
 

Holography on tessellations of hyperbolic space
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We compute boundary correlation functions for scalar fields on tessellations of two- and three-
dimensional hyperbolic geometries. We present evidence that the continuum relation between the scalar
bulk mass and the scaling dimension associated with boundary-to-boundary correlation functions survives
the truncation of approximating the continuum hyperbolic space with a lattice.
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I. INTRODUCTION

The holographic principle posits that the physical con-
tent of a gravitational system, with spacetime dimension
dþ 1, can be understood entirely in terms of a dual
quantum field theory living at the d-dimensional boundary
of that space [1]. This conjecture is not proven, but it is
supported by a great deal of evidence in the case of a
gravitational theory in an asymptotically anti–de Sitter
space. Furthermore, for a pure anti–de Sitter space, the dual
quantum field theory is conformal. The posited duality can
be expressed as an equality between the generating func-
tional for a conformal field theory, and a restricted path
integral over fields propagating in AdS:

ZCFTd
½JðxÞ� ¼

Z
Dϕδðϕ0ðxÞ − JðxÞÞeiSAdSdþ1 : ð1Þ

The boundary values of the fields, ϕ0, do not fluctuate, as
they are equivalent to classical sources on the CFT side of
the duality.
The earliest checks establishing the dictionary for this

duality were performed by studying free, massive scalar
fields, propagating on pure anti–de Sitter space [2,3]. These
established that the boundary-boundary two-point correla-
tion function of such fields has a power law dependence
on the boundary separation, where the magnitude of the
scaling exponent, Δ, is related to the bulk scalar mass, m0,
via the relation

Δ ¼ d
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4
þm2

0

r
; ð2Þ

where m0 is expressed in units of the AdS curvature. The
two choices for the scaling dimension are related to
different treatments of the boundary action [4]. The
“minus” branch of solutions (which can saturate the
unitarity bound, Δ ¼ d=2 − 1) requires tuning to be acces-
sible in the absence of supersymmetry.
In this paper we explore lattice scalar field theory on

finite tessellations of negative-curvature spaces to deter-
mine which aspects of the AdS=CFT correspondence
survive this truncation. Finite-volume and discreteness
create both ultraviolet (UV) and infrared (IR) cutoffs,
potentially creating both a gap in the spectrum and a
limited penetration depth from the boundary into the bulk
spacetime. Finite lattice spacing regulates the UV behavior
of the correlators. Despite these artifacts, we show that such
lattice theories do exhibit a sizable regime of scaling
behavior, with this “conformal window” increasing with
total lattice volume.
We specifically construct tessellations of both two- and

three-dimensional hyperbolic spaces,1 construct scalar
lattice actions, and compute the lattice Green’s functions
to study the boundary-to-boundary correlators. We find
general agreement with Eq. (2) in the large volume
extrapolation.
Prior work has focused on the bulk behavior of spin

models on fixed hyperbolic lattices and on using thermo-
dynamic observables to map the phase diagram [5–8].
Here, the focus is on the structure of the boundary theory
and, since free scalar fields are employed, the matter sector
can be computed exactly including the boundary-boundary
correlation function. This setup allows for a direct test of
the continuum holographic behavior.
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Reference [9] performed a thorough investigation of
the scalar field bulk and boundary propagators in
two-dimensional hyperbolic space using a triangulated
manifold. Here we extend this discussion to other two
dimensional tessellations and to boundary-boundary cor-
relators in three dimensions.
The organization of this paper is as follows. In Sec. II we

describe the class of tessellations we use in two dimensions
and the construction of the discrete Laplacian operator
needed to study the boundary correlation functions. In
Sec. III we extend these calculations to three-dimensional
hyperbolic geometry. Finally, we summarize our results
in Sec. IV.

