is no singular behavior for K < 7. For
K > 7, some approximants show singularities, and we
suspect to find the next singular behavior at K ¼ 15

2
, since

this was the location of the logarithmic branch cut at 1=Nf.
Having a hint for the location of the next singularity, we

now employ the conformal Padé method, which is expected
to be more accurate in this case. The conformal Padé takes
as input the location of the singularity and maps the series
to the unit disk. After the conformal transformation, one
reexpands the function and applies the standard Padé
method, and, in the end, one inverts back the conformal
transformation. The Padé-conformal method is described in
detail in Appendix C. In Ref. [33], the improvement by a
suitable conformal transformation was studied on the
example of the Painlevé I equation. We tested the con-
formal Padé method for the leading singularity at 1=N2

f,
and it indeed gives improved results; for details see
Appendix C and Figs. 3 and 11.
For the subleading singularity, the conformal Padé

results are displayed in Fig. 3. We therefore feel confident

to have captured both the leading branch-cut singularity at
K ¼ 3 and the subleading one occurring at K ¼ 15=2.
However, for the latter, the available data (i.e., the available
expansion coefficients) are not sufficient to determine the
precise nature of this subleading singularity.

C. Leading singular behavior of βð3Þnested

Here we use directly the Padé method to infer the
location of the first singularity given the fewer computable
coefficients than needed for the ratio test. The highest-order
Padé approximants are displayed in Fig. 4, showing
convergence up to K ≈ 2.7, and, hence, we can exclude
any singular behavior in this range. It is reasonable to
expect the first singularity to occur for K ¼ 3, since
all Padé approximants have a pole shortly after K ¼ 3.
We therefore apply the conformal Padé method (see
Appendix C) to get a more accurate representation of
the associated beta function up to the singularity and plot it
in Fig. 4.

IV. FINITE PARTS AND RENORMALONS

So far, we have discussed the divergent part of the
photon two-point correlation function, because it is directly
related to the beta function of the theory. The finite part,
however, also has an interesting story to tell, the renorma-
lon story [34]. Indeed, the class of diagrams contributing to
the 1=Nf correlator are the ones that were originally
considered as a renormalon source. Renormalons emerge
as singularities of the Borel transform of the finite part
of the correlation function and produce a factorially
growing series not associated with diagram proliferation.
Resummation methods for the finite parts in QED at the
order of 1=Nf have been explored in Ref. [35] and shown
not to be Borel summable (in the massless fermion case),
due to poles located at 3k, with k ¼ 1;…;∞, along the
positive real Borel axis. This corresponds to a leading

FIG. 3. (Conformal) Padé approximants of the nested QED beta
function atOð1=N2

fÞ with the branch cut subtracted; see Eq. (14).
The Padé approximants seem to hint toward a pole or a branch cut
at K ¼ 15

2
.

FIG. 4. (Conformal) Padé approximants of the nested QED beta
function atOð1=N3

fÞ. The Padé approximants seem to hint toward
a pole or a branch cut at K ¼ 3.
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factorial growth n!=3n of the coefficients of the original
finite part. The finite parts at higher orders of the 1=Nf

expansion are analyzed in Appendix A 2. The 1=Nf result
for the Borel transform of the finite part of the photon two-
point function is derived in Eq. (A20) and is plotted in
Fig. 5, just above the real Borel t axis. This plot clearly
indicates the appearance of singularities at t ¼ 3; 6; 9;…
on the positive Borel axis and singularities on the negative
Borel axis at t ¼ −6;−9;…. In the minimal subtraction
scheme, renormalons affect the finite parts only, and this is
confirmed at the 1=Nf order.
Remarkably, even with our limited number of expansion

coefficients, we observe the same factorial growth and
singularity structure at subleading orders 1=N2

f and 1=N3
f

of the divergent part of the nested diagrams. See Fig. 6 for

the rate of growth of the expansion coefficients in the 1=N2
f

case. The coefficients for the nested diagrams and the
corresponding counterterm both grow factorially fast, but
with the same rate and opposite signs, in such a way that the
factorial growth cancels, leaving coefficients of a rapidly
convergent expansion, as shown in Eq. (11).
Furthermore, in Figs. 7 and 8, we plot the real parts of the

Borel transform of the finite parts at the order of 1=N2
f and

1=N3
f, respectively, as shown in Eq. (A22). These plots

should be compared with the 1=Nf result in Fig. 5. At the
orders of 1=N2

f and 1=N3
f, we do not have the luxury of

closed-form expressions, but with the limited number of
expansion coefficients (see Appendix D) our Borel trans-
forms, after conformal mapping and Padé approximation
(see Appendix C), clearly reveal singularities at t ¼ þ3 and
t ¼ −6, with strong indications of a further singularity at
t ¼ −9. With more coefficients, one would be able to
resolve even more Borel singularities. Note that, without
the conformal map, the Padé approximation to the Borel
transform cannot see any physical singularities beyond the
leading ones, because Padé tries to represent the leading
branch cut with an array of poles and zeros, which have no
physical content beyond a crude representation of the cut,
and these unphysical poles therefore obscure further
physical singularities. On the other hand, the Padé approxi-
mation to the conformally mapped expansion, as described
in Appendix C, does not place unphysical singularities on
the cut [33,36], so higher physical singularities can be seen.
These results suggest a relation between the leading-order
renormalon factorial growth and the singularities in the
divergent part of the nested diagrams. This QED Borel
structure suggests singularities on the positive real axis

