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The ratio of the strange quark momentum fraction hxisþs̄ to that of light quark u or d in disconnected
insertions (DI) is calculated on the lattice with overlap fermions on four domain wall fermion ensembles.
These ensembles cover three lattice spacings, three volumes and several pion masses including the physical
one, from which a global fitting is carried out. A complete nonperturbative renormalization and the mixing
between the quark and glue operators are taken into account. We find the ratio to be hxisþs̄=hxiuþūðDIÞ ¼
0.795ð79Þð77Þ at μ ¼ 2 GeV in the MS scheme. This ratio can be used as a constraint to better determine
the strange parton distribution especially in the small x region in the global fittings of PDFs when the
connected and disconnected sea are fitted and evolved separately, demonstrating a new way that connects
lattice calculations with global analyses.
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I. INTRODUCTION

Understanding the structure of the nucleon in terms of
quarks and gluons from QCD is one of the most challenging
aspects of modern nuclear and particle physics [1] and is of
great importance in learning about how the visible Universe
is built. Parton distribution functions (PDFs), which describe
the number density of a parton with a certain longitudinal
momentum fraction x and at a particular energy scale Q2

inside a nucleon, reveal a lot of pertinent and essential
information about the nucleon structure. In general, PDFs
are determined by global analyses of deep inelastic scattering
(DIS) and Drell-Yan experiments under the framework of
QCD factorization theorems.
For the extensively studied unpolarized PDFs, recent

attention is focused on the less-known flavor structure,
which is believed to implicate the nonperturbative nature
of the parton distributions due to confinement. A typical
example is the strange parton distribution which is the most
uncertain among the unpolarized PDFs. Three recent global
fittings [2–4] with NNLO analysis show that xðsðxÞ þ s̄ðxÞÞ

has large errors, ∼50% or more at x ¼ 10−3, and the central
values of the three fits differ by ∼30%, atQ2 ¼ 4 GeV2. On
the other hand, as a nonperturbative approach of solving
QCD from first principles, lattice QCD could also play an
important role in the study of nucleon structure. Although
there exist several pioneering approaches aiming to directly
calculate the x dependent PDFs on the lattice (e.g., [5–10]), it
is maturer and more straightforward to calculate the
moments of PDFs on the lattice, which provides constraints
to the PDFs.
Recent lattice calculations can already determine several

quantities, e.g., the strange quark magnetic moment [11]
and strange quark spin contribution [12], to a higher
accuracy than experiments have done to date, but difficul-
ties still exist in constraining the unpolarized strange parton
distribution. The direct difficulty is that the lattice signals of
the strange quark momentum fraction hxisþs̄ that involves
only the disconnected insertions (DIs) are not good enough
[13] to provide strong constraint to the global fittings. On
the other hand, lattice ratios of correlated quantities like

R≡ hxisþs̄

hxiuþūðDIÞ
; ð1Þ

where hxiuþūðDIÞ stands for the light quark momentum
fraction in disconnected insertions only (using d quark
makes no difference based on present lattice setup) usually
have much smaller statistical uncertainty compared with
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the momentum fractions themselves due to the cancellation
of the statistical fluctuations of the numerator and the
denominator. However, the ratio R cannot be directly
connected to the current global fittings without further
theoretical insight, as the DI component on the lattice is
part of the u=d sea partons in global fittings.
The parton degrees of freedom have been rigorously

defined in the path-integral formulation of the hadronic
tensor and classified according to the topologically distinct
connected insertions (CIs) and DIs [5–7]. This precise
definition is natural for the lattice community and it is
advocated to be adopted and accommodated in global
fittings [14,15]. Upon this basis, the ratio R has clear
physical meaning and can be used as a strong constraint to
better determine the strange quark distributions in future
global fittings employing the path-integral classification. In
this manuscript, we report a complete lattice calculation of
the ratioR at three lattice spacings and several pion masses
including the physical one. Nonperturbative renormaliza-
tion and the mixing from the glue momentum fraction are
considered.

