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We use p̄p and eþe− annihilation data to further strengthen lower bounds on the partial lifetimes for the
baryon-number-violating dinucleon decays nn → eþe− and nn → μþμ−. These bounds are of interest since
baryon number violation is expected to occur in nature and is predicted in many theories beyond the
Standard Model.
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I. INTRODUCTION

In Ref. [1], lower limits on the partial lifetimes τ=BR≡
Γ−1 for a number of ΔB ¼ −2, ΔL ¼ 0 dinucleon decays
were presented, including nn → eþe−, nn → μþμ−,
nn → νlν̄l, and np → lþνl, where l ¼ e, μ, τ. (Here,
for the decay of an initial state to a given final state, Γ and
BR denote the decay rate and branching ratio, and τ denotes
the mean life of the initial state.) The lower bounds
obtained in [1] were substantially stronger than limits from
direct experimental searches. In this paper we use data on
p̄p and eþe− annihilation to further improve the lower
limits on the partial lifetimes for nn → eþe− and nn →
μþμ− decays.
The violation of baryon number, B, is expected to occur

in nature, because this is one of the necessary conditions for
generating the observed baryon asymmetry in the universe
[2]. Baryon number violation (BNV) is, indeed, predicted
in many ultraviolet extensions of the Standard Model (SM),
such as grand unified theories. A number of dedicated
experiments have been carried out since the early 1980s to
search for proton decay (and the decay of neutrons bound in
nuclei). These experiments have obtained null results and
have set stringent lower limits on the partial lifetimes for
such ΔB ¼ −1 baryon-number-violating nucleon decays.
A particularly strong lower bound, τ=BR > 1.6 × 1034 yrs,
has been set by the Super-Kamiokande (SK) experiment for
the decay channel p → eþπ0 [3], which can be clearly
identified in the water Cherenkov detector of this

experiment. (This and other experimental limits are quoted
at the 90% confidence level, CL.)
A different type of baryon number violation has also

received attention, namely n − n̄ oscillations, which have
jΔBj ¼ 2 [4–19]. It was observed early on that n − n̄
oscillations might provide the source of baryon number
violation necessary for baryogenesis [4]. We briefly review
some background and basic notation (see also [1]). We
denote the n − n̄ transition amplitude as hn̄jHeff jni≡ δm.
In (field-free) vacuum, the Hamiltonian matrix has diagonal
elements hnjHeff jni ¼ hn̄jHeff jn̄i ¼ mn − iðλn=2Þ, where
λn ¼ 1=τn is the decay rate of a free neutron. The diago-
nalization of this matrix yields the mass eigenstates jn�i ¼
ðjni � jn̄iÞ= ffiffiffi

2
p

, with eigenvalues m� ¼ ðmn � δmÞ−
iλn=2. Starting with a pure jni state at t ¼ 0, there is then
a probability for this to be an jn̄i at time t > 0 given by
jhn̄jnðtÞij2 ¼ ½sin2ðt=τnn̄Þ�e−λnt, where τnn̄ ¼ 1=jδmj. An
experiment at the Institut Laue-Langevin searched for
n − n̄ oscillations using a neutron beam from a reactor
and obtained the lower bound τnn̄ > 0.86 × 108 sec, i.e.,
jδmj < 0.77 × 10−29 MeV [11].
The presence of a nonzero transition amplitude

hn̄jHeff jni means that a physical neutron state jniphys: ¼
cos θmjni þ sin θmjn̄i in a nucleus has an admixture of jn̄i.
This admixture has a very small coefficient,

sin θm ≃ θm ∼
jδmj

½ðVn;R − Vn̄;RÞ2 þ V2
n̄;I�1=2

≲ 10−31; ð1:1Þ

where Vn ¼ Vn;R and Vn̄ ¼ Vn̄;R þ iVn̄;I denote the po-
tentials of the n and n̄ in the nucleus. As reflected by
the imaginary term iVn̄;I in Vn̄, the small admixture
of jn̄i in jniphys: leads to annihilation with a neighboring
neutron or proton in the nucleus, and thus to ΔB ¼ −2
dinucleon decays. Owing to the dominance of strong over
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electroweak interactions, these dinucleon decays yield
mainly hadronic final states, typically comprised of multi-
ple pions. The small coefficient θm is compensated by the
large number ∼1033 of nucleons in a nucleon decay
detector, so nucleon decay experiments are also sensitive
to these ΔB ¼ −2 dinucleon decays (a recent review
is [16]).
Because the operators that contribute to baryon-number-

