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We extend dilaton chiral perturbation theory (dChPT) to include the taste splittings in the Nambu-
Goldstone sector observed in lattice simulations of near-conformal theories with staggered fermions.We then
apply dChPT to a recent simulation by theLSDCollaboration of the SU(3) gauge theorywith 8 fermions in the
fundamental representation,which is believed to exhibit near-conformal behavior in the infrared, and inwhich
a light singlet scalar state, nearly degeneratewith the pions, has been found.We find that themesonic sector of
this theory can be successfully described by dChPT, including, in particular, themesonic taste splittings found
in the simulation. We confirm that current simulations of this theory are in the “large-mass” regime.

DOI: 10.1103/PhysRevD.102.034515

I. INTRODUCTION

There has been a growing interest in the nonperturbative
dynamics of gauge theories with more light fermionic
degrees of freedom than QCD, obtained by increasing the
number of fundamental fermions or by taking fermions to
be in larger representations, or both. If all fermions trans-
form in a vectorlike representation of the gauge group, such
theories can be studied on the lattice, and many groups have
pursued such simulations, both with an eye toward beyond
the Standard Model (BSM) model building, and because
the dynamics of such theories may be qualitatively different
from the dynamics of QCD. For reviews of the lattice
efforts, we refer to Refs. [1–4].
An example of different dynamical behavior is the

appearance in some of these theories of a very light scalar
with the same quantum numbers as the very broad, and
relatively heavy f0ð500Þ resonance in QCD. Specifically,
in SU(3) gauge theory with either Nf ¼ 8 fundamental
Dirac fermions [5–7],1 or two sextet Dirac fermions [9–13],
a singlet 0þþ scalar has been observed nearly degenerate in
mass with the “pions,” i.e., the pseudo-Nambu-Goldstone
bosons (pNGB’s) associated with chiral symmetry break-
ing, at the fermion masses employed in these simulations.

Similarly, a very light singlet 0þþ scalar has been observed in
SU(3) gauge theory with four light and eight heavier Dirac
fermions in the fundamental representation [14]. The appear-
ance of the light singlet scalar in these simulations is
accompanied by the onset of approximate hyperscaling laws.
A similar behavior has also been reported recently in the
SU(3) gauge theory with four light and six heavier Dirac
fermions in the fundamental representation [15].
Chiral perturbation theory (ChPT) has been a powerful

tool for interpreting the results from simulations of lattice
QCD. In the case of theories with a light scalar, which in
current simulations is roughly degenerate with the pions,
also the light scalar will have to be included in an effective
field theory (EFT) approach to interpreting the data. Any
such EFT should be constructed using the (approximate)
symmetries of the underlying theory, and be based on a
hypothesis for the parametrical smallness of the mass of the
light scalar, much like the usual assumption of chiral
symmetry breaking explains the smallness of the pion
mass. An EFT framework based on the assumption that the
light singlet scalar, which henceforth we will refer to as the
dilaton, can be viewed as a pNGB for approximate scale
invariance has been developed using a systematic spurion
analysis, and with a consistent power counting, in
Refs. [16–19].2 We will refer to this framework as dilaton-
ChPT, or dChPT for short. dChPT is based on a systematic
expansion in the fermion mass as well as in the distance to
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1For earlier work on the Nf ¼ 8 theory, see Ref. [8].

2Reference [20] already discussed some of the ideas under-
lying this construction. For dChPTwith the pions in the ϵ-regime,
see Ref. [21].
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the conformal window, as measured by the trace of the
energy-momentum tensor of the massless theory at the
chiral symmetry breaking scale. For other approaches to
include the light scalar in a low-energy description, see
Refs. [22–31].
In this paper, we fit lattice spectroscopy data from

Ref. [6] for the Nf ¼ 8 SU(3) gauge theory to the
predictions of tree-level dChPT. The simulations reported
in Ref. [6] were carried out with n-HYP smeared staggered
fermions, and exhibit taste splitting of the pion multiplet
(for reviews of taste breaking in QCD with staggered
fermions, see for instance Refs. [32,33]). The quantities we
consider are the pion mass, the dilaton mass, the pion decay
constant, and the masses of two nonsinglet taste pions for
which data are provided in Ref. [6]. We fit these quantities
as a function of the bare fermion mass, taking correlations
into account. Fits of dChPT to the pion mass, the pion
decay constant, and the dilaton mass have been considered
before in Ref. [12], but dChPT fits to the taste-split pions
and the inclusion of data correlations in the fits are new.
The behavior of the taste-split pion spectrum as a function
of the fermion mass is rather different from that in QCD,
and thus provides a particularly interesting way to test
dChPT, extended to include the effects of taste breaking.
In Sec. II we briefly summarize dChPT at lowest order,

recasting predictions for masses and the pion decay constant
in a form that is useful for our fits.3 In Sec. III we analyze the
effect of taste breaking associated with the use of staggered
fermions, and summarize expressions for the taste breakings
in the pion mutiplet, again in a form that is useful for our fits.
Then, Sec. IV is concerned with the fits themselves, after
some preliminary remarks about the choice of units in which
to express the quantities to be fit. Section V contains our
conclusions, while an Appendix discusses the use of the
gradient flow scale t0. Preliminary results have been pre-
sented in Ref. [34].

