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We discuss the lattice formulation of the ’t Hooft surface, that is, the two-dimensional surface operator of
a dual variable. The ’t Hooft surface describes the world sheets of topological vortices. We derive the
formulas to calculate the expectation value of the ’t Hooft surface in the multiple-charge lattice Abelian
Higgs model and in the lattice non-Abelian Higgs model. As the first demonstration of the formula, we
compute the intervortex potential in the charge-2 lattice Abelian Higgs model.
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I. INTRODUCTION

Topological orders are quantum phases beyond the
Landau theory of symmetry breaking [1]. Local order
parameters fail to capture their manifestation. Some topo-
logical orders are characterized by long-range quantum
entanglements exhibiting fractional excitations and topo-
logical degeneracy [2–8]. One of the well-established
approaches is a higher-form symmetry [9–12]. Order
parameters for the generalized global symmetries are
extended objects, e.g., loop, surface, and so on. Their
topological natures make it possible to classify the topo-
logical orders.
The most famous example of the nonlocal order para-

meters is a loop operator. For instance, in SUðNÞ gauge
theory, the Wilson loop [13] is defined by the path-ordered
product of the loop integral,

W½C� ¼ Pei
H
C
AμðxÞdxμ : ð1Þ

Since the gauge field Aμ couples to electrically charged
particles, theWilsonloopdescribes theworld linesofcharged
particles. The SUðNÞ gauge theory also has magnetically
charged particles, namely, magnetic monopoles. The world
lines of magnetic monopoles define the ’t Hooft loop [14].
Using the dual field Ãμ, the ’t Hooft loop is given by

W̃½C�� ¼ ei
H
C� ÃμðxÞdxμ : ð2Þ

TheWilsonand ’tHooft loopsare theorderparameters for the
confinement of electric and magnetic charges, respectively.

A more nontrivial example is a surface operator. In the
gauge theory coupled to Higgs fields, topological vortices
appear. The vortices are one-dimensional defects, so their
trajectories form world sheets. The vortex world sheets are
two-dimensional defects with delta function support on the
surfaces. The surface operator to create the vortex world
sheet is referred to as the ’t Hooft surface [15]. For instance,
in the BF theory, it is given by the closed-surface integral
over the dual 2-form field Bμν,

Ṽ½S�� ¼ ei
H
S� BμνdSμν : ð3Þ

When the theory has ZN topological order, the vortices have
a fractional magnetic charge q=Ne (q ∈ Z). The ’t Hooft
surface gives the criterion for the confinement of the
fractionally charged vortices. It plays an essential role in
the topological order of Cooper pairs in superconductors
[16,22,23] and that of diquarks in color superconductors
[17,24–27].
These ’t Hooft operators have a crucial difficulty. The

’t Hooft operators can be elegantly formulated in topological
quantum field theory, that is, effective theory to reproduce
topological properties of the original quantum field theory.
The calculation beyond the effective theory is, however, not
easy. The dual gauge fields are not fundamental fields but
defects or singularities in the original theory. It might seem
impossible to calculate the expectation values of the ’t Hooft
operators in a quantitative manner. Surprisingly, this is
possible in lattice gauge theory. The formulation has been
known for the ’t Hooft loop in the Yang-Mills theory
[19–21]. It was applied to several lattice simulations
[28–38]. This can be generalized to higher-dimensional
defects, say, the ’t Hooft surface.
In this paper, we study the ’t Hooft surface in lattice

gauge theory. After introducing the basics of dual variables
in Sec. II, we discuss how to compute the ’t Hooft surface in
lattice simulation. We focus on the lattice gauge Higgs
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models with ZN topological order: the Abelian Higgs
model in Sec. III and the non-Abelian Higgs model in
Sec. IV. The simulation results are shown in Sec. V. Finally,
Sec. VI is devoted to summary. The Euclidean four-
dimensional lattice is considered and the lattice unit is
used throughout the paper.

II. DUAL LATTICE AND DUAL VARIABLE

Dual variables live on the dual lattice. The dual lattice is
defined by translating the original lattice by a half of lattice
spacing in all directions. The schematic figure is shown in
Fig. 1. The sites of the dual lattice are in positions of the
hypercube centers of the original lattice. In four dimen-
sions, there are the one-to-one correspondences between
d-dimensional objects on the original lattice and (4 − d)-
dimensional objects on the dual lattice: a bond b is dual to a
cube c�, a plaquette p is dual to a plaquette p�, etc. The
asterisks denote the objects on the dual lattice.
In lattice gauge theory, there are two ways to introduce

dual variables. One is to replace all the integral variables in
the path integral by their dual variables. The path integral is
completely reformed. For example, the gauge Higgs theory
is described by dual plaquette variables and dual cube
variables [39] (see also Refs. [40–44]). The other is to insert
the dual variables without reforming the path integral. For
example, when a π-flux exists on p�, the plaquette variable
on p changes as Uμν → eiπUμν but the integral variables do
not change. This is exactly what is done in the lattice
formulation of the ’t Hooft loop [19–21]. We consider such
insertion of the ’t Hooft surface in the following sections.