violating decays of individual nucleons are four-fermion
operators with coefficients of mass dimension−2, while the
operators that contribute to n − n̄ transitions and the
associated dinucleon decays are six-quark operators with
coefficients of mass dimension −5, it follows that, if the
physics responsible for baryon number violation were
characterized by a single mass scale, MBNV , then nucleon
decays would be much more important than n − n̄ oscil-
lations as a manifestation of baryon number violation.
However, there are examples of beyond-Standard-Model
(BSM) physics in which (because of exact or approximate
symmetries in the models) BNV nucleon decay is absent
[6] or is suppressed well below observable levels [12], so
that n − n̄ oscillations and the associated ΔB ¼ −2 dinu-
cleon decays are the main manifestation of baryon number
violation and can occur at levels comparable to current
bounds. Some further studies of such models include
[15,20,21].
There is thus strong motivation to investigate the

implications of current experimental limits on ΔB ¼ −2
dinucleon decays. Using a minimal effective field theory
approach, Ref. [1] derived approximate relations between
the rates for dinucleon decays to hadronic final states and to
various ΔL ¼ 0 dilepton final states and combined these
with experimental lower bounds on the partial lifetimes for
these hadronic dinucleon decays to infer rough lower
bounds on the dinucleon decays to dileptons. In the present
work we shall use p̄p and eþe− annihilation data to
strengthen the lower bounds obtained in Ref. [1] on the
partial lifetimes for the dinucleon decays nn → lþl−,
where l denotes e or μ.

II. BACKGROUND

We first recall some relevant background. In the presence
of a nonzero n − n̄ transition amplitude δm and the asso-
ciated dinucleon decays, the rate for matter instability is

Γm:i: ≡ 1

τm:i:
≃

2ðδmÞ2jVn̄Ij
ðVnR − Vn̄RÞ2 þ V2

n̄I
: ð2:1Þ

It follows that τm:i: ∝ ðδmÞ−2 ¼ τ2nn̄. Explicitly, τm:i: ¼
Rτ2nn̄, where the factor R ∼Oð102Þ MeV ≃ 1023 sec−1

depends on the nucleus. The SK experiment has set the
best limit on this type of matter instability [19],
τm:i: > 1.9 × 1032 yr. Antiproton annihilation on hydrogen
yields multipion final states with average multiplicities of

∼5 [22,23]. Monte Carlo simulations that account for the
absorption of n̄ annihilation pions on their way out of the
16O nucleus have been carried out in Ref. [19]. These
simulations yield considerably lower average pion multi-
plicities, namely 3.5 and 2.2 for total and charged pion
multiplicities resulting from an n̄ annihilation in an 16O
nucleus [19]. Consequently, there is a substantially larger
probability for two-pion final states to occur in antinucleon-
nucleon annihilation in the 16O nuclei in the SK detector
than in p̄p annihilation. The most restrictive lower bound
on the partial lifetime of an exclusive nn dinucleon decay is
for dineutrons in 16O [24], namely

Γ−1
nn→2π0

> 4.04 × 1032 yr: ð2:2Þ

The leading contribution to the decay nn → lþl− is
described by a Feynman diagram in which the jn̄i compo-
nent in an initial jniphys: annihilates with a neighboring n,
producing a virtual photon γ in the s-channel, which then
materializes into the final-state lþl− pair. There is also a
weak neutral-current contribution from a diagram with a
virtual Z boson in the s-channel, but this is heavily
suppressed by the factor ð2mNÞ2=m2

Z < 10−3. Let us
denote the four-momentum of the virtual photon as q
and the four-momenta of the l− and lþ as p2 and p1, with
q ¼ p1 þ p2 and q2 ¼ s ¼ ð2mNÞ2. Neglecting the heavily
suppressed weak neutral-current contribution, and neglect-
ing small effects due to Fermi motion, the amplitude for
nn → lþl− is

Ann→lþl− ¼ ðδmÞe2h0jJλemjnn̄i
1

q2
½ūðp2Þγλvðp1Þ�; ð2:3Þ

where δm represents the initial n − n̄ transition amplitude,
and e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

