
 

Asymptotic low-temperature behavior of two-dimensional RPN − 1 models

Claudio Bonati ,1 Alessio Franchi ,2 Andrea Pelissetto,3 and Ettore Vicari1
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We investigate the low-temperature behavior of two-dimensional (2D) RPN−1 models, characterized by a
global OðNÞ symmetry and a local Z2 symmetry. For N ¼ 3 we perform large-scale simulations of four
different 2D lattice models: two standard lattice models and two different constrained models. We also
consider a constrained mixed Oð3Þ-RP2 model for values of the parameters such that vector correlations are
always disordered. We find that all these models show the same finite-size scaling (FSS) behavior, and
therefore belong to the same universality class. However, these FSS curves differ from those computed in
the 2D O(3) σ model, suggesting the existence of a distinct 2D RP2 universality class. We also performed
simulations for N ¼ 4, and the corresponding FSS results also support the existence of an RP3 universality
class, different from the O(4) one.
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I. INTRODUCTION

Global and local gauge symmetries play a crucial role in
the construction of quantum and statistical field theories,
relevant for fundamental interactions [1] and emerging
phenomena in condensed matter physics [2]. They determine
the main features of the model, such as the phase diagram
and the nature of their thermal and quantum phase tran-
sitions. The critical behavior arising from the interplay
between global and local gauge symmetries has been
investigated in several physical contexts. Paradigmatic
examples are the finite-temperature transitions in quantum
chromodynamics, the theory of strong interactions [3–5],
and in the multicomponent Abelian-Higgs model [6,7]. In
the case of non-Abelian gauge symmetries, the nature of
the phase transitions is mostly determined by the global
symmetries, in both three-dimensional (3D) and two-
dimensional (2D) models, while the modes associated with
the local gauge symmetries play only a marginal role, see,
e.g., Refs. [3,7–10]. This is not the case for the Abelian
U(1) gauge theories, in which some features of the gauge
group—in particular, the topology of the gauge-field
configurations—play an important role. There is now a wide
consensus that, in three dimensions, the critical behavior
depends on the presence/absence of topological defects like
monopoles and hedgehogs and on the compact/noncompact
nature of the gauge fields [11–18]. Also in the case of
antiferromagnetic models, gauge fields apparently play an
important role, and indeed, effectivemodels inwhich they are
integrated out do not describe their critical behavior [19].
RPN−1 models represent a class of systems characterized

by the simultaneous presence of a global and a local gauge

symmetry. They are N-component vector models that are
invariant under global OðNÞ and local Z2 transformations,
and they are expected to describe the universal features
of the isotropic-nematic transition in liquid crystals [20].
Ferromagnetic RPN−1 models in three dimensions are not
particularly interesting as the finite-temperature transition
is of first order [20]. Critical transition are instead observed
in 3D antiferromagnetic models [21–23], whose nature,
however has not yet been fully clarified for N ≥ 4.
Antiferromagnetic models are also relevant (but after an
analytic continuation to N ¼ −1) in the analysis of the
behavior of spanning forests (see Ref. [24] and references
therein).
In this work we will study the critical behavior of

ferromagnetic 2D RPN−1 models. Their behavior has been
for long controversial, and at present, it is not yet fully
understood, see, e.g., Refs. [25–30]. For N ≥ 3, these
models are not expected to undergo finite-temperature
continuous transitions related to the breaking of the
OðNÞ symmetry, because of the Mermin-Wagner theorem
[31]. A priori, transitions with quasilong-range order are
possible, but they can be excluded using simple comparison
arguments [27]. For finite values of the temperature only
first-order transitions are generically allowed, and indeed
such transitions are expected for large values of N
[32–34]. Magnetic modes can become critical only in
the zero-temperature limit, and in this limit magnetic
correlations increase exponentially, similarly to what
occurs in 2D OðNÞ σ models. The nature of such asymp-
totic low-temperature behavior has been long debated.
References [27–29] reported arguments to support the
claim that RPN−1 and OðNÞ models belong to the same
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universality class, implying the irrelevance of the Z2 gauge
symmetry in the zero-temperature limit. However, these
arguments were never supported by numerical data: in all
cases [25,27] RPN−1 results were in large disagreement
with the predictions obtained by assuming the equivalence
of the two classes of models. A rigorous argument in favor
of the equivalence was put forward in Ref. [27]. However, it
was based on models effectively designed to eliminate the
topological defects, whose presence is essential to obtain a
different low-temperature behavior for RPN−1 models and
OðNÞ models.
In this paper we return to the issue of the nature of the

low-temperature critical behavior of 2D RPN−1 models.
Indeed, topological defects, even if exponentially rare, can
change the asymptotic nonperturbative behavior of the
model (this is the case of the compact U(1) gauge theory in
three dimensions, see Ref. [11]). For this purpose we study
the finite-size scaling (FSS) behavior of several different
RPN−1 models, with N ¼ 3 and 4. If all these models are in
the same OðNÞ universality class, we would expect them to
have the same FSS behavior as the standard OðNÞmodel. If
discrepancies are present, in this scenario they would be
interpreted as scaling corrections that would be therefore
nonuniversal, that is they would depend on the model.
Therefore, the results corresponding to the different models
should either fall on top of the OðNÞ FSS curves or should
all be different. As we shall see, this does not occur. The
RPN−1 data show universality: all data fall on the same FSS
curve, with tiny differences that would be naturally
interpreted as scaling corrections. The resulting FSS curve
is distinctly different from the corresponding one obtained
in the OðNÞ vector model. Therefore, the observed uni-
versal behavior supports the existence of an RPN−1 distinct
universality class.
The paper is organized as follows. In Sec. II we report