III. ABELIAN HIGGS MODEL

We first consider Abelian gauge theory. When the Higgs
field has the multiple electric charge Ne (N ∈ Z), the
theory has ZN topological order. The magnetic charge of a
vortex is fractionally quantized to be 1=Ne. The theory is
often referred as the charge-N lattice Abelian Higgs model
[45]. The path integral is given by

Z0 ¼
Z

DADϕe−S; ð4Þ

with the Abelian gauge field Aμ and the complex scalar
field ϕ. Let us define the link variable,

UμðxÞ ¼ eiAμðxÞ; ð5Þ

and the plaquette variable,

UμνðxÞ ¼ UμðxÞUνðxþ μ̂ÞU−1
μ ðxþ ν̂ÞU−1

ν ðxÞ; ð6Þ

where μ̂ stands for the unit lattice vector in the μ direction.
The Euclidean action is given by

S ¼ Sgauge þ Slocal þ Shop; ð7Þ

with the gauge part,

Sgauge ¼ −
1

2e2
X
x

X
μ;ν

ReUμνðxÞ; ð8Þ

the local part of the scalar field,

Slocal ¼
X
x

½8ϕ�ðxÞϕðxÞ þ λfϕ�ðxÞϕðxÞ − v2g2�; ð9Þ

and the hopping part,

Shop ¼ −
X
x

X
μ

fϕ�ðxÞUN
μ ðxÞϕðxþ μ̂Þ

þ ϕ�ðxþ μ̂ÞU−N
μ ðxÞϕðxÞg: ð10Þ

The theory is invariant under the local U(1) gauge trans-
formation,

UμðxÞ → ΛðxÞUμðxÞΛ�ðxþ μ̂Þ ð11Þ

ϕðxÞ → ΛNðxÞϕðxÞ; ð12Þ

and the global ZN transformation,

UμðxÞ → UμðxÞei2π=N: ð13Þ

Because of the ZN symmetry, the vacuum is N-fold
degenerate.
We put the ’t Hooft surface of magnetic charge q=Ne on

a two-dimensional closed surface S�. The path integral
changes as

ZS� ¼
Z

DADϕe−S
0 ð14Þ

S0 ¼ Sgauge þ Slocal þ S0hop: ð15Þ

The hopping part is modified as

b

c*

FIG. 1. Original lattice (black solid lines) and dual lattice (red
broken lines). In four dimensions, the bond b (blue thick line) is
dual to the dual cube c� (red thick line).
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S0hop ¼ −
X

x;μ∈BðV�Þ
fei2πq=Nϕ�ðxÞUN

μ ðxÞϕðxþ μ̂Þ

þ e−i2πq=Nϕ�ðxþ μ̂ÞU−N
μ ðxÞϕðxÞg

−
X

x;μ∉BðV�Þ
fϕ�ðxÞUN

μ ðxÞϕðxþ μ̂Þ

þ ϕ�ðxþ μ̂ÞU−N
μ ðxÞϕðxÞg; ð16Þ

where BðV�Þ is defined by the hopping terms penetrating
V�, s.t. S� ¼ ∂V� (see Fig. 2). Therefore, the expectation
value of the ’t Hooft surface is given by the formula,

hṼ½S��i ¼ ZS�

Z0

¼
R
DADϕe−ΔSe−SR
DADϕe−S

¼ he−ΔSi; ð17Þ

with

ΔS ¼ S0 − S ¼ S0hop − Shop

¼ −
X

x;μ∈BðV�Þ
fðei2πq=N − 1Þϕ�ðxÞUN

μ ðxÞϕðxþ μ̂Þ

þ ðe−i2πq=N − 1Þϕ�ðxþ μ̂ÞU−N
μ ðxÞϕðxÞg: ð18Þ

This formula is the main result of this paper. The explicit
derivation is given in Appendix A.
The above formula can be intuitively understood in