4παem
p

and Jλem denote the electromagnetic
coupling and current.
It follows that

Γnn→lþl− ∼ Pe4
Rðlþl−Þ
2

Rð2π0Þ
2

Γnn→2π0

∼ Pe4Γnn→2π0 ; ð2:4Þ

where P denotes the probability that the total angular
momentum of the initial nn state is greater than 0 and
the initial state has the appropriate quantum numbers to
produce a nonzero amplitude Ann→lþl− . Note that a
J ¼ 0 initial nn state yields a vanishing coupling
∝ qλ½v̄ðp2Þγλuðp1Þ� ¼ 0 with the lepton electromagnetic
current bilinear. This estimate made use of the fact that the

ratio of two-body phase space factors Rðlþl−Þ
2 =Rð2π0Þ

2 is very
close to unity for both l ¼ e and l ¼ μ. Combining (2.4)
with the experimental lower limit (2.2) for a dineutron in an
16O nucleus, Ref. [1] then obtained the rough estimate for
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the lower bound on the partial lifetime (i.e., inverse decay
rate Γ−1) for nn → lþl− in an 16O nucleus:

Γ−1
nn→lþl− ≳ P−1ð5 × 1034 yrÞ

≳ 5 × 1034 yr for l ¼ e; μ: ð2:5Þ

III. APPLICATION OF p̄p AND e+ e −
ANNIHILATION DATA

We next improve the rough lower limit (2.5) in [1] by
using p̄p and eþe− annihilation data. For a given reaction
or decay, let si denote an initial state and let sa and sb

denote two (kinematically allowed) final states. It will be
convenient to introduce the compact notation

RðsiÞ
sa=sb

≡ Γsi→sa

Γsi→sb

¼ BRðsi → saÞ
BRðsi → sbÞ

: ð3:1Þ

We will calculate Rðn̄nÞ
lþl−=2π0 as an input for RðnnÞ

lþl−=2π0. Our

input data will be from experiments on p̄ annihilation.

Therefore, it will be useful to reexpress the ratio Rðn̄nÞ
lþl−=2π0

in terms of the ratio Rðp̄pÞ
lþl−=2π0 multiplied by appropriate

factors. Thus, for l ¼ e, μ, we write

Rðn̄nÞ
lþl−=2π0 ≡

Γn̄n→lþl−

Γn̄n→2π0
¼

2
4
Γn̄n→lþl−

Γp̄p→lþl−

Γn̄n→2π0

Γp̄p→2π0

3
5Γp̄p→lþl−

Γp̄p→2π0
¼

2
4
Γn̄n→lþl−

Γp̄p→lþl−

Γn̄n→2π0

Γp̄p→2π0

3
5BRðp̄p → lþl−Þ

BRðp̄p → 2π0Þ : ð3:2Þ

From the isospin invariance of strong interactions, it
follows that

Γn̄n→2π0

Γp̄p→2π0
¼ 1; ð3:3Þ

up to small corrections such as those due to electro-
magnetism.
Next, we focus on the case l ¼ e and make use of

experimentally measured quantities. Since photon
exchange in the s-channel makes by far the dominant
contribution to the reactions n̄n → eþe− and p̄p → eþe−
and since electromagnetic reactions are invariant under
time reversal, we will use experimental data on the
reactions eþe− → p̄p and eþe− → n̄n to determine the
ratio Γn̄n→eþe−=Γp̄p→eþe− in the l ¼ e special case of
Eq. (3.2). The eþe− → p̄p cross section at center-of-mass
energies

ffiffiffi
s

p
near threshold has been measured in a number

of experiments, e.g., at Orsay [25], Frascati [26], BEPC
[27], SLAC [28], and Novosibirsk [29,30]. For

ffiffiffi
s

p
beyond

the kinematic zero at threshold, this cross section is
relatively flat in the interval I∶ 1.9 <

ffiffiffi
s

p ≲ 2.0 GeV, with
the value

σðeþe− → p̄pÞ ≃ 0.9� 0.1 nb: ð3:4Þ

The cross section σðeþe− → n̄nÞ was measured in an early
experiment by the FENICE Collaboration at ADONE [31],
and more recently in experiments at Novosibirsk, with the
result [29,30,32]