FIG. 5. Real and imaginary parts of the Borel transform of the
finite part of the renormalized photon two-point function at the
order of 1=Nf . This Borel transform is obtained from the analytic
formula (A20) in Appendix A 2. We see UV renormalon
singularities at t ¼ 3k with k ¼ 1; 2;…;∞ and IR renormalon
singularities at t ¼ −3k with k ¼ 2; 3;…;∞.

FIG. 6. The 1=N2
f coefficients of the 1=ϵ part of the nested

diagrams and corresponding counterterm are each factorially
divergent. As these are not separately RG independent, we
choose μ2 ¼ −p2=4π, p2 being the external momentum. Their
sum produces a RG-independent convergent series according to
the large-order behavior given in Eq. (11).

FIG. 7. Real and imaginary parts of the Borel transform of the
finite part of the renormalized photon two-point function at the
order of 1=N2

f. This Borel transform has been reconstructed from
the finite number of expansion coefficients using the Padé-
conformal method described in Appendix C. We see a UV
renormalon singularity at t ¼ þ3, an IR renormalon singularity at
t ¼ −6, and a hint of a further IR renormalon singularity at
t ¼ −9.
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associated with UV renormalons and singularities on the
negative real axis associated with IR renormalons [34].

V. CONCLUSIONS AND OUTLOOK

In this paper, we have determined the contribution to the
QED beta function stemming from the gauge and RG-scale
independent class of nested diagrams to the order of 1=N2

f

and 1=N3
f, resolving their leading singularity structure. We

have shown the following.
(i) The nested beta function at Oð1=N2

fÞ has a new
logarithmic branch cut at K ¼ 3, coinciding with the
QCD branch cut at Oð1=NfÞ. The nested beta
function is finite at the branch cut.

(ii) The next singularity of the nested beta function
appears at K ¼ 15

2
. However, we do not have enough

perturbative data to fully characterize its nature.
(iii) The first singularity of the nested beta function at

Oð1=N3
fÞ appears at K ¼ 3, but its nature remains to

be determined.
(iv) We observed that the factorial growth of the diver-

gent part of the nested diagrams at Oð1=N2
fÞ

matches the one for the finite part of the leading
1=Nf contribution which is related to the renorma-
lons of the theory. An analogous structure is also
seen at Oð1=N3

fÞ.
An important message from this analysis is that it is

indeed feasible, as proposed in Ref. [16], to use a finite
number of perturbative expansion terms to probe certain
nonperturbative properties at higher orders of the large Nf

expansion; we do not require the closed-form expressions

which are available at leading order. This suggests a new
strategy for studying physical properties of large Nf

expansions.
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APPENDIX A: RENORMALIZATION
PROCEDURE AND COMPUTATION

OF NESTED DIAGRAMS

In this Appendix, we detail the applied renormaliza-
tion procedure. We apply dimensional regularization in
d ¼ 4 − ϵ dimensions. The 1PI photon two-point function
is parameterized by

Γð2Þ
μν ðpÞ ¼ p2

�
ημν −

pμpν

p2

�
ΠðK0; p2Þ: ðA1Þ

We expand the renormalization of the coupling ZK ¼
K=K0, where K0 is the bare ’t Hooft coupling, as well
as Π in orders of Nf:

ZK ¼ Z0 þ
1

Nf
Z1 þ

1

N2
f

Z2 þ
1

N3
f

Z3 þOð1=N4
fÞ; ðA2Þ

ΠðK0Þ ¼ Π0ðZ−1
K KÞ þ 1

Nf
Π1ðZ−1

K KÞ

þ 1

N2
f

Π2ðZ−1
K KÞ þ 1

N3
f

Π3ðZ−1
K KÞ þOð1=N4

fÞ:

ðA3Þ
Here and in the following, we suppress the momentum
dependence ofΠ to improve the readability. Each Zn can be
written as a series in 1=ϵ:

Zn ¼
X
i

ZðiÞ
n

ϵi
: ðA4Þ

The simple pole in ϵ given by Zð1Þ
n determines the beta

function at each order in 1=Nf. The latter is given by

βðnÞ ¼
�
1 − K

∂
∂K

�
Zð1Þ
n K ¼ −K2

∂
∂K Zð1Þ

n : ðA5Þ

We use a minimal subtraction scheme, and, thus, the
renormalization condition is

divfZK½1 − ΠðK0Þ�g ¼ 0: ðA6Þ

FIG. 8. Real and imaginary parts of the Borel transform of the
finite part of the renormalized photon two-point function at the
order of 1=N3

f. This Borel transform has been reconstructed from
the finite number of expansion coefficients using the Padé-
conformal method described in Appendix C. We see a UV
renormalon singularity at t ¼ þ3, an IR renormalon singularity at
t ¼ −6, and a hint of a further IR renormalon singularity at
t ¼ −9.
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Here the operator div extracts the parts that are divergent in the limit ϵ → 0. We expand this equation in orders of 1=Nf.
From this, also using the fact that Π0 is linear in the bare coupling, we obtain

Z0¼1þdivfΠ0ðKÞg; Z1¼divfZ0Π1ðZ−1
0 KÞg;

Z2¼divfZ0Π2ðZ−1
0 KÞgþdiv

�
Z1

�
1−K0

∂
∂K0

�
Π1ðK0Þ

�
K0¼Z−1

0
K
;

Z3¼divfZ0Π3ðZ−1
0 KÞgþdiv

�
Z1

�
1−K0

∂
∂K0

�
Π2ðK0Þ

�
K0¼Z−1

0
K
þdiv

��
Z2−K

Z2

Z0

∂
∂K0

þK2

2

Z2
1

Z3
0

∂2

∂K2
0

�
Π1ðK0Þ

�
K0¼Z−1

0
K

:

ðA7Þ

Here, Π0 is precisely the single-fermion bubble and, thus,
Z0 ¼ 1 − 2K

3ϵ .Π1 is given by thediagramsdisplayed inEq. (5).
In Z2, the first term contains the factorΠ2, which is precisely
the diagrams displayed in Fig. 9. The second term can be
viewed as the 1=Nf diagrams (5) with a 1=Nf counterterm
insertion. In Z3, the first term is again given by 1=N3

f
diagrams, while the second and third terms can be viewed
as lower-order diagrams with counterterm insertions.

1. Nested diagrams

We now display the structure of the nested diagrams. For
this, it is useful to write the 1=Nf contribution to the photon
two-point function, i.e., the diagram given in Eq. (5), in an
expansion in loop orders:

Π1¼K2
0

X
n¼0

ð−K0ÞnΠðnÞ
1 ðϵÞG0ðϵÞn

�
−
4πμ2

p2

�ðnþ2Þϵ=2
: ðA8Þ

Here, ΠðnÞ
1 corresponds to the contribution with n inserted

fermion bubbles, μ is the RG scale, and G0 is the one-
bubble amplitude given by

G0ðϵÞ ¼ 2
Γ2ð2 − ϵ

2
ÞΓðϵ

2
Þ

Γð4 − ϵÞ : ðA9Þ

This notation allows us to write down the nested ampli-
tudes in a convenient way. For the 1=N2

f nested dia-
grams, displayed in Eq. (9), we assign n and m fermion
bubbles to the outer photon propagators and l fermion
bubbles to the inner photon propagator. Then the amplitude
is given by

Π2;nested ¼ K4
0

X∞
l;m;n¼0

ð−K0ÞlþmþnΠðlÞ
1 Πðlþmþnþ2Þ

1 G0ðϵÞlþmþn

�
−
4πμ2

p2

�ðlþmþnþ4Þϵ=2

¼ p2K4
0

X∞
l;k¼0

ðkþ 1Þð−K0ÞlþkΠðlÞ
1 Πðlþkþ2Þ

1 G0ðϵÞlþk

�
−
4πμ2

p2

�ðkþlþ4Þϵ=2
; ðA10Þ

where we used
P

m;n¼0 fðmþ nÞ ¼ P
k¼0ðkþ 1ÞfðkÞ. In straight analogy, we write down the nested amplitudes for 1=N3

f.
For the two diagrams in the first line of Eq. (10), the amplitude reads

FIG. 9. Topologies contributing to the beta function at 1=N2
f .
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Π3;nested;diag1 ¼ K6
0

X∞
l;m;n;p;q¼0

ΠðpÞ
1 ΠðqÞ

1 Πðlþmþnþpþqþ4Þ
1 G0ðϵÞlþmþnþpþq

�
−
4πμ2

p2

�ðlþmþnþpþqþ6Þϵ=2

¼ K6
0

X∞
k;p;q¼0

1

2
ðkþ 1Þðkþ 2ÞΠðpÞ

1 ΠðqÞ
1 Πðkþpþqþ4Þ

1 G0ðϵÞkþpþq

�
−
4πμ2

p2

�ðkþpþqþ6Þϵ=2
; ðA11Þ

where we used
P

l;m;n¼0 fðlþmþ nÞ ¼ P
k¼0

1
2
ðkþ 1Þðkþ 2ÞfðkÞ. The two diagrams in the second line of Eq. (10)