II. TREE-LEVEL DCHPT

The euclidean leading-order (LO) Lagrangian for dChPT
is given by

L ¼ 1

2
f̂2τe2τ∂μτ∂μτ þ

1

4
f̂2πe2τtrð∂μΣ†∂μΣÞ

−
1

2
f̂2πB̂πmeð3−γ�ÞτtrðΣþ Σ†Þ þ f̂2τ B̂τc1e4τ

�
τ −

1

4

�
:

ð2:1Þ

Here f̂τ, f̂π , B̂π and B̂τ are low-energy constants (LECs).
The dimensionless small parameter c1 is proportional to the
small expansion parameter nf − n�f, with nf defined as the
limiting value of Nf=Nc in the Veneziano limit [35], where

the number of colors Nc and the number of fundamental
flavors Nf tend to infinity simultaneously. n�f is the value of
nf for the theory at the conformal sill: the boundary
between the regime with chiral symmetry breaking and
the regime in which the massless theory is conformal in the
infrared. The effective field for the dilaton is τ, and Σ ¼
expð2iπ=f̂πÞ is the usual nonlinear field describing the pion
multiplet. The τ field has been shifted such that vðmÞ≡
hτi ¼ 0 for m ¼ 0. Finally, because of the proximity of the
sill of the conformal window nf ¼ n�f, where the gauge
coupling g runs into the infrared fixed point g�, the value of
the “walking” coupling is close to its value at the infrared
fixed point. The same applies to the mass anomalous
dimension, γðgÞ, which we can thus expand around
γ� ¼ γðg�Þ, the mass anomalous dimension at the infrared
fixed point at the conformal sill. For a detailed discussion of
the construction of this Lagrangian, its relation to the
underlying theory with Nf fundamental fermions and the
power counting, we refer to Refs. [16,19].
For m > 0, the potential is minimized by Σ ¼ 1, and

vðmÞ then solves the saddle-point equation

ð3 − γ�Þm
4c1M

¼ vðmÞeð1þγ�ÞvðmÞ; M ¼ f̂2τ B̂τ

f̂2πB̂πNf

: ð2:2Þ

Furthermore, taking into account that the pion and dilaton
fields need to be renormalized by a common factor evðmÞ,
one obtains from Eq. (2.1)

M2
π ¼ 2B̂πmeð1−γ�ÞvðmÞ; ð2:3aÞ

M2
τ ¼ 4c1B̂τe2vðmÞð1þ ð1þ γ�ÞvðmÞÞ; ð2:3bÞ

Fπ ¼ f̂πevðmÞ: ð2:3cÞ

Next, we combine Eqs. (2.3a) and (2.3c), using Eq. (2.2),
to obtain

M2
π

F2
π
¼ 8B̂πc1M

f̂2πð3 − γ�Þ
vðmÞ≡ 1

d1
vðmÞ; ð2:4Þ

defining the constant d1. dChPT is valid when M2
π=F2

π is
parametrically small, which is true as long as c1vðmÞ is
small enough. First, when m

c1M
≲ 1, also vðmÞ≲ 1, just

leading to the requirement that c1 is small. Indeed, it is,
since c1 ∝ nf − n�f, which is small by assumption. But,
when m

c1M
≫ 1, Eq. (2.2) implies that

vðmÞ ∼ 1

1þ γ�
log

�ð3 − γ�Þm
4c1M

�
; ð2:5Þ

and the requirement that M2
π=F2

π be parametrically small
becomes

3Note that the dilaton decay constant was not computed in
Ref. [6].
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c1 log

�
m

c1M

�
≪ 1: ð2:6Þ

In the large-mass regime, i.e., when m
c1M

≫ 1, using the
approximate solution Eq. (2.5), we find thatMπ ,Mτ and Fπ

scale like

Mπ ∼Mτ ∼ Fπ ∼m
1

1þγ� : ð2:7Þ

This hypescaling behavior extends to other quantities
as well [19]. It can be understood by observing that for
m

c1M
≫ 1 the breaking of scale invariance is dominated by

the fermion massm, instead of by the (slow) running of the
renormalized coupling.
We now return to Eq. (2.2), which we will solve exactly,

i.e., we will not use the approximate solution (2.5) in the
rest of this paper.4 We use Eq. (2.4) to rewrite Eq. (2.2) as

m ¼ 4c1M
3 − γ�

vðmÞeð1þγ�ÞvðmÞ ¼ d2
M2

π

F2
π
e
ð1þγ�Þd1M

2
π

F2π ; ð2:8Þ

with

d2 ¼
4c1M
3 − γ�

d1 ¼
f̂2π
2B̂π

: ð2:9Þ

Eliminating ev from Eqs. (2.3a) and (2.3c), one finds

M2
πF

−1þγ�
π ¼ 2B̂πf̂

−1þγ�
π m≡ d0m; ð2:10Þ

so that

Fπ ¼
�

d0m
M2

π=F2
π

� 1
1þγ�

: ð2:11Þ

The solution of Eq. (2.8) for M2
π=F2

π in terms of m can be
expressed using the Lambert W-function as5

M2
π

F2
π
¼ hðmÞ≡ 1

ð1þ γ�Þd1
W0

�ð1þ γ�Þd1
d2

m

�
: ð2:12Þ

This allows us to fit M2
π=F2

π and Fπ as well as M2
τ=F2

π as
functions of m:

M2
π

F2
π
¼ hðmÞ; ð2:13aÞ

Fπ ¼
�
d0m
hðmÞ

� 1
1þγ�

; ð2:13bÞ

M2
τ

F2
π
¼ d3ð1þ ð1þ γ�Þd1hðmÞÞ; d3 ≡ 4c1B̂τ

f̂2π
: ð2:13cÞ

These are the equations we will fit in Sec. IVA. We note
that both 1=d1 and d3 are proportional to c1, which is
parametrically small as a function of the distance to the
conformal window, nf − n�f. In this paper, we will consider
nf to be fixed, so that c1 is constant, and thus d1 and d3 are
also constants. In contrast, d0 and d2 are purely defined in
terms of LECs.
In the case of Eq. (2.13a) it may be inconvenient to fit

directly to hðmÞ due to its dependence on the Lambert
W-function. Instead, one may then return to Eq. (2.8) and
carry out the fit treating m as a dependent variable.

III. EXTENSION TO TASTE SPLITTINGS

Let us recall the scaling properties of the pion mass term
in dChPT. One begins with the observation that, under a
scale transformation, ψ̄ψ → λ3−γ� ψ̄ψ at leading order in the
dChPT expansion. This simple scaling relation holds when
nf is close to n�f, and we are at a scale which is close
enough to the chiral symmetry breaking scale. The scaling
of ψ̄ψ , in turn, determines the scaling of the mass,
m → λ1þγ�m. This leads to the form of the pion mass term
in the effective theory,

eð3−γ�Þτf̂2πB̂πm trðΣþ Σ†Þ: ð3:1Þ

A similar reasoning can be used to determine the
structure of taste-breaking operators in the leading-order
effective Lagrangian of a nearly conformal theory. We start
from the Symanzik effective action, where the leading taste
breaking effects are encoded in four-fermion operators of
the generic form [36]

a2ðψ̄ΓψÞðψ̄ΓψÞ; ð3:2Þ

where a is the lattice spacing, and Γ stands for gamma
matrices that act on the taste index. Under a scale trans-
formation, each of these four-fermion operators will
develop an anomalous dimension,6

ðψ̄ΓψÞðψ̄ΓψÞ → λ6−γΓðψ̄ΓψÞðψ̄ΓψÞ; ð3:3Þ

where now γΓ is the value of the anomalous dimension at
the conformal sill. Correspondingly, we should treat a2 as a
spurion, transforming as

a2 → λ−2þγΓa2: ð3:4Þ
4It can be shown that Eq. (2.5) is the leading term in an

expansion of the exact classical solution in log m and log log m.
For details, see Ref. [19].

5See, e.g., https://en.wikipedia.org/wiki/Lambert_W_function.

6Since the four-fermion operators transform in different
representations of the lattice symmetry group, they do not mix
under renormalization.
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Having fixed the transformation properties of a2 (as a
spurion for this particular four-fermion operator), the
corresponding expression at the EFT level is

cΓf̂
6
πa2eð6−γΓÞτOΓ; OΓ ¼ trðΣΓΣ†ΓÞ; ð3:5Þ

where cΓ is a dimensionless LEC. There are four different
single-trace operators which contribute to the tree-level
mass splittings.7 It follows that the mass squared of the pion
with taste Γ0 is larger than the exact pNGB pion mass
squared by an amount

M2
Γ0 −M2

π ¼ f̂4πa2
X
Γ
c0Γ0Γe

ð4−γΓÞv: ð3:6Þ

The ratios c0Γ0Γ=cΓ are pure numbers. For the precise list of
operators, and for the ratios c0Γ0Γ=cΓ, see Ref. [37] (see also
Ref. [32]). For the pNGB pion of the exact chiral symmetry
of the massless staggered lattice action, the c0 coefficients
all vanish.
Using Eq. (19) of Ref. [37], and introducing

ΔðΓiÞ≡ a2ðM2
Γi
−M2

πÞ; EðγiÞ ¼ eð4−γiÞv; ð3:7Þ

one finds, for the tastes

Γi ∈ fΓ5;Γμ5;Γμν;Γμ;ΓIg; ð3:8Þ

the following tree-level mass splittings8:

ΔðΓ5Þ≡ ΔP ¼ 0; ð3:9aÞ

ΔðΓμ5Þ≡ ΔA ¼ C1Eðγ1Þ þ 3C3Eðγ3Þ
þ C4Eðγ4Þ þ 3C6Eðγ6Þ; ð3:9bÞ

ΔðΓμνÞ≡ ΔT ¼ 2C3Eðγ3Þ þ 2C4Eðγ4Þ
þ 4C6Eðγ6Þ; ð3:9cÞ

ΔðΓμÞ≡ ΔV ¼ C1Eðγ1Þ þ C3Eðγ3Þ
þ 3C4Eðγ4Þ þ 3C6Eðγ6Þ; ð3:9dÞ

ΔðΓIÞ≡ ΔS ¼ 4C3Eðγ3Þ þ 4C4Eðγ4Þ: ð3:9eÞ

We have absorbed f̂4πa2 into the new constants C1, C3, C4

and C6.
9 Values for the pion masses with tastes Γμ5 and Γμν

have been reported in Ref. [6], and we will attempt to fit
ΔðΓμ5Þ and ΔðΓμνÞ to these data.