the Hamiltonians of the two standard RPN−1 models we
consider. In Sec. III we review the different scenarios for
the behavior of RPN−1 models. In Sec. IV we define our
observables and review the FSS methods that are used in
the numerical analysis of the data. In Sec. V we present the
FSS analyses of the numerical data for the two models
introduced in Sec. II. In Sec. VI we consider a class of
models introduced in Refs. [27,35], discuss the rigorous
arguments of Ref. [27], and present numerical results for
this class of models. Our conclusions are reported in
Sec. VII.

II. TWO-DIMENSIONAL RPN − 1 MODELS

RPN−1 models are N-vector models characterized by a
global OðNÞ symmetry and a local Z2 gauge symmetry. A
lattice formulation of the RPN−1 model on a square lattice
can be obtained by considering real N-dimensional vectors
Sx of unit length defined on the sites of the lattice (they
satisfy Sx · Sx ¼ 1) and the Hamiltonian

H ¼ −J
X

x;μ

ðSx · Sxþμ̂Þ2: ð1Þ

Here μ̂ ¼ 1̂; 2̂ are unit vectors along the lattice directions
and the sum runs over all lattice links. The partition
function of the system reads

Z ¼
Z

½dSx�e−βH; β≡ 1=T: ð2Þ

Alternatively we may consider a lattice model with an
explicit Z2 gauge variable σx;μ ¼ �1 associated with each
link. The Hamiltonian is in this case

Hσ ¼ −J
X

x;μ

Sx · σx;μSxþμ̂ ð3Þ

and the partition function reads

Z ¼
Z

½dSx�
X

fσx;μg
e−βHσ : ð4Þ

The fields σx;μ ¼ �1 can be trivially integrated out,
obtaining the effective model with partition function

Z ¼
Z

½dSx�e−βHσ;eff ;

Hσ;eff ¼ −β−1
X

x;μ

ln 2 coshðβJjSx · Sxþμ̂jÞ: ð5Þ

For β large, the expression of the Hamiltonian can be
simplified obtaining

Hσ;eff ¼ −J
X

x;μ

jSx · Sxþμ̂j; ð6Þ

with corrections that are exponentially small in β. These
models are invariant under the global OðNÞ rotations of the
N-component spin variables and under the local Z2 gauge
transformations Sx → sxSx [supplemented by σx;μ →
sxσx;μsxþμ̂ for model (3)] with sx ¼ �1. We set J ¼ 1

for both lattice models without loss of generality.
Due to the Z2 gauge symmetry, the critical behavior can

be characterized by studying the correlations of the spin-2
gauge-invariant operator

Qab
x ¼ SaxSbx −

1

N
δab: ð7Þ

In two dimensions, according to the Mermin-Wagner
theorem [31], no finite-temperature transition related to
the breaking of the OðNÞ symmetry can occur. Spins order
only in the limit β → ∞. The asymptotic zero-temperature
behavior can be studied using perturbation theory. It
predicts the emergence of long-range correlations
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characterized by a length scale that increases exponentially
in β, as it also occurs in 2D OðNÞ σ models.

III. DIFFERENT SCENARIOS FOR THE CRITICAL
BEHAVIOR OF RPN − 1 MODELS

We wish now to present the different scenarios for the
behavior of RPN−1 model that have been proposed in the
literature. One possibility is that these models undergo a
transition at finite temperature and indeed, a first-order
transition is predicted for large values of N [32–34]. In
principle, it is also possible to have a finite-temperature
continuous transition, where energy-energy correlations
display long-range order, while magnetic modes are non-
critical in agreement with the Mermin-Wagner theorem.
Such continuous transitions, whose existence was put
forward in Ref. [28], were observed in a class of modified
OðNÞ models. It was proved rigorously that a finite-
temperature first-order transition line occurs in a class of
OðNÞ and RPN−1 models with nonlinear Hamiltonians [36].
The endpoint of the transition line is expected to corre-
spond to a continuous finite-temperature transition in the
Ising universality class: this was verified numerically in
Ref. [37] for N ¼ 3 and in the large-N limit in Ref. [38]. A
similar behavior is expected in mixed OðNÞ-RPN−1 models
for large values of N [32,38].
A priori it is also possible that the system has a

continuous magnetic transition without the presence of a
magnetized low-temperature phase, as it occurs for N ¼ 2.
As discussed in Ref. [27] this possibility is unlikely.
Consider indeed the model with Hamiltonian (3): the role
of the σ fields is that of adding additional disorder in the
system and thus we expect (and verify numerically in
the following) that the magnetic correlation lengths in the
RPN−1 model and in the corresponding OðNÞ model satisfy
the inequality ξRPN−1ðβÞ < ξOðNÞðβÞ. Since ξOðNÞðβÞ is
always finite for finite β, we can exclude the presence
of a finite-temperature transition with a diverging magnetic
correlation length.
At present, there is no indication of the presence of a