Fig. 2. The red line is the three-dimensional volume V� on
the dual lattice. The hopping terms penetrating V� are
multiplied by the ZN element ei2πq=N . The winding number
of each plaquette is given by the sum of the angles of the
four hopping terms. As shown by the circle arrows in the
figure, the ZN element changes the winding number by
þq=N at A, and by −q=N at B, and by 0 elsewhere. This
means that a vortex and an antivortex are inserted
at S� ¼ ∂V�.
There are two remarks on the above formula. The first

one is that the inserted vortices have fractional winding
numbers. They are different from the standard vortices
defined by integer winding numbers. The above formula
cannot realize the integer winding numbers because ΔS¼0
for q=N ∈ Z. Another formulation is necessary to insert the
vortices with integer winding numbers [46]. The second
one is that V� is nonunique. In four dimensions, V� can be

deformed in the perpendicular direction by integral variable
transformation, as long as S� is fixed. The same ambiguity
exists in the ’t Hooft loop [30]. On the other hand, S� is
invariant under the transformation. This means that the
positions of the vortices are physical.

IV. NON-ABELIAN HIGGS MODEL

Next let us consider non-Abelian gauge theory. Among
the non-Abelian gauge Higgs models, the N-color and N-
flavor case is of special importance. When the numbers of
color and flavor are equal, the non-Abelian vortex, as well
as the Abelian vortex, can exist. The minimal winding
number of the non-Abelian vortex is 1=N, while the
winding number of the Abelian vortex is an integer.
In the N-color and N-flavor non-Abelian Higgs model,

the hopping part of the lattice action is

Shop ¼ −
X
x

X
μ

X
i

fϕ†
i ðxÞUμðxÞϕiðxþ μ̂Þ

þ ϕ†
i ðxþ μ̂ÞU−1

μ ðxÞϕiðxÞg: ð19Þ

This is almost the same as Eq. (10), except that the link
variableUμ is a U(N) element and the N-flavor scalar fields
ϕiði ¼ 1;…; NÞ are N-component vectors. The other parts
are quite different, but they are irrelevant for the present
argument. (See Ref. [47] for the complete form of the lattice
action.) We can easily derive the formula; Eq. (18) is
replaced by

ΔS ¼ −
X

x;μ∈BðV�Þ
fðei2πq=N − 1Þϕ†ðxÞUμðxÞϕðxþ μ̂Þ

þ ðe−i2πq=N − 1Þϕ†ðxþ μ̂ÞU−1
μ ðxÞϕðxÞg: ð20Þ

The inserted ’t Hooft surface satisfies the same properties as
in the Abelian case.

V. SIMULATION

To demonstrate the above formalism, we perform the
numerical simulation in the simplest case, the charge-2
lattice Abelian Higgs model. The simulation details are
summarized in Appendix B. The Z2 group has two
elements: one trivial state þ1 (zero magnetic charge)
and one nontrivial state −1 (fractional magnetic charge
1=2e). This means that a vortex and an antivortex are
equivalent. This specialty is due to the compactness of the
link variable. In general, the lattice Abelian Higgs model
sometimes shows different behaviors from the continuous
Abelian Higgs model. The results should be interpreted as
the properties of lattice superconductors, not of realistic
superconductors in continuum space.
We consider the four-dimensional hypercuboid Nx ×

Ny × Nz × Nτ with periodic boundary conditions. As
shown in Fig. 3, the ’t Hooft surface is inserted on the
dual cuboid X × Y × T inside the hypercuboid. We take

FIG. 2. Schematic figure for Eq. (16). The ’t Hooft surface is
inserted on the three-dimensional volume V� (red thick line). The
ZN element ei2πq=N is multiplied to the hopping terms penetrating
V� (blue arrows).
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Y ¼ Ny to simplify the analysis. The nontrivial Z2 element
−1 is multiplied to the hopping terms in the z direction.
When the time extent T is large enough, the ’t Hooft surface
asymptotically behaves as

hṼ½S��i ∝ e−ET; ð21Þ

where E is the energy of a static and straight vortex-
antivortex pair. Since E is proportional to Y because of
translational invariance, E=Y is a function of X. Therefore,
E=Y can be interpreted the intervortex potential per length.
The simulation results are shown in Fig. 4. Changing the

scalar self-coupling constant, we calculated the potential in
the Higgs phase and the Coulomb phase. In the Higgs
phase, the potential is linear. The vortices with fractional
magnetic charge are confined. Thus, only the states with
zero magnetic charge will appear at low energy. This will be
the common property both for lattice and continuous
superconductors. In the Coulomb phase, the potential is
almost flat. As the U(1) symmetry is unbroken, the dual
variables are massive, so they cannot propagate to long
range. The interaction between the vortices is diminished.