IV. FITS TO SPECTROSCOPIC DATA

The simulations of Ref. [6] were done at 5 different
fermion masses,

ami ∈ f0.00125; 0.00222; 0.005; 0.0075; 0.00889g; ð4:1Þ

all at the same bare coupling. For the lattice spacing we
adopt a mass-independent prescription, where the lattice
spacing is taken to be a function of the bare coupling only.
Thus, we will assume that the lattice spacing is the same for
all 5 ensembles. This assumption can be self-consistently
tested, as will do toward the end of Sec. IVA.
The data for masses and decay constants in Ref. [6] are

all given in units of
ffiffiffiffiffiffi
8t0

p
, with t0 the flow parameter from

the gradient flow, which itself is computed in lattice units,
as

ffiffiffiffiffiffi
8t0

p
=a. We begin by converting the mean values of all

dimensionful quantities back to lattice units. The covari-
ance matrices of these data for each ensemble were
provided to us by the LSD Collaboration, and all our fits
are fully correlated. Largely speaking, we find that corre-
lations among these data are weak, and have little effect on
the results of the various fits presented below. Furthermore,
correlations between t0 and all other quantities were found
to be so small that they can be neglected.
Our choice of units begs the question as to why we do

not express all dimensionful quantities in units of
ffiffiffiffiffiffi
8t0

p
before carrying out the fits. In QCD, this would be a natural
approach, as

ffiffiffiffiffiffi
8t0

p
is a quantity that can be expressed in

terms of the mass m using ChPT [38]. However, in the
present case, because of the appearance of the scaling factor
evðmÞ at tree level in all dimensionful quantities, it turns out
that no (useful) chiral expansion for

ffiffiffiffiffiffi
8t0

p
exists, as

explained in the Appendix.

TABLE I. Results of fit to Eq. (2.13). Middle column: including
all ensembles corresponding to the 5mass values in Eq. (4.1). Right
column: omitting the highest-mass ensemble (am ¼ 0.00889).

5 ensembles 4 ensembles

χ2=dof 11.9=10 2.9=7
p-value 0.29 0.89

γ� 0.933(19) 0.936(19)
log d0 1.938(60) 1.931(61)
d1 0.250(26) 0.232(23)
log d2 −16.68ð94Þ −16.14ð85Þ
d3 2.83(31) 3.03(32)

7There are similar double-trace terms, which, however, con-
tribute to the mass splittings only at the next order.

8The familiar tree-level QCD mass splittings would be
recovered by setting EðγiÞ ¼ 1.

9The coefficients C1;3;4;6 are constant for the purpose of this
paper, since the data of Ref. [6] have been obtained at a common,
fixed lattice spacing.
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A. Fit of the pion mass, the pion decay constant
and the dilaton mass

We begin with a χ2 fit of the quantities in Eq. (2.13),
namely,M2

π=F2
π , aFπ andM2

τ=F2
π, to data for the 5 different

fermion masses (4.1). We do not consider Fτ, as it was not
measured in Ref. [6]. The fit to Eq. (2.13) contains 5
parameters for 3 × 5 ¼ 15 data points, and, therefore,
10 degrees of freedom. We find χ2min ¼ 11.9, for a p-value
of 29%. We have determined the logarithms of the
parameters d0 and d2, instead of the parameters themselves,
as it turns out that this helps the stability of the fit. The
results of the fit are shown in the middle column of Table I.
Errors are always computed by linear error propagation
from the full data covariance matrix. A fit not including the
quantity M2

τ=F2
π yields virtually the same parameter values

and errors (except of course for d3), and a p-value of 11%.
For reasons that will be discussed in Sec. IV C below, we

have also carried out a fit to data from 4 ensembles,
omitting the highest-mass (am ¼ 0.00889) ensemble. The
p-value of this fit is 89%, significantly larger than that of
the 5-ensemble fit. The results of the 4-ensemble fit are
reported in the rightmost column of Table I, and plotted
in Fig. 1. As can be seen in Table I, the results of the
5-ensemble and 4-ensemble fits are closely consistent with
each other.
We take the result obtained in the 4-ensemble fit,

γ� ¼ 0.936ð19Þ, as our final result for the mass anomalous

dimension. All further 4-ensemble fits presented in the rest
of this section reproduce the same result for γ�. The
difference in central values between the 4-ensemble and
5-ensemble fits could be taken as a measure of the
systematic uncertainty, but we note that this difference is
much smaller than the error obtained from the fit.
Using the fit results from Table I we can infer some

additional tree-level parameters of dChPT, or combinations
thereof. The results for these derived quantities are col-
lected in Table II. First,

af̂π ¼ ðd0d2Þ
1

1þγ� ;

aB̂π ¼
1

2
d

2
1þγ�
0 d

1−γ�
1þγ�
2 : ð4:2Þ

As can be seen from Tables I and II, the well-determined
parameters are γ� and B̂π . These are the parameters that
control the mass dependence; whereas f̂π , which has a
much larger error, characterizes the massless theory.
The values we find for γ�, af̂π and aB̂π agree well
with the values found in Ref. [12].10 The value of γ� is
consistent with the earlier estimate of Refs. [27,28]. Using
also our results for d3 allows us to obtain the ratio of the

0.000 0.002 0.004 0.006 0.008 0.010
10
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0.000 0.002 0.004 0.006 0.008 0.010
0.00
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0.02

0.03

0.04

0.05

0.06

0.000 0.002 0.004 0.006 0.008 0.010
0

10

20

30

40

FIG. 1. Representation of the 4-ensemble fit reported in the rightmost column of Table I. The upper left-hand plot shows M2
π=Fπ as a

function of am, the upper right-hand plot shows aFπ , and the lower plot shows M2
τ=F2

π .