result in the amplitude

Π3;nested;diag2 ¼ K6
0

X∞
l;m;n;p;q¼0

ΠðlÞ
1 Πðlþmþnþ2Þ

1 Πðlþmþnþpþqþ4Þ
1 G0ðϵÞlþmþnþpþq

�
−
4πμ2

p2

�ðlþmþnþpþqþ6Þϵ=2

¼ K6
0

X∞
k;l;r¼0

ðkþ 1Þðrþ 1ÞΠðlÞ
1 Πðkþlþ2Þ

1 Πðkþlþrþ4Þ
1 G0ðϵÞkþlþr

�
−
4πμ2

p2

�ðkþlþrþ6Þϵ=2
: ðA12Þ

We close this Appendix with a short discussion of the
diagrams atOð1=N2

fÞwhich are not computed in this paper.
The full set of diagrams contributing to the beta function at
Oð1=N2

fÞ is displayed in Fig. 9. For all diagrams in the first
line in Fig. 9, the corresponding master integral is known:
They all are topologically still two-loop or even one-loop
diagrams. All diagrams in the second line are topologically
three-loop diagrams, except the last one, which is a
topological four-loop diagram. The most challenging dia-
grams are the last two diagrams in the second line in Fig. 9:
The first is a nonplanar topological three-loop diagram with
two bubble chains, while the second one is a topological
four-loop diagram with three bubble chains.

2. Finite parts

We now detail the computation of the finite part of the
regularized two-point function Z0Π1 and its corresponding
Borel transform. We write the amplitude of the two-point
function schematically as

Π1 ¼
3K0

4

X∞
n¼2

�
−
2K0

3

�
n−1 1

nϵn−1
Hðnϵ; ϵÞ; ðA13Þ

where the functionH is regular in nϵ for constant ϵ and in ϵ
for constant nϵ. Note that this is a different representation
of Π1 than in Eq. (A8). In the following, we use the
expansion of H in nϵ as well as in ϵ, which we denote by

Hðnϵ; ϵÞ ¼
X∞
i;j¼0

ðnϵÞiϵjHi;j: ðA14Þ

We plug this into Eq. (A13) and also expand K0 in ϵ. We
obtain

Z0Π1 ¼
3K
4

X∞
n¼2

�
−
2K0

3

�
n−1 1

nϵn−1
Hðnϵ; ϵÞ

¼ 3K
4

X∞
n¼2;j;k;l¼0

�
−
2K
3

�
nþk−1

�
nþ k − 2

k

�

×
ð−1Þknj−1
ϵn−lþk−j−1 Hj;l

¼ 3K
4

X∞
m¼1;l;j¼0

�
−
2K
3

�
m
ϵlþj−mSðj; mÞHj;l; ðA15Þ

where we introduced

Sðj; mÞ ¼
Xm−1

k¼0

�
m − 1

k

�
ð−1Þkðm − kþ 1Þj−1: ðA16Þ

This is computed as

Sð0; mÞ ¼ ð−1Þmþ1

mðmþ 1Þ ; Sðm;mÞ ¼ ðm − 1Þ!;

Sðj;mÞ ¼ 0 ∀ 1 ≤ j < m: ðA17Þ
We denote the finite part, i.e., the limit ϵ → 0, of the
amplitude (A15) as F ð1Þ. This can be computed as

F ð1Þ≡ðZ0Π1Þjϵ0

¼3K
4

X∞
m¼1

Xm
j¼0

�
−
2K
3

�
m
Sðj;mÞHj;m−j

¼3K
4

X∞
m¼1

�
−
2K
3

�
m
� ð−1Þmþ1

mðmþ1ÞH0;mþðm−1Þ!Hm;0

�
:

ðA18Þ

The first part is a convergent series, while the second one is
asymptotic. For this reason, only the second part can
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contribute to singularities in the corresponding Borel
transform. We define the Borel transform here by

F ð1ÞðKÞ ¼
X∞
n¼0

að1Þn Knþ2 → B½F ð1Þ�ðtÞ ¼
X∞
n¼0

að1Þn

n!
tn:

ðA19Þ

We then obtain

B½F ð1Þ� ¼ 3

4

X∞
m¼0

�
−
2

3

�
mþ1

tmHmþ1;0 þ regular

¼ 3

4t

�
H

�
−
2t
3
; 0

�
−Hð0; 0Þ

�
þ regular: ðA20Þ

This is the same formula as in Ref. [35] adapted to our
notation. The function H is given by

