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We focus on the four-dimensional central-branch Wilson fermion, which makes good use of six species
at the central branch of the Wilson Dirac spectrum and possesses the extra Uð1ÞV̄ symmetry. With
introducing new insights we discuss the prohibition of additive mass renormalization for all the six species,
spontaneous symmetry breaking (SSB) ofUð1ÞV̄ in strong-coupling quantum chromodynamics (QCD), the
absence of the sign problem, and the usefulness for many-flavor QCD simulation. We then construct
several varieties of the central-branch fermions and study their properties. In particular, we investigate the
two-flavor version, where the Dirac spectrum has seven branches and two species live at the central branch.
Although the hypercubic symmetry is broken, the other symmetries are the same as those of the original
one. We study this setup in terms of lattice perturbation theory, strong-coupling QCD, the absence of sign
problem, and the parameter tuning for Lorentz symmetry restoration. By comparing the properties of the
original and two-flavor version, we find that the existence of hypercubic symmetry as well as Uð1ÞV̄ is
essential for the absence of additive mass renormalization of all the central-branch species. As the other
two-flavor version, we investigate the central-branch staggered-Wilson fermion, which is obtained from the
eight-flavor central-branch Wilson fermion via spin diagonalization. We argue that it is free from any
additive mass renormalization and is regarded as a minimally doubled fermion with less symmetry
breaking.

DOI: 10.1103/PhysRevD.102.034516

I. INTRODUCTION

In the last four decades theoretical physicists have
successfully been studying nonperturbative aspects of
quantum field theories including Yang-Mills theory and
quantum chromodynamics (QCD) by use of lattice gauge
theory [1,2]. Although the accomplishments obtained by
the technique spread through a broad field of particle and
nuclear physics, the research of lattice fermion formula-
tions still has lots of topics left to be investigated [3–6].
There are several unsolved problems, including the recon-
cilement of a desirable number of flavors, chiral symmetry
and numerical efficiency, the realization of a single Weyl
fermion, the sign problem of the quark determinant, etc.
These problems motivate us to continue to study lattice
fermions from various viewpoints.

Although practically useful fermion formulations have
been developed so far, all of them have their individual
shortcomings. The Wilson fermion1 with explicit chiral
symmetry breaking results in an additive mass renormal-
ization and OðaÞ discretization errors [7]. Domain-wall
or overlap fermions, which produce a single-flavor chiral-
symmetric fermion with errors starting from Oða2Þ, lead
to rather expensive simulation algorithms [8–12].
Staggered fermion keeps a Uð1Þ subgroup of chiral
symmetry and eliminate OðaÞ errors, where the degen-
eracy of four flavors requires the rooting trick for realistic
(2þ 1)-flavor QCD [13–19].
In these years, several new approaches to lattice fermion

formulations have been investigated: The Wilson term in
Wilson fermion can be generalized to “flavored-mass
terms.” Based on this generalization of the Wilson term
one can construct various cousins of Wilson fermions.
Similar flavored-mass terms can be introduced into stag-
gered fermions [17,20–22] and one obtain, what is called,*misumi@phys.akita-u.ac.jp
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1The Wilson fermion with negative mass −2r < m < 0 cor-
responds to a nontrivial symmetry-protected-topological (SPT)
phase, where the transition to another SPT phase requires the gap
to be closed. It means that a massless domain-wall fermion
appears at the boundary.
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staggered-Wilson fermions [20–32]. It can be applied to
lattice simulations as another version of Wilson fermion
or an overlap kernel. Simple generalizations of Wilson
fermion based on flavored-mass terms and their application
as the overlap kernel are also intensively investigated
[29,33–39]. As a different avenue, there is a lattice fermion
formulation known as the minimally doubled fermion
[40–60]. With keeping Uð1Þ part of chiral symmetry this
setup yields two flavors, which is a minimal number of
species allowed by Nielsen-Ninomiya’s no-go theorem.
The drawback of this setup is the explicit breaking of part
of C,P,T and hypercubic symmetry, thus the tuning of
parameters is required in the simulation.
Our focus in this work is mainly laid on the four-

dimensional Wilson fermion and its novel use. As
well-known, the Wilson term breaks the Uð4Þ ×Uð4Þ
flavor-chiral symmetry of naive lattice fermion to Uð1ÞV
vector symmetry. However, the fermion with the parameter
condition mþ 4r ¼ 0 (with the mass parameter m and
Wilson-fermion parameter r) has the enhanced symmetry
Uð1ÞV × Uð1ÞV̄ [24,61] as the extra Uð1ÞV̄ symmetry is
restored on the central one of five branches of the Wilson
Dirac spectrum. This setup is termed as a “central-branch
Wilson fermion,” which is a six-flavor setup and has
been investigated in terms of strong-coupling QCD [61],
the Gross-Neveu model [24] and the lattice perturbation
[29,62]. Its significant property is that the extra Uð1ÞV̄
symmetry prohibits additive mass renormalization. Recently,
it was shown that this setup is free from the sign problem
since the Dirac determinant is positive semidefinite with the
central-branch condition mþ 4r ¼ 0 [63]. Furthermore,
the symmetries of the fermion in two dimensions are
elucidated, and the Z2 ’t Hooft anomaly [64–77] among
Uð1ÞV × Uð1ÞV̄ symmetry, lattice translation and lattice
rotation symmetries is shown to give a restriction on the
nonperturbative properties of Uð1Þ gauge theory and Gross-
Neveu model with this fermion setup [63]. The absence of
additive mass renormalization is also understood in terms of
the ’t Hooft anomaly in two dimensions.
In this paper we investigate properties and varieties of

four-dimensional central-branch Wilson fermions. We first
perform comprehensive study on the formulation with
introducing several new insights, where we discuss its
construction, the prohibition of additive mass renormaliza-
tion and its interpretation in terms of ’t Hooft anomaly,
spontaneous symmetry breaking in the strong-coupling
QCD, the absence or the solution of the sign problem
for quark determinant, and the possibility of its practical
use. The results indicate the usefulness of the six-flavor
central-branch fermion for many-flavor QCD simulation.
We then construct several varieties of the central-branch

fermions and study their properties with special attention to
their symmetries. Among them, the two-flavor version is
constructed by modifying theWilson hopping term slightly.
The Dirac spectrum of this two-flavor version has seven

branches, where two species live at the central branch.
Although the hypercubic symmetry is reduced to its cubic
subgroup, the other symmetries including C, P, T, Uð1ÞV
and Uð1ÞV̄ are common to those of the original central-
branch fermion. We study the properties of the two-flavor
version, including the additive mass renormalization, SSB
of parity andUð1ÞV̄ symmetry in the strong-coupling lattice
QCD, the absence of the sign problem and the parameter
tuning procedure for Lorentz symmetry restoration. In
lattice perturbation theory, we find that the sum of masses
of the two flavors (mu þmd) at the central branch is free
from renormalization, while their difference (mu −md)
suffers from additive renormalization due to the explicit
breaking of hypercubic symmetry. We argue that the
existence of hypercubic symmetry is essential for the
absence of additive mass renormalization for all the six
flavors in the original central-branch Wilson fermion.
We also revisit the staggered-Wilson fermion with the

two-flavor central branch, which is obtained from the eight-
flavor central-branch Wilson fermion via spin diagonaliza-
tion. We investigate its extra symmetry and argue that
this “central-branch staggered-Wilson fermion” has a stable
central branch without any additive mass renormalization,
thus it can be regarded as a minimally doubled fermion with
less symmetry breaking.
The structure of this paper is as follows: In Sec. II we

investigate the original version of the four-dimensional
central-branch Wilson fermion. In Sec. III we introduce the
two-flavor central-branch fermion and discuss its proper-
ties. In Sec. IV we discuss other types of central-branch
fermions. In Sec. V we review the central-branch staggered
Wilson fermion and discuss its extra symmetry. Section VI
is devoted to a summary and a discussion.

II. CENTRAL-BRANCH WILSON FERMION

In this section, we revisit and discuss the central-branch
Wilson fermion in four dimensions. We first introduce its
lattice action and its flavor-chiral symmetry. We then move
to the properties, including the absence of additive mass
renormalization, the symmetry breaking in the strong-
coupling QCD and the absence of the sign problem.