II. THEORETICAL BACKGROUND

The parton classification is revealed in the path-
integral formulation of the Euclidean hadronic tensor
hpj R d3x⃗

2π e
−iq⃗·x⃗Jμðx⃗; t2ÞJνð0⃗; t1Þjpi [5–7], where jpi is a

nucleon state, Jμ and Jν are two currents inserted at t2 and
t1 and q⃗ is the momentum transfer. Three gauge invariant
and topologically distinct path-integral diagrams of the
4-point functions of the Euclidean hadronic tensor,
which entail leading twist contributions, are illustrated in
Fig. 1. The solid lines represent quark propagators. The
Minkowski hadronic tensor is the inverse Laplace trans-
form of its Euclidean counterpart and is used to extract
PDFs experimentally, thus these diagrams of insertions
(Fig. 1(a) and 1(b) are CIs and 1c is DI) classify parton
degrees of freedom. A complete naming scheme is listed in
Table I. Following this scheme, we denote Fig. 1(a) as qvþcs

since in addition to the obvious valence contribution, there
is also the connected-sea (CS) contribution coming from
the higher Fock-state components in the Z-graph of quark
lines between the two currents. Similarly, we also have the
CS antipartons (q̄cs) in Fig. 1(b) and the disconnected-sea
(DS) partons and antipartons (qds þ q̄ds) in Fig. 1(c).

This is a general classification of partons based on the
continuum path-integral formulation of QCD, which is
applicable to the lattice. The nomenclature of CS and DS
follows those in time-ordered perturbation theory [16,17].
These two sources of sea quarks have interesting flavor
dependence. While u and d have both the CS and the DS,
s and c have only the DS. Several experimental results
demonstrate the necessity of this classification, e.g., the
Gottfried sum rule violation is explained by the existence
of CS [5]. Also, under this classification, the net valence
contribution is defined as qv ≡ qvþcs − q̄cs which is not the
same as the usual definition of qv ≡ q − q̄ ¼ qvþcs þ qds −
q̄cs − q̄ds if one does not assume qds ¼ q̄ds. Actually, this
definition of qv from QCD path-integral avoids some
ambiguities like having a “valence” strange quark distri-
bution when the NNLO evolution equations are involved
which makes sðxÞ ≠ s̄ðxÞ [7].
Before we can study all these parton components

explicitly on the lattice by directly calculating the had-
ronic tensor, this classification extends the way of using
common lattice calculation of 3-point functions to study
the CS and DS. It is shown [7] that, upon short distance
expansion, Fig. 1(a) together with Fig. 1(b) becomes the
CIs of 3-point functions in Fig. 2(a) for a series of local
operators

P
n O

n
q, from which the CI moments of PDFs are

obtained. By the same token, the disconnected 4-point
functions in Fig. 1(c) become the DIs of 3-point functions
in Fig. 2(b) to obtain the DI moments. The DI ratio R
therefore represents the DS ratio of the strange quark to
light quark, containing the information needed in global
fittings to separate CS and DS and improve the strange
parton results.

(a) (b) (c)

FIG. 1. Three topologically distinct diagrams in the Euclidean
path-integral formalism of the nucleon hadronic tensor.

TABLE I. Naming scheme in the path-integral formulation of
the Euclidean hadronic tensor.

“Connected” Connected insertions of the Green’s function
“Disconnected” Disconnected insertions
“Parton” Forward propagating quark between currents
“Antiparton” Backward propagating quark
“Valence” Quarks from the interpolating field operators
“Sea” Quarks and antiquarks from gluons

(a) (b)

FIG. 2. The 3-point functions after the short-distance expansion
of the hadronic tensor from Fig. 1. CI (a) is derived from
Figs. 1(a) and 1(b). DI (b) originates from Fig. 1(c).
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III. NUMERICAL DETAILS

We use overlap fermions [18] as valence quarks on four
2þ 1-flavor RBC/UKQCD gauge ensembles with domain
wall fermions [19,20]. The parameters of the ensembles are
listed in Table II. We have three different lattice spacings
and lattice volumes respectively, and four values of sea pion
mass with one at the physical point. For the valence sector,
multiple partially quenched valence quark masses are used,
owing to the multimass algorithm. We choose four valence
quark masses ranging from ∼250 to ∼400 MeV on the 24I
and 32I ensembles and 7=6 quark masses in the range [130,
400] MeV on the 48I/32ID ensemble. Combining these
ensembles and valence pion masses in a global analysis
helps to control the lattice systematic uncertainties and
leads to our final result at the physical limit.
The quark and glue momentum fractions in the nucleon

can be defined by the matrix element of the traceless
diagonal part of the energy-momentum tensor (EMT) in the
rest frame [21],

hxiq;g ≡ −
hNj 4

3
T̄q;g
44 jNi

MNhNjNi ; ð2Þ

with T̄q
44 ¼

R
d3xψ̄ðxÞ 1

2
ðγ4D

↔

4 − 1
4

P
i¼0;1;2;3 γiD

↔

iÞψ̂ðxÞ and
T̄g
44 ¼

R
d3x 1

2
½EðxÞ2 − BðxÞ2�. Here ψ̂ ¼ ð1 − 1

2
DovÞψ is

for giving rise to the effective quark propagator
ðDc þmÞ−1, where Dc satisfying fDc; γ5g ¼ 0 is exactly
chiral and can be defined from the original overlap operator
Dov as Dc ¼ ρDov