H

�
−
2t
3
; 0

�
¼ 8e

1
9
ð3γ−5ÞtM−t

3

ðtþ 3Þðtþ 6Þ
�
27

�
1

ðt − 3Þ2 −
1

t2
þ 1

ðtþ 3Þ2 −
1

ðtþ 6Þ2
�
−
813F2ð1; 2; 2 − t

3
; 3 − t

3
; 3 − t

3
; 1Þ

ðt − 6Þ2ðt − 3Þ

þ 3π2 cot

�
πt
3

�
csc

�
πt
3

��
; ðA21Þ

with Hð0; 0Þ ¼ 1 andM ¼ − 4πμ2

p2 . Note that the singularities at t ¼ 0 and t ¼ 3 in the first and third terms cancel. Only the

term with the hypergeometric function is contributing to the singularity at t ¼ 3. We display the Borel transform of the finite
part in Fig. 5.
The finite parts of the 1=N2

f and 1=N3
f contributions are defined as

F ð2Þ ¼
�
Z0Π2ðZ−1

0 KÞ þ Z1

�
1 − K0

∂
∂K0

�
Π1ðK0Þ

�
ϵ0
;

F ð3Þ ¼
�
Z0Π3ðZ−1

0 KÞ þ Z1

�
1 − K0

∂
∂K0

�
Π2ðK0Þ þ

�
Z2 − K

Z2

Z0

∂
∂K0

þ K2

2

Z2
1

Z3
0

∂2

∂K2
0

�
Π1ðK0Þ

�
ϵ0
: ðA22Þ

No closed-form resummation is possible for these contri-
butions. We perform the series expansion in K numerically
and provide the coefficients in Appendix D. We computed
the nested part of F ð2Þ up to K32 and the nested part of F ð3Þ
up to K28. The Borel transforms are obtained by dividing
out the leading factorial growth. This leads to the following
definition of the respective Borel transforms:

F ð2Þ
nested ¼

X28
n¼0

að2Þn Knþ4 → B½F ð2Þ
nested�ðtÞ

¼
X28
n¼0

að2Þn

Γðnþ 4þ 1=4Þ t
n;

F ð3Þ
nested ¼

X22
n¼0

að3Þn Knþ6 → B½F ð3Þ
nested�ðtÞ

¼
X22
n¼0

að3Þn

Γðnþ 6þ 3=4Þ t
n: ðA23Þ

These Borel transforms are analytically continued using the
conformal-Padé method described in Appendix C and
plotted in Figs. 7 and 8.

APPENDIX B: EXTRACTING PHYSICAL
QUANTITIES FROM THE LARGE-ORDER

BEHAVIOR OF PERTURBATIVE EXPANSION
COEFFICIENTS

A fundamental result in complex analysis (Darboux’s
theorem) states that, for a convergent series generated as an
expansion at the origin (for example), the large-order
behavior of the expansion coefficients is related to the
behavior of the function in the vicinity of its singularities.
The singularity closest to the origin determines the radius
of convergence, and further finer details of the behavior of
the function near this singularity are encoded in the
subleading large-order behavior of the expansion coeffi-
cients at the origin [30–32]. Concretely, if a function
fðzÞ has the following branch-cut expansion near a
singularity z0:

fðzÞ ∼ ϕðzÞ
�
1 −

z
z0

�
−p

þ ψðzÞ; z → z0; ðB1Þ

where ϕðzÞ and ψðzÞ are analytic near z0, then the Taylor
expansion coefficients of fðzÞ at the origin have large-order
growth:
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bn ∼
1

zn0

�
nþ p − 1

n

��
ϕðz0Þ −

ðp − 1Þz0ϕ0ðz0Þ
ðnþ p − 1Þ

þ ðp − 1Þðp − 2Þz20ϕ00ðz0Þ
2!ðnþ p − 1Þðnþ p − 2Þ − � � �

�
: ðB2Þ

If the singularity is logarithmic,

fðzÞ ∼ ϕðzÞ ln
�
1 −

z
z0

�
þ ψðzÞ; z → z0; ðB3Þ

where ϕðzÞ and ψðzÞ are analytic near z0, then the Taylor
expansion coefficients of fðzÞ at the origin have large-order
growth:

bn ∼
1

zn0

1

n

�
ϕðz0Þ −

z0ϕ0ðz0Þ
ðn − 1Þ þ z20ϕ

00ðz0Þ
ðn − 1Þðn − 2Þ − � � �

�
:

ðB4Þ

These results can be used in reverse to find the singularity
location z0, the exponent p (or to detect logarithmic
behavior), and properties of the coefficient function
ϕðzÞ, from the large-order growth of the expansion coef-
ficients at the origin.
We implemented this strategy on the perturbative expan-

sion of βð2ÞnestedðKÞ, with expansion coefficients bn. A simple
ratio test suggests that bnþ1=bn → 1=3; see Fig. 1. This can
be refined using Richardson extrapolation to accelerate the
convergence of the ratio test. Richardson extrapolation is
based on the ansatz [37]

an ¼ aþ A
n
þ B
n2

þ C
n3

þ � � � ; ðB5Þ

where a is the anticipated convergent value. First-order
Richardson extrapolation is obtained by setting all param-
eters beyond 1=n to zero, i.e., B ¼ C ¼ � � � ¼ 0. The
evaluation at n and nþ 1 yields