10We note that Ref. [12] did not have access to the data
correlation matrix. The good agreement is in accordance with the
fact that correlations are relatively weak.
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decay constants in the chiral limit, as well as the combi-
nation11 c1B̂τ in units of f̂π ,

f̂τ
f̂π

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
3 − γ�
d1d3

s
;

c1B̂τ

f̂2π
¼ 1

4
d3: ð4:3Þ

Combining these two expressions, we also have

Mτðm ¼ 0Þf̂τ
f̂2π

¼ 2

ffiffiffiffiffiffiffiffiffiffi
c1B̂τ

p
f̂π

f̂τ
f̂π

; ð4:4Þ

the value for which again is in good agreement with
Ref. [12].
To end this subsection, we return to the assumption that

the lattice spacing a is independent of am. Now that the fit
parameters have been determined from a fit, we can test
this assumption self-consistently, with a precision set by
the errors of the fit. In particular, the fit parameters allow
us to extract aB̂π for each value of am in the simulation
separately, using Eqs. (2.3a) and (2.4),

aB̂π;i ¼
ðaMπ;iÞ2
2ami

eðγ�−1Þd1M
2
π;i=F

2
π;i : ð4:5Þ

Since B̂π is by construction independent of am, this
measures the dependence of a on am. Using Eq. (4.5),
and the results of the 4-ensemble fit, we find the values

aB̂π;i ∈ f2.15ð11Þ;2.14ð12Þ;2.17ð14Þ;2.15ð14Þ;2.22ð14Þg;
ð4:6Þ

for each of the fermion masses (4.1), respectively (the
values obtained from the 5-ensemble fit are very close). In
calculating the error in B̂π;i we neglected the data errors for
Mπ and Fπ , and kept only the errors of (and correlation
between) γ� and d1, since the latter are much larger. We

conclude that indeed aB̂π is constant as a function of am,
within errors. The values in Eq. (4.6) are consistent with the
extrapolated value in Table II.
In principle, we could have used any of the (dimension-

ful) LECs af̂π , aB̂π , af̂τ and a2c1B̂τ for this test. We chose
to use the one that is most precisely determined from our
fits, which is aB̂π . The values of the three other LECs are
obtained by extrapolation to the chiral limit. As can be seen
in Table II, the precision of f̂π is only 45%, and this also
sets the precision with which we can determine af̂τ and
a2c1B̂τ, cf. Eq. (4.3).

TABLE II. Derived quantities, see text.

5 ensembles 4 ensembles

af̂π 0.00049(22) 0.00065(27)

aB̂π 2.09(14) 2.15(14)

f̂τ=f̂π 3.415(86) 3.427(88)

c1B̂τ=f̂
2
π 0.708(77) 0.757(81)

Mτðm ¼ 0Þf̂τ=f̂2π 5.75(32) 5.96(32)

TABLE III. Results of fits to Eqs. (2.13), (3.9b) and (3.9c),
using all 5 ensembles. An ellipsis indicates a parameter that was
omitted from the fit. The fit reported in the second column
includes all parameters, but we do not quote a value for the
parameters logC1 and γ1 (entries indicated by a ⋆ symbol) since
this fit could not resolve them. See text for further explanation.

χ2=dof 16.0=12 19.8=14 19.8=14
p-value 0.19 0.14 0.14

γ� 0.934(19) 0.932(19) 0.932(19)
log d0 1.938(60) 1.943(59) 1.943(59)
d1 0.251(26) 0.249(26) 0.249(26)
log d2 −16.70ð94Þ −16.64ð93Þ −16.65ð93Þ
d3 2.83(31) 2.84(31) 2.84(31)
logC1 ⋆ � � � −13.9ð1.1Þ
γ1 ⋆ � � � 2.15(11)
logC3 −14.2ð1.1Þ −14.6ð1.1Þ � � �
γ3 2.26(15) 2.15(10) � � �
logC4 −14.1ð1.2Þ −13.89ð95Þ −13.53ð95Þ
γ4 1.94(19) 1.968(61) 2.003(51)
logC6 −48ð23Þ −64ð11Þ −64ð11Þ
γ6 −4.8ð4.7Þ −8.4ð2.2Þ −8.4ð2.2Þ

TABLE IV. Results of fits to Eqs. (2.13), (3.9b) and (3.9c),
omitting the am ¼ 0.00889 ensemble. As in Table III, an ellipsis
indicates a parameter that was omitted from the fit.