II. TWO-DIMENSIONAL HYPERBOLIC
GEOMETRY

Regular tessellations of the two-dimensional hyperbolic
plane can be labeled by their Schläfli symbol, fp; qg,
which denotes a tessellation by p-gons with the connec-
tivity, q, being the number of p-gons meeting at a vertex. In
order to generate a negative curvature space, the tessellation
must satisfy ðp − 2Þðq − 2Þ > 4.
We construct our tessellations by first defining the

geometry of a fundamental domain triangle from its three
interior angles. For regular fp; qg tessellations, these
angles are π=2, π=p, and π=q. In the Poincaré disk model,
geodesics are circular arcs (or lines) orthogonal to the disk
boundary. Circle inversions in the model equate to
reflections in the hyperbolic plane and using this property,
we recursively reflect this triangle in its geodesic edges to
fill the plane with copies of the fundamental region. Each
copy corresponds to a symmetry of the tiling. Thus
reflections generated by the sides of the triangles form
a symmetry group, which is a ð2; p; qÞ triangle group for
the fp; qg tessellation. The regular tessellation forms from
a subset of edges of this group. For a thorough discussion
of tessellation construction using the triangle group,
see Ref. [9].
For the generation of the incidence matrix, it is quite

straightforward to build the Laplacian matrix using the
connectivity information of the tessellated disk. In this way,
the lattice is stored solely in terms of its adjacency
information. The lattice is then composed of flat equilateral
triangles with straight edges, all of which are the same
length throughout the lattice.
A typical example of the lattice (projected onto the unit

disc) is shown in Fig. 1, where the tessellation has been
mapped onto the Poincaré disk model and corresponds to
the fp; qg combination f3; 7g. An image of the boundary
connectivity can be seen in Fig. 2. We see the boundary has
all manner of vertex connectivity, some even with seven-
fold coordination.
In the continuum, the action for a massive scalar field in

two Euclidean spacetime dimensions is given by

Scon ¼
1

2

Z
d2x

ffiffiffi
g

p ð∂μϕ∂μϕþm2
0ϕ

2Þ; ð3Þ

where m0 is the bare mass, and d2x
ffiffiffi
g

p
is the amount of

volume associated with each point in spacetime. The
corresponding discrete action on a lattice of p-gons is then

S ¼ 1

2

X
hxyi

pxyVe
ðϕx − ϕyÞ2

a2
þ 1

2

X
x

nxm2
0Vvϕ

2
x: ð4Þ

Here Ve denotes the volume of the lattice associated with
an edge, Vv denotes the volume associated with a vertex,
a denotes the lattice spacing, pxy denotes the number of
p-gons which share an edge (in the case of an infinite lattice
this is always two), and nx is the number of p-gons around
a vertex. For two-dimensional p-gons,

Vv ¼ Ve ¼
a2

4
cot

π

p
; ð5Þ

FIG. 1. f3; 7g tessellation in the Poincaré disk model of the
hyperbolic space.

FIG. 2. A zoom-in of the boundary of the Poincaré disk shown
in Fig. 1.
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and an illustration of the volumes associated with links
and edges are shown in Fig. 3. This definition of the
mass and kinetic weights ensures that the sum of the
weights gives the total volume of the lattice, i.e.,P

hxyi pxyVe ¼
P

x nxVv ¼ ApNp, where Ap is the area
of a p-gon, and Np is the number of p-gons.

P
hxyi denotes

a sum over all nearest-neighbor vertices, and
P

x is over all
vertices. We can write the action from Eq. (4) as

S ¼
X
x;y

ϕxLxyϕy ð6Þ

with Lxy given by

Lxy ¼ −
pxy

2
δx;yþ1̂ þ

1

2

�X
z

pxzδz;xþ1̂ þm2
0nx

�
δx;y: ð7Þ

In practice we can rescale the scalar field so that the kinetic
term has unit weight.
We set the edge length, a, to one, throughout. In the bulk,

for a two-dimensional lattice, pxy ¼ 2 and nx ¼ q, but
these values change for edges and points on the boundary.
We note that boundary terms must be added to appropri-
ately approximate the infinite volume AdS=CFT corre-
spondence, in which fields at the AdS boundary are not
permitted to fluctuate. To simulate this, we include a
large scalar mass, M, only on the boundary vertices and
extrapolate fits as M → ∞. The average boundary corre-
lation function (propagator) is then computed from