Rð1Þan ≡ a ¼ ðnþ 1Þanþ1 − nan: ðB6Þ

Similarly, second-order Richardson extrapolation is
obtained by setting the parameters beyond 1=n2 to zero,
i.e., C ¼ � � � ¼ 0, yielding

Rð2Þan ≡ a ¼ 1

2
ððnþ 2Þ2anþ2 − 2ðnþ 1Þ2anþ1 þ n2anÞ:

ðB7Þ

In Fig. 1, we display the effects of the second-order
Richardson extrapolation on the enhancement of the con-
vergence of the ratio test series, clearly indicating con-
vergence to 1=3, indicating the existence of a singularity at
K� ¼ 3, and, hence, a radius of convergence equal to 3.
Given z0, we can now fit the growth of the coefficients bn

to the branch-cut forms in Eqs. (B2) and (B4). This can be
done by studying the subleading behavior of the ratio test.
This reveals that the ratio behaves as

bnþ1

bn
∼
1

3
−

2

3n
þ � � � ; n → ∞; ðB8Þ

where the precise subleading coefficient − 2
3

can be
extracted using Richardson acceleration once again. This
indicates logarithmic behavior, as in Eq. (B4). Now we can
probe this further to deduce information about the analytic
function ϕðzÞ multiplying the logarithmic branch cut.
The result (B8) implies that ϕð3Þ ¼ 0 and ϕ0ð3Þ ¼ 1=6.
Analysis of further subleading corrections indicates that all

FIG. 10. Large-order behavior after taking two derivatives of the nested beta function. Left: The ratio test reveals that the radius
of convergence is K ¼ 3. Right: The prefactor of the leading large-order behavior is determined to be − 1

18·3n, indicating a simple pole
at K ¼ 3.
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higher derivatives of ϕðzÞ vanish at z ¼ 3. This leads to the
result for the logarithmic branch cut in Eq. (12). To confirm
this result, we plot in Fig. 1 a precise test of the deduced
large-order behavior of the bn coefficients in Eq. (11). The
agreement is excellent. Note that with 44 coefficients we
can clearly distinguish between bn ∼ − 1

2
1
3n

1
nðn−1Þ and the

cruder estimate bn ∼ − 1
2
1
3n

1
n2. An interesting further con-

sistency test of the logarithmic form of the singularity is to

differentiate (twice) the nested beta function βð2ÞnestedðKÞ and
then apply the Darboux analysis. The resulting function has
a simple pole, which is easy to detect with a ratio test; see
Fig. 10 for the convergence of the ratio test in this case.

APPENDIX C: PADÉ VERSUS PADÉ-
CONFORMAL

Padé approximants provide well-known analytic contin-
uations of truncated series expansions and are widely used
in physical applications [37]. It has further been observed
empirically that combining Padé approximants with con-
formal maps often yields further improved precision
[33,38,39]. This improved precision is explained and
quantified in Ref. [36]. The Padé-conformal analytic
continuation procedure for a truncated series in the pres-
ence of a branch cut is (i) first, make a conformal trans-
formation from the cut complex plane to the unit disk;
(ii) second, reexpand to the same order inside the conformal
disk; (iii) third, make a Padé approximation to the resulting
series inside the disk; (iv) finally, map back to the original
cut plane with the inverse conformal transformation. This
procedure is algorithmically straightforward and is prov-
ably exponentially more precise than just Padé if there is a
cut [33,36].
In the presence of a single cut (interestingly, it does not

matter what the precise nature of the cut is, just where it is),
the explicit conformal map from the K plane cut along the
positive real axis with a branch point atK�, together with its
inverse, is

z ¼
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − K

K�

q

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − K

K�

q ↔ K ¼ 4K�z
ð1þ zÞ2 : ðC1Þ

The branch cut itself is mapped to the unit circle in the
complex z plane. Given K�, which we have determined to
be 3, it is now a completely algorithmic procedure to
implement this Padé-conformal extrapolation. The result is
much more precise than just making a Padé approximation,
especially in the vicinity of the branch point and branch cut.