(continuous or first-order) finite-temperature transition for
N ¼ 3 [25,26,29]. The only scenario that is consistent with
the data is the one in which no transition occurs for finite β:
a critical behavior is only observed for β → ∞. In this limit
the β-dependence of the observables can be computed in
perturbation theory. For the Hamiltonian (1) the perturba-
tive behavior, however, can only be observed for large
values of β—therefore, for very large correlation lengths—
since perturbative corrections are very large [39]. For
N ¼ 3 it is practically impossible to verify the perturbative
asymptotic scaling [39]. For perturbative considerations, it
is much more interesting to consider the gauge Hamiltonian
(3). From Eq. (6), it is obvious that any quantity has exactly
the same perturbative expansion in the gauge RPN−1 model
and in the usual OðNÞ model. For instance, if we consider

the infinite-volume correlation length computed from Qx,
the ratio ξ∞;OðNÞ=ξ∞;RPN−1 should be constant apart from
nonperturbative corrections that decay exponentially in β.
Moreover, if OðNÞ and RPN−1 models have the same
asymptotic universal behavior, the ratio should approach
one as β → ∞.
The nonperturbative behavior is a different issue. As

discussed in Ref. [25,26], the question of the equivalence of
RPN−1 and OðNÞ is directly related to the question of the
nature of their lowest-energy excitations. If an RPN−1

universality class exists, one expects the lowest-energy
excitations to be associated with the bilinear field Qx. On
the other hand, if such a universality class does not exist,
the lowest-energy excitation are associated with vector
modes as in the standard OðNÞ model. In Refs. [25,26], the
authors considered this possibility unlikely, as the vector
correlation function hSx · Syi is trivial in RPN−1 models.
However, in the context of these models, it is probably
more appropriate to consider the gauge-invariant correla-
tion function

GPðx; yÞ ¼ Sx · Sy
Y

l∈P
sign ðS · SÞl; ð8Þ

where P is a path connecting x and y, l is a link belonging
to the path, and ðS · SÞl is the scalar product of the two
spins at the endpoints of the link. In models in which there
is an explicit gauge field σx;μ, signðS · SÞl can be replaced
by σl. For continuous gauge groups (for instance, in the
case of CPN−1 models) this correlation function is not
critical, even for β → ∞ [40–43]. Indeed, local string
fluctuations always add up to give rise to an exponential
decay e−aLP, where LP is the length of the path P and a is a
path-independent constant. In our case, the gauge group is
discrete and therefore the behavior of strings of σ fields and
of the correlation function GPðx; yÞ is less clear.
The possible presence of two distinct universality

classes, the OðNÞ and the RPN−1 universality class, is
related with the behavior of the effective Z2 excitations
associated with the field σx;μ. In models in which there are
no explicit gauge fields, one can equivalently define

σx;μ ¼ signðSx · Sxþμ̂Þ: ð9Þ

The relevant variable is the plaquette

Πx ¼ σx;1σx;2σxþ1̂;2σxþ2̂;1: ð10Þ

If Πx ¼ 1 for all sites, in infinite volume (in a finite volume
there are some subtleties [27], see below) we can write
σx;μ ¼ τxτxþμ̂, where τx is an Ising spin defined on the sites
of the lattice. In this case, OðNÞ and RPN−1 models are
equivalent [27,28]. Thus, the existence of an RPN−1

universality class depends on the density of the plaquettes
with Πx ¼ −1 (we will call them topological defects). This
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problem has never been addressed quantitatively, although
simple calculations show that the outcome may be action
dependent [28]. In particular, one can devise RPN−1 models
[27] (we will come back to this issue in Sec. VI) such that
one can rigorously prove that defects are absent in the
asymptotic regime in which the system orders. Therefore,
they have the same critical behavior as the usual OðNÞ
vector model.
Finally, we mention the scenario proposed by Catterall

et al. [29]. They considered a variant of the gauge RPN−1

model obtained by adding a term μ
P

x Πx to the action,
where μ plays the role of a chemical potential for the
defects. For this action they identified numerically a
specific renormalization-group trajectory which flows
to a “vorticity” fixed point and apparently attracts the
renormalization-group trajectories for the standard RPN−1

gauge model. They conjectured that this specific trajectory
is responsible for the observed quasiuniversal behavior
[29,44], which is expected to hold only when ξ is less than a
crossover correlation length ξcross. For ξ≳ ξcross, OðNÞ
behavior should instead be observed. Such a scenario might
explain the observed phenomenology, however it can be
hardly tested numerically since the crossover correlation
length is enormous, ξcross ≈ 109. Indeed, nonperturbative
differences between RPN−1 and OðNÞ models can only
observed when ξ=L≲ 1 (see below), so that any inves-
tigation of the nonperturbative behavior for ξ ≈ ξcross

requires huge systems with L ≈ 109.
If OðNÞ and RPN−1 models are equivalent, FSS functions

in the two models can be directly related. One should,
however, take into account that different boundary condi-
tions should be considered in the two cases. As discussed in
Ref. [27], the FSS functions of gauge-invariant quantities for
the RPN−1 model with periodic boundary conditions should
be the same as those of the OðNÞ model with periodic/
antiperiodic boundary conditions. The same argument of
Ref. [27] can be used to prove the equivalence of the RPN−1