A. Wilson fermion and central-branch condition

The lattice Wilson fermion action in four dimensions is

SW ¼
X
n

X
μ

ψ̄nγμDμψn þ
X
n

mψ̄nψn

þ r
X
n

X
μ

ψ̄nð1 − CμÞψn; ð1Þ

where Dμ ≡ ðTþμ − T−μÞ=2, Cμ ≡ ðTþμ þ T−μÞ=2 with
T�μψn ¼ Un;�μψn�μ. In a free theory, we just set
Un;�μ ¼ 1. The sum

P
n is the summation over lattice

sites n ¼ ðn1; n2; n3; n4Þ. A free Wilson fermion has the
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Dirac spectrum depicted in Fig. 1. The degeneracy of
16 species of naive fermion is lifted and they are split into
five branches, at which 1, 4, 6, 4 and 1 flavors live.
We next study its flavor-chiral symmetry. We first

remind ourselves that the four-dimensional massless naive
fermion has Uð4Þ ×Uð4Þ flavor-chiral symmetry
[61,78,79] in a free theory, which is a subgroup of the
whole Uð16Þ ×Uð16Þ symmetry. These are symmetries
under the following transformations,

ψn → exp

�
i
X
X

ðθðþÞ
X ΓðþÞ

X þ θð−ÞX Γð−Þ
X Þ

�
ψn;

ψ̄n → ψ̄n exp
�
i
X
X

ð−θðþÞ
X ΓðþÞ

X þ θð−ÞX Γð−Þ
X Þ

�
; ð2Þ

where ΓðþÞ
X and Γð−Þ

X are site-dependent 4 × 4 matrices,

ΓðþÞ
X ∈

�
14; ð−1Þn1þ���þn4γ5; ð−1Þňμγμ;

ð−1Þnμiγμγ5; ð−1Þnμ;ν
i½γμ; γν�

2

�
; ð3Þ

Γð−Þ
X ∈

�
ð−1Þn1þ���þn414; γ5; ð−1Þnμγμ;

ð−1Þňμiγμγ5; ð−1Þňμ;ν
i½γμ; γν�

2

�
; ð4Þ

with ňμ ¼
P

ρ≠μ nρ, nμ;ν ¼ nμ þ nν and ňμ;ν ¼
P

ρ≠μ;ν nρ.
It is notable that the on site fermion mass term ψ̄nψn breaks

this Uð4Þ ×Uð4Þ to the Uð4Þ subgroup ΓðþÞ
X . In the

presence of the Wilson term the Uð4Þ ×Uð4Þ invariance
is broken to the Uð1Þ invariance under 14 in Eq. (3).
In Refs. [24,61], it was shown that the Wilson fermion

with the “central-branch” condition,

MW ≡mþ 4r ¼ 0; ð5Þ

has an extra Uð1Þ symmetry, denoted as Uð1ÞV̄ . It becomes
clear if one is reminded that the on site term (∼ψ̄nψn)

breaks all the invariance under the transformation Γð−Þ
X in

Eq. (4). Thus, dropping on site terms can restore some
invariance under the group, and the action comes to have
larger symmetry.
The free Wilson fermion with this condition (5) gives

six-flavor massless fermions in the continuum, which
correspond to the central branch of the Wilson Dirac
spectrum as shown in Fig. 2. They are excitations around
the Dirac zeros at p ¼ ðπ; π; 0; 0Þ, ðπ; 0; π; 0Þ, ðπ; 0; 0; πÞ,
ð0; π; π; 0Þ, ð0; π; 0; πÞ and ð0; 0; π; πÞ in the momentum
space. This setup is called the “central-branch Wilson
fermion.” Its lattice action is given by

SCB ¼
X
n;μ

ðψ̄nγμDμψn − rψ̄nCμψnÞ; ð6Þ

which is invariant under the ordinary Uð1ÞV transformation
generated by ΓðþÞ ¼ 14,

Uð1ÞV∶ψn ↦ eiθψn; ψ̄n ↦ ψ̄ne−iθ; ð7Þ

and the extra Uð1Þ symmetry generated by Γð−Þ ¼
ð−1Þ

P
μ
nμ14,

Uð1ÞV̄∶ψn ↦ eið−1Þ
P

μ
nμ
θψn; ψ̄n ↦ ψ̄neið−1Þ

P
μ
nμ
θ:

ð8Þ

It is notable that this extra symmetry prevents the on-site
mass term ψ̄ψ from being generated by loop effects, and
eventually prohibits additive mass renormalization [29] as
we will show in the next subsection. The other symmetries
of this central-branch fermion are the same as those of the
usual Wilson fermion, including hypercubic symmetry
(lattice rotational symmetry), lattice translation, charge
conjugation, parity, γ5-hermiticity and reflection positivity.

FIG. 2. Free Dirac spectrum of Wilson fermion (r ¼ 1) with
MW ¼ mþ 4 ¼ 0 on a 204 lattice. The central branch with two
species crosses the origin.

FIG. 1. Free Dirac spectrum of Wilson fermion (r ¼ 1) with
m ¼ 0 on a 204 lattice. The degenerate spectrum of 16 species for
naive fermions are split into five branches with 1, 4, 6, 4 and 1
species.
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B. Properties of central-branch fermions

In this subsection, we study the properties of the central-
branch Wilson fermion with introducing several new
insights. We discuss the absence of additive mass renorm-
alization, the condensate and spontaneous symmetry break-
ing in the strong-coupling limit, the absence or the solution
of the sign problem, and possibility of the practical use.

1. Absence of additive mass renormalization

In [29,62] it is shown that the setup is free from the
additive quark mass renormalization in the one-loop lattice
perturbation theory. For simplicity, we take r ¼ 1 here.
Oð1=aÞ quark self-energy at one-loop level Σ0 is composed

of the sunset ΣðαÞ
0 ðsunÞ and tadpole Σα

0ðtadÞ contributions
as shown in Fig. 3. Here α ¼ 1; 2;…; 6 correspond

to the six poles of the propagator πð1Þμ ¼ ð0; 0; π; πÞ,
πð2Þμ ¼ ð0; π; 0; πÞ; · · ·.

In lattice QCD with the central-branch Wilson fermion,
the gauge propagator with the Feynman gauge G, the quark
propagator S and the fermion-gauge boson vertex V are
given as,

Gab
μνðpÞ ¼

4δμνδ
ab

a2
1P

σ sin
2 pσ

2

; ð9Þ

SlmðpÞ ¼ aδlm

i
P

σγσ sinpσ − r
P

σ cospσ
; ð10Þ

ðVaÞmn
μ ðk;pÞ¼−g0ðTaÞmn

�
iγμcos

kμþpμ

2
þrsin

kμþpμ

2

�
;

ð11Þ

where μ, ν stand for spacetime indices, a, b for Lie group
generators and m, l, n for their matrix components. The
external momentum is taken to be the values at the Dirac
zeros in the following calculations.
The fermion self-energy from the sunset diagram is

ΣðαÞðsunÞ ¼
Z

d4k
ð2πÞ4

X
μ

Gab
μμðp − kÞðVbÞlmμ ðk; pÞ

× SmnðkÞðVaÞnlμ ðp; kÞ: ð12Þ

Then, ΣðαÞ
0 ðsunÞ is obtained as

ΣðαÞ
0 ðsunÞ ¼ g20CF

4a

Z
π

−π

d4k
ð2πÞ4

X
ρ

�
cos2 kρ

2
− sin2 kρ

2

�
ðPλ cos kλÞ þ sin2 kρ�P

λ sin
2 kλþπðαÞλ

2

�
ðPμ sin

2 kμ þ ðPμ cos kμÞ2Þ
eiπ

ðαÞ
ρ ¼ 0; ð13Þ

where eiπ
ðαÞ
ρ takes þ1 or −1 depending on the direction ρ.

The difference of these signs leads to cancelation between
dimensions ρ in the integral for any pole α. The cancella-
tion for r ≠ 1 is also verified numerically.

The contribution from the tadpole diagram ΣðαÞ
0 ðtadÞ is

given by

ΣðαÞ
0 ðtadÞ ¼ −

Z
π

−π

d4k
ð2πÞ4

g20CF

8a
P

λ sin
2 kλ
2

X
ρ

cos πðαÞρ ¼ 0;

ð14Þ

where cancellation between ρ occurs for any of the
six poles.
We finally obtain

ΣðαÞ
0 ¼ ΣðαÞ

0 ðsunÞ þ ΣðαÞ
0 ðtadÞ ¼ 0; ð15Þ

for each of the six poles. This result indicates the absence
of additive renormalization for all the six species at the
central branch. The central branch of Dirac spectrum
remains at the origin of the complex plane even if we
introduce a gauge field. However, it is somewhat strange
that only the restoration of Uð1ÞV̄ symmetry prohibits
additive mass renormalization of all the six flavors at the
central branch. We will later find that the existence of
hypercubic symmetry as well asUð1ÞV̄ is essential for this
property.
In Ref. [27], it is verified in the study of lattice QCD that

the additive mass renormalization is absent around the
central branch of the staggered-Wilson fermion, which is
regarded as the staggered version of the central-branch
fermion and will be discussed in detail in Sec. V. It implies
that one can perform the lattice Monte Carlo simulation
without additive mass renormalization by use of the central-
branch fermions.