CðrÞ ¼
P

x;yL
−1
xy δr;dðx;yÞP

x;yδr;dðx;yÞ
; ð8Þ

where dðx; yÞ is the distance measured between boundary
sites x and y along the boundary. Looking at this quantity,
we observe a power law, CðrÞ ∼ r−2Δ, as can be seen in

Fig. 4, which shows the correlator for four different masses
on a f3; 7g tessellation with 13 layers containing a total of
N ¼ 2244 vertices.
To fit the data, we take into account the fact that at finite

tessellation depth, the boundary is of finite size which
provides an IR cutoff effect. The modified form of the
correlators on the circular compact geometry is known [10],
with the relation between flat space correlators and those on
the circle corresponding to a conformal mapping from the
Poincaré disk to the half-plane, and an additional overall
factor associated with the finite size boundary metric [11].
The overall effect is a calculable deviation of the two-point
correlation function from straight power law at distances
comparable to the perimeter of the circle:

CðrÞ ∝ 1

j1 − cosðπ r
rmax

ÞjΔ ∝
r≪rmax

1

jrj2Δ ð9Þ

where r is the distance along the boundary, and rmax is the
distance along the boundary between antipodal points.
We thus fit the correlator using the form,

logCðrÞ ¼ −Δ log ð1 − cosðθÞÞ þ k; ð10Þ

with k and Δ as fit parameters, and θ ¼ πr=rmax. The error
bars are found from using the jackknife method over a
subset of the boundary points. In addition to the average
over boundary points, we also find a non-negligible
systematic error from deciding the fit range. We calculate
this error by repeating the analysis for all different possible
reasonable fit ranges and resample from these results. We
add the errors found from this method in quadrature to the
jackknife error, and find that the systematic part is by far the
largest contribution to the error.
We check to see if the power, Δ, obeys a similar relation

to Eq. (2), and fit Δ to the form,

FIG. 3. The volume, Ve, associated with an edge is shown in
yellow, and the volume, Vv, associated with a vertex is shown in
blue. In two dimensions, since each p-gon has the same number
of vertices as edges, these volumes are always the same (in this
case they are both 1=3 of the area of the total triangle).

FIG. 4. Four different correlators corresponding to different
squared bare masses are plotted in log-log coordinates for the
case of a 13-layer lattice, with the squared boundary mass set to
M2 ¼ 1000. The masses here from top to bottom are m2

0 ¼ −0.1,
0.2, 0.5, and 0.8.
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Δ ¼ Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ Bm2

0

q
; ð11Þ

where A and B are fit parameters. The solid curve in Fig. 5
indicates the best fit (least squares minimum) to Eq. (11) for
a fixed system size and boundary mass. We expect A to
correspond to half the effective boundary dimension, d=2,
and B to an effective squared radius of curvature. We
extract the parameters A and B from fits across a range of
boundary masses and of system volumes.
Using the various system sizes and boundary masses,

we extrapolate the parameters A and B to their values at the
infinite-boundary mass, and infinite-system size limit. In
practice, we first extrapolate in system size at fixed
boundary mass, and then extrapolate to infinite boundary
mass at infinite volume.
In the infinite-volume extrapolation, we identify the

regime in which the fit parameters, A and B, scale
approximately linearly with the inverse boundary size,
Nbound. In other words,