The linear potential is equivalent to the volume-law
scaling of the ’t Hooft surface, which is the criterion for the
confinement of magnetic vortices. This is dual to the
volume-law scaling of the Wilson surface, which is the
criterion for the confinement of electric strings. In this
model, however, the volume law is not exactly satisfied. If
the linear potential were exactly correct, the potential
energy would be very large at long distance. A dynamical
vortex-antivortex pair will be created in-between the
original vortex and antivortex to lower the total energy.
This is called the surface breaking as the analog of the
string breaking of the Wilson loop [39]. The surface
breaking will happen when the potential energy reaches
the mass of the dynamical vortex-antivortex pair. The
potential will be flat above a critical distance. This is
not seen in Fig. 4. We need the long-distance analysis in
larger lattice volume.

VI. SUMMARY

In this paper, we obtained the formula for the t’ Hooft
surface in the lattice gauge Higgs models with the ZN
topological order. The formula is simple; the ZN element is
multiplied to the hopping terms inside the ’t Hooft surface.
We performed the lattice simulation in the charge-2 Abelian
Higgs model. We found that the vortices with fractional
magnetic charge are confined in the Higgs phase, and thus,
they do not emerge in the physical spectrum. This is
consistent with our understanding of superconducting
vortices.
The advantage of our formulation is that the ’t Hooft

surface is calculable in the original path integral. It is also
attainable in the dual path integral, in which all the
variables are dualized. However, the dual approach works
only when the duality between the two theories is ensured,
e.g., in the London limit of type-II superconductors. Our
formulation is, therefore, more useful for the quantitative
analysis in the original theory.
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APPENDIX A: DERIVATION OF THE FORMULA

Let us derive the formula (17). The derivation is parallel
to Ref. [20]. We introduce a special notation in this
appendix. When a bond b connects x and xþ μ̂, we write
as ϕ∂bð1Þ ¼ ϕðxÞ, ϕ∂bð2Þ ¼ ϕðxþ μ̂Þ, and Ub ¼ UμðxÞ. The
hopping part (10) is rewritten as

Shop ¼ −
X
b

fϕ�
∂bð1ÞU

N
b ϕ∂bð2Þ þ ϕ�

∂bð2ÞU
−N
b ϕ∂bð1Þg: ðA1Þ

The summation is taken over all bonds b.

x

y z
x

y
X

T

Y

X

Y

FIG. 3. Geometry projected on the xyτ hyperplane (left) and on
the xyz hyperplane (right). The two-dimensional ’t Hooft surface
(dark red) surrounds the three-dimensional volume V� (light red).
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FIG. 4. Intervortex potential per length in the charge-2 lattice
Abelian Higgs model. The potentials in the Higgs phase (λ ¼ 4)
and in the Coulomb phase (λ ¼ 1) are shown.
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The scalar field ϕ is uniquely decomposed into a ZN part
and a Uð1Þ=ZN part. When argϕðxÞ ∈ ð−π; π�, the decom-
position is given by

ϕðxÞ ¼ ei2παðxÞ=NφðxÞ; ðA2Þ

where αðxÞ ∈ f0; 1;…; N − 1g and argφðxÞ ∈ ð−π=N;
π=N�. For a bond b between x and xþ μ̂, we define

Δbα ¼ αðxþ μ̂Þ − αðxÞ: ðA3Þ

The hopping part (A1) is rewritten by

Shop½α; A;φ� ¼
X
b

ðei2πΔbα=NRb½A;φ� þ c:c:Þ; ðA4Þ

where Rb½A;φ� is the remaining part dependent on b and
“c.c.” represents the complex conjugation. The path
integral becomes

Z0 ¼
Z

DADϕe−S

¼
Z

DADφe−Sgauge½A�−Slocal½φ�
Y
x

XN−1

αðxÞ¼0

e−Shop½α;A;φ�: ðA5Þ

With the identity relation for ZN elements,

1

N

XN−1

l¼0

e−i2πnl=N ¼ δn0 ðmod NÞ; ðA6Þ

we can expand as

e−Shop ¼
Y
b

XN−1

lb¼0

Ilbe
i2πlbΔbα=N; ðA7Þ

with the expansion coefficients

Ilb ¼
1

N

XN−1

nb¼0

e−i2πlbnb=N exp ð−ei2πnb=NRb − c:c:Þ: ðA8Þ

It follows that

Y
x

XN−1

αðxÞ¼0

e−Shop ¼
Y
x

XN−1

αðxÞ¼0

Y
b

XN−1

lb¼0

Ilbe
i2πlbΔbα=N

¼ N
X
flbg0

Y
b

Ilb : ðA9Þ

P
flbg0 denotes the summation over the configurations,

which satisfy

X
b∋x

lb ¼ 0 ðmod NÞ ðA10Þ

for all x. In terms of the ZN-valued link variable,

ξb ≡ ei2πlb=N; ðA11Þ

Eq. (A10) is rewritten as

Y
b∋x

ξb ¼ 1: ðA12Þ

Since bonds are dual to cubes, it is convenient to use the
dual cube variables ξc� ≡ ξb. The constraint on the original
lattice, Eq. (A12), is identical with