FIG. 3. The diagrams contributing to the one-loop quark self-
energy. The additive mass renormalization from these diagrams
are shown to be zero in the original central-branch fermion.
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It is also possible to understand the absence of additive
mass renormalization in terms of ’t Hooft anomaly match-
ing. First of all, this property means the prohibition of a
trivially gapped phase. We consider that it results from a
certain mixed ’t Hooft anomaly among the symmetries of
the systems, including Uð1ÞV̄ , hypercubic symmetry, trans-
lation invariance, etc. Indeed, as we will show in the next
section, additive mass renormalization is not fully forbid-
den in the central-branch fermion with explicit breaking of
hypercubic symmetry. We also note that the mixed anomaly
among part of hypercubic symmetry, part of translation
invariance and Uð1ÞV̄ forbids the trivially gapped phase or
the additive mass renormalization in the two-dimensional
central-branch Wilson fermion as shown in Ref. [63].
More detailed study on the ’t Hooft anomaly of the four-
dimensional central-branch fermion is left to a future work.

2. Symmetry breaking in strong-coupling QCD

The central branch with the condition MW ¼mþ4r¼0
in the Wilson fermion corresponds to the central cusp in the
conjectured parity phase diagram (Aoki phase diagram
[80–85]) as shown in Fig. 4 and this parameter set is
expected to be within the parity broken phase at least in
strong and middle gauge coupling regions. It is unnecessary
to take care of the parity breaking when we take the chiral
and continuum limits from the parity-symmetric phase.
However, since this setup is free from the sign problem
only with the exact central-branch condition, the question
whether we can take the continuum limit from the parity-
broken phase is also of importance.
The results on the strong-coupling and large-Nc lattice

QCD around the central branch [61] show that the con-
densates are given by

σ¼MW

4r2
; π¼ 1

16r4ð1þr2Þð8r
4−M2

Wð1þr2ÞÞ; ð16Þ

where σ and π stand for the chiral and pion condensates
hψ̄ψi, hψ̄γ5ψi respectively. It is also shown that one of
mesonic excitations in the scalar–pseudoscalar–axial-
vector sector has the following mass expression

coshðmSPAÞ ¼ 1þ 2M2
Wð16þM2

WÞ
16 − 15M2

W
: ð17Þ

With the central-branch condition MW ¼ mþ 4r ¼ 0, we
obtain

σ ¼ 0; π ¼ 1=2ð1þ r2Þ; ð18Þ

mSPA ¼ 0: ð19Þ

This result means that the extra symmetry Uð1ÞV̄ and the
parity invariance are spontaneously broken due to the
condensate hψ̄γ5ψi instead of hψ̄ψi, and it leads to a
massless Nambu-Goldstone boson. It is notable that Uð1ÞV̄
emerges only at the central branch MW ¼ 0 and it is
spontaneously broken due to the nonperturbative effect.
The above result of the strong-coupling lattice QCD with

the central-branch fermion (hψ̄ψi ¼ 0, hψ̄γ5ψi ≠ 0) indi-
cates that the roles of ψ̄ψ and ψ̄γ5ψ are exchanged. It can
be rephrased that the mass basis in this formulation is
different from that of the usual lattice QCD. As discussed in
Ref. [29], we may be able to interpret that the central
branch fermion is regarded as an automatic realization of
the maximally twisted-mass Wilson fermion [86,87] since
it is regarded as the average of the two edge branches and
the central branch is located between them. Both of the
twisted-mass and the six-flavor central-branch fermions
are free from OðaÞ lattice artifacts since they preserve a
subgroup of chiral symmetry. As we will see in the next
section, however, the two-flavor central-branch fermion has
another source of OðaÞ artifacts originating in hypercubic
symmetry breaking.

3. Sign problem and practical use

For negative mass m < 0 in the Wilson and Wilson-like
fermions, the semipositivity of the quark determinant is not
guaranteed since there can be an odd number of modes with
real-negative eigenvalues. However, it was proved that the
quark determinant of Wilson fermion with the central-
branch condition is positive semidefinite on the even-site
lattice in Ref. [63].
We now extend the proof to four dimensions [63]: We

only consider the case that each number of the lattice sizes
N1, N2, N3, N4 in all four dimensions is even-integer. We
denote the central-branch Dirac operator as

D ¼
X
μ

ðγμDμ − rCμÞ: ð20Þ

FIG. 4. The conjectured Aoki phase diagram for Wilson
fermion. The red line corresponds to the central branch, where
the extra symmetry Uð1ÞV̄ emerges and is spontaneously broken
due to the nonperturbative effect.
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Even if we introduce link variables in this operator, there is
γ5-Hermiticity as

γ5Dγ5 ¼ D†; ð21Þ

which leads to the pairing of complex eigenvalues λ; λ� in
the Dirac spectrum. This guarantees that the quark deter-
minant is real or zero for Wilson fermion with any mass
parameter.
The central-branch Wilson fermion has further property

to restrict the quark determinant. The Uð1ÞV̄ symmetry
specific to the central-branch condition can be expressed as

Dð−1Þ
P

μ
nμ ¼ −ð−1Þ

P
μ
nμD; ð22Þ

which means the pairing of nonzero eigenvalues λ;−λ in
the Dirac spectrum. This property is reflected by the point-
symmetric Dirac spectrum of the central branch Wilson
fermion. We now define the Hermitian Dirac operator as

H ¼ γ5D: ð23Þ

The γ5-Hermiticity of D guarantees H† ¼ H and its
spectrum should be real. The Uð1ÞV̄ symmetry is expressed
for this operator as

Hð−1Þ
P

μ
nμ ¼ −ð−1Þ

P
μ
nμH; ð24Þ

which leads to the pairing of nonzero eigenvalues ε;−ε in
the spectrum of H. We here ignore zero eigenvalues for a
while and label the spectrum of eigenvalues as

f�εigi¼1;…;N; ð25Þ

where N is defined as N ¼ N1N2N3N4. Since N is an even
integer, we obtain

detðDÞ ¼ detðHÞ ¼
YN
i¼1

εið−εiÞ ¼ ð−1ÞN
YN
i¼1

ε2i > 0: ð26Þ

If the spectrum contains zero eigenvalues, we have
detðDÞ ¼ 0. Therefore detðDÞ is positive semidefinite,

detðDÞ ≥ 0: ð27Þ

We can rephrase this result in terms of spectrum of D:
When there are real negative eigenvalues, we simultane-
ously have genuine zero eigenvalues and the determinant
becomes zero. When there are no real negative eigenvalues,
we have no zero eigenvalues and the determinant becomes
nonzero and positive-real. Thus, the determinant is positive
semi-definite for any configuration.

In the Monte Carlo simulation with the central-branch
fermion, there are two possible patterns of its use, both of
which have their own advantages and disadvantages:
The first pattern is to generate configurations right on the

central branch without mass shift and take a continuum
limit. This method is free from the sign problem of quark
determinant, but the parameter set corresponds to the
parity-broken phase. Although it may correspond to the
simulation with the maximally-twisted Wilson fermion as
discussed in the previous subsection, we have to introduce
the twisted mass to prevent the genuine zero modes from
mutilating the simulation [29]. It could be possible, but is
not a conventional manner.
The second pattern is to generate configurations with

Oð1Þmass shift from the central branch and take chiral and
continuum limits toward the central branch from the parity-
symmetric phase. This method is free from parity breaking,
but involves the sign problem of quark determinant. To
investigate this case in detail, let us assume a topological
charge of gauge configuration be Q. We now make Oð1Þ
positive mass shift from the central branch. Then, we have
the single flavor with the real-eigenvalue contribution
∼ð−4r=aÞQ at the left edge branch and the four flavors
with ∼ð−2r=aÞ−4Q at the second branch from the left. We
here use the fact that the chiral charges of modes at left-
edge and the second branches are opposite. Since the other
eigenvalues are complex-conjugate-pair or positive-real,
the sign of the determinant is investigated in the following
expression

detðDÞ ∝
�
−
4r
a

	
Q
·

�
−
2r
a

	
−4Q

: ð28Þ

If Q is even-integer (odd-integer), it becomes positive
(negative). Thus, we have the sign problem, where the
sign of the quark determinant depends on whether the
topological charge of configuration is even or odd.
However, this sign problem is easily bypassed. We can
just quench the sign of the determinant to realize gauge
theory with the species at the central branch. The reason
why this simple solution works is as follows: As an artifact
of the present system with mass shift, the resultant theory
becomes gauge theory including the θ term with θ ¼ π.
Quenching the sign of the determinant corresponds to
eliminating this θ term. Thus, the gauge theory without the
θ term coupled to the central-branch species is realized just
by removing the sign of the quark determinant. This way of
bypassing the sign problem is first proposed in the study
on the staggered-Wilson fermion in Ref. [27], and we just
apply it to the central-branch Wilson fermion here.
As we have shown in this section, the six-flavor central-

branch Wilson fermion has enough symmetries to prohibit
the additive mass renormalization for all the six species
and it is free from or is able to bypass the sign problem.
Thus, the fermion formulation is a promising formulation
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for six-flavor or twelve-flavor QCD simulations without
parameter-tuning.