χ2=dof 6.1=9 6.2=9
p-value 0.73 0.72

γ� 0.936(19) 0.936(19)
log d0 1.929(61) 1.928(61)
d1 0.233(24) 0.233(24)
log d2 −16.18ð86Þ −16.18ð86Þ
d3 3.02(32) 3.01(32)
logC1 � � � −12.3ð2.9Þ
γ1 � � � 2.49(91)
logC3 −13.0ð3.0Þ � � �
γ3 2.50(92) � � �
logC4 −12.7ð1.8Þ −12.3ð1.9Þ
γ4 2.16(53) 2.22(57)
logC6 −24ð17Þ −25ð18Þ
γ6 −0.2ð3.6Þ −0.3ð3.7Þ

11Because we have data at a single value of nf , only the
combination c1B̂τ is accessible.
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B. Fit including taste splittings

We now proceed to include the taste splittings, using, in
addition to Eq. (2.13), also Eqs. (3.9b) and (3.9c). Only the
masses of pions with tastes corresponding to the matrices
Γi5 and Γij were reported in Ref. [6], in addition to the mass
of the Γ5 pion (the Nambu-Goldstone pion), limiting us to
consider only ΔA and ΔT . With also Mπ , Fπ and Mτ, this
gives us 5 data points per ensemble.
The second column of Table III reports the results of the

fit that includes all 13 parameters occurring in tree-level
staggered dChPT. We find χ2=dof ¼ 16.0=12, for a p-value
of 0.19. The first thing to notice is that the results for the
“nontaste” parameters are in very good agreement with the
results of the limited fit shown in Table I.
While the fit includes all the dChPT parameters, we do

not report any value for the parameters logC1 and γ1. It
turns out that, in effect, the χ2 function has a flat direction in
the subspace spanned by these two parameters, leaving
them undetermined. In order to understand this situation,
consider first the parameters logC6 and γ6. The negative
mean values found for these parameters imply that
C6Eðγ6Þ ¼ exp½logC6 þ ð4 − γ6ÞvðmÞ� is negligibly small
at the lighter masses, and becomes significant only for the
highest one or two masses. A similar, but more dramatic,
effect occurs in the case of the term C1Eðγ1Þ, which turns
out to be significant for the highest mass only. This means
that only one linear combination of logC1 and γ1 [the one
defined by the value of vðmÞ at the largest mass] was
constrained by the data, leaving the orthogonal linear
combination undetermined.
Having seen that the existing data cannot resolve all the

taste-splitting parameters, we also tried fits in which each
operator occurring in Eq. (3.9) is omitted in turn. The third
and fourth columns of Table III report the results of the fits
where we have set to zero C1 or C3, respectively. Both fits
have an equally good χ2 and a p-value of 0.14. The fit with
C6 ¼ 0 has χ2 ¼ 36.8 while the fit with C4 ¼ 0 has
χ2 ¼ 292. Since both of them have a very low p-value,
we do not report their results.

It is interesting that, by far, the worst fit is the one where
we have set C4 ¼ 0. In other words, the data requires the
presence of the C4Eðγ4Þ term in the fit. This is nicely
consistent with the taste splittings found in QCD, in the
following sense. Due to the absence of the light scalar, the
pattern of tree-level taste splittings in ordinary ChPT is
much simpler, and corresponds to setting EðγiÞ ¼ 1 every-
where in Eq. (3.9) [37]. The actual taste splittings exhibit an
almost equally spaced spectrum: the differences ΔA − ΔP,
ΔT − ΔA, ΔV − ΔT and ΔS − ΔV are all roughly constant
(independent of the fermion mass) and equal to each other.
This approximate equality is explained by the dominance
of the C4 term. As can be seen in Eq. (3.9), its coefficient
takes on the values 0, 1, 2, 3, and 4. Hence, in QCD, the
constant displacement of the mass squared between adja-
cent tastes is given by C4 itself.

12 Returning to dChPT, the
fact that C4 cannot be omitted from the fit shows that, once
again, the C4 term is the most important one.

C. Fits with 4 ensembles

The results reported in the previous subsection mean that
some of the tree-level taste splitting parameters of dChPT
acted as nuisance parameters in our fits: their presence is
required in order to obtain a reasonably good fit, and yet
they remain largely undermined. We have also explained
how, in effect, these parameters serve to fit the taste-
splitting data at the highest one or two masses, while having
a very small, and often negligible, effect on the quality of
the fit for the lighter masses.
This situation motivates us to also consider fits in which

the highest mass, am ¼ 0.00889, is omitted. Due to severe
numerical instabilities, we did not attempt a fit with all 13
parameters. The results of the fits with C1 ¼ 0 and with
C3 ¼ 0 are reported in Table IV. Both of these fits now have
a p-value slightly larger than 0.7. Figure 2 shows the results
obtained for the taste splittings. (The results forMπ, Fπ and
Mτ are visually the same as in Fig. 1.) The fit with C6 ¼ 0

0.000 0.002 0.004 0.006 0.008 0.010
0.00

0.01

0.02

0.03

0.04

0.000 0.002 0.004 0.006 0.008 0.010
0.00

0.01

0.02

0.03

0.04

FIG. 2. Representation of the taste splittings found in the 4-ensemble fits reported in Table IV. ΔA is plotted in red, and ΔT in blue.
Left: fit with C1 ¼ 0. Right: fit with C3 ¼ 0.