A ¼ C
Nbound

þ A∞; B ¼ D
Nbound

þ B∞; ð12Þ

where C, D, A∞ and B∞ are fit parameters. An example of
the large-volume data is shown in Fig. 6.
Once we have A∞ and B∞ for each boundary mass,

we extrapolate those values to infinite boundary mass.
Again we look for a window of masses in which the
parameters scale linearly in the inverse squared boundary
mass, such that

A∞ ¼ E
M2

þ A∞ðM∞Þ ð13Þ

B∞ ¼ F
M2

þ B∞ðM∞Þ; ð14Þ

where E, F, A∞ðM∞Þ, and B∞ðM∞Þ are fit parameters.
During our investigation we found we can take the
boundary mass sufficiently large such that the extrapolation
in large boundary mass is negligible. We find A∞ ≃
0.505ð7Þ and B∞ ≃ 1.65ð3Þ. In the Appendix we repeat
this analysis for the case of f4; 5g and f3; 8g tessellations
and again find an effective boundary dimension close to
unity but a different value for B reflecting the differing local
curvature.

III. THREE-DIMENSIONAL HYPERBOLIC
GEOMETRY

We now transition to the case of three dimensions. First
we describe the honeycomb used in this investigation, as
well as its construction. Honeycombs are tilings of three-
dimensional space, packings of polyhedra that fill the entire
space with no gaps.
Similar to the two-dimensional case, in three dimen-

sions, one can succinctly describe regular honeycombs
with a Schläfli symbol, a recursive notation for regular
tilings. fp; q; rg denotes a honeycomb of fp; qg cells,
which are polyhedra (or tilings) of p-gons, where q of these
surround each vertex [12]. Here we focus on the f4; 3; 5g,
also known as the order-5 cubical honeycomb, because the
f4; 3g cubical cells pack 5 polyhedra around each edge. A
projection of this lattice can be seen in Fig. 7. The excess of
cubes around an edge gives a local curvature around each
edge differing from flat. Since each Euclidean cube has a
face-to-face angle of π=2, the deficit angle at an edge is
θd ¼ 2π − 5π=2 ¼ −π=2. For an infinite lattice, this cor-
responds to 20 cubes around each vertex, and each vertex
has 12 neighboring vertices.
To calculate in hyperbolic space, our code operates

natively in the Poincaré ball model. In this model, geodesic

FIG. 5. The power law obtained from fitting the correlation
function in Eq. (8) versus the squared bare mass. Here we show
the result for a 13-layer lattice with squared boundary mass,
M2 ¼ 1000. We find good qualitative agreement with Eq. (2).

FIG. 6. The large-volume extrapolation of the B parameter as a
function of the inverse volume of the boundary, for a boundary
mass ofM2 ¼ 1000. We have rescaled by 100 triangles to remove
clutter on the x-axis. We fit a line to this data to extract the B
parameter at infinite volume, B∞. We have included the system-
atic error, due to the choice of the fit range, in orange.

MUHAMMAD ASADUZZAMAN et al. PHYS. REV. D 102, 034511 (2020)

034511-4



lines are circular arcs (or lines) orthogonal to the ball
boundary, and geodesic surfaces are spheres (or planes)
orthogonal to the boundary. Sphere inversions (see [[13]
pp. 124–126]) in the model equate to reflections in the
underlying hyperbolic space and we use this property to
build up our honeycomb.
A general, robust sphere inversion function is key—one

that handles all special cases of spheres or planes reflecting
to spheres or planes (as well as the corresponding cases
for lines and arcs). For a thorough discussion of this
construction in two dimensions using the triangle group,
see Ref. [9].
We begin constructing the honeycomb by defining the

geometry of a fundamental tetrahedron from its six
dihedral angles. For regular fp; q; rg honeycombs, three
of these angles (connected along a zigzag chain of edges)
are π=2, and the remaining angles are π=p, π=q, and π=r.
Using sphere inversion, we recursively reflect the elements
of the tetrahedron in its four faces to fill out the space with
tetrahedra. Each tetrahedron represents a symmetry of the
honeycomb. A fundamental tetrahedron can generate any
regular fp; q; rg honeycomb with p, q, r ≥ 3 [14].