1−Dov=2
[22]. More details regarding the

calculation of the overlap operator and eigenmodes defla-
tion in the inversion of the fermion matrix can be found
in [23]. To calculate the matrix elements, we need first to
construct 3-point correlation functions

Cq;g
3 ðtf; τÞ ¼

X

x⃗;y⃗

hχðtf; y⃗ÞT̄q;g
44 ðτ; x⃗Þχ̄ð0;GÞi; ð3Þ

where χ is the nucleon interpolation field and G denotes the
source grid. Then, we make a ratio of the 3-point corre-
lation function to the nucleon 2-point function and extract
the matrix element by fitting the ratio using the so-called
two-state form

Πq;gðtf; τÞ ¼
Tr½ΓeC

q;g
3 ðtf; τÞ�

Tr½ΓeC2ðtfÞ�
¼ hNjT̄q;g

44 jNi þ cq;g1 e−δmðtf−τÞ

þ cq;g2 e−δmτ þ cq;g3 e−δmtf : ð4Þ

Here Γe is the nonpolarized projector, C2ðtfÞ ¼P
x⃗hχðtf; x⃗Þχ̄ð0;GÞi, c’s are fitting coefficients, and δm

is the effective energy difference between the ground state
and the excited states. To better use this formula, multiple
source-sink separations tf ranging from ∼0.7 fm to
∼1.5 fm are constructed for Πq;gðtf; τÞ on each ensemble
for all the current positions τ between the source and sink.
As mentioned above, the 3-point correlation functions

have two kinds of current insertions, CI and DI, as
illustrated in Fig. 2. Since both the CI and glue matrix
elements mix to DI through the renormalization of bare
quantities under lattice regularization [13], the calculation
of the ratio R under MS scheme involves also the CI and
glue contributions.
For the CI calculations, we use the stochastic sandwich

method (SSM) [24] with low-mode substitution (LMS) [23]
to better control the statistical uncertainty. Z3-noise grid
sources with Gaussian smearing (for the 48I, 24I and 32I
lattices) or block smearing [25] (for the 32ID lattice) are
placed coherently at tsrc ¼ 0 and tsrc ¼ 32 (tsrc ¼ 64 also
for 48I) in one inversion. Nucleon sinks are located at
different positions with different separations in time from
the source. Technical details regarding the LMS of a
random Z3 grid source and the use of SSM with LMS
for constructing 3-point functions can be found in
Refs. [24–26]. Setups regarding the valence sector of the
CI case are listed in Table III. Due to the fact that the
multimass inversion algorithm is applicable to the overlap
fermion with eigenvector deflation, we calculate four to
seven valence masses for each of the four lattices.
For the DI calculations, we use the low-mode average

(LMA) technique to calculate the quark loops which
improves the signal-to-noise ratios. The low-mode part
of the quark loops is calculated exactly since we have
solved the low-lying eigenvectors of the overlap Dirac
operator on all these lattices, The high-mode part is
estimated with 8 sets of Z4-noise on a 4-4-4-2 space-time
grid with even-odd dilution and additional time shift
(32 inversions in total). The same smeared Z3-noise grid
sources as used in the CI case are used in the production of
the nucleon propagators. We make multiple measurements
by shifting the source along the time direction to improve
statistics. The spatial position of the center of the grid is
randomly chosen for each source at different times to
reduce autocorrelation. References [26–28] contain more
details regarding the DI calculation. When constructing
quark loops, we include more valence quark masses to
cover the strange region. The bare valence strange quark
masses are determined on each lattice by the global-fit

TABLE II. Parameters of the RBC/UKQCD ensembles: spatial/
temporal size, lattice spacing, sea strange quark mass under MS
scheme at 2 GeV, pion mass with degenerate light sea quark, and
the number of configurations.

Symbol L3 × T aðfmÞ ms
sðMeVÞ ms

πðMeVÞ Ncfg

32ID 323 × 64 0.1431(7) 89.4 171 200
24I 243 × 64 0.1105(3) 120 330 203
48I 483 × 96 0.1141(2) 94.9 139 81
32I 323 × 64 0.0828(3) 110 300 309
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value at 2 GeV in the MS scheme calculated in our previous
study [29] and the nonperturbative mass renormalization
constants calculated in [30]; corresponding numbers are
collected in Table IV. For all the 24I, 48I and 32I lattices the
renormalized strange quark mass is around 100.5 MeVand
for the 32ID lattice the number is around 95 MeV, which
are all consistent with our global-fit value 101(3)(6) MeV
[29] within error. We used the clover definition of the glue
operator [31] for the DI calculation of the glue momentum
fraction. The cluster-decomposition error reduction (CDER)
technique is applied to improve the signal [31,32].