FSS functions with those of the OðNÞ model with link-
fluctuating boundary conditions (LFBC). To define it, con-
sider a cubic lattice with periodic boundary conditions and
divide the set of lattice links into two disjoint subsets B and
C. We indicate with B the set of boundary links connecting
points x ¼ ðL;mÞ, y ¼ ð1; mÞ, and points x ¼ ðm;LÞ, y ¼
ðm; 1Þ (m ¼ 1;…LÞ; C corresponds to the set of internal
links (the lattice links that do not belong to B). The OðNÞ
model with LFBC is defined by the Hamiltonian

Hlf ¼ −
X

hx;μi∈B
Sx · σx;μSxþμ̂ −

X

hx;μi∈C
Sx · Sxþμ̂: ð11Þ

We can also consider an equivalent Hamiltonian, which is
the analogue of Hamiltonian (1):

Hlf2 ¼ −
X

hx;μi∈B
ðSx · Sxþμ̂Þ2 −

X

hx;μi∈C
Sx · Sxþμ̂: ð12Þ

IV. FINITE-SIZE SCALING IN THE
ZERO-TEMPERATURE LIMIT

In this paper we investigate the nature of the asymptotic
large-β behavior of the lattice RPN−1 models. For this
purpose we consider RPN−1 models on a square lattice of
linear size L with periodic boundary conditions.
We mostly focus on correlations of the gauge-invariant

local variable Qab
x defined in Eq. (7), which is a symmetric

and traceless matrix. Its two-point correlation function is
defined as

Gðx − yÞ ¼ hTrQxQyi; ð13Þ

where the translation invariance of the system has been
taken into account. The susceptibility and the correlation
length are defined as χ ¼ P

xGðxÞ and

ξ2 ≡ 1

4sin2ðπ=LÞ
G̃ð0Þ − G̃ðpmÞ

G̃ðpmÞ
; ð14Þ

where G̃ðpÞ ¼ P
x e

ip·xGðxÞ is the Fourier transform of
GðxÞ, and pm ¼ ð2π=L; 0Þ. We also consider the Binder
parameter defined as

U ¼ hμ22i
hμ2i2

; μ2 ¼
1

V2

X

x;y

TrQxQy; ð15Þ

where V ¼ L2 is the volume. To determine the universal
features of the asymptotic zero-temperature behavior
we use a FSS approach [45–49]. At finite-temperature
continuous transitions the FSS limit is obtained by
taking β → βc and L → ∞ keeping X ≡ ðβ − βcÞL1=ν

fixed, where βc is the inverse critical temperature and ν
is the correlation-length exponent. Any renormalization-
group invariant quantity R, such as the ratio

Rξ ≡ ξ=L ð16Þ

and the Binder parameter U, is expected to asymptotically
behave as Rðβ; LÞ ¼ fRðXÞ þOðL−ωÞ, where ω is a
universal exponent. The scaling function fRðXÞ is universal
apart from a trivial normalization of its argument; it only
depends on the shape of the lattice and on the boundary
conditions. Since Rξ is generally monotonic, we can also
write [46–49],

Rðβ; LÞ ¼ FRðRξÞ þOðL−ωÞ; ð17Þ

where FR is a universal scaling function. Eq. (17) is
particularly convenient, as it allows a direct check of
universality, without the need of tuning any parameter.
Moreover, it applies directly, without any change, to two-
dimensional asymptotically free models [6], in which a
critical behavior is only obtained in the limit β → ∞, see
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Refs. [50–53] and references therein. In this case, scaling
corrections decay as L−2 logp L, where p cannot be
determined in perturbation theory [see Ref. [53] for a
discussion in the OðNÞ model].
In the following, we consider the finite-size behavior of

the Binder parameter U as a function of Rξ: If two models
belong to the same universality class, the Binder parameter
U must satisfy the FSS relation (17) with the same
asymptotic curve FUðRξÞ. Universality also implies that
all dimensionless renormalization-group invariant quan-
tities have the same asymptotic large-β behavior, both in the
thermodynamic and in the FSS limit.

V. NUMERICAL RESULTS FOR THE LATTICE
RP2 AND RP3 MODELS

To identify the nature of the universal zero-temperature
behavior, we have performed simulations of the lattice RP2

models (1) and (3) on a wide range of lattice sizes (up to
L ¼ 640) with periodic boundary conditions and of the
lattice O(3) model (11) with LFBC (up to L ¼ 160). We
have also performed a limited study of the case N ¼ 4,
considering the lattice RP3 model (3) and the lattice O(4)
model (11). For both the models (1) and (3) a standard
Metropolis and an overrelaxation algorithm were used to
update the fields Sx, while just Metropolis was used to
update σx;μ. For the case of the model (1) it is however
numerically convenient to introduce continuous link fields,
and rewrite the Hamiltonian as that of an OðNÞ model with
annealed gaussian random links with zero average and
variance β=2, see e.g., [33].
As explained in Sec. IV, we focus on the FSS behaviors

of the Binder parameter U and the ratio Rξ ≡ ξ=L. Figure 1
shows U versus β for several lattice sizes. The results for
the models with Hamiltonians (1) and (3) are similar. The
Binder parameter U varies between the strong-coupling
value