III. TWO-FLAVOR CENTRAL-BRANCH FERMION

In this section, we construct a two-flavor version of
central-branch fermions and discuss its properties in
comparison to the original one. We first consider a simple
modification of hopping terms in the Wilson term as

X4
μ¼1

Cμ →
X3
j¼1

Cj þ 3C4; ð29Þ

where we note Cμ ≡ ðTþμ þ T−μÞ=2 with T�μψn ¼
Un;�μψn�μ. For a free theory, we set Un;�μ ¼ 1. Then,
the modified Wilson fermion is given as

S ¼
X
n;μ

ψ̄nγμDμψn

þ
X
n

ψ̄n½mþ rð6 − C1 − C2 − C3 − 3C4Þ�ψn: ð30Þ

With this central-branch condition MW ¼ mþ 6r ¼ 0, the
action of central-branch Wilson fermion is given by

S2fCB¼
X
n;μ

ψ̄nγμDμψn−r
X
n

ψ̄nðC1þC2þC3þ3C4Þψn:

ð31Þ

In a free theory, the Dirac operator in the momentum space
is expressed as

DðpÞ ¼
X4
μ¼1

iγμ sinpμ − r

�X3
j¼1

cospj þ 3 cosp4

	
: ð32Þ

The Dirac spectrum for a free theory is depicted in Fig. 5.
The 16-degenerate spectrum is split into seven branches in

which 1, 3, 3, 2, 3, 3 and 1 species live. The two species
at the central branch correspond to the two zeros of the
Dirac operator p ¼ ð0; 0; 0; πÞ and p ¼ ðπ; π; π; 0Þ in the
momentum space. This fermion action explicitly breaks
hypercubic symmetry into cubic symmetry, while it shares
with the original central-branch fermion all the other
symmetries and properties, including Uð1ÞV , Uð1ÞV̄ , C,
P, lattice translation, γ5-Hermiticity and reflection positivity.
In the next several subsections, we discuss properties of

this two-flavor central-branch fermions in comparison to
the original one. We study the additive mass renormaliza-
tion in lattice perturbation theory, the parity and Uð1ÞV̄
breaking in the strong-coupling limit, the absence of the
sign problem on the central branch, and the necessity of
parameter tuning for restoration of Lorentz symmetry. By
comparing the properties of the original and two-flavor
central branch fermions, we will find that hypercubic
symmetry is essential for the absence of additive mass
renormalization of all the species at the central branch.

A. Additive mass renormalization

As with the original central-branch fermion [29,62], we
can calculate the quark mass renormalization in one-loop
lattice perturbation theory. The quark propagator S and the
fermion-gauge boson vertex V are different from those in
the original central-branch fermion as

SlmðpÞ ¼ aδlm

i
P

μγμ sinpμ − r
P

3
j¼1 cospj − 3r cosp4

;

ð33Þ

ðVaÞmn
j ðk;pÞ ¼−g0ðTaÞmn

�
iγj cos

kjþpj

2
þ r sin

kjþpj

2

�
;

ðj¼ 1;2;3Þ ð34Þ

ðVaÞmn
4 ðk; pÞ

¼ −g0ðTaÞmn

�
iγ4 cos

k4 þ p4

2
þ 3r sin

k4 þ p4

2

�
;

ð35Þ

We now consider the sunset ΣðαÞ
0 ðsunÞ and tadpole ΣðαÞ

0 ðtadÞ
diagrams. α ¼ 1, 2 correspond to the two zeros denoted

as πð1Þμ ¼ ð0; 0; 0; πÞ and πð2Þμ ¼ ðπ; π; π; 0Þ. The external
momentum is taken to be the values at the Dirac zeros in the

calculation. Σðα¼1Þ
0 ðsunÞ is then given by

FIG. 5. Free Dirac spectrum of the two-flavor central-branch
fermion (r ¼ 1) on a 204 lattice, whose hopping term is given byP

j Cj þ 3C4. 1, 3, 3, 2, 3, 3, 1 species live at the seven branches
respectively.
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Σðα¼1Þ
0 ðsunÞ ¼ rg20CF

4a

Z
d4k
ð2πÞ4

�X3
j¼1

ðc2j − r2s2jÞð
P

3
i¼1 ci þ 3c4Þ þ s2j

ðP3
i¼1 s

2
i þ c24Þð

P
μs

2
μ þ r2ðP3

i¼1 ci þ 3c4Þ2Þ

−
ð9r2c24 − s24Þð

P
3
i¼1 ci þ 3c4Þ þ 3s24

ðP3
i¼1 s

2
i þ c24Þð

P
μs

2
μ þ r2ðP3

i¼1 ci þ 3c4Þ2Þ
�
; ð36Þ

where we define sμ ≡ sin kμ, cμ ≡ cos kμ, sμ ≡ sinðkμ=2Þ and cμ ≡ cosðkμ=2Þ. There is also the sunset diagram contribution
for α ¼ 2, which is given by

Σðα¼2Þ
0 ðsunÞ ¼ rg20CF

4a

Z
d4k
ð2πÞ4

�X3
j¼1

ðs2j − r2c2jÞð
P

3
i¼1 ci þ 3c4Þ − s2j

ðP3
i¼1 c

2
i þ s24Þð

P
μs

2
μ þ r2ðP3

i¼1 ci þ 3c4Þ2Þ

−
ð9r2s24 − c24Þð

P
3
i¼1 ci þ 3c4Þ − 3s24

ðP3
i¼1 c

2
i þ s24Þð

P
μs

2
μ þ r2ðP3

i¼1 ci þ 3c4Þ2Þ
�
: ð37Þ

We can numerically calculate them since they are con-
vergent integrals. For r ¼ 1, we obtain

Σðα¼1Þ
0 ðsunÞ ¼ −0.109985

g20CF

a
; ð38Þ

Σðα¼2Þ
0 ðsunÞ ¼ þ0.109985

g20CF

a
: ð39Þ

We also calculate them for other values of r. For instance,
we obtain ∓ 0.0975065 instead of ∓ 0.109985 in the
above equations for r ¼ 0.7. We thus conclude

Σðα¼1Þ
0 ðsunÞ þ Σðα¼2Þ

0 ðsunÞ ¼ 0. The contribution from

the tadpole diagram to the mass, denoted as ΣðαÞ
0 ðtadÞ, is

given by

ΣðαÞ
0 ðtadÞ ¼ −

g20CF

8a

Z
d4k
ð2πÞ4

1P
λs

2
λ

×
�X

i

cos πðαÞi þ 3 cos πðαÞ4

	
¼ 0: ð40Þ

It means ΣðαÞ
0 ðtadÞ ¼ 0 for either of the two poles. Finally,

the total contribution to Oð1=aÞ mass renormalization is
given as

Σðα¼1Þ
0 ¼ −Σðα¼2Þ

0 ≠ 0; ð41Þ

This result means that the sum of masses of the two flavors
at the central branch is free from additive renormalization,
but their difference suffers from it. It is notable that
renormalization of the sum of the masses is prohibited
by Uð1ÞV̄, but the breaking of hypercubic symmetry leads
to renormalization of the mass difference.
The flavor corresponding to the Dirac zero p¼ð0;0;0;πÞ

gets negative mass via loop effects, while the other flavor
corresponding to p ¼ ðπ; π; π; 0Þ gets positive mass.

Roughly speaking, the action of the two-flavor central-
branch fermion (r ¼ 1) is renormalized as

SR ¼
X
n;μ

ψ̄nγμDμψn

−
X
n

ψ̄nðC1 þ C2 þ C3 þ ð3þmRÞC4Þψn; ð42Þ

where mR stands for a half of the renormalized mass
difference. The Dirac spectrum for the renormalized action
is depicted in Fig. 6, where the central branch is split into
two branches. By introducing the counter term μψ̄nC4ψn
with a tuning parameter μ, we can control this additive
renormalization to realize two flavors with arbitrary oppo-
site masses.
This result informs us of important facts on the original

central-branch fermion. The main difference of the two-
flavor version from the original one is the breaking of
hypercubic symmetry. It means that the existence of full
hypercubic symmetry is essential for the absence of
additive mass renormalization of all the six species in
the original one.
The additive mass-difference renormalization in the two-

flavor version indicates that the symmetries of the system
has no mixed ’t Hooft anomaly to forbid a trivially gapped
phase. More precisely, gapless fermionic modes in a free
theory get massive in an interacting theory and the system

FIG. 6. Schematic Dirac spectrum of renormalized two-flavor
central-branch fermion, which is mR ¼ 1 Dirac spectrum in (42).
The central branch is split into two branches.
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is expected to become a trivially gapped phase. However,
since the eight degrees of freedom have negative masses as
shown in Fig. 6, the system is speculated in a certain
symmetry-protected-topological phase withUð1Þ × Uð1ÞV̄ .
It could be interesting to study this fermion formulation
from this viewpoint.