In our case, a set of 48 symmetry tetrahedra form each
cube. Reflections in the six faces of these cubes build up the
cubical honeycomb in layers of cells, with each successive
layer containing all cells one step further in the cell
adjacency graph of the honeycomb. The number of cubes
in each layer are 1; 6; 30; 126; 498;…, with the total
number of cubes up to each level the sum of the entries
in this sequence. This can be seen in Fig. 8. We store all the
cubes, faces, edges, and vertices that we see during the
reflections, taking care to avoid duplicates. In the infinite-
volume limit, we would fill the whole of hyperbolic space
with cubes.
So far we have described the geometrical construction.

We use this information to derive incidence information for
all of the elements of the honeycomb, i.e., to determine
which vertices, edges, facets, and cubes connect to each
other. This we encode as a list of flags. A flag is a sequence
of elements, each contained in the next, with exactly one
element from each dimension. All possible flags encode the
full incidence information of our partially built honey-
combs. The incidence encoding is agnostic to geometrical
distances.
We generate lists of flags out to various distances in the

cell adjacency graph. The further one recurses, the less
edge-effects appear in the incidence information. For
example, after adding six layers of cubes, we get enough
cells to completely surround all eight vertices of the
central cube.
Using the lattice described above, wework with the same

model as in two dimensions, and take a naive discretization
of the scalar field action (this time in three dimensions)
given by,

Slat ¼
1

2

X
hxyi

pxyVe
ðϕx − ϕyÞ2

a2
þ 1

2

X
x

nxVvm2
0ϕ

2
x: ð15Þ

Here
P

hxyi is over nearest neighbors and pxy is the number
of cubes around an edge. In the infinite lattice case, pxy is
always five, but we leave it as a variable to allow for
consideration of the case when the lattice is finite and has a

FIG. 7. An in-space view of the order-5 cubic honeycomb.

(a) Central cube. (b) Six more. (c) Thirty more. (d) 126 more.

FIG. 8. Visualization of step-by-step construction of the lattice with layers of cubes in the f4; 3; 5g honeycomb. The cube edge lengths
appear to vary in length in the Poincaré ball model; however, the lattice here has a fixed edge length, a.
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boundary. nx denotes the number of cubes which share a
vertex. Again, in the infinite case this is always 20, but we
leave it as a variable for the finite lattice case. Ve and Vv
are the volumes associated with an edge and a vertex of a
cube, respectively. Since each cube has an edge length of a,
Ve ¼ a3=12 and Vv ¼ a3=8. Illustrations of the two
volumes, Ve and Vv are shown in Figs. 9(a) and 9(b),
respectively. The weights again are chosen such thatP

hxyi pxyVe ¼
P

x nxVv ¼ V□N□, with V□ being the
volume of a cube, and N□ the number of cubes. Above,
a is reinserted for clarity but we assume the lattice edge
length is one, as before.
We rewrite the lattice action to clearly identify the

inverse lattice propagator, even in the presence of a
boundary. To do this, we start by expanding and collecting
terms to get

Slat ¼
1

2

X
hxyi

pxyVeðϕx − ϕyÞ2 þ
1

2

X
x

nxVvm2
0ϕ

2
x

¼ −
1

2

X
hxyi

pxyVeðϕxϕy þ ϕyϕxÞ

þ 1

2

X
x

�X
y

pxyVe þm2
0nxVv

�
ϕ2
x; ð16Þ

where
P

y in the second term is over points neighboring
vertex x. Using the fact that Ve ¼ ð2=3ÞVv, we simplify
further to get