The results are shown in Figs. 3 and 11 for βð2ÞnestedðKÞ and in
Fig. 4 for βð3ÞnestedðKÞ.
In the presence of two cuts along the real axis, as occurs

for the Borel analysis in Sec. IV, we use the conformal map
from the Borel t plane cut along the positive real axis
t ∈ ½b;∞Þ and along the negative real axis t ∈ ð−∞;−a�,
to the unit disk in the z plane:

z ¼
1 −

ffiffiffiffiffiffiffiffiffiffi
aðb−tÞ
bðaþtÞ

q

1þ
ffiffiffiffiffiffiffiffiffiffi
aðb−tÞ
bðaþtÞ

q ↔ t ¼ 4abz
að1þ zÞ2 þ bð1 − zÞ2 : ðC2Þ

For the expansions of the finite parts in Appendix A 2, the
leading singularities are at t ¼ þ3 and t ¼ −6, so we
choose b ¼ 3 and a ¼ 6. We map the Borel transform to
the unit conformal disk in the z plane, reexpand, and map
back again to the Borel t plane. The resulting plots for the
1=N2

f and 1=N3
f Borel transforms are shown in Figs. 7 and

8, respectively. Note that the conformal mapping is crucial
for revealing the existence of subleading Borel singular-
ities [33,36].

APPENDIX D: BETA FUNCTIONS
AND FINITE PARTS

In this Appendix, we explicitly display the numerical
coefficients of the nested QED beta functions and the finite
parts at Oð1=N2

fÞ and Oð1=N3
fÞ. These coefficients are

collected in the ancillaryMathematica file with 50 digits of
precision [40]. They read

FIG. 11. Conformal Padé approximant of the nested QED beta
function at Oð1=N2

fÞ compared to the exact result and a Padé
approximant of the same order.
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βð2Þnested ¼ −0.0305K4 þ 0.0335K5 − 0.00335K6 − 0.00499K7 þ 0.00112K8 þ 0.000344K9 − 0.000125K10

− 9.66 × 10−6K11 þ 7.87 × 10−6K12 − 2.95 × 10−7K13 − 2.94 × 10−7K14 þ 3.54 × 10−8K15 þ 6.29 × 10−9K16

− 1.55 × 10−9K17 − 3.97 × 10−11K18 þ 3.70 × 10−11K19 − 2.82 × 10−12K20 − 6.26 × 10−13K21

þ 4.84 × 10−14K22 − 9.38 × 10−15K23 − 4.43 × 10−15K24 − 9.04 × 10−16K25 − 2.95 × 10−16K26

− 9.48 × 10−17K27 − 2.89 × 10−17K28 − 8.96 × 10−18K29 − 2.79 × 10−18K30 − 8.70 × 10−19K31

− 2.72 × 10−19K32 − 8.52 × 10−20K33 − 2.67 × 10−20K34 − 8.40 × 10−21K35 − 2.64 × 10−21K36

− 8.34 × 10−22K37 − 2.63 × 10−22K38 − 8.33 × 10−23K39 − 2.64 × 10−23K40 − 8.36 × 10−24K41

− 2.65 × 10−24K42 − 8.43 × 10−25K43 − 2.68 × 10−25K44 ðD1Þ

and

βð3Þnested ¼ −0.0111K6 þ 0.0248K7 − 0.0113K8 − 0.00420K9 þ 0.00379K10 þ 0.0000135K11 − 0.000556K12

þ 0.0000801K13 þ 0.0000461K14 − 0.0000128K15 − 2.04× 10−6K16 þ 1.08× 10−6K17 þ 8.46× 10−9K18

− 5.85× 10−8K19 þ 5.18× 10−9K20 þ 2.08× 10−9K21 − 3.91× 10−10K22 − 4.17× 10−11K23 þ 1.68× 10−11K24

− 8.47× 10−14K25 − 4.73× 10−13K26 þ 4.38× 10−14K27 þ 9.08× 10−15K28 − 1.53× 10−15K29

þ 5.72× 10−18K30 þ 5.60× 10−17K31 þ 3.28× 10−18K32: ðD2Þ

It is instructive to compare the first few coefficients of these expressions to the complete five-loop QED β function
computed in Refs. [22,23]. This allow us to estimate the nested diagrams contribution to the total result order by order in the
loop expansion. We find that the K4, K5, and K6 coefficients of βð2Þnested constitute roughly 50%, 20%, and 1% of the
corresponding total three-, four-, and five-loop coefficient, respectively. Moreover, the K6 coefficient of βð3Þnested constitutes
less than 1% of the five-loop coefficient. This result is expected, since the number of diagrams with different topologies that
we neglect grows factorially when increasing the loop order. This is also in accord with the fact that the full loop expansion
is asymptotic and, therefore, not convergent.