B. Symmetry breaking in strong-coupling QCD

In this subsection we take a parallel procedure in the
strong-coupling lattice QCD to the original central-branch
fermion. By using hopping operators P�

μ and an on site
operator M̂, a generic lattice fermion action is written as

S ¼
X
n;μ

ψ̄nðPþ
μ ψnþμ − P−

μ ψn−μÞ þ
X
n

ψ̄nM̂ψn: ð43Þ

With these operators an effective action for mesons in the
strong-coupling limit is expressed as

SeffðMÞ ¼ Nc

X
n

�X
μ

TrfðΛn;μÞ þ trM̂MðnÞ

− tr logMðnÞ
�
; ð44Þ

Λn;μ ¼
Vn;μV̄n;μ

N2
c

; MðnÞαβ ¼
P

aψ̄
a;α
n ψa;β

n

Nc
;

Vab
n;μ ¼ ψ̄b

nP−
μ ψ

a
nþμ̂; V̄ab

n;μ ¼ −ψ̄b
nþμ̂P

þ
μ ψ

a
n; ð45Þ

TrfðΛn;μÞ ¼ −trfð−MðnÞðPþ
μ ÞTMðnþ μ̂ÞðP−

μ ÞTÞ; ð46Þ

where Nc is the number of colors, Tr (tr) is a trace over
color (spinor) index, and MðnÞ is a meson field. a, b are
indices for colors, while α, β for spinors. The explicit
form of the function f is derived by performing a one-link
integral of the gauge field. In the large Nc limit, fðxÞ is

fðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4x

p
− 1 − ln

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4x

p

2
¼ xþOðx2Þ:

ð47Þ

fðxÞ ∼ x is a good approximation in a large-dimension
limit. For the two-flavor central-branch fermion, we have
M̂ ¼ ðmþ 6rÞ14 ¼ MW14 and

Pþ
μ ¼

(
1
2
ðγμ − rÞ μ ¼ 1; 2; 3

1
2
ðγ4 − 3rÞ μ ¼ 4

;

P−
μ ¼

(
1
2
ðγμ þ rÞ μ ¼ 1; 2; 3

1
2
ðγ4 þ 3rÞ μ ¼ 4

: ð48Þ

We here assume a form of meson condensate with chiral
and pion condensates as

M0 ¼ σ14 þ iπγ5: ð49Þ

This M0 is regarded as the vacuum expectation value of
MðnÞ. Then, the explicit form of the effective action for σ
and π is given by

Seff ¼ −4NcVol:Veffðσ; πÞ; ð50Þ

Veffðσ; πÞ ¼
1

2
logðσ2 þ π2Þ −MWσ

− ð1 − 3r2Þσ2 − ð1þ 3r2Þπ2: ð51Þ

We find saddle points of SeffðMÞ from

δSeff
δσ

¼ δSeff
δπ

¼ 0: ð52Þ

Then gap equations are given by

ð2 − 6r2Þσ þMW −
σ

σ2 þ π2
¼ 0; ð53Þ

ð2þ 6r2Þπ −
π

σ2 þ π2
¼ 0: ð54Þ

By solving these gap equations we find

σ ¼ MW

12r2
;

π2 ¼ 1

144r4ð1þ 3r2Þ ð72r
4 −M2

Wð1þ 3r2ÞÞ; ð55Þ

where σ and π stand for the chiral and pion condensates.
π can be nonzero for

M2
W <

72r4

1þ 3r2
; ð56Þ

which is the Aoki phase region for the present setup in the
strong-coupling limit. With the central-branch condition
MW ¼ 0, we have

σ ¼ 0; π2 ¼ 1

2ð1þ 3r2Þ : ð57Þ

This result indicates that Uð1ÞV̄ is spontaneously broken
due to the parity broken condensate hψ̄γ5ψi instead of
hψ̄ψi.
We next look into mass of mesons. For this purpose we

expand the meson field as

MðnÞ ¼MT
0 þ

X
X

πXðnÞΓT
X; X ∈ fS;P;Vα;Aα;Tαβg;

ð58Þ

VARIETIES AND PROPERTIES OF CENTRAL-BRANCH WILSON … PHYS. REV. D 102, 034516 (2020)

034516-9



where S; P; Vα; Aα, and Tαβ stand for scalar, pseudoscalar,
vector, axial-vector and tensor respectively. We note

ΓS ¼
14
2
; ΓP ¼ γ5

2
; ΓVα

¼ γα
2
;

ΓAα
¼ iγ5γα

2
; ΓTαβ

¼ γαγβ
2i

ðα < βÞ: ð59Þ

Then the effective action at the second order of πX is
given by

Sð2Þeff ¼ Nc

X
n

�
1

2
trðM−1

0 ΓXM−1
0 ΓYÞπXðnÞπYðnÞ

þ
X
μ

trðΓXP−
μΓYPþ

μ ÞπXðnÞπYðnþ μ̂Þ
�

¼ Nc

Z
d4p
ð2πÞ4 π

Xð−pÞDXYðpÞπYðpÞ; ð60Þ

with

DXYðpÞ ¼
1

2
ðD̃XYðpÞ þ D̃YXð−pÞÞ; ð61Þ

D̃XYðpÞ ¼
1

2
trðM−1

0 ΓXM−1
0 ΓYÞ þ

X
μ

trðΓXP−
μΓYPþ

μ Þeipμ :

ð62Þ

In our case M0 ¼ σ1þ iπγ5 gives

M−1
0 ¼ 1

σ2 þ π2
ðσ1 − iπγ5Þ: ð63Þ

For simplicity, we take r2 ¼ 1. We now write the inverse
meson propagator matrix in the S − P − A sector as

DSPA¼

2
66666666664

DS −C
−C DP −3s4=2 −s3=2 −s2=2 −s1=2

3s4=2 DA4

s3=2 DA3

s2=2 DA2

s1=2 DA1

3
7777777775
;

ð64Þ

where components are given by

DS ¼
σ2 − π2

2ðσ2 þ π2Þ2 − 2c4; ð65Þ

DP ¼ σ2 − π2

2ðσ2 þ π2Þ2 −
1

2
½c1 þ c2 þ c3 þ 5c4�; ð66Þ

C ¼ iσπ
ðσ2 þ π2Þ2 ; ð67Þ

DA4
¼ 1

2ðσ2 þ π2Þ −
5c4
2

; ð68Þ

DA3
¼ 1

2ðσ2 þ π2Þ −
c3
2
− 2c4; ð69Þ

DA2
¼ 1

2ðσ2 þ π2Þ −
c2
2
− 2c4; ð70Þ

DA1
¼ 1

2ðσ2 þ π2Þ −
c1
2
− 2c4; ð71Þ

with sk ¼ sinpk and ck ¼ cospk. By diagonalizing this
matrix, we can derive an explicit form of physical meson
propagators in the sector. We now check that one of meson
masses becomes zero at the central branch. For this purpose
we substitute p ¼ ð0; 0; 0; immÞ þ ðπ; π; π; πÞ into the
propagator. Then, the S − P − A4 sector still has off-
diagonal components and what we have to consider is
an equation detðDSPA4

Þ ¼ 0. It is expressed as

DSDPDA4
þ 9

4
DSs24 − C2DA4

¼ 0: ð72Þ

By substituting the solutions Eq. (55) into the gap equa-
tions, we solve this equation around the central branch
MW ∼ 0 and find that one of solutions is given by

coshmSPA ¼ 1þ 0.737589M2
W þOðM4

WÞ: ð73Þ

This result means that we have a massless meson for
MW ¼ 0,

coshmSPA ¼ 1 → mSPA ¼ 0: ð74Þ

This massless meson corresponds to a massless Nambu-
Goldstone boson associated with SSB of Uð1ÞV̄ symmetry
at the central branch. It indicates that, in the strong-
coupling limit, the Uð1ÞV̄ symmetry and the parity invari-
ance are spontaneously broken due to the special
condensate.
Since the mass difference between the two flavors on the

central branch is additively renormalized as shown in the
previous subsection, the above analysis, which is valid just
in the strong-coupling region, cannot inform us of the
detailed phase structure in the weak-coupling region. In
Fig. 7, we have shown a conjecture of the parity phase
diagram of the two-flavor central-branch fermion. In the
conjecture, the central cusp is split into two cusps due to the
additive renormalization of the mass difference. By tuning
the parameter μ for the counter term μψ̄C4ψn, we control
this splitting of the central cusp and realize the system with
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the two flavors with opposite masses. It is a nontrivial
question whether or not the Uð1ÞV̄ symmetry is sponta-
neously broken even in the weak-coupling region.