IV. RENORMALIZATION

As demonstrated in [12], the renormalization can be
processed separately for CI and DI and we will focus on the
DI part in this work. The general form of the renormalized
momentum fractions in DI hxiR;DI in the MS scheme at
scale μ reads

hxiR;DIu;d;s ¼ ZMS
QQðμÞhxiDIu;d;s þ δZMS

QQðμÞ
X

q¼u;d;s

hxiCIþDI
q

þ ZMS
QGðμÞhxig; ð5Þ

where hxiDI=CIu;d;s is the bare quark momentum fraction in the
DI/CI sector under lattice regularization, hxig is the glue

momentum fraction, ZMS
QQðμÞ is the renormalization con-

stant and δZMS
QQðμÞ and ZMS

QGðμÞ account for the mixing. To

renormalize a lattice-regularized quantity with MS scheme,
we first use the RI/MOM scheme to renormalize it at a scale
μR nonperturbatively. And then, we convert the RI/MOM
renormalized quantity to the MS scheme using a perturba-
tively calculated matching coefficient and evolve it to
certain scale μ. The complete renormalization is a combi-
nation of these two steps and can be expressed formally as

ZMSðμÞ ¼ ½ðZðμRÞRðμ=μRÞÞja2μ2R→0�−1, where ZðμRÞ and
Rðμ=μRÞ denote the RI/MOM renormalization and match-
ing respectively.
In the nonperturbative renormalization procedure, one

needs to carry out the RI/MOM renormalization several
times with several quark masses on each lattice and
extrapolate the results to the massless limit before the
matching from RI/MOM to MS since the massless renorm-
alization scheme is used. Example plots for the isovector
RI/MOM renormalization constants of the traceless diago-
nal piece of the EMT ZQQ as a function of the bare valence
quark mass are shown in Fig. 3. Different colors denote
different a2p2 scales. Figure 3(a) is for the 24I lattice and
Fig. 3(b) is for the 32ID lattice. It can be observed from the
figures that the quark mass dependence is mild for both
lattices at all scales, and linear fits (the solid lines in the
figure) can be used to extrapolate the results to the
massless limit.
In principle, this kind of extrapolation needs to be done

also for the mixing coefficients. However, in practice, it is
not necessary since from Fig. 3(a) we learned that the finite
quark mass effect is quite small compared with the large
statistical errors of the mixing coefficients. Also, we did not
extrapolate the sea quark masses to zero. But our previous

TABLE III. The details of the overlap simulation in the valence sector for the CI case, including the name of the lattice, the grid type of
source Gsrc (the notations such as 12-12-12 denote the intervals of the grid in the three spatial directions; see Ref. [24] for more details),
the number of noises for the source grids Nsrc, the time positions of sources tsrc, the grid type of sink Gsink, the number of noises for the
sink grids Nsink, the source-sink separations ðtsink − tsrcÞ, and the bare valence quark masses mv

qa.

Lattice Gsrc Nsrc tsrc Gsink Nsink ðtsink − tsrcÞ mv
qa

24I 12-12-12 1 (0, 32) 2-2-2 5 0.88 fm (0.0102, 0.0135, 0.0160, 0.0203)
5 1.11 fm
5 1.33 fm

32I 16-16-16 1 (0, 32) 1-1-1 3 0.99 fm (0.00765, 0.00885, 0.0112, 0.0152)
3 1.16 fm
3 1.24 fm

32ID 16-16-16 6 (0, 32) 1-1-1 4 1.29 fm (0.0042, 0.0060, 0.011, 0.014, 0.017, 0.022)
5 1.43 fm

12 1.57 fm

48I 12-12-12 5 (0, 32, 64) 1-1-1 4 0.88 fm (0.0024, 0.0030, 0.00809, 0.0102, 0.0135, 0.0160, 0.0203)
8 1.11 fm

12 1.33 fm

TABLE IV. The bare valence strange quark mass parameters
and mass renormalization constants (MS at 2 GeV) used in DI.