Y
c�∈h�ðxÞ

ξc� ¼ 1; ðA13Þ

where h�ðxÞ is the four-dimensional hypercube dual to the
site x. In order to satisfy Eq. (A13), we define the dual
plaquette variable ζp� by

ξc� ≡
Y
p�∈c�

ζp� : ðA14Þ

The summation of lb with the constraint (A10) is replaced
by the summation of the unconstrained variables ζp� . The
path integral in the dual representation is given by

Z0 ¼ N
Z

DADφe−Sgauge−Slocal
X
fζp� g

Y
b

Ilb : ðA15Þ

We define the ’t Hooft surface on the dual lattice by

Ṽ½S��≡ Y
p�∈S�

ζqp� ; ðA16Þ

where q ∈ f0; 1;…; N − 1g. S� represents a two-
dimensional closed surface on the dual lattice. With the
three-dimensional volume V� s.t. ∂V� ¼ S�, it also reads

Ṽ½S�� ¼
Y
c�∈V�

ξqc� : ðA17Þ

The expectation value of Ṽ½S�� is given by

hṼ½S��i≡ N
Z0

Z
DADφe−Sgauge−Slocal

X
fζp� g

Ṽ½S��
Y
b

Ilb : ðA18Þ

We go backward to arrive at the formula (17).
Introducing BðV�Þ, which is the subset of the bonds
penetrating V�, and
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kb ¼

8><
>:

1 ðb ∈ BðV�ÞÞ

0 ðb ∉ BðV�ÞÞ
; ðA19Þ

we can rewrite as

Ṽ½S�� ¼
Y

b∈BðV�Þ
ξqb ¼

Y
b

ei2πlbkbq=N ðA20Þ

It follows from Eq. (A14) that

hṼ½S��i≡ N
Z0

Z
DADφe−Sgauge−Slocal

×
X
flbg0

Y
b

Ilbe
i2πlbkbq=N

¼ 1

Z0

Z
DADφe−Sgauge−Slocal

×
Y
b

XN−1

lb¼0

Y
x

XN−1

αðxÞ¼0

Ilbe
i2πlbΔbα=Nei2πlbkbq=N

≡ 1

Z0

Z
DADφe−Sgauge−Slocal

Y
x

XN−1

αðxÞ¼0

e−S
0
hop ; ðA21Þ

where

S0hop ¼
X
b

ðei2πΔbα=Nei2πkbq=NRb½A;φ� þ c:c:Þ: ðA22Þ

Equation (A22) is nothing but Eq. (16). Therefore,

hṼ½S��i ¼ ZS�

Z0

: ðA23Þ

This is the end of the proof of Eq. (17).

APPENDIX B: SIMULATION DETAILS

We performed the lattice simulation with the hybrid
Monte Carlo method. We analyzed two cases: the Higgs
phase and the Coulomb phase. The scalar self-coupling
constant was set at λ ¼ 4 for the Higgs phase and λ ¼ 1 for
the Coulomb phase. The other parameters were fixed at
1=e2 ¼ 2 and v2 ¼ 0.5. The lattice volume is
NxNyNz × Nτ ¼ 103 × 20, and all boundary conditions
are periodic. The size of the ’t Hooft surface is
X ¼ f1; 2;…; 5g, Y ¼ 10, and T ¼ f1; 2;…; 10g. We
obtained the energy E by fitting the data with Eq. (21)
in a finite range of T. We checked that the results are
insensitive to the fitting range of T.
From Eq. (17), we see that the overlap between ZS� and

Z0 is expð−ΔSÞ. The overlap exponentially decreases as the
surface size increases. When the surface size is large, the
relevant configurations hardly appear in the Monte Carlo
sampling. This is called the overlap problem. To overcome
the overlap problem, the expectation value (17) was
decomposed into the XYT pieces,

ZS�

Z0

¼ ZXYT

ZXYT−1

ZXYT−1

ZXYT−2
� � �Z1

Z0

¼
Y
k

Zk

Zk−1
; ðB1Þ

and each piece Zk=Zk−1 was independently computed by
the Monte Carlo simulation [35]. The index k means the
number of the sites where −1 is multiplied to the hopping
terms, so ZS� ¼ ZXYT .
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