12C4 still depends on the bare coupling. See, e.g., Ref. [32].
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has χ2 ¼ 10.2, and a p-value of 0.49, which by itself would
be acceptable. However, it gives rise to logC3 ¼ −5ð8Þ and
γ3 ¼ 4.9ð2.5Þ, i.e., these parameters are much less well
determined by this fit than by the fits reported in Table IV.
Moreover, we regard the central value of γ3 obtained in this
fit as unphysical. As before, the fit with C4 ¼ 0 is
inconsistent, having χ2 ¼ 117.
Once again one can see that the values of the 5 nontaste

parameters are essentially the same as in all previous fits.
As for the taste-splitting parameters, while the mean values
are consistent within error with the 5-ensemble fits, the
errors themselves are significantly larger. In view of the
high p-value of the 4-ensemble fits, the errors reported in
Table IV provide a more realistic estimate of current
uncertainties in the data.

V. CONCLUSION

In this paper, we studied to what extent tree-level dilaton
ChPT describes the pseudo-Nambu-Goldstone sector and
the light singlet scalar state presented in the lattice data of
Ref. [6] for the SU(3) gauge theory with Nf ¼ 8 fermions
in the fundamental representation.
The simulations reported in Ref. [6] used staggered

fermions, at 5 different fermion masses and one value of the
gauge coupling, which, in turn, means a single lattice
spacing. We showed that dChPT can be extended to
incorporate the taste-breaking effects that are generally
present with staggered fermions, arguing that, therefore,
this provides a nice additional test of the applicability of
dChPT to the data. We fitted data for the pion mass, the
pion decay constant, the dilaton mass, and the two taste-
split pion masses for which Ref. [6] provides data.
Even at tree level, staggered dChPT contains quite a few

parameters, 13 in total. With only 25 data points, it is a
challenge to determine all parameters. Indeed, attempting
to fit all parameters simultaneously we found that two of
them remain undetermined. The taste-breaking sector
contains four operators, and discarding the pair of param-
eters associated with each of these operators in turn we
found that some of the resulting fits are reasonably good
when all 5 mass values are included. As we have explained,
the highest-mass ensemble is particularly problematic
when attempting to fit the limited available taste-splitting
data. Omitting this ensemble, we find that the remaining 4
ensembles are well described by some of the fits in which
one of the taste-breaking operators is omitted. Should data
become available for the two pion tastes not considered in
Ref. [6], this would allow fitting also ΔV andΔS in addition
to ΔA and ΔT . This would provide a more stringent test of
dChPT, and may lead to a much better determination of the
taste-splitting parameters.
With these caveats, we believe that dChPT provides a

good explanation for the fermion-mass dependence of the
taste splittings, which in this theory is very different from

the analogous taste splittings in QCD, and for which
standard staggered ChPT has not provided a convincing
explanation. We do not claim that dChPT is the only
possible explanation of these lattice data; it will be very
interesting to test other low-energy approaches proposed in
the literature [22–31], particularly if they can provide a
valid description of the taste-breaking effects.
For the mass anomalous dimension we found

γ� ¼ 0.936ð19Þ. We remind the reader that this value
was obtained from data at a single lattice spacing, and
does not include a continuum extrapolation. This value is in
good agreement with the result of Ref. [12], as well as with
an earlier, more qualitative, analysis, based on the eigen-
mode number [39]. An interesting feature is that, in all
cases where the anomalous dimensions γi associated with
the four-fermion taste-breaking operators were relatively
well determined, their mean values turned out to be in the
range of 1.9 to 2.5, or, in other words, about twice the value
of the mass anomalous dimension. This result is intuitively
appealing, if we remember that every four-fermion operator
contains twice as many fermion fields as the mass operator.
Our fits also confirm that the simulations of Ref. [6] are

in the “large-mass” regime, in which the theory shows
approximate hyperscaling [19]. In Fig. 1 this is evident
from the near-flatness of the ratios M2

π=F2
π and M2

τ=F2
π ,

with the strong downward curvature predicted by dChPT
occurring mostly at smaller values of am where no data
points are available. Using

ð3 − γ�Þm
4c1M

¼ md1
d2

∼ 4 × 106am; ð5:1Þ

which even for the smallest value of am ¼ 0.00125 is of
order 5 × 103, we conclude that the left-hand side of
Eq. (2.2) is indeed much larger than one for all masses
in Eq. (4.1), thus confirming that these masses are in the
large-mass regime.
A consequence of this is that also the values of aFπ at the

fermion masses (4.1), which range from approximately
0.02 to 0.05, are much larger than the chiral-limit value
aFπðm ¼ 0Þ ¼ af̂π ¼ 0.00049ð22Þ. At the smallest fer-
mion mass, the linear spatial volume in Ref. [6] is
L=a ¼ 64, leading to f̂πL ≈ 0.03. This implies that a much
larger volume would be needed to study the theory in the
ϵ-regime. For comparison, at the smallest fermion mass in
the simulation, am ¼ 0.00125, one has FπL ≈ 1.3, and
MπL ≈ 5.3, so that the simulations of Ref. [6] are solidly in
the p-regime, and finite-volume corrections are expected to
be very small.
Recently, Ref. [13] reported tests of the SU(3) theory