Slat ¼ −
X
hxyi

pxy

3
ðϕxϕy þ ϕyϕxÞ

þ
X
x

�X
y

pxy

3
þm2

0

2
nx

�
ϕ2
x: ð17Þ

We express the action in terms of the inverse lattice
propagator and get

Slat ¼ Skinetic þ Smass

¼
X
x;y

ϕxLxyϕy ð18Þ

with

Skinetic ¼ −
X
x;y

ϕx
pxy

3
δx;yþ1̂ϕy ð19Þ

and

Smass ¼
X
x;y

ϕx

��X
z

pxz

3
δz;xþ1̂

�
þm2

0

2
nx

�
δx;yϕy: ð20Þ

In the case of an infinite lattice, this simplifies to

Lxy ¼ −δx;yþ1̂ þ 12

�
1þm2

0

2

�
δx;y; ð21Þ

which is expected for a lattice with 12-fold coordination.
Using Eqs. (19) and (20), we construct an inverse lattice
propagator for the hyperbolic lattice considered here, and
use it in numerical computations.
Again, the boundary correlator is given by inverting the

matrix corresponding to the discrete scalar inverse propa-
gator. A typical set of correlators are shown in Fig. 10,
corresponding to four bulk masses and squared boundary
mass M2 ¼ 10. We take multiple sources on the boundary
and compute the one-to-all correlator for those sources on
the boundary. In Fig. 10 we again plot the correlator as a
function of 1 − cos ðπr=rmaxÞ. The geodesic distance r is
computed by starting at the source vertex, taking a step to
all neighboring boundary vertices, then taking a step from
those vertices to their neighboring boundary vertices,
skipping vertices that have already been visited, and so

(a) (b)

FIG. 9. (a) The portion of volume associated with an edge of a
cube highlighted, in the text, Ve. (b) The portion of volume
associated with a vertex of a cube highlighted, in the text, Vv. For
a lattice with uniform edge length a ¼ 1, these correspond to
1=12 and 1=8 respectively.

FIG. 10. A log-log plot of the boundary-boundary correlator,
CðrÞ, as a function of the angle between source and sink along the
boundary, for a seven-layer lattice. Here the bulk masses from top
to bottom are m2

0 ¼ −0.7;−0.3, 0.4, and 0.9, and the boundary
mass is M2 ¼ 10.
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on, until all vertices have been visited. The error bars are
produced using the jackknife method on the sources.
Clearly, a distance window exists in which the correlator

follows a power law. This power-law behavior is observed
for all masses explored in this study, and seems to solely be
a consequence of the lattice geometry. We fit a power law to
this window for a series of fixed, squared bulk mass. By far
the largest source of error in this analysis is the systematic
error in choosing a fit range. To improve this error, we bin
the data in the regime of interest, and vary the fit range in
the binned data. By resampling from all the reasonable fit
ranges we acquire a systematic error. The jackknife error
from the sources is added in quadrature with this systematic
error to produce the final errors on each power-law fit.
From this fit, we obtain the power versus the squared mass.
In the continuum, in the case of anti-de Sitter space, the

boundary-boundary two-point correlator is expected to
show the behavior from Eq. (2) with boundary dimension
d ¼ 2. We attempt a fit using Eq. (11). An example of the
fits can be seen in Fig. 11. We note that the power, Δ, is
well-defined even in the regime of negative squared mass,

indicating the operator −∇2 þm2
0 is positive in this regime.

Based on these numerical results, the behavior of Δ here
matches well with the expected behavior of Δþ expressed
in Ref. [4].
By repeating this analysis with multiple volumes, we

consider the extrapolation to infinite volume. Here we
consider three different volumes, corresponding to five,
six and seven-layers of cubes. These correspond to 2643,
10497, and 41511 cubes, respectively. Using the fit
parameters from multiple volumes allows us to extrapolate
to infinite cubes. In Figs. 12 and 13 we see the finite-size
scaling of the fit parameters, A and B, respectively,
from Eq. (11). The fit is of the form of Eq. (12), with
Nbound being the size of the two-dimensional boundary
of the three-dimensional hyperbolic lattice. We find
A∞ ≃ 1.11ð2Þ, and B∞ ≃ 1.62ð9Þ in the infinite volume
limit, with the squared boundary mass M2 ¼ 10.