C. Sign problem and practical use

All the procedure in the proof of the absence of the sign
problem is the same as that for the original central-branch

fermion. The Uð1ÞV̄ symmetry means Hð−Þ
P

μ
nμ ¼

−ð−Þ
P

μ
nμH with the Hermitian Dirac operator

H ¼ γ5D. It results in the pairing of nonzero eigenvalues
ε;−ε in the spectrum of H as f�εigi¼1;…;N with
N ¼ N1N2N3N4. By takingN as an even integer, we obtain

detðDÞ ¼ detðHÞ ≥ 0: ð75Þ

In the Monte Carlo simulation with the two-flavor
central-branch fermion, we have to take account of the
fact that the mass difference of the central-branch two
flavors suffers additive renormalization. From the conjec-
tured parity phase diagram in Fig. 7, the central-branch
condition MW ¼ mþ 6r ¼ 0 corresponds to the parity-
symmetric phase in the weak-coupling region. As long as
we keep this condition, the formulation is free from the sign
problem since the mass-difference renormalization elimi-
nates genuine zero modes for this case.
Let us look into this fact in detail: We consider the

typical case, where the renormalized mass difference is
given by 2mR ¼ 2 as with Fig. 6. We also assume that a
topological charge of gauge configuration is Q. We then
have the single flavor with the real-eigenvalue contribution
∼ð−7r=aÞQ at the left edge branch, the three flavors with

∼ð−5r=aÞ−3Q at the second branch from the left, the other
three flavors with ∼ð−3r=aÞ3Q at the third branch from the
left and the other single flavor with ∼ð−r=aÞ−Q at one of
the split central branches. We note that there is no genuine
zero mode in this case unless we fine-tune a parameter to
cancel out the renormalized mass difference. We then find
that the Dirac determinant

detðDÞ∝
�
−
7r
a

	
Q
·

�
−
5r
a

	
−3Q

·

�
−
3r
a

	
3Q

·

�
−
r
a

	
−Q

>0;

ð76Þ

is positive-definite. We thus conclude that the formulation
is free from the sign problem.

D. Parameter-tuning procedure

As we have discussed, we need to tune one parameter to
control the mass difference of the two flavors in the two-
flavor central-branch fermion formulation. For this pur-
pose, we tune a parameter for the dimension-3 operator

ψ̄nC4ψn: ð77Þ

By tuning this parameter, we can realize the two-flavor
system with arbitrary opposite masses.
To discuss the tuning procedure required for Euclidean

Lorentz symmetry restoration in the continuum limit, we
first consider possible operators generated by loop effects.
The discrete symmetries of the system prohibit further
emergence of the dimension-3 relevant operators such as
ψ̄γ4ψ . The dimension-4 marginal operators can emerge
through loop effects due to the breaking of hypercubic
symmetry, but most of them are prohibited by the other
discrete symmetries. The only dimension-4 operators we
have to care are

ψ̄γ4∂4ψ ; ð78Þ

X3
j¼1

F2
j4; ð79Þ

with j ¼ 1, 2, 3. A coefficient of the former operator is
renormalized differently from that of the other dimension-4
operators ψ̄γj∂jψ , while a coefficient of the latter
operator is renormalized differently from that of F2

ij with
i, j ¼ 1, 2, 3. In other words, the speed of light is
renormalized in a unphysical manner in this system both
for quark and gauge fields. Thus, we have to tune the two
marginal parameters to restore the Euclidean Lorentz
symmetry. However, it is worth noting that the tuning
procedure for these two parameters is well investigated in
the QCD simulation on anisotropic lattices [88,89] and it
may be applied to the present case.

FIG. 7. The conjectured Aoki phase diagram for two-flavor
central branch fermion. The red line corresponds to the central
branch, where the extra symmetry Uð1ÞV̄ emerges and is
spontaneously broken. The central cusp is split into two cusps
due to the additive renormalization of the mass difference of the
two species.
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As a summary of this section, we make several com-
ments. The two-flavor central-branch fermion requires
three-parameter tuning for the practical use in lattice
QCD. Its advantages such as Uð1ÞV̄ symmetry, minimal-
doubling and ultralocality seems to be completely beaten
by the drawback. However, this disadvantage rather sets off
the original central-branch Wilson fermion since it has no
necessity of parameter-tuning in six-flavor lattice QCD.
As we have discussed, this difference originates in the
existence of full hypercubic symmetry. The study of the
two-flavor central-branch fermion gives a good lesson that
we have to take care of not only lattice flavor-chiral
symmetries but also hypercubic symmetry in the central-
branch fermions.

IV. OTHER CENTRAL-BRANCH
WILSON FERMIONS

In this section, we consider other varieties of central-
branch fermions. For instance, we obtain an eight-flavor
central-branch fermion by modification of hopping terms in
the Wilson term as

X4
μ¼1

Cμ → C12 þ C34; ð80Þ

with

Cμν ≡ CμCν þ CνCμ

2
: ð81Þ

With this modification the action of central-branch fermion
is given by

S8fCB ¼
X
n;μ

ψ̄nγμDμψn − r
X
n

ψ̄nðC12 þ C34Þψn: ð82Þ

This setup corresponds to the central branch of one of the
flavored-mass fermions, called the tensor-type fermion
[34]. In a free theory, the Dirac operator in the momentum
space is expressed as

DðpÞ ¼
X4
μ¼1

iγμ sinpμ − rðcosp1 cosp2 þ cosp3 cosp4Þ:

ð83Þ

The Dirac spectrum for a free theory with r ¼ 1 is depicted
in Fig. 8. The 16 species are split into three branches
in which 4, 8, and 4 species live. The eight species at
the central branch correspond to the eight zeros of the
Dirac operator p ¼ ð0; 0; 0; πÞ, ð0; 0; π; 0Þ, ð0; π; 0; 0Þ,
ðπ; 0; 0; 0Þ, ðπ; π; π; 0Þ, ðπ; π; 0; πÞ, ðπ; 0; π; πÞ, ð0; π; π; πÞ
in the momentum space.
Among the flavor-chiral symmetries of the naive fer-

mion, this setup keeps a relatively large subgroup as

ΓðþÞ
X ∈

�
14; ð−1Þn1þ���þn4γ5; ð−1Þn1;2

i½γ1; γ2�
2

;

ð−1Þn3;4 i½γ3; γ4�
2

�
; ð84Þ

Γð−Þ
X ∈

�
ð−1Þň1;3 i½γ1; γ3�

2
; ð−1Þň2;4 i½γ2; γ4�

2
;

ð−1Þň1;4 i½γ1; γ4�
2

; ð−1Þň2;3 i½γ2; γ3�
2

�
: ð85Þ

It also shares the symmetries and properties including
lattice translation, γ5-Hermiticity, C, P and reflection
positivity with the original central-branch fermion. The
breaking of hypercubic symmetry is much less severe than
that of the two-flavor central-branch fermion. Regarding
restoration of Euclidean Lorentz symmetry in the con-
tinuum, we need parameter-tuning in the gauge-boson part,
where the coefficient of F2

12 þ F2
34 is renormalized differ-

ently from that of F2
13 þ F2

23 þ F2
14 þ F2

24. We also note
that the sign problem on the central branch is absent in this
case too.
Since the on site mass term is not invariant under the

above flavor-chiral transformations, the renormalization
of the on site mass term is prohibited. Furthermore, the
absence of additive mass renormalization for each of the
eight species is expected since all the possible mass terms
for the species seem to be prohibited by the residual
hypercubic symmetry and the flavor-chiral symmetry. It
should be verified in future study.
We can also construct another eight-flavor version of

central-branch fermions by the modification of the Wilson
term

P
4
μ¼1 Cμ → C123 þ C4 with Cμνρ ≡ 1

6

P
perm: CμCνCρ.

Although the 16 species are again split into three branches

FIG. 8. Free Dirac spectrum of the four-dimensional eight-
flavor central branch fermion (r ¼ 1) on a 204 lattice, whose
Wilson hopping term is C1C2 þ C3C4. 4, 8 and 4 species live at
the three branches respectively.
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with 4, 8, and 4 species, the breaking of hypercubic
symmetry is severer than the previous version, thus we
speculate that the tuning procedure is required for more
parameters.
We consider that there are lots of varieties of central-

branch fermions and future works will be devoted to their
full classification. The two-flavor central-branch fermion in
five dimensions is briefly addressed in Appendix. A.

V. CENTRAL BRANCH OF STAGGERED-WILSON
FERMIONS

In this section we focus on the staggered fermion [13,14]
and its flavored-mass terms. The argument in this section
is in part presented in the proceedings of the lattice
conference [29] by one of the present author.
Let me start with the action of the staggered fermion,

S ¼
X
xy

χ̄x½ημDμ þm�xyχy; ð86Þ

where χx is an one-component fermion field, and we
define ðημÞxy ≡ ð−1Þx1þ���þxμ−1δx;y and Dμ ≡ 1

2
ðTμ − T−μÞ

with ðT�μÞxy ¼ Ux;�μδx�μ;y. m ¼ mδx;y is a mass param-
eter. This action is obtained from the naive fermion action
via the procedure called “spin diagonalization” and con-
tains four species called “tastes.” For simplicity we denote
four-dimensional lattice sites as x or y for staggered
fermions. The relevant symmetry of staggered fermion
[17–19] is

fC0;Ξμ; Is; Rμνg × fUϵð1Þgm¼0; ð87Þ

where C0 is staggered charge conjugation, Ξμ is shift
transformation, Is is spatial inversion, Rμν is hypercubic
rotation, and Uϵð1Þ is the residual chiral symmetry χx →

eiθϵxχx with ϵx ¼ ð−1Þ
P

μ
xμ , which is expressed as γ5 ⊗ ξ5

in the spin-taste representation (ξ5 stands for γ5 in the taste
space). The combinations of these symmetries give physi-
cal symmetries, including charge conjugation, parity and
spacetime hypercubic symmetry. The details of symmetries
are summarized in Appendix B.