32I 24I 48I 32ID

msa 0.04454 0.06347 0.06548 0.08500
Zm 0.9467(57) 0.8872(68) 0.8872(68) 0.8094(26)
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work [30], where we used three 24I and three 32I lattices
with different sea quark masses and several valence quark
masses on each lattice to take both the valence and sea
quark mass to zero for the massless renormalization
scheme, shows that the sea quark mass effects are usually
very weak for other renormalization constants (e.g., ZA, ZP
and ZS). Accordingly, we can estimate the systematic
uncertainty of the renormalization constants of this work
due to the nonzero sea masses. Actually, our previous work
[13] has estimated all the systematic uncertainties of the
renormalization constants of EMT on these lattices and a
full error budget can be found in its supplementary
materials. All those systematic uncertainties of the renorm-
alization constants are included in the present calculations.
We use the 3-loop result for the isovector matching

coefficient [33] while only 1-loop results exist for the

others [34]. More detailed discussion about the calculation
of nonperturbative renormalization and mixing is beyond
the scope of this paper, and can be found in our previous
works [13,31]. The renormalization constants used in this
work are listed in Table V. Although the mixing coefficients
are of order 0.01 or less, the mixing effects of this study are
significant (∼10%) since the DI bare values are themselves
smaller than those of CI and glue.

V. RESULTS

The two bare matrix elements of the strange and light
quarks are fitted using the two-state formula [Eq. (4)] in a
joint correlated fit, such that the correlation between the
two matrix elements is properly kept. This ensures the
cancellation of the fluctuations of the two matrix elements
in the ratio and leads to statistically more stable results.
Two-state fits are employed to handle the excited-state

contaminations at finite source-sink separations. Figure 4
shows example plots of the momentum fractions in DI on
the 24I lattice at its unitary point. Different colors denote
different source-sink separations. The colored lines in
panels (a) and (b) show the two-state fittings for each
separation and their ratios are plotted in panel (c). The blue
bands indicate the final results at infinite source-sink
separations. We use a joint fit involving both the light
and strange quark, such that the ratio of the strange quark
momentum fraction to that of light quark has much smaller
relative error than the momentum fraction themselves due
to the cancellation of the statistical fluctuations. All the
fittings result in good χ2=d:o:f: (around or less than one)
and the final errors represented by the height of the bands
are similar to the errors of the data points at the largest
source-sink separation, which is reasonable and reassuring.
Detailed fitting setups can be found in Table VI.
Another way to look at the fitting of the ratios is plotted

in Fig. 5. There, the data points are modified such that the
finite source-sink separation effects are removed using the
results of the two-state fits. We can see that the new data
points at different source-sink separations are all consistent
with each other within errors and they all coincide with the
fitted results (the blue bands), which means the two-state
fits can successfully track the excited-state effects.
Although the main topic of this work is to calculate the

ratio of DI, the CI part contributes too through the mixing.

(a)

(b)

FIG. 3. The isovector RI/MOM renormalization constants of
the traceless diagonal part of the EMTat different scales a2p2 as a
function of the bare valence quark mass. The left panel is for the
24I lattice and the right one is for the 32ID lattice. Solid lines
show linear extrapolations to the massless limit.

TABLE V. The nonperturbative renormalization constants on
different ensembles at MS2 GeV. The 24I and 48I ensembles
share the same renormalization constants due to the same lattice
spacing.

Symbol ZMS
QQ δZMS

QQ ZMS
QG

32ID 1.25(0)(2) 0.018(2)(2) 0.017(17)
24I=48I 1.24(0)(2) 0.012(2)(2) 0.007(14)
32I 1.25(0)(2) 0.008(2)(2) 0.000(14)
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Example plots of the momentum fractions in CI for the 48I
and 24I lattice are shown in Fig. 6. As in the DI case, all the
fittings result in good χ2=d:o:f: (around or less than one).
Detailed fitting setups can be found in Table VII.
After renormalization, the final R ratios on different

ensembles with different valence pion masses are fitted by
the following form to track the pion mass, lattice spacing
and volume dependence

Rðmv
π; ms

π; a; LÞ
¼ Rðm0

π; m0
π; 0;∞Þ þ C1ððmv

πÞ2 − ðm0
πÞ2Þ

þ C2ððmv
πÞ2 − ðms

πÞ2Þ þ CI=ID
3 a2 þ C4e−m

v
πL; ð6Þ

where the C’s are free parameters,mv
π=ms

π is the valence/sea
pion mass, andm0

π is the physical pion mass. The third term
is to account for the partial quenching effect. A total of
21 data points are used for this global analysis. The

extrapolated result to the physical limit is RMSð2GeVÞ¼
hxiRsþs̄=hxiRuþūðDIÞ¼0.795ð79Þð77Þ with χ2=d:o:f:¼0.16,
where the first error is the statistical error and the second
error is the total systematic one. A complete breakdown
of the systematic uncertainties can be found in detail in
Table VIII. Details are discussed as follows.
The systematic uncertainty coming from the two-state

fits is estimated in a way shown in Fig. 5. If the two-state
fits work well, after the finite source-sink separation effect

(a) (b) (c)

FIG. 4. Example plots of the momentum fractions in DI on the 24I lattice at its unitary point. Panels (a)–(c) show the results of the light
quark, strange quark and the bare ratio R respectively. Different colors denote different source-sink separations. Colored lines are the
two-state fittings for each separation and the blue bands indicate the final results at infinite source-sink separations.