IV. CONCLUSIONS

In this paper we have studied the behavior of boundary
correlations of massive scalar fields propagating on
discrete tessellations of hyperbolic space. Both two and
three dimensions are examined and good quantitative
agreement with the continuum formula relating the power
of the boundary two-point correlator to the bulk mass is
obtained. Specifically, the functional form for the depend-
ence of the boundary scaling dimension on bulk mass is
reproduced accurately, including the inferred dimension
of the boundary theory. A single parameter, B, identifies
the effective squared radius of curvature of the lattice.
In fact, in two dimensions, if one considers the continuum
formula for the squared radius of curvature for a fp; qg-
tessellation of H2,

L2 ¼ 1

4arccosh2
�
cosðπ=pÞ
sinðπ=qÞ

� ; ð22Þ

FIG. 11. A fit of Δ versus the squared mass using Eq. (11) for a
six-layer lattice. Here the boundary mass is M2 ¼ 10.

FIG. 12. The finite-size scaling of the fit parameter, A, from
Eq. (11). The volumes have been rescaled by 1000 for readability.
All three volumes use the same boundary mass of M2 ¼ 10.

FIG. 13. The finite-size scaling of the fit parameter, B, from
Eq. (11). The volumes have been rescaled by 1000 for readability.
All three volumes use the same boundary mass of M2 ¼ 10.
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one would predict values of 0.84, 0.43 and 0.64 for
f3; 7g, f3; 8g and f4; 5g tessellations, respectively.
These numbers differ from our fitted values for B by
a factor of approximately two (see the Appendix). This
factor of two can be completely understood in terms of
our choice of weights. If one uses the dual weight
prescription for the kinetic term as given in [9] which
sets pxyVe ¼ la where l is the dual edge length, and a
is the lattice spacing, this factor of two arises naturally
and gives the correct normalization for the squared
radius of curvature.
In this work we held the lattice spacing fixed at a ¼ 1.

This appears in the results of the correlator at short
distances as wiggles in the data, and at longer distances
as a spread, and noise, in the correlators. This is particularly
apparent in the f4; 5g correlator data in the Appendix. One
could refine the tessellation to approach the continuum
manifold. In Ref. [9] they did exactly this and considered
a refinement of the f3; 7g tessellation by continually
inserting triangles inside of existing triangles at a fixed
physical volume.
In the future we plan to extend these calculations to four

dimensional hyperbolic space and to investigate the effects
of allowing for dynamical fluctuations in the discrete
geometries in order to simulate the effect of gravitational
fluctuations. In such scenarios, the effects of the back
reaction of matter fields on the geometries can be explored.
This should allow us to probe holography in regimes that
are difficult to explore using analytical approaches.
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APPENDIX: FITS TO fp;qg= f4;5g AND
fp;qg = f3;8g

To ensure the fit parameters obtained in the f3; 7g study
were not trivial, we also considered a fp; qg ¼ f4; 5g and
fp; qg ¼ f3; 8g lattice, and repeated the analysis. This
should give the same result for A, since the boundary is still
one-dimensional, however the curvature of the lattice is
different from the f3; 7g case, and so we would expect a
different result for the B fit parameter. In Fig. 14 we see an
example of the boundary-to-boundary two-point correlator
for four different masses for the f4; 5g tessellation.
There is more noise than in the f3; 7g case, perhaps due

to the more coarse nature of the tessellation using squares

FIG. 14. The boundary two-point correlator is plotted in log-log
coordinates for the lattice fp; qg ¼ f4; 5g. Here four bulk masses
are shown for the values of m2

0 ¼ −0.1, 0.2, 0.5, and 0.8, with a
boundary mass of M2 ¼ 500. The lattice is comprised of eight
layers of squares.