A. Staggered-Wilson fermion

The species-splitting mass term, namely the flavored-
mass term, is also introduced into staggered fermions
[17,20–22]. They split four degenerate tastes into multiple
branches with satisfying other basic properties including γ5
Hermiticity (precisely speaking, ϵx ∼ γ5 ⊗ ξ5 Hermiticity).
In spin-taste representation there are only two types of
flavored-mass terms satisfying the γ5 Hermiticity, corre-
sponding to 1 ⊗ ξ5 and 1 ⊗ σμν. These terms are realized
as four- and two-hopping terms in the one-component
staggered action up to OðaÞ errors.

The four-hopping flavored-mass term [17,20] is given by

MA ¼ ϵ
X
sym

η1η2η3η4C1C2C3C4 ¼ ð1 ⊗ ξ5Þ þOðaÞ;

ð88Þ

with ðϵÞxy ¼ ð−1Þx1þ���þx4δx;y and Cμ ¼ ðTμ þ T†
−μÞ=2.

Here we hide the factor 1=24 in the symmetric sumP
sym:. With this flavored-mass term, the four tastes

(species) fall into the ξ5 ¼ þ1 two-taste subspace and
the ξ5 ¼ −1 two-taste subspace. As a consequence, the
corresponding Dirac spectrum has two branches [21,23].
By introducing a mass parameter m ¼ mδx;y and a Wilson
parameter r ¼ rδx;y as with the Wilson fermion, the four-
hopping staggered-Wilson fermion is expressed as

SA¼
X
xy

χ̄xðDAÞxyχy¼
X
xy

χ̄x½ημDμþrð1þMAÞþm�xyχy:

ð89Þ

We note that (88) is derived from the four-hopping
flavored-mass term for naive fermions which split sixteen
species into two eight-species branches [24,28,29,90]. It is
schematically expressed as

ψ̄x½C1C2C3C4�xyψy → �χ̄x½ϵη1η2η3η4C1C2C3C4�xyχy:
ð90Þ

The two-hopping flavored-mass term [22] is given by

MH ¼ iðη12C12 þ η34C34Þ ¼ ½1 ⊗ ðσ12 þ σ34Þ� þOðaÞ;
ð91Þ

with ðημνÞxy ¼ ϵμνημηνδx;y, ðϵμνÞxy ¼ ð−1Þxμþxνδx;y, Cμν ¼
ðCμCν þ CνCμÞ=2. This flavored mass splits four tastes
into three branches, including one-flavor, two-flavor and
the other one-flavor branches. By introducing a mass
parameter and a Wilson parameter, the two-hopping stag-
gered-Wilson fermion is

SH¼
X
xy

χ̄xðDHÞxyχy¼
X
xy

χ̄x½ημDμþrð2þMHÞþm�xyχy:

ð92Þ

Equation (91) is derived from the two-hopping flavored-
mass term in Eq. (82) for naive fermions which split sixteen
species into three branches, including four-species, eight-
species, and the other four-species branches [24,28,29,90].
It is expressed as

ψ̄x½C12þC34�xyψy → �χ̄x½iðη12C12þη34C34Þ�xyχy:
ð93Þ
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The properties of these staggered-Wilson fermions have
been studied in terms of index theorem [20], overlap kernel
[21,23], symmetries [28,29,91], numerical costs [23,27],
parity phase structure [24,25,28], taste-breaking and
hadron spectrum [28,29,91]. We here concentrate on their
symmetries in order to study the central-branch staggered-
Wilson fermions. The four-hopping flavored-mass in
Eq. (88) breaks the staggered symmetry in Eq. (87) to

fC0;Ξ0
μ; Rμνg; ð94Þ

where we define Ξ0
μ ≡ ΞμIμ. Since the action is invariant

under the transformation Ξ4Is ∼ ðγ4 ⊗ 1Þ, the physical
parity invariance P remains. Furthermore, C0 is also
unbroken in this case, therefore the physical charge con-
jugation C at the two-flavor branch can be formed in
a similar way to the staggered fermions. Regarding
Euclidean Lorentz symmetry, a combination of the stag-
gered rotation Rμν and the shifted-axis reversal Ξ0

μ forms the
hypercubic group as with the staggered fermion. These
facts indicate that the four-hopping staggered-Wilson
action (89) possesses enough discrete symmetries for a
correct continuum limit.
On the other hand, the symmetry of the two-hopping

staggered fermion in (98) is smaller than that of the four-
hopping one, which is given by

fCT;Ξ0
μ; R12; R34; R24R31g: ð95Þ

Although C0 is broken in this action, it is invariant under
another special charge conjugation CT ≡ R21R2

13C0

[28,29]. Due to CT and Ξ0
μ, the invariances under physical

parity and physical charge conjugation are guaranteed at
each of the three branches. However, the breaking of the
staggered rotation symmetry leads to the necessity of one-
parameter tuning to restore Lorentz symmetry, where the
coefficient of F2

12 þ F2
34 is renormalized differently from

that of F2
13 þ F2

23 þ F2
14 þ F2

24 [91]. It is a consequence of
the fact that the two-hopping staggered-Wilson fermion is
derived from the flavored-mass term with the breaking of
hypercubic symmetry in (82) via the spin diagonalization.

B. Central-branch staggered-Wilson fermion

The symmetry of the four-hopping staggered-Wilson
fermion in (89) is enhanced with the condition mþ r ¼ 0.
The symmetry of SA in (89) with this condition is

fC0; C0
TΞμ; C0

TIs; Rμνg; ð96Þ

where C0
T is given as the other special charge conjugation

[28,29,91]

C0
T∶ χx → χ̄Tx ; χ̄x → χTx ; Ux;μ → U�

x;μ: ð97Þ

However, the Dirac spectrum has no central branch for
this case.
On the other hand, the two-hopping staggered-Wilson

fermion in (98) with the condition mþ 2r ¼ 0 has the
central branch in the Dirac spectrum. The action with this
condition is given by

ScbH ¼
X
xy

χ̄xðDcb
H Þxyχy ¼

X
xy

χ̄x½ημDμ þ rMHÞ�xyχy: ð98Þ

The symmetry [28,29,91] is summarized as

fCT;C0
T;Ξ0

μ; R12; R34; R24R31g: ð99Þ

The extra symmetry is the special charge conjugation C0
T .

Since the two-flavor central branch exists in the setup, this
enhancement of the symmetry is meaningful. First of all,
the two other mass terms

χ̄xχx; χ̄xðMAÞxyχy; ð100Þ

are not invariant under the enhanced C0
T invariance,

thus their generation by the loop effects is prohibited.
Furthermore, the residual rotational symmetry prohibits
unequal renormalization of coefficients of C12 and C34 in
χ̄xðMHÞxyχy. These facts mean that this two-flavor central-
branch fermion is stable in a sense that the additive mass
renormalization for each of the two tastes at the central
branch is prohibited and the central branch cannot be split
by quantum effects. It is clear difference from the two-
flavor central-branch Wilson fermion in Sec. III, but is
consistent with the property of the eight-flavor central-
branch fermion in Sec. IV, which is reduced to the central-
branch staggered-Wilson fermion by spin diagonalization.
Indeed, the numerical calculation for this case in [27]
indicates the absence of additive mass renormalization for
the two tastes at the central branch. We can rephrase this
property that the mixed ’t Hooft anomaly of the symmetries
of the central-branch staggered-Wilson fermion prohibits a
trivially gapped phase.
It is notable that the absence of sign problem is also

proved in this formulation, where we have C0
T instead of the

Z2 part of Uð1ÞV̄ in the central-branch Wilson fermion and
this C0

T leads to the pairing of nonzero eigenvalues in the
spectrum of H ≡ ϵxDcb

H . As long as the number of lattice
sites is even, the determinant of Dirac operator is positive
semi-definite. When we introduce a mass shift, we can
bypass the sign problem easily by quenching the sign of the
determinant as proposed in [27].
Although this two-flavor formulation is free from the

necessity of the mass parameter fine-tuning, we need the
one-parameter tuning for restoration of Euclidean Lorentz
symmetry. However, this situation is better than those in the
known classes of minimally doubled fermions, where the
two- or three-parameter tuning is required [55,56,58–60].
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In the practical use of the central-branch staggered-Wilson
fermion, one may utilize the knowledge of the anisotropic
lattice QCD.