with two sextet (symmetric-representation) Dirac fermions
in the ϵ-regime. Random matrix theory (RMT) was used to
determine the condensate in the massless limit, finding a
value which is in agreement with another low-energy
description [27] in which the tree-level dilaton potential
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takes on a different form from the one that follows from the
power counting underlying dChPT. We stress, however,
that dChPT does not provide any predictions whatsoever
for these simulations, even if we disregard the fact that the
theory under study contains fermions in a higher repre-
sentation of the gauge group. The reason is that extrapo-
lation of the p-regime data for Fπ to zero fermion mass
using dChPT indicates that for the ϵ-regime studies
considered in Ref. [13] one has FπL ≪ 1 for the chosen
combination of volume and fermion mass. As a result, the
small-mass results are outside the range of applicability of
dChPT. Were it possible to much enlarge the volume,
while keeping am ≈ 0, until eventually the condition
Fπðam ≈ 0ÞL ≈ f̂πL ≈ 1 would be satisfied, then, and only
then, all measured quantities would have to agree with the
predictions of dChPT, if indeed dChPT is the correct
effective theory at low energy.
We comment that, as discussed in Ref. [21], one can

consider a partially quenched setup where the sea fermions
are kept in the p-regime and only the valence fermions are
in the ϵ-regime. In such a setup the dilaton expectation
value is determine only by the mass of the sea fermions.
This setup can provide for limited ϵ-regime tests of dChPT
on currently available ensembles.
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APPENDIX: THE m DEPENDENCE OF
ffiffiffiffiffiffi
8t0

p

In QCD, t0 is implicitly determined by the equation [40]

t20hEðt0; xÞi ¼ 0.3≡ c0: ðA1Þ

[In SUðNÞ gauge theories with N ≠ 3, one needs an
appropriate rescaling of the constant c0, see for example
Ref. [41].] Here

Eðt; xÞ ¼ 1

4
Ga

μνðt; xÞGa
μνðt; xÞ; ðA2Þ

where Ga
μνðt; xÞ is the field strength of the flow field, which

is subject to the boundary condition Ga
μνð0; xÞ ¼ Fa

μνðxÞ,
where Fa

μνðxÞ is the field strength of the dynamical field,
and with the convention that the classical action
is 1

4g2
R
d4xFa

μνFa
μν.

In QCD, EðtÞ admits a chiral expansion, from which it
follows that [38]

hEðt; xÞi ¼ constþOðmÞ þOðm2 logðmÞÞ: ðA3Þ

The m independence of the leading term, and the (related)
fact that logarithmic corrections occur only at NNLO, feeds
into the chiral expansion for t0, making it a particularly
convenient quantity for scale setting in QCD.
Let us now consider a nearly conformal, confining

theory. On dimensional grounds, the leading (operator)
expression for Eðt; xÞ in the effective theory is

Eðt; xÞ ¼ C0ðtÞe4τ; ðA4Þ

where τ is the dilaton field, and C0ðtÞ an unknown function
of t. Hence

hEðt; xÞi ¼ C0ðtÞe4v; ðA5Þ

where v ¼ vðmÞ is the classical solution determined by
Eq. (2.2). We see that, unlike in QCD, now the leading term
depends on the fermion mass, because vðmÞ does.
Differentiating the relation

t20C0ðt0Þe4vðmÞ ¼ c0; ðA6Þ

and using the approximate solution (2.5) valid for large
m

c1M
, gives

d logðt0Þ
d logðmÞ ∼ −

2

1þ γ�

1

1þ 1
2

∂ logðC0Þ∂ logðt0Þ
: ðA7Þ

Naive hyperscaling, as determined on dimensional
grounds, would suggest that the right-hand side of
Eq. (A7) be equal to − 2

1þγ�
. The presence of the correcting

factor on the right-hand side implies that t0 does not have to
obey the same hyperscaling relation as hadron masses and
decay constants do in the large-mass regime [19].
Moreover, the leading-order dependence of hEðtÞi on m,

coupled with our ignorance about the functional form of
C0ðtÞ, implies that, unlike in QCD, we cannot write down a
useful chiral expansion for t0 in a nearly conformal theory.
In a way, the situation is similar to that of the Sommer scale;
one can empirically parametrize the (unknown) depend-
ence of the Sommer scale on the quark mass. But, as for the
Sommer scale, we do not have a theory-driven explicit
expression to back up a particular expansion for the mass
dependence.
It is still interesting to fit the am dependence of

ffiffiffiffiffiffi
8t0

p
=a,

for which Ref. [6] also reported results with very small
errors. Such a fit is purely “phenomenological,” because of
the lack of a dChPT prediction for this dependence. We find
that a fit of the data of Ref. [6] to a cubic polynomial in am,
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RðamÞ ¼
X3
n¼0

anðamÞn ðA8Þ

yields a statistically successful fit. This fit yields
χ2min ¼ 0.78, with one degree of freedom; the parameter
values are given by

a0 ¼ 4.9400ð66Þ;
a1 ¼ −164.0ð6.1Þ;
a2 ¼ −8ð14Þ × 102;

a3 ¼ 277ð92Þ × 103: ðA9Þ
Figure 3 shows the fit. The value for a0 is of interest,
because it provides an estimate of

ffiffiffiffiffiffi
8t0

p
=a in the chiral

limit.
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