U ¼ 1þ 4

ðN − 1ÞðN þ 2Þ ; ð18Þ

thus U ¼ 7=5 for N ¼ 3, and the weak-coupling value
U ¼ 1. We also note that the datasets corresponding to
different lattice sizes do not show any crossing point,
confirming the absence of a finite-temperature transition.
Analogous results are obtained for the ratio Rξ ¼ ξ=L.
As already anticipated in Sec. IV, our FSS analysis is

based on the determination of the behavior of U as a
function of Rξ ≡ ξ=L. Figure 2 shows the results for
models (1) and (3). In both cases the data approach an
asymptotic FSS curve as L increases. Corrections are small,
in particular for the model (3). More interestingly, the
results show a clear evidence of universality: the data for
the two models corresponding to the largest sizes appa-
rently fall onto the same asymptotic curve, see the lower

panel of Fig. 2. Corrections to the zero-temperature critical
behavior are expected to decay as L−2 times a function of
ln L. In the case of the two lattice RP2 models considered,
convergence is roughly consistent with L−1 corrections,
likely because the logarithmic corrections mimic a power
term, as often observed in OðNÞ σ models, see, e.g.,
Ref. [54] for a discussion. Ref. [30] suggested that the
critical behavior should be related to that of the O(5) vector
model. We have verified that our curve differs from that
computed in the O(5) model. The O(5) model may turn out
to be more appropriate to describe the behavior of the
antiferromagnetic RP2 model, as discussed at length for the
three-dimensional case [21,23].
As we mentioned, if OðNÞ and RPN−1 models belong to

the same universality class, the RPN−1 scaling functions for
gauge-invariant quantities should agree with the corre-
sponding ones for the OðNÞmodel with LFBC. In the lower
panel of Fig. 2, we also report corresponding data [also in
the O(3) model we consider the correlation length and the
Binder parameter of the gauge-invariant Qx defined in
Eq. (7)] for the model with Hamiltonian (11). It is evident
that the O(3) results are very different from those obtained
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FIG. 1. The Binder parameter U vs the inverse temperature β
for the standard lattice RP2 model (1) (top panel), and for the
lattice RP2 model (3) with explicit Z2 gauge link variables
(bottom panel).
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for the two RP2 models. This large disagreement, already
noted in Ref. [27] for a different scaling function, naturally
raises some doubts on the scenario in which OðNÞ and
RPN−1 models have the same nonperturbative behavior.
Note that the differences are only observed for Rξ ≲ 0.6.

For larger values of Rξ, the OðNÞ and RPN−1 scaling
functions are essentially the same: we are indeed entering
the perturbative regime in which the scaling functions can
be computed using perturbation theory, which, as we
already mentioned, is expected to be the same for the
two classes of models.
As an additional check, we consider the values of the

correlation length as a function of β. As we mentioned in
Sec. III, the correlation lengths computed in the standard
O(3) model and in the gauge model at the same value of β
should be equal, with corrections that decrease exponen-
tially in β, if the two models are asymptotically equivalent.
The values of the correlation length in the O(3) model can
be computed using the four-loop results of Ref. [55]
(deviations are small [52] and practically irrelevant for
our considerations) and using the estimate [25] ξV=ξ≈
3.44, where ξV is the correlation length computed from
the vector correlation hSx · Syi. For instance, for the O(3)
model we obtain ξ ≈ 1.1 × 107 at β ¼ 3.785 to be com-
pared with the RP2 result ξ ≈ 44. Clearly, the correlation
length in the RP2 model is much smaller than what it should
be if the O(3) and the gauge model were nonperturbatively
equivalent. A similar discrepancy was already noted [56]
for the standard action (1), but its significance was not clear
because of the presence of very large perturbative correc-
tions decaying as an inverse power of β [39]. Here instead,
perturbative corrections are very small (they are the same as
in the OðNÞ model, for which the four-loop expression
accurately reproduces the data for β ≈ 2–3 [52]). Therefore,
the large discrepancy we observe can be hardly interpreted
as a finite-β correction.
To close this section we present some data for case

N ¼ 4: in Fig. 3 the FSS of U as a function of Rξ is shown
for the lattice RP3 model with explicit Z2 gauge link
variables (3), and for the O(4) model with link fluctuating
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FIG. 2. Plot of U vs Rξ for the standard lattice RP2 model (1)
(top panel) and for the lattice RP2 model (3) with explicit Z2

gauge link variables (middle panel). In the lowest panel we report
the data of both models (they are labelled “RP2 standard” and
“RP2 gauge”) for the largest lattices available and the data for the
O(3) model with LFBC (“O(3) LFBC”) with Hamiltonian (11).
The horizontal dashed line corresponds to the strong-coupling
value U ¼ 7=5.
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FIG. 3. Plot of U vs Rξ for the lattice RP3 model (3) with
explicit Z2 gauge link variables (“RP3 gauge”) and for the O(4)
model with LFBC (“O(4) LFBC”) with Hamiltonian (11). The
horizontal dashed line corresponds to the strong-coupling value
U ¼ 11=9.
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boundary conditions (11). These results show that also for
N ¼ 4 significant differences are observed between the
RP3 and O(4) data, which point to the existence of a RP3

fixed point, distinct from that of the O(4) σ model.