VI. SUMMARY AND DISCUSSION

In this work we study properties of the several types
of central-branch Wilson fermions in four dimensions. We
first give a comprehensive review on the original central-
branch fermion with introducing several new insights,
where we discuss its construction, the prohibition of
additive mass renormalization of all six species, sponta-
neous symmetry breaking in the strong-coupling limit, the
absence or the solution of the sign problem for quark
determinant, and their practical use. In particular, we show
that, while the sign problem of quark determinant is absent
right on the central branch, the necessity of mass shift in the
lattice simulation may revive it. We argue that we can
bypass this sign problem just by quenching the sign of the
Dirac determinant. We then conclude that the original
central-branch Wilson fermion is useful at least in the
six or twelve-flavor lattice QCD simulation.
We construct several varieties of the central-branch

fermions and study their properties, with special attention
to their symmetries. For instance, we consider the two-
flavor version by modifying the Wilson term asP

3
j¼1 Cj þ 3C4. Its Dirac spectrum has seven branches

and two species live at the central branch. Although the
hypercubic symmetry is broken to its cubic subgroup as
with the anisotropic lattice formulation, the fermion setup
shares all the other symmetries including C, P, Uð1ÞV and
Uð1ÞV̄ with the original central-branchWilson fermion. For
this setup, we investigate the additive mass renormaliza-
tion, the spontaneous symmetry breaking of parity and
Uð1ÞV̄ symmetry, the absence of the sign problem, and the
parameter tuning for restoration of Euclidean Lorentz
symmetry. In particular, in the lattice perturbation theory
we find that the mass difference of the two flavors suffers
from additive renormalization due to the breaking of
hypercubic symmetry, while the sum of their masses is
free from it. Based on this fact we argue that the existence
of full hypercubic symmetry in the original central-branch
fermion is essential for the absence of additive mass
renormalization for all the six species. We can rephrase
this argument that the mixed ’t Hooft anomaly of the
symmetries including hypercubic symmetry, Uð1ÞV , lattice
translation, etc. prohibits a trivially gapped phase.
Other types of central-branch fermions are also dis-

cussed, with emphasis on their symmetries. In particular,
we investigated the staggered-Wilson fermion as another
version of two-flavor central-branch fermions. In the
staggered-Wilson fermion, four tastes are split into three
branches and two tastes live at the central branch. Thus this
fermion formulation without the on site term is regarded
as another version of the two-flavor central-branch
fermion. At the central branch, the special type of charge

conjugation invariance C0
T restores and it prohibits the

additive mass renormalization for each of the two tastes.
This fermion formulation seems to be a promising two-
flavor setup, while the one-parameter tuning for restoration
of Euclidean Lorentz symmetry is still required.
The most important messages of this work are summa-

rized as follows: The original six-flavor central-branch
Wilson fermion has enough symmetries to prohibit the
additive mass renormalization for all the six species, while
it is not the case with the two-flavor version. Moreover, the
central-branch fermions are free from the sign problem right
on the central branch, and it can be bypassed just by the sign
quenching even with mass shift. Thus, the six-flavor central-
branch fermion is a promising formulation for six-flavor or
twelve-flavor QCD simulations without parameter-tuning.
The central-branch staggered-Wilson fermion also has a
stable central branch without any additive mass renormal-
ization, and the one-parameter tuning for Lorentz symmetry
in the formulation enables us to study two-flavor QCD
efficiently. It can be regarded as a “minimally doubled
fermion” with less symmetry breaking.
In this work, we do not pay much attention to flavor-

symmetry breaking among the species living at the central
branch. In future works, we have to verify that the whole
flavor symmetry restores in lattice QCD with the central-
branch fermion in the continuum. We also plan to perform a
full classification of central-branch fermions. It is an interest-
ing question whether it is possible to construct the two-flavor
central-branch fermions with full hypercubic symmetry.
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APPENDIX A: 5D TWO-FLAVOR
CENTRAL-BRANCH FERMION

In five dimensions, we can take a parallel procedure to
have two-flavor central-branch fermions. The deformation
from the 5d Wilson is given as

X5
μ¼1

Cμ →
X4
j¼1

Cj þ 4C5: ðA1Þ

The free action is just given by

S5dW2 ¼
1

2

X
n

X5
μ¼1

ψ̄nγμðψnþμ̂ −ψn−μ̂Þ

−
r
2

X
n

ψ̄n

�X4
j¼1

ðψnþĵ þψn−ĵÞþ 4ðψnþ5̂ þψn−5̂Þ
�
:

ðA2Þ
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The 32 species are split into nine branches with 1, 4, 6, 4, 2,
4, 6, 4, and 1 flavors. The central branch corresponds to
the two zeros of the Dirac operator ð0; 0; 0; 0; πÞ and
ðπ; π; π; π; 0Þ. We note that this fermion action explicitly
breaks 5d hypercubic symmetry, while it keeps 4d hyper-
cubic symmetry and other requisite discrete symmetries.

APPENDIX B: STAGGERED AND
STAGGERED-WILSON SYMMETRIES

In this appendix, we list the staggered discrete symmetries
including, staggered charge conjugation, shift, axis reversal,
and staggered rotation [17,19]. We also discuss their explicit
breaking in staggered-Wilson fermions [28,29,91].
The staggered charge-conjugation transformation is

given by

C0∶ χx→ ϵxχ̄
T
x ; χ̄x→−ϵxχTx ; Ux;ν→U�

x;ν: ðB1Þ

The four-hopping flavored-mass term is invariant under this
transformation, but the two-hopping flavored-mass term is
not invariant.
The shift transformation is given by

Ξμ∶ χx→ ζμðxÞχxþμ̂; χ̄x→ ζμðxÞχ̄xþμ̂; Ux;ν→Uxþμ̂;ν;

ðB2Þ

with ζ1ðxÞ ¼ ð−1Þx2þx3þx4 , ζ2ðxÞ ¼ ð−1Þx3þx4 , ζ3ðxÞ ¼
ð−1Þx4 and ζ4ðxÞ ¼ 1. This transformation flips the sign
of the both types of flavored-mass terms.
The axis reversal transformation is given by

Iμ∶ χx → ð−1Þxμχx0 ; χ̄x → ð−1Þxμ χ̄x0 ; Ux;ν → Ux0;ν;

ðB3Þ

where x → x0 means xμ → −xμ, xρ → xρ with ρ ≠ μ. In
particular, we denote the spatial inversion as Is ¼ I1I2I3.
It flips the signs of the both flavored-mass terms.
The staggered rotational transformation is given by

Rρσ∶ χx → SRðR̃−1xÞχR̃−1x; χ̄x → SRðR̃−1xÞχ̄R̃−1x;

Ux;ν → UR̃x;ν; ðB4Þ

where x→ R̃xmeans xρ→xσ, xσ → −xρ, xτ → xτ, τ ≠ ρ, σ.
We also define SRðxÞ≡ 1

2
½1� ηρðxÞησðxÞ ∓ ζρðxÞζσðxÞ þ

ηρðxÞησðxÞζρðxÞζσðxÞ� with ρ ≶ σ. The four-hopping

flavored-mass term is invariant under this staggered rota-
tion transformation, while the two-hopping type is not.
The physical parity transformation is realized as a

combination of Is and Ξ4 as

IsΞ4χ ∼ ðγ4 ⊗ 1Þψð−x; x4Þ; ðB5Þ

where we denote a physical Dirac fermion field as ψ . The
two types of staggered-Wilson fermion actions are invariant
under this transformation, thus they have physical parity
symmetry P at each of the branches. We note the simple
combination of μ-shift and μ-axis reversal IμΞμ is also a
symmetry of both staggered-Wilson fermions.
The physical charge conjugation is realized as a combi-

nation of staggered charge conjugation, axis reversal and
shift,

C0Ξ2Ξ4I2I4 ∼ C: ðB6Þ

The four-hopping flavored-mass term is invariant under this
transformation. It means that the two flavors at both of the
branches have the physical charge conjugation invariance.
Although the two-hopping type breaks C0, it has the other
special charge conjugation defined as a combination of C0

and the staggered rotation

CT∶ R21R2
13C: ðB7Þ

Based on this invariance we can define physical charge
conjugation C for the branches including the central
branch. Thus, we conclude that fermionic degrees of
freedom in both of the staggered-Wilson fermions have
physical charge conjugation invariance.
It is well-known that the diagonal hypercubic trans-

formation SW4;diag of euclidian rotation SOð4Þ and flavor
SUð4Þ is constructed as a combination of the staggered
rotation and the axis reversal [19] in staggered fermions
This symmetry is enhanced to Euclidian Lorentz symmetry
in the continuum limit. The four-hopping staggered-Wilson
fermion action is invariant under the staggered rotation
and the shifted-axis reversal ΞμIμ, which can form SW4;diag.
Thus, the setup is expected to recover Lorentz symmetry
in the continuum. On the other hand, the two-hopping
staggered fermion loses the staggered rotation symmetry,
and it results in the necessity of the parameter tuning for the
correct continuum limit.
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