FIG. 15. The power-law extracted from the correlator data for
the fp; qg ¼ f4; 5g lattice. This data is for a eight layer lattice
with a boundary mass ofM2 ¼ 500. The fit parameters for this fit
are quoted inside the figure.

FIG. 16. The finite-size scaling for the B fit parameter versus
the inverse boundary size. Here we rescaled the x-axis by 100
squares to declutter the axis labels. This fit is for a boundary mass
of M2 ¼ 500.
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instead of triangles; however, the power-law behavior is
still apparent. We used binning in distance r along
boundary or equivalently in θ in the radial coordinates
to reduce the fluctuation in the correlator data before
performing the fits. This essentially reduces the fluctuation
of the radial distance of the boundary points in the Poincaré
disk picture while keeping the average radius of curvature
unchanged, thus providing a better handle to predict the
same continuum result.
From the linear fit of the boundary-boundary correlators

we extracted Δ, which can be seen in Fig. 15. Again we see

the boundary dimension parameter, A, gives a value similar
to d=2 ¼ 1=2. By studying multiple volumes at sufficiently
large boundary mass, M2 ¼ 500, we extrapolate to the
infinite volume limit. The result for the B parameter can be
seen in Fig. 16. We find for our fits A ≃ 0.506ð2Þ,
and B ≃ 1.21ð2Þ.
We have performed a similar analysis for the f3; 8g case.

In this case, the value ofΔ settles down for boundary masses
M2 ≥ 1000 (Fig. 17). SoM2 ¼ 2000 is picked to perform the
analysis. The results are summarized in the Table I. Notice
that the fitted value for B ¼ 0.81ð2Þ is once more close to
theoretical expectations which predict L2 ¼ B=2 ¼ 0.43
provided the kinetic term employs the dual lattice weight.
A summary of the fit ranges, bin sizes, and parameter values
for the f3; 8g lattice can be found in Table I.
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FIG. 17. Boundary mass (M2) dependence of the fit parameter
Δ in the two point function for a 10 layer lattice in the f3; 8g
geometry. Error bars are of the order 10−4 or smaller and not
visible in the figure.

TABLE I. The resulting fit parameters for A and B
across different volumes for the f3; 8g tessellation. Here the
volume is specified by the number of layers, and the bin size
describes the number of correlator points per bin when coars-
ening the data. We also give the fit window both in terms of the
number of lattice lengths, and angle subtended by the geodesic on
the boundary.

f3; 8g tessellation results

Layer rmax

bin-
size

minimum
fit-width

maximum
fit-width fit-range A B

10 523 10 50 180 0 ≤ θ ≤ 1.08 0.4926(4) 0.757(3)
11 903 10 90 280 0 ≤ θ ≤ 0.97 0.5000(6) 0.776(5)
12 1554 15 150 495 0 ≤ θ ≤ 1.00 0.4977(6) 0.82(1)
… ∞ … … … … 0.503(5) 0.81(2)

HOLOGRAPHY ON TESSELLATIONS OF HYPERBOLIC SPACE PHYS. REV. D 102, 034511 (2020)

034511-9

https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1016/S0550-3213(99)00387-9
https://doi.org/10.1088/1751-8113/41/12/125001
https://doi.org/10.1088/1751-8113/41/12/125001
https://doi.org/10.1103/PhysRevE.84.032103
https://doi.org/10.1103/PhysRevE.84.032103
https://doi.org/10.1088/1742-5468/2015/01/P01002
https://doi.org/10.1103/PhysRevE.101.022124
https://doi.org/10.1103/PhysRevE.101.022124
https://arXiv.org/abs/1912.07606
https://doi.org/10.1088/1126-6708/2002/07/029
https://doi.org/10.1103/PhysRevD.98.014502
https://doi.org/10.1080/17513472.2016.1263789