VI. PATRASCIOIU-SEILER MODEL

In this section, we discuss another class of models
introduced by Patrascioiu and Seiler [35] and used in
the present context by Hasenbusch [27]. We first consider
the constrained RPN−1 model, whose partition function is

Z ¼
Z

½dSx�
Y

hxμi
Θ½jSx · Sxþμ̂j − C�; ð19Þ

whereΘðxÞ is the usual Heaviside function,ΘðxÞ ¼ 1, 0 for
x > 0 and x < 0, respectively, andC is a free parameter that
plays the role of β. The product extends over all lattice
links. We will also consider a mixed OðNÞ-RPN−1 model
defined by the partition function

Z ¼
Z

½dSx�
Y

hxμ∈Bi
Θ½jSx · Sxþμ̂j − C�

×
Y

hxμ∈Ci
fpΘ½Sx · Sxþμ̂ − C�

þ ð1 − pÞΘ½jSx · Sxþμ̂j − C�g; ð20Þ

where 0 ≤ p ≤ 1 is a second free parameter, B and C are the
sets of boundary and internal links, respectively, as defined
in Sec. III. For p ¼ 0, we reobtain model (19), while for
p ¼ 1 we obtain an OðNÞ model which corresponds to the
standard one with LFBC, see Eq. (12). The parameter C
plays the role of temperature. For C → 1, spins order, so
that this limit corresponds to the limit β → ∞ in the
standard case. However, models with partition functions
(19) and (20) are not amenable to a perturbative treatment,
so that perturbative considerations on the equivalence of the
different models cannot be used here. Nonetheless, in the
OðNÞ case it has been shown quite precisely that these
constrained models have the same nonperturbative behav-
ior (same continuum limit) as the standard models [57,58].
In order to have a model in which the geometry of the

interactions is different—so far we have only considered
models with nearest-neighbor interactions—we also con-
sider a Hamiltonian in which also the spins along the
plaquette diagonals interact. The partition function is
given by

Z ¼
Z

½dSx�
Y

xμ

Θ½jSx · Sxþμ̂j − C�

×
Y

xd

Θ½jSx · Sxþd̂j − C�; ð21Þ

where the vectors d̂ are the diagonal vectors (1,1) and
ð1;−1Þ, the first product is over all lattice links and the
second one is over all lattice plaquette diagonals.
The constrained models are particularly interesting

because one can prove rigorous results concerning their
FSS behavior [27]. For instance, for C > C� ¼ cos π=4, the
behavior of model (20) is independent of p. In particular,
the OðNÞ model (p ¼ 1) with LFBC is equivalent to the
RPN−1 model (p ¼ 0) with periodic boundary conditions.
This implies that the RPN−1 model and the OðNÞ model
have the same nonperturbative critical behavior. The same
is true for model (21): for C > cos π=3, the RPN−1 can be
exactly mapped onto an OðNÞ model with LFBC. As we
shall discuss below, this exact result should not be taken as
a proof that all RPN−1 models are equivalent to OðNÞ
models. As the approximate calculations of Ref. [28] show,
topological defects may be relevant or irrelevant depending
on the explicit form of the Hamiltonian, and therefore it is
possible that some RPN−1 models are not in the attraction
domain of the RPN−1 fixed point, if it exists.
As discussed in Ref. [27], the value C� corresponds to

very large values of the infinite-volume correlation length.
In the region of sizes in which simulations can be done,C is
smaller than C�: The data that we will show below for
model (19) belong to the interval 0.5 ≤ C≲ 0.60, to be
compared with C� ≈ 0.707. Thus, for the values of C we
consider, the exact equivalence does not hold. Therefore,
it would not be surprising that the FSS functions we
determine for model (19) differ somewhat from the cor-
responding OðNÞ FSS functions. However, if an RPN−1

universality class does not exist, we would expect these
deviations to be different from those observed for the more
standard RPN−1 models discussed in the previous section.
As a first check, we have verified that the constrained

OðNÞ model with LFBC (partition function (20) with
p ¼ 0) is equivalent to the standard OðNÞ model with
the same boundary conditions [Hamiltonian (11)]. Results
for the Binder parameter versus Rξ—both quantities are
computed using the spin-2 operator Qx, see Eqs. (14) and
(15)—are compared in Fig. 4 (all results presented in this
section have been obtained using a cluster algorithm [27]).
As expected [57], we observe very good scaling, indicating
that the two models have the same nonperturbative behav-
ior, although they are not perturbatively related.
We then turn to the analysis of the behavior of the RPN−1

models. We have performed simulations for the models
with partition functions (19) (up to L ¼ 400) and (21) (only
L ¼ 50). The estimates ofU are plotted vs Rξ in Fig. 5. The
results for the constrained model (19) show very good
scaling: all results with 50 ≤ L ≤ 400 fall on the same
curve within the statistical errors. Apparently, corrections to
scaling are tiny, a feature that this model shares with its
OðNÞ counterpart [57,58]. The results are also compared
with those of the standard RP2 model. We observe a quite
good agreement, that again would suggest that all these