In Eq. (14), we defined β̃ð2Þnested, which is the nested beta function at Oð1=N2
fÞ with the leading branch-cut behavior

subtracted. The coefficients of this function are given by

β̃ð2Þnested ¼ −0.0300K4 þ 0.0336K5 − 0.00333K6 − 0.00498K7 þ 0.00112K8 þ 0.000344K9 − 0.000125K10

− 9.64 × 10−6K11 þ 7.88 × 10−6K12 − 2.93 × 10−7K13 − 2.93 × 10−7K14 þ 3.55 × 10−8K15 þ 6.34 × 10−9K16

− 1.53 × 10−9K17 − 3.55 × 10−11K18 þ 3.83 × 10−11K19 − 2.44 × 10−12K20 − 5.13 × 10−13K21

þ 8.29 × 10−14K22 þ 1.11 × 10−15K23 − 1.22 × 10−15K24 þ 7.98 × 10−17K25 þ 7.87 × 10−18K26

− 1.39 × 10−18K27 þ 2.34 × 10−20K28 þ 1.05 × 10−20K29 − 8.85 × 10−22K30 − 2.15 × 10−23K31

þ 7.43 × 10−24K32 − 3.11 × 10−25K33 − 2.62 × 10−26K34 þ 3.23 × 10−27K35 − 4.18 × 10−29K36

− 1.36 × 10−29K37 þ 9.06 × 10−31K38 þ 1.30 × 10−32K39 − 4.37 × 10−33K40 þ 1.61 × 10−34K41

þ 8.47 × 10−36K42 − 9.53 × 10−37K43 þ 1.48 × 10−38K44: ðD3Þ

We display the finite parts at the RG scale μ ¼ −p2=ð4πÞ, where p2 is the external momentum. The finite part defined as in
Eq. (A22) at Oð1=NfÞ reads
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F ð1Þ ¼ 0.201K2 þ 0.140K3 þ 0.0159K4 þ 0.0726K5 þ 0.0754K6 þ 0.177K7 þ 0.353K8 þ 0.957K9 þ 2.72K10

þ 8.94K11 þ 31.9K12 þ 126K13 þ 536K14 þ 2.47 × 103K15 þ 1.22 × 104K16 þ 6.45 × 104K17

þ 3.62 × 105K18 þ 2.15 × 106K19 þ 1.35 × 107K20 þ 8.97 × 107K21 þ 6.24 × 108K22 þ 4.55 × 109K23

þ 3.47 × 1010K24 þ 2.76 × 1011K25 þ 2.29 × 1012K26 þ 1.98 × 1013K27 þ 1.77 × 1014K28 þ 1.65 × 1015K29

þ 1.59 × 1016K30 þ 1.59 × 1017K31 þ 1.63 × 1018K32 þ 1.74 × 1019K33 þ 1.91 × 1020K34 þ 2.16 × 1021K35

þ 2.51 × 1022K36 þ 3.00 × 1023K37 þ 3.70 × 1024K38 þ 4.68 × 1025K39 þ 6.07 × 1026K40 þ 8.08 × 1027K41

þ 1.10 × 1029K42 þ 1.54 × 1030K43 þ 2.20 × 1031K44 þ 3.23 × 1032K45: ðD4Þ

The nested contribution at Oð1=N2
fÞ reads

F ð2Þ
nested ¼ 0.200K4 þ 0.196K5 þ 0.369K6 þ 0.730K7 þ 1.92K8 þ 5.11K9 þ 16.2K10 þ 55.2K11 þ 209K12 þ 857K13

þ 3.80 × 103K14 þ 1.81 × 104K15 þ 9.24 × 104K16 þ 5.01 × 105K17 þ 2.89 × 106K18 þ 1.76 × 107K19

þ 1.13 × 108K20 þ 7.65 × 108K21 þ 5.43 × 109K22 þ 4.03 × 1010K23 þ 3.12 × 1011K24 þ 2.53 × 1012K25

þ 2.13 × 1013K26 þ 1.86 × 1014K27 þ 1.69 × 1015K28 þ 1.60 × 1016K29 þ 1.56 × 1017K30 þ 1.57 × 1018K31

þ 1.64 × 1019K32; ðD5Þ

while the nested contribution to the finite part at Oð1=N3
fÞ is

F ð3Þ
nested ¼ 0.300K6 þ 0.760K7 þ 2.29K8 þ 7.71K9 þ 26.9K10 þ 103K11 þ 423K12 þ 1.87 × 103K13 þ 8.83 × 103K14

þ 4.45 × 104K15 þ 2.38 × 105K16 þ 1.35 × 106K17 þ 8.10 × 106K18 þ 5.12 × 107K19 þ 3.40 × 108K20

þ 2.37 × 109K21 þ 1.73 × 1010K22 þ 1.32 × 1011K23 þ 1.05 × 1012K24 þ 8.67 × 1012K25 þ 7.46 × 1013K26

þ 6.66 × 1014K27 þ 6.17 × 1015K28: ðD6Þ

The coefficients of all finite parts grow factorially, as expected. From the above expressions for the finite parts, we can
already see that the factorial rate of growth of the coefficients is comparable at Oð1=NfÞ, Oð1=N2

fÞ, and Oð1=N3
fÞ.

Moreover, since all the coefficients are positive, we deduce that the leading Borel singularity should be on the positive real
axis. Indeed, our further analysis shows that this leading singularity is at t ¼ 3, for each order of the largeNf expansion. See
Figs. 5, 7, and 8.
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