TABLE VI. Setups of the two-state fits in the DI part. The
source-sink separations used in the fits, the number of points
dropped on the source side and the sink side, and the prior value
and width of δm are listed for each lattice.

Lattice Separations (a) Source drop Sink drop Prior δma

32ID 6, 7, 8 1 1 0.4ð∞Þ
24I 8, 9, 10, 11 2 1 0.3ð∞Þ
48I 6, 7, 8 1 1 0.3(0.6)
32I 8, 9, 10, 11 2 3 0.2ð∞Þ

(a)

(b)

FIG. 5. Example plots of the momentum fractions in DI for the
24I and 32I lattice at their unitary points. The finite source-sink
separation effects are removed from the data points using the
results of the two-state fits. The blue bands show the same two-
state fitting values as in Fig. 4.
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is removed from the data points by using the results of the
two-state fits, all the points at different source-sink sepa-
rations should lie on the same horizontal line with respect
to the current insertion time. Figure 5 shows that this is
true within errors. We then use the difference between the
modified data points and the two-state fitting results to

estimate the corresponding systematic uncertainty to be
∼6% of the central value of the final result.
The systematic uncertainties related to the global

extrapolation, including finite lattice spacing effect, finite
lattice volume effect, pion mass extrapolation with mixed
action and strange quark mass effect, are estimated follow-
ing Ref. [28]. We use the difference between the con-
tinuum-extrapolated result and the result on our finest
lattice, i.e., 32I, at the physical pion mass point and at the
infinite volume limit for the systematic uncertainty of the
finite lattice spacing effect. We have two coefficients for
the finite lattice spacing effects in Eq. (6) since we are using
two kinds of gauge actions. The results, CI

3 ¼ −0.4ð5.3Þ
and CID

3 ¼ 0.8ð3.3Þ, have no statistical significance for
both cases, which is consistent with the behavior our data
(the upper panel of Fig. 7). Numerically, the corresponding
uncertainty is jCI

3j × a2ð32IÞ ∼ 0.003. It is also consistent

(a) (b)

(c) (d)

FIG. 6. Similar to Fig. 4, but for the momentum fractions in CI for the 48I and 24I lattices at their unitary points. d and u quarks are
plotted separately.

TABLE VII. Setups of the two-state fits in the CI case. The
source-sink separations used in the fits, the number of points
dropped on the source side and the sink side and the prior value
and width of δm are listed for each lattice.

Lattice Separations (a) Source drop Sink drop Prior δma

32ID=u 9, 10, 11 3 2 0.4(0.2)
24I=d 8, 10, 12 2 1 0.3(0.3)
48I=d 8, 10, 12 2 1 0.3(0.3)
32I=d 12, 14, 15 2 3 0.2(0.1)
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with some other calculations with the overlap fermion
where there are no discernible discretization effects within
statistics [12]. The lower panel of Fig. 7 shows the R
dependence on lattice volume. The band shows the fitted
volume dependence at the physical mπ and at the con-
tinuum limit. From the band, visible finite volume effect
can be seen at mπL < 4. Numerically, the coefficient of the
volume effect C4 in Eq. (6) is −1.3ð1.3Þ. It has only a one-
sigma signal but is more statistically significant than the
coefficients of the lattice spacing effect. Using the same
strategy, the corresponding systematic uncertainty is esti-
mated to be jC4j × e−mπ;phyLð48IÞ ∼ 0.027.
Some details about the chiral extrapolation are discussed

as follows. For a partially quenched chiral extrapolation,
one needs to separate the valence pion mass mπ;vv and the
sea pion mass mπ;ss dependence. Additionally, for a mixed
action case where the valence is a chiral fermion (as in our
case where we use the overlap fermions), the LO chiral
Lagrangian involves only one more low-energy constant
[35] and the correction vanishes as Oða2Þ:

m02
π;vs ¼

1

2
ðm2

π;vv þm2
π;ssÞ þ a2Δmix; ð7Þ

where the term a2Δmix gauges the difference between the
valence and sea lattice actions at a finite lattice spacing a.
Also, we found that, when using overlap valence on domain
wall sea, Δmix is much smaller than those of other mixed
action combinations. For example, it is an order of
magnitude smaller than that of domain wall on staggered
fermion [36,37] and only shifts mπ;vs from the would be
unitary mass mπ by ∼10 MeV for mπ ∼ 300 MeV at
a ¼ 0.11 fm [38]. In the chiral extrapolation of the ratio
R, the errors of the data are around 10% or even larger
and one cannot fit complicated pion mass dependence
except for the leading linear terms in m2