ASYMPTOTIC LOW-TEMPERATURE BEHAVIOR OF TWO- … PHYS. REV. D 102, 034513 (2020)

034513-7



models have the same asymptotic behavior. Small devia-
tions are observed for 0.3≲ Rξ ≲ 0.5, which are of the
same order of the deviations observed in the top panel of
Fig. 2 for the model with Hamiltonian (1). If an RP2 fixed
point exists, they may be interpreted as scaling corrections.
We also report results for the model with Hamiltonian (21):
the data are again consistent with the results for the other
RP2 models. Note that the data for the two models (19) and
(21) correspond to values of C that are quite different. For
L ¼ 50, the FSS data we show correspond to 0.50 ≤ C ≤
0.60 in the case of the constrained model with partition
function (19) and to 0.25 ≤ C ≤ 0.35 for model (21). Thus,
in the two models we consider regions of configuration
space that are quite different. In spite of that, the FSS curves
are essentially the same.
As an additional check we have considered the mixed

Oð3Þ-RP2 model. In Ref. [25,26] it was suggested that the
RPN−1 universal behavior might be observed also in mixed
OðNÞ-RPN−1. The idea was that of considering the model
with Hamiltonian

βH ¼ −βV
X

xμ

Sx · Sxþμ̂ − βT
X

xμ

ðSx · Sxþμ̂Þ2; ð22Þ

and take the limit βT → ∞ at fixed βV . In this limit spins
order apart from a sign, i.e., we have Sx ¼ n̂τx, where τx is
an Ising spin. In this limit, one therefore obtains an effective
Ising model with β ¼ βV . It was therefore conjectured that
the limiting theory is different depending on whether βV is
larger or smaller than βc;I , the 2D Ising inverse critical
temperature. For βV < βc;I, the Ising spins are disordered
and the behavior is the same as that of the RPN−1 model. In
the opposite case, the Ising spins magnetize and one obtains
OðNÞ behavior. To verify this conjecture, we have also
performed runs with model (20). Also in this case, for

C → 1, we obtain an effective Ising model, with inverse
temperature β related to p by p ¼ 1 − e−2β. Thus, for
p < pc ¼ 1 − e−2βc;I ¼ ffiffiffi

2
p

− 1 ≈ 0.41, we expect to
observe a behavior analogous to that observed for the
RP2 model, if the conjecture holds. Results for p ¼ 0.2 are
reported in Fig. 5. They scale on top of the RP2 data,
apparently confirming the conjecture.
The results obtained for the constrained models are

difficult to justify if no RP2 fixed point exists. Indeed, if
the deviations we observe between the RP2 results and O(3)
results are nonuniversal corrections, we do not see reasons
why the RP2 results are consistently the same, given that we
consider models that have quite different Hamiltonians and
interactions. We believe that the most likely hypothesis is
that an RPN−1 universality class really exists. The RPN−1

fixed point controls the asymptotic behavior of models (1)
and (3) and, moreover, it also controls the apparent scaling
behavior we observe in the constrained models. In the
renormalization-group language, for values of C well
below C�, the system is close to the RPN−1 fixed point,
so that we observe the RPN−1 FSS functions quite precisely.
Of course, as C increases, the RPN−1 scaling behavior will
eventually cease to hold and a crossover will eventually
occur toward the asymptotic OðNÞ behavior. But, given that
C� corresponds to ξ ∼ 109, this will occur when L is much
larger than the sizes we consider.
To provide evidence that the behavior in constrained

models for the current values of C is controlled by the
putative RPN−1 fixed point we have analyzed the density of
defects

ρ ¼ 1

2
ð1 − hΠxiÞ: ð23Þ
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RP2 constr.

RP2 diag.
RP2 mix.

FIG. 5. Data of U vs Rξ for several different RP2 models:
the model with Hamiltonian (1) (“standard”), the model with
partition function (19) (“constr”), and the model with parti-
tion function (21) (“diag”). We also include data for the
mixed Oð3Þ-RP2 model with partition function (20) and
p ¼ 0.2 (“mix”).
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FIG. 4. Data of U vs Rξ for the standard O(3) model with
fluctuating boundary conditions [Hamiltonian (11)] (“O(3)
LFBC”) and for the model with partition function (20) with
p ¼ 0 (“O(3) LFBC constr”).
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The results are reported in Fig. 6 versus the correlation
length ξ. The infinite-volume data (ξ=L≲ 0.2) scale
approximately as a power of ξ. A fit of ρ versus ξ−p gives
p ≈ 1, see Fig. 6. This result shows that in a correlation
volume of size ξ2 the number of defects increases as ξ.
Defects are relevant for the values of C we are considering.
To conclude this section, it is interesting to discuss the

phase structure of the constrained models as a function of
C. Since the density of defects is a nontrivial function of C
for C < C� and vanishes identically for C > C�, the point
C ¼ C� is a nonanalyticity point of ρ. Given the role that ρ
plays in determining the phase behavior, we expect C ¼ C�
to be a nonanalyticity point also of the free energy: in other
words, C ¼ C� is a transition point. We do not have
information on the order of this transition, but the simplest
possibility would be that the transition is of first order. It
would separate an approximate RPN−1 phase, where the
behavior would be controlled by the nearby (but unreach-
able) RPN−1 fixed point, from an asymptotic OðNÞ phase.
The presence of this transition is a peculiarity of the
constrained models. If we consider Hamiltonians (1) and
(3), we expect ρ to be nonvanishing for all values of β,
allowing us to observe the exact asymptotic RPN−1

behavior.

