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We present the first study of Nf ¼ 2þ 1þ 1þ 1 lattice QCD with domain-wall quarks. The (b,
c, s) quarks are physical, while the (u, d) quarks are heavier than their physical masses, with the
pion mass ∼700 MeV. The gauge ensemble is generated by hybrid Monte Carlo simulation with the
Wilson gauge action for the gluons, and the optimal domain-wall fermion action for the quarks.
Using point-to-point quark propagators, we measure the time-correlation functions of quark-antiquark
meson interpolators with quark contents b̄b, b̄c, b̄s, and c̄c, and obtain the masses of the low-lying
mesons. They are in good agreement with the experimental values, plus some predictions which
have not been observed in experiments. Moreover, we also determine the masses of (b, c, s)
quarks.
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I. INTRODUCTION

In 2007, we performed the first study of treating valence
(u, d, s, c, b) quarks as Dirac fermions in quenched lattice
QCD with exact chiral symmetry [1,2]. The low-lying mass
spectra of mesons with quark contents b̄b, b̄c, b̄s, and c̄c
were determined, together with the pseudoscalar decay
constants. Some of our results (e.g., the masses of ηb and
hb) were theoretical predictions at the time of publication,
which turn out to be in good agreement with later exper-
imental results. This asserts that it is feasible to treat (u, d, s,
c, b) valence quarks as Dirac fermions, in lattice QCD with
exact chiral symmetry.
Now the question is whether one can simulate dynamical

(u, d, s, c, b) quarks in lattice QCD with exact chiral
symmetry. This motivates the present study. Since the b
quark is heavy, with massmb ∼ 4500 MeV=c2, it requires a
fine lattice spacing such that the condition mba < 1 is well
satisfied in order to keep the discretization error under
control. On the other hand, to keep the finite-volume error
of the light hadrons under control, the lattice size L has to
be sufficiently large such that MπL ≫ 1. These two
constraints (a ∼ 0.033 fm and MπL ∼ 4–6) together give
the lattice size ∼1704 − 2604 (see Fig. 1), which is beyond
the capability of the present generation of supercomputers.

Nevertheless, even before the next generation of Exaflop
supercomputers will be available ∼2022, one may use a
smaller lattice to investigate whether the (b, c, s) quarks
with physical masses can be dynamically simulated on the
lattice, while keeping u and d quarks heavier than their
physical masses. If the pion mass is kept at ∼700 MeV=c2,
then both constraints MπL > 4 and mba < 1 can be
satisfied by the 403 × 64 lattice. For domain-wall fermion
with the extent Ns ¼ 16 in the fifth dimension, the entire
hybrid Monte Carlo (HMC) simulation [3] on the 403 ×
64 × 16 lattice can be performed by one GPU with at least
19 GB device memory, provided that the exact one-flavor
pseudofermion action (EOFA) for domain-wall fermion [4]
is used. In this study, we use two Nvidia GTX-TITAN-X
GPU cards (each of 12 GB device memory) for each stream
of HMC simulation, with the peer-to-peer communication
between 2 GPUs through the PCIe bus on the mother-
board.
The outline of this paper is as follows. In Sec. II, we

recall the basics of lattice QCD with exact chiral symmetry,
and discuss what is a viable framework to perform HMC
simulation of lattice QCD with both heavy and light
domain-wall quarks such that all topological sectors are
sampled ergodically and also the chiral symmetry can be
peserved to a high precision, i.e., the residual mass of any
heavy/light quark flavor is negligible in comparison with
its bare mass. In Sec. III, we describe our lattice setup. In
Sec. IV, we determine the low-lying mass spectra of
mesons with valence quark contents b̄b, b̄c, b̄s, and c̄c.
In Sec. V, we determine the masses of (b, c, s) quarks. In
Sec. VI, we conclude with some remarks.
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II. SIMULATION OF LATTICE QCD
WITH EXACT CHIRAL SYMMETRY

A. Preliminaries

Since all quarks in QCD are excitations of Dirac fermion
fields, it is vital to preserve this essential feature in lattice
QCD. The most theoretically appealing lattice fermion
scheme is the domain-wall/overlap fermion [5–7], which
preserves the exact chiral symmetry at finite lattice spacing,
thus provides a proper formulation of QCD on the lattice.
To implement the exact chiral symmetry on the lattice,

we use the optimal domain-wall fermion [8], of which the
lattice fermion operator can be written as