π;vv and m2
π;ss,

in which case the delta mix effects are already included in
the a2 extrapolation. Additional and higher order terms
(including the m0

π;vs terms appearing in their third power)

show no statistical significance which means the difference
caused by ignoring higher order terms is much smaller than
the current statistical uncertainty. For the strange quark
mass part, as mentioned before, the bare valence strange
quark masses are determined by the global-fit value at
2 GeV in the MS scheme calculated in our previous study
[29]. For all the 24I, 48I and 32I lattices the renormalized
strange quark mass is around 100.5 MeV and for the 32ID
lattice the number is around 95 MeV, which are all
consistent with our global-fit value 101(3)(6) MeV [29]
within error. As discussed in Ref. [28], the valence strange
quark mass effect is very weak and we assume so for the sea
strange quark too. So combining both the valence and sea
effects, we estimate the systematic uncertainty due to
strange quark mass to be around 1%.
The systematic uncertainties corresponding to the

renormalization are discussed in detail in the supplemental

TABLE VIII. The systematic error budget of the ratio R.

Source
Absolute
error

Relative
error

Two-state fit (including the use
of prior on δm)

0.050 6.3%

Finite lattice spacing 0.003 0.4%
Finite lattice volume 0.027 3.4%
Pion mass extrapolation 0.045 5.7%
Mixed action 0.016 2.0%
Strange quark mass 0.008 1.0%
Renormalization and mixing 0.016 2.0%
Lack of mixing from charm quark 0.004 0.5%

All (combined in quadrature) 0.077 9.7%

FIG. 7. The R ratios as a function of lattice spacings (upper
panel) and as a function of mπL (lower panel). The green band
and blue band in the upper panel show the lattice spacing
dependence of R at the physical mπ and at the infinite volume
limit for the “I” and “ID” lattices, respectively. The green band in
the lower panel shows the volume dependence of R at the
physical mπ and at the continuum limit.
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materials of Ref. [13]. They contribute in total ∼2%
systematic uncertainty of R. In addition, we did not
consider the charm quark contribution by mixing.
However, the charm momentum fraction itself is small.
More importantly, the sea quark-to-quark mixing coeffi-
cients are of order one percent as given in our paper, so the
neglect of the heavy flavor contributions is safe and we
estimate that it can only leads to ∼0.5% uncertainty.
We use the traceless diagonal part of the EMT T̄44 to carry

out our calculation. Actually, in our previous papers dis-
cussing the glue momentum fraction renormalization [31]
and nucleon mass decomposition [13], we found that the
assumed rotational symmetry breaking effect of the renorm-
alization constant between the off-diagonal EMT T4i and the
traceless diagonal part T̄44 which are in different irreducible
representations of the cubic point group Oh is much smaller
than the statistical uncertainties for both the glue and quark
case. So we do not add one more systematic uncertainty due
to the rotational symmetry breaking. In total, as shown in the
table, the systematic uncertainty ofR is about 9.7%which is
close to the statistical uncertainty.
The bands in Fig. 8 show our final prediction on the

unitary pion mass dependence of the ratio in the continuum
and infinite volume limits. The width of the blue band
indicates the statistical error and the width of the wider cyan
band the total error. The data points from different
ensembles with the partially quenching effect subtracted
are also plotted in the figure. The agreement of the bands
and the data points shows that the finite volume and lattice
spacing effects are small.