VII. CONCLUSIONS

In this work we analyze the low-temperature behavior of
RPN−1 models, which are invariant under global OðNÞ and
local Z2 transformations, with the purpose of understand-
ing whether these models have a nonperturbative behavior
that is different from that of OðNÞ vector models, in spite
of the fact that both models are perturbatively equivalent.
The question effectively boils down to the question
of the relevance/irrelevance of topological Z2 defects.

Their density decreases exponentially in β, but this does
not necessarily imply their irrelevance, as also the corre-
lation length depends exponentially on the inverse temper-
ature. The question has been extensively discussed in the
1990s, and several arguments were presented, favoring the
existence of a distinct RPN−1 universality class [25,26], as
well as favoring the equivalence of RPN−1 and OðNÞ
models [27–29].
In recent years there has been a widespread interest in the

role that topology plays in determining the phase behavior
of lattice systems. As an example, we mention here the case
of the three-dimensional Abelian-Higgs model (scalar
electrodynamics) and of its limiting case, the CPN−1 model.
This model has been extensively studied and there is now a
general consensus that topology plays a crucial role: The
critical behavior depends on the compact/noncompact
nature of the U(1) gauge fields or, equivalently, on the
presence/absence of monopoles [11,13–18]. In particular,
the large-N fixed point predicted by the Abelian-Higgs
field theory [59] can only be observed in models in which
monopoles are suppressed [17,18]. With these examples in
mind, we have decided to revisit the problem, focusing on
models with N ¼ 3. A less detailed analysis has also been
performed for N ¼ 4.
We present results of large-scale MC simulations of

several different RP2 models. We consider the standard
model with Hamiltonian (1) and the one with explicit gauge
fields [Hamiltonian (3)] and two models, of the type
introduced by Patrascioiu and Seiler [35], that we name
constrained models. In such systems there is no perturba-
tive expansion. However, in an appropriate limit spins order
as in the usual lattice RPN−1 models [27]. We consider two
variants of the model, differing by the geometry of the
interactions. Finally, we also consider a mixed Oð3Þ-RP2
model for a value of the parameters such that it should
behave as an RP2 model, according to the discussion of
Ref. [25,26]. The data obtained from the four different RP2

models and the mixed Oð3Þ-RP2 model show a universal
FSS behavior. If we plot the Binder parameter U as a
function of Rξ ≡ ξ=L, all data fall onto a single curve, with
tiny deviations that can be interpreted as scaling correc-
tions. If the RP2 model has the same nonperturbative
behavior of the O(3) model, the FSS data should fall on
top of an appropriate FSS curve computed in the O(3)
model. We have performed this comparison, observing a
large discrepancy, that can be hardly explained with the
presence of nonuniversal size corrections. On the basis of
the numerical data, we thus conclude that an RP2 univer-
sality class exists, which is distinct from the O(3) one.
Nonperturbatively, the limiting zero-temperature behaviors
for these two classes of models are therefore different.
We have repeated the analysis for N ¼ 4, observing
analogously large differences. We should also remark that
additional evidence in favor of two distinct universality
classes is also provided by the analysis of a class of

��
�

�


���


���


���


��



L=50
L=200
L=300
L=400

FIG. 6. Estimates of the defect density ρ versus ξ for the
model with partition function (19). We also report an interpo-
lation of the infinite-volume data with L ¼ 50, 200 (dashed line)
(ρ ¼ 0.230ξ−1.173) and with L ¼ 200, 300 (continuous line)
(ρ ¼ 0.187ξ−1.098).
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non-Abelian gauge theories with OðNÞ global symmetry
that are predicted to have the same low-temperature
behavior as RPN−1 models. The numerical data for these
gauge models are perfectly consistent with the results
obtained here for RPN−1 models [60].
The presence of a distinct RPN−1 universality class

implies that the topological Z2 defects are relevant pertur-
bations of the O(N) fixed point. For N ¼ 3, we have
determined the behavior of the density of these defects in a
particular case, verifying that the number of defects in a
correlation volume apparently increases as ξ, which is
consistent with a relevant perturbation.
To conclude, let us mention that our results cannot

exclude the scenario proposed in Ref. [29], in which the
behavior of RPN−1 models for typical box sizes is essen-
tially controlled by a renormalization-group trajectory that

flows to a vorticity fixed point, which, however, is never
reached. In this scenario, as soon as ξ is very large (they
estimate ξ ≈ 109 for the gauge action) the apparent RPN−1

scaling disappears and OðNÞ behavior is obtained. Given
the very large value of the crossover correlation length, we
believe that it is in practice impossible to distinguish
between a β ¼ ∞ fixed point and a finite-β fixed point
that is relevant up to a value of β so large that ξ ≈ 109.
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