σðeþe− → n̄nÞ ≃ 0.85� 0.20 nb ð3:5Þ
for

ffiffiffi
s

p
∈ I. The uncertainties listed here are estimates

based on the comparison of values measured at a given
ffiffiffi
s

p

by the different experiments, as weighted by their error
bars. In passing, it is interesting to note that the eþe− → p̄p
and eþe− → n̄n cross sections in this energy interval are
nearly equal, to within experimental uncertainties, despite
the fact that the proton is charged while the neutron is
neutral. (A review of results on eþe− → p̄p and eþe− →
n̄n up to 2013 is given in [33].) Using time reversal
invariance, we thus obtain

Γn̄n→eþe−

Γp̄p→eþe−
≃
σeþe−→n̄n;I

σeþe−→p̄p;I
≃ 0.9; ð3:6Þ

where the subscript I indicates that the cross sections on the
right-hand side of (3.6) were measured in the interval

ffiffiffi
s

p
∈

I near threshold, but beyond the kinematic falloff at
threshold.
Finally, we need to determine the third ratio in the

l ¼ e special case of Eq. (3.2), BRðp̄p → eþe−Þ=
BRðp̄p → 2π0Þ. Measurements of the numerator of this
ratio with stopped antiprotons include a CERN experiment
that obtained BRðp̄p → eþe−Þ ¼ ð3.2� 0.9Þ × 10−7 [34]
and the subsequent PS170 experiment at LEAR (Low
Energy Antiproton Annihilation Ring) at CERN, which
obtained the more accurate value [35]

BRðp̄p → eþe−Þ ¼ ð3.58� 0.10Þ × 10−7: ð3:7Þ

Several experiments have measured BRðp̄p → 2π0Þ for
p̄ annihilation at rest, as reviewed, e.g., in [22,23]; in
particular, the Crystal Barrel experiment at LEAR obtained
the result [36]

BRðp̄p → 2π0Þ ¼ ð6.93� 0.43Þ × 10−4 ð3:8Þ
for p̄ annihilation in liquid hydrogen. From isospin
invariance, this value would also hold for the hypothetical
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annihilation of an n̄ on a free neutron to yield a 2π0 final
state. Since there is no phase-space suppression of the
p̄p → 2π0 reaction, a remark on the small branching ratio
(3.8) is in order. The j2π0i state has a wave function of the
form j2π0i ¼ χIχL, where I and L denote the isospin and
relative orbital angular momentum of the pion pair,
respectively. This wave function must be symmetric under
exchange of identical bosons. Since the isospin Clebsch-
Gordon coefficient hIaIbIa3Ib3jII3i ¼ h1100j10i ¼ 0, it
follows that j2π0i has I ¼ 0 or I ¼ 2, both of which are
even, so χI is symmetric. Consequently, χL must also be
symmetric, and hence Lmust be even. Therefore, this j2π0i
state has JPC ¼ Jþþ with total angular momentum
J ¼ L ¼ even. An jN̄Ni state, where N ¼ p or N ¼ n,
with nearly minimal center-of-mass energy

ffiffiffi
s

p
≃ 2mN

(e.g., a jp̄pi state resulting from a stopping antiproton
beam incident on a hydrogen target) preferentially has
L ¼ 0, and hence P ¼ −ð−1ÞL ¼ −1. Thus, there is a
mismatch between the parity of the dominant, ground-state
component in the initial jN̄Ni state and the parity of the
j2π0i final state. The N̄N → 2π0 reaction can proceed, but
from an initial jN̄Ni state with S ¼ 1 and a kinematically
dispreferred L ¼ 1, coupled to J ¼ 0 (or J ¼ 2). This
parity mismatch and resultant suppression contribute to the
small value of the branching ratio in (3.8).
Our application of these results is for n̄ annihilation in an

oxygen nucleus in the water of the SK detector, and for this
case, one must take into account the fact that the hadronic
products of the annihilation reaction undergo reactions and
absorption while propagating through the interior of the 16O
nucleus. This has the effect of increasing the branching
ratios for two-pion channels relative to the branching ratios
for higher-multiplicity pion channels. A Monte Carlo study
of the effect of this intranuclear propagation on the
branching ratios for various hadronic products of n̄n
annihilation was carried out by the SK experiment with
the resultant estimate, for n̄n annihilation in 16O [19]:

BRðn̄n → 2π0Þ16O ¼ 1.5 × 10−2: ð3:9Þ

Since the ratios of two-body phase space factors

Rðeþe−Þ
2 =Rð2π0Þ

2 and Rðμþμ−Þ
2 =Rð2π0Þ

2 are nearly equal (with
both being quite close to unity), our results can also be

applied to the ratio Rðn̄nÞ
μþμ−=2π0 . Substituting the various

inputs into the right-hand side of Eq. (3.2), we obtain
the result

Γn̄n→lþl−

Γn̄n→2π0;16O
≃ 2 × 10−5 for l ¼ e; μ: ð3:10Þ

We next use this experimentally derived ratio forΔB ¼ 0
n̄n annihilation processes to obtain an estimate of the ratio
of ΔB ¼ −2 processes Γnn→lþl−=Γnn→2π0;16O. The

underlying n − n̄ transition matrix element factor ðδmÞ2
divides out in this ratio. The further analysis thus involves a
study of the degree of overlap between the jn̄ni state
immediately following the n − n̄ transition (or equivalently,
the state jn̄ni resulting from the combination of two jniphys:
states) and the two final states. Since the annihilation
occurs on the length scale of ∼1 fm, a reasonable approxi-
mation is to consider the initial jnni and jn̄ni states by
themselves, independent of the other nucleons on the
nucleus. The wave function of the jnni state has the form
jnni ¼ ϕIϕSϕL, where I, S, and L denote the isospin, spin,
and orbital angular momentum of the nn dineutron. This
wave function must be antisymmetric under interchange of
identical fermions, so since I ¼ 1 (symmetric), it follows
that the product ϕSϕL must be antisymmetric under this
interchange. The energetically preferred configuration is
the one with lowest energy, i.e., the ground state, which has
L ¼ 0, so ϕL is symmetric, and therefore the neutron spins
must combine antisymmetrically to produce S ¼ 0. The
six-quark operator in the effective Lagrangian that mediates
the n − n̄ transition is a Lorentz scalar and hence does not
change S or L, so the jn̄ni state immediately after this
transition also has S ¼ L ¼ 0 and hence, in standard
spectroscopic notation, is a 1S0 state. For a fermion-
antifermion pair, P ¼ −ð−1ÞL and C ¼ ð−1ÞLþS, so this
jn̄ni state has JPC ¼ 0−þ. This cannot couple directly to the
photon, which has JPC ¼ 1−−, so there is a mismatch in
both J and C. The requisite JPC can occur as the result of a
spin flip (SF) from S ¼ 0 to S ¼ 1. We incorporate the
probability for this in a factor PSF. As discussed above, for
the jnni → jn̄ni → j2π0i transition, we use the SK
Monte Carlo results.
We thus obtain the improved estimate

Γnn→lþl− ¼ð2×10−5ÞPSFΓnn→2π0 for l¼e;μ: ð3:11Þ

Combining our result (3.11) with the experimental lower
limit on Γ−1

nn→2π0
in Eq. (2.2), we infer the lower bound

Γ−1
nn→lþl− ≳ ð2 × 1037ÞP−1

SF yrs

> 2 × 1037 yrs for l ¼ e; μ; ð3:12Þ

where the second line in the inequality (3.12) is a
conservative limit that just uses the fact that the spin-flip
probability PSF < 1. As was true of the bounds derived in
[1] and even more so here, this is much stronger than the
direct lower bounds on the partial lifetimes (from the SK
experiment) [37]:

Γ−1
nn→eþe− > 4.2 × 1033 yr ð3:13Þ

and

Γ−1
nn→μþμ− > 4.4 × 1033 yr: ð3:14Þ
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IV. CONCLUSIONS

In this paper, using experimental data on p̄p and
eþe− annihilation, we have obtained strengthened
lower bounds on the partial lifetimes for the dinucleon
decays nn → eþe− and nn → μþμ−. Our bounds improve
upon those in Ref. [1] and are considerably stronger
than direct experimental lower bounds on these decays.
These bounds should thus be of value in the continuing
search for baryon-number violation, which will be

carried on to higher sensitivity at the future Hyper-
Kamiokande experiment and Deep Underground
Neutrino Experiment (DUNE).
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