VI. DISCUSSION AND SUMMARY

To manifest that the CS and DS partons have distinct
small x behaviors, the ratio of the distribution ðsðxÞ þ
s̄ðxÞÞ=ðūðxÞ þ d̄ðxÞÞ from 3 global fittings at NNLO [2–4]

at Q2 ¼ 4 GeV2 is plotted in Fig. 9. We see that the ratios
are kind of flat at small x≲ 10−2 with large errors. On the
other hand, it is conspicuous that they all have a character-
istic shoulder with a fall off around x ∼ 10−2 toward larger
x. Since under our classification, sðxÞ þ s̄ðxÞ contains only
the DS contribution while ūðxÞ þ d̄ðxÞ includes both CS
and DS, this reflects the fact that the small x behavior of
q̄dsðxÞ is more singular than that of qv and q̄cs such that at
x≲ 10−2 the DS dominates, so the ratio stays roughly
constant [7,14]. When x is larger than ∼10−2, the CS
ūcsðxÞ þ d̄csðxÞ component in ūðxÞ þ d̄ðxÞ (N.B.
ūðxÞ þ d̄ðxÞ ¼ ūcsðxÞ þ d̄csðxÞ þ ūdsðxÞ þ d̄dsðxÞ) sets in
to make the ratio smaller. This can also be understood in
Regge theory where qv, q̄cs

x→0
⟶ x−1=2 since the CS partons are

in the connected insertion which is flavor nonsinglet as are
the valence partons and their small x behaviors reflect the
leading Reggeon exchanges [39]. On the other hand, qds,
q̄ds
x→0
⟶ x−1 since the DS is flavor singlet and can have

Pomeron exchanges [40,41]. Also, we find numerically
that in the small x region (10−4 to 10−2) of the global
fittings for PDF [2–4,42] atQ2 ¼ 4 GeV2, the power of the
small x behavior for q̄ðxÞ is in the range ½−1.22;−1.15� and
for qvðxÞ in the range ½−0.6;−0.2�, which are close to those
prescribed in Regge theory and consistent with our argu-
ment that DS dominates the small x behavior.
The dominance of the DS partons at small x reveals the

possibility that lattice QCD can help to constrain the strange
quark distribution in the small x region using the DI ratio R
as defined in Eq. (1). To do so, it is advocated [15] to
completely separate the CS and DS partons with their
corresponding evolutions in new global fittings. No approxi-
mation such as udsðxÞ ¼ ūdsðxÞ is needed in this approach.
Once done, close connection can be built between lattice
computations of moments and those from global fittings.

FIG. 8. The global interpolation/extrapolation on the four
ensembles. The blue and cyan bands show the statistical and
total uncertainties of our final prediction.

FIG. 9. The global fitting results of ðsðxÞþ s̄ðxÞÞ=ðūðxÞþ d̄ðxÞÞ
at Q2 ¼ 4 GeV2. The green band shows our result under the
assumption that the ratio is a constant for small x up to x ¼ 10−2.
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In addition, before new global fittings that separate CS
and DS are carried out, an easy-to-implement first trial is to
use the following approximate form for the strange PDF

sðxÞ þ s̄ðxÞ ¼ 1

R
ðūðxÞ þ d̄ðxÞÞ − cðūðxÞ − d̄ðxÞÞ; ð8Þ

where c is a coefficient to be fixed, to better control the
statistical uncertainty of the global fittings. The form is
based on the approximation that sðxÞ þ s̄ðxÞ is proportional
to ūdsðxÞ þ d̄dsðxÞ by the factor of R if udsðxÞ ¼ ūdsðxÞ
and isospin symmetry are assumed. Since the first term
ūðxÞ þ d̄ðxÞ in Eq. (8) contains both ūdsðxÞ þ d̄dsðxÞ and
ūcsðxÞ þ d̄csðxÞ, we use the second term to subtract the
latter which is taken to be proportional to ūðxÞ − d̄ðxÞ due
to the fact that it equals ūcsðxÞ − d̄csðxÞ in the isospin limit.
Both ūðxÞ þ d̄ðxÞ and ūðxÞ − d̄ðxÞ in Eq. (8) are obtained in
global fittings, thus this form should be easy to implement.
This form serves as an explicit example of how a lattice
result enters directly the global fittings of PDFs. Further
lattice calculation of the fourth moment hx3i of the DI will
serve to gauge the validity of this approach and suggest
possible modification of the fitting function. We also plot
our R in Fig. 9 up to x ¼ 10−2 to visually show that the
uncertainty of the strange PDF can be reduced significantly
by using this lattice constraint as indicated by the lattice
error as compared to those from the NNLO analyses.
Since lattice calculations with low quark and glue

moments are getting mature and complete, the QCD
path-integral classification that separates CS and DS

extends the ability that lattice calculations can serve
as meaningful constraints for the global analysis of
PDFs. The present result of the ratio hxisþs̄=hxiuþūðDIÞ ¼
0.795ð79Þð77Þ at MS scale μ ¼ 2 GeV is the first such
calculation that can constrain the global fittings in the small
x region. Our results will have important impact on future
global fittings and experiments from EIC and LHC.
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