½DðmqÞ�xx0;ss0 ðmqÞ¼ ðωsDwþ1Þxx0δss0 þ ðωsDw−1Þxx0Lss0 ;

where fωs; s ¼ 1;…; Nsg are the exact solutions such that
the effective 4-dimensional lattice Dirac operator possesses
the optimal chiral symmetry for any finiteNs. The indices x
and x0 denote the lattice sites on the 4-dimensional lattice,
and s and s0 the indices in the fifth dimension, while the
Dirac and color indices have been suppressed. Here Dw is
the standard Wilson Dirac operator plus a negative param-
eter −m0ð0 < m0 < 2Þ (m0 is usually called the domain-
wall height),

ðDwÞxx0 ¼ ð4 −m0Þ −
1

2

X4
μ̂¼1

½ð1 − γμÞUμðxÞδxþμ̂;x0

þ ð1þ γμÞU†
μðx0Þδx−μ̂;x0 �;

where UμðxÞ denotes the link variable pointing from x to
xþ μ̂. The operator L is independent of the gauge field, and
it can be written as

L ¼ PþLþ þ P−L−; P� ¼ ð1� γ5Þ=2; ð1Þ

and

ðLþÞss0 ¼ ðL−Þs0s
¼

�−ðmq=mPVÞδNs;s0 ; s ¼ 1;

δs−1;s0 ; 1 < s ≤ Ns
; ð2Þ

wheremq is thebarequarkmass, andmPV ¼ 2m0 is thePauli-
Villars mass for the optimal DWF. Note that the matricesL�
satisfy LT

� ¼ L∓, and R5L�R5 ¼ L∓, where R5 is the
reflection operator in the fifth dimension, with elements
ðR5Þss0 ¼ δs0;Nsþ1−s. Thus R5L� is real and symmetric.
Then the pseudofermion action for the optimal DWF can

be written as

S ¼ ϕ† DðmPVÞ
DðmqÞ

ϕ; mPV ¼ 2m0;

where ϕ and ϕ† are complex scalar fields carrying the same
quantum numbers (color, spin) of the fermion fields.
Integrating the pseudofermion fields in the fermionic parti-
tion function gives the fermion determinant of the effective
4-dimensional lattice Dirac operator DNs

ðmqÞ, i.e.,Z
½dϕ†�½dϕ� exp

�
−ϕ†DðmPVÞ

DðmqÞ
ϕ

�

¼ det
DðmqÞ
DðmPVÞ

¼ detDNs
ðmqÞ;

where

DNs
ðmqÞ¼mqþ

1

2
ðmPV−mqÞ½1þγ5SNs

ðHwÞ�; Hw¼γ5Dw

SNs
ðHwÞ¼

1−
QNs

s¼1Ts

1þQNs
s¼1Ts

; Ts¼
1−ωsHw

1þωsHw
:

In the limit Ns → ∞, SNs
ðHwÞ → Hw=

ffiffiffiffiffiffiffi
H2

w

p
, and DNs

ðmqÞ
goes to

DðmqÞ ¼ mq þ
1

2
ðmPV −mqÞ

�
1þ γ5

Hwffiffiffiffiffiffiffi
H2

w

p �
:

In the massless limit mq ¼ 0, Dð0Þ is equal to the overlap-
Dirac operator [6], and it satisfies the Ginsparg-Wilson
relation [9]

Dð0Þγ5 þ γ5Dð0Þ ¼ 2

mPV
Dð0Þγ5Dð0Þ

⇔ D−1γ5 þ γ5D−1 ¼ 2

mPV
γ51; ð3Þ

where the chiral symmetry is broken by a contact term, i.e.,
the exact chiral symmetry at finite lattice spacing. Note that
(3) does not guarantee that any Ginsparg-Wilson Dirac

FIG. 1. The design of lattice QCD with physical (u, d, s, c, b)
quarks.
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operator D must possess exact zero modes in topologically
nontrivial gauge background, not to mention to satisfy the
Atiyah-Singer index theorem, Qt ¼ nþ − n−, where Qt is
the topological charge of thegauge background, andn� is the
number of exact zero modes of D with � chirality. For
example, the lattice Dirac operator constructed in Ref. [10]
satisfies the Ginsparg-Wilson relation and possesses the
correct axial anomaly in the continuum limit [11], but its
index is always zero in any gauge background. So far, the
overlap Dirac operator is the only lattice Dirac operator to
possess topologically exact zero modes satisfying the
Atiyah-Singer index theorem on a finite lattice.
However, to perform HMC simulation of lattice QCD

with the overlap Dirac operator is prohibitively expensive
even for a small lattice (e.g., 163 × 32), since it requires us
to compute the change of the number of exact zero modes
n� at each step of the molecular dynamics [12]. Moreover,
the discontinuity of the fermion determinant at the topo-
logical boundary highly suppresses the crossing rate
between different topological sectors, thus renders HMC
failing to sample all topological sectors ergodically. These
difficulties can be circumvented by using DWF with finite
Ns. First, any positive lattice Dirac operator satisfying
γ5-Hermiticity (γ5Dγ5 ¼ D†) possesses a positive-definite
pseudofermion action, without explicit dependence on n�.
Second, the step function of the fermion determinant at
the topological boundary can be smoothed out by using
DWF with finite Ns (e.g., Ns ¼ 16), then the HMC on
the 5-dimensional lattice can sample all topological
sectors ergodically and also keep the chiral symmetry to
a high precision with the optimal DWF [8,13]. This has
been demonstrated for Nf ¼ 2 [14], Nf ¼ 1þ 1 [4], Nf ¼
2þ 1þ 1 [15], and alsoNf ¼ 2þ 1þ 1 lattice QCD at the
physical point [16].

B. Domain-wall fermion for heavy and light quarks

In this subsection, we discuss which variant of DWF is
more capable in capturing the quantum fluctuations of both
heavy and light quarks in lattice QCD.
Unlike other lattice fermions, DWF has the mass cutoff,

i.e., the Pauli-Villars mass mPV , and any quark mass has to
satisfy the constraint mq ≪ mPV . Otherwise, if mq ∼mPV ,
then detðmqÞ= detðmPVÞ ∼ 1, the internal quark loops are
highly suppressed, and the quantum fluctuations of the
quark field become mostly quenched. In general, the Pauli-
Villars mass is equal to mPVa ¼ 2m0ð1 − dm0Þ, where d is
a parameter depending on the variant of DWF. For the
Shamir [17]/Möbius [18] DWF, d ¼ 1=2 and mPVa ¼
m0ð2 −m0Þ < 1, since m0 has to be greater than 1
(∼1.3–1.8) in order for its effective 4-dimensional Dirac
operator to be able to detect the topology of a gauge
configuration with nonzero topological charge. This
imposes an upper-bound on the mass of Shamir/Möbius
heavy quark on the lattice, which is more severe than
the common constraint mqa < 1 for all lattice fermions.

In other words, the Shamir/Möbius DWF is not well-suited
for studying lattice QCD with heavy quarks. On the other
hand, for the Borici [19]/Optimal [8] DWF, d ¼ 0 and
mPVa ¼ 2m0 ≫ 1, thus provides the highest ceiling for
accommodating the heavy quarks on the lattice, as well as
the minimal lattice artifacts due to the mass cutoff. This can
be seen by comparing the eigenvalues of their effective 4D
Dirac operators in the limit Ns → ∞, which is exactly
equal to the overlap Dirac operator with the kernel H ¼
cHwð1þ dγ5HwÞ−1 in the sign function,

DðmqÞ ¼ mq þ
1

2
ðmPV −mqÞ

�
1þ γ5

Hffiffiffiffiffiffi
H2

p
�
;

mPV ¼ 2m0ð1 − dm0Þ; ð4Þ
where c ¼ d ¼ 1=2 for the Shamir/Möbius DWF, while
c ¼ 1 and d ¼ 0 for the Borici/Optimal DWF. The eigen-
values of (4) are lying on a circle in the complex plane with
radius ðmPV −mqÞ=2, and center at mq þ ðmPV −mqÞ=2
on the real axis.
For example, fixing m0 ¼ 1.3, then mPVa ¼ 2m0 ¼ 2.6

for the Borici/Optimal DWF, whilemPVa ¼ m0ð2 −m0Þ ¼
0.91 for the Shamir/Möbius DWF. In Fig. 2, the eigenval-
ues of (4) are plotted formq ¼ 0 (left panel) andmqa ¼ 0.8
(right panel). Evidently, for the Shamir/Möbius DWF, the
radius ðmPV −mqÞ=2 of the eigenvalue circle for a heavy
quark with mqa ¼ 0.8 (right panel) is rather small due to
ðmPV −mqÞa ¼ 0.11, and it shrinks to zero in the limit
mqa → mPVa ¼ 0.91. On the other hand, the Borici/
Optimal DWF has mPVa¼2m0¼2.6, and ðmPV−mqÞ a >
1 for any mqa < 1, thus the eigenvalues of DðmqÞ are not
restricted to a very small circle even for the heavy quark.
Moreover, in the chiral limit (left panel), the radius of the
eigenvalue circle for the Borici/Optimal DWF is more than
2 times of that of the Shamir/Möbius DWF. This implies
that the Borici/Optimal DWF is more capable than the
Shamir/Möbius DWF in capturing the short-distance quan-
tum fluctuations of the QCD vacuum, for both light and
heavy quarks.

C. Zolotarev optimal rational approximation and
optimal domain-wall fermion

For any numerical simulation of lattice QCD with DWF,
an important question is what is the optimal chiral
symmetry for any finite Ns in the fifth dimension, in the
sense how its effective 4D lattice Dirac operator can be
exactly equal to the Zolotarev optimal rational approxima-
tion of the overlap Dirac operator. The exact solution to this
problem is given in Ref. [8], with the optimal fωsg

ωs ¼
1

λmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ02sn2ðvs; κ0Þ

q
; s ¼ 1;…; Ns; ð5Þ

where snðvs; κ0Þ is the Jacobian elliptic function with
argument vs (see Eq. (13) in Ref. [8]) and modulus
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κ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2min=λ

2
max

p
. Then SNs

ðHwÞ is exactly equal to the
Zolotarev optimal rational approximation of Hw=

ffiffiffiffiffiffiffi
H2

w

p
,

i.e., the approximate sign function SNs
ðHwÞ satisfying the

bound j1 − SNs
ðλÞj ≤ dZ for λ2 ∈ ½λ2min; λ

2
max�, where dZ is

the maximum deviation j1 − ffiffiffi
x

p
RZðxÞjmax of the Zolotarev

optimal rational polynomial RZðxÞ of 1=
ffiffiffi
x

p
for

x ∈ ½1; λ2max=λ2min�, with degree ðn − 1; nÞ for Ns ¼ 2n.
Nevertheless, the optimal weights fωsg in (5) do not

satisfy the R5 symmetry (ωs ¼ ωNs−sþ1) which is required
for the exact one-flavor pseudofermion action for DWF [4].
The optimal fωsg satisfying R5 symmetry is obtained in
Ref. [13]. For Ns ¼ 2n, the optimal fωsg satisfying R5

symmetry are written as

ωs ¼ ωNsþ1−s ¼
1

λmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ02sn2

�ð2s − 1ÞK0

Ns
; κ0

�s
;

s ¼ 1;…; Ns=2; ð6Þ

where snðu; κ0Þ is the Jacobian elliptic function with
modulus κ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2min=λ

2
max

p
, and K0 is the complete

elliptic function of the first kind with modulus κ0. Then
the approximate sign function SNs

ðHwÞ satisfies the bound
0 ≤ 1 − SNs

ðλÞ ≤ 2dZ for λ2 ∈ ½λ2min; λ
2
max�, where dZ is

defined above. Note that δðλÞ ¼ 1 − SðλÞ does not satisfy
the criterion that the maxima and minima of δðλÞ all
have the same magnitude but with the opposite sign
(δmin ¼ −δmax). However, the most salient features of the
optimal rational approximation of degree ðm; nÞ are pre-
served, namely, the number of alternate maxima and
minima is ðmþ nþ 2Þ, with (nþ 1) maxima and
(mþ 1) minima, and all maxima (minima) are equal to

2dZ (0). This can be regarded as the generalized optimal
rational approximation (with a constant shift).
In this study, the parameters for the pseudofermion

action are: m0¼1.3, Ns¼2n¼16, λmax=λmin¼6.20=0.05,
and the optimal weights fωs; s ¼ 1;…; Nsg for the
2-flavor parts are obtained with (5), while for the one-
flavor parts with (6). In Fig. 3, the deviation of the sign
function, δðλÞ ¼ 1 − SðλÞ, is plotted versus λ, for (a) with-
out the R5 symmetry, and (b) with the R5 symmetry. Here
δðλÞ has 2nþ 1 ¼ 17 alternate maxima and minima in
the interval ½λmin; λmax� ¼ ½0.05; 6.2�, with 9 maxima and
8 minima, for (a), satisfying −dZ ≤ 1 − SðλÞ ≤ dZ, while
for (b), 0 ≤ 1 − SðλÞ ≤ 2dZ, where dZ is the maximum

deviation j1 − ffiffiffi
x

p
Rð7;8Þ
Z jmax of the Zolotarev optimal

rational polynomial.

III. GENERATION OF THE GAUGE ENSEMBLE

In this section, we give the details of the actions, the
algorithms, and the parameters to perform the HMC
simulations in this study. Moreover, for the initial 257
trajectories generated by a single node (with 2 Nvidia
GTX-TITAN-X GPU cards), the topological charge fluc-
tuation is measured, and the HMC characteristics are
presented. Details of the lattice setup are given as follows.

A. The actions

In the following, we present the details of the fermion
actions and the gauge action in our HMC simulations.
As noted in Ref. [15], for domain-wall fermions (DWF),

to simulate Nf ¼ 2þ 1þ 1 amounts to simulate Nf ¼
2þ 2þ 1. Similarly, to simulate Nf ¼ 2þ 1þ 1þ 1

amounts to simulate Nf ¼ 2þ 2þ 1þ 1, i.e.,

FIG. 2. Comparing the eigenvalue spectra of the effective 4D Dirac operator of the Borici/Optimal DWF and the Shamir/Möbius DWF
for mq ¼ 0 (left panel) and mqa ¼ 0.8 (right panel).
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�
detDðmu=dÞ
detDðmPVÞ

�
2 detDðmsÞ
detDðmPVÞ

detDðmcÞ
detDðmPVÞ

detDðmbÞ
detDðmPVÞ

¼
�
detDðmu=dÞ
detDðmPVÞ

�
2
�

detDðmcÞ
detDðmPVÞ

�
2

×
detDðmsÞ
detDðmcÞ

detDðmbÞ
detDðmPVÞ

; ð7Þ

where only one of the 6 possible possibilities for Nf ¼
2þ 2þ 1þ 1 is written. Note that on the rhs of Eq. (7),
the 2-flavor simulation with ðdetDðmcÞ= detDðmPVÞÞ2 is
more efficient than its counterpart of one-flavor with
ðdetDðmcÞ= detDðmPVÞÞ on the lhs. Moreover, the
one-flavor simulation with detDðmsÞ= detDðmcÞ on the
rhs is more efficient than the original one with
detDðmsÞ= detDðmPVÞ on the lhs. Thus, we perform the
HMC simulation with the expression on the rhs of Eq. (7).
For the two-flavor parts, ðdetDðmu=dÞ= detDðmPVÞÞ2

and ðdetDðmcÞ= detDðmPVÞÞ2, we use the Nf ¼ 2 pseu-
dofermion action which has been using since 2011 [14],
and it can be written as

Sðmq;mPVÞ ¼ ϕ†C†ðmPVÞfCðmqÞC†ðmqÞg−1CðmPVÞϕ;
mPV ¼ 2m0; ð8Þ

where

CðmqÞ ¼ 1 −M5ðmqÞDOE
w M5ðmqÞDEO

w ;

M5ðmqÞ ¼ f4 −m0 þ ω−1=2½1 − LðmqÞ�
× ½ð1þ LðmqÞ�−1ω−1=2g−1;

and LðmqÞ is defined in (1) and (2). Here ω≡
diagfω1;ω2;…;ωNs

g is a diagonal matrix in the fifth

dimension, and DEO=OE
w denotes the part of Dw with gauge

links pointing from even/odd sites to odd/even sites after
even-odd preconditioning on the 4-dimensional lattice.
For the two-flavor part of u and d quarks, we turn on the

mass-preconditioning [20] by introducing an auxiliary
heavy fermion field with mass mHa ¼ 0.1. Then the
Nf ¼ 2 pseudofermion action (8) is replaced with

Sðmq;mHÞ þ SðmH;mPVÞ
¼ ϕ†CðmHÞ†fCðmqÞCðmqÞ†g−1CðmHÞϕ
þ ϕ†

HC
†ðmPVÞfCðmHÞCðmHÞ†g−1CðmPVÞϕH;

which gives the partition function (fermion determinant)
exactly the same as that of (8).
For the one-flavor parts, detDðmsÞ= detDðmcÞ and

detDðmbÞ= detDðmPVÞ, we use the exact one-flavor pseu-
dofermion action (EOFA) for DWF [4]. For the optimal
DWF, it can be written as (m1 < m2)

detDðm1Þ
detDðm2Þ

¼ detDTðm1Þ
detDTðm2Þ

¼
Z

dϕ†
�dϕ� expð−ϕ†

þGþðm1; m2Þϕþ

− ϕ†
−G−ðm1; m2Þϕ−Þ; ð9Þ

where ϕ� and ϕ†
� are pseudofermion fields (each of two

spinor components) on the 4-dimensional lattice, and

G−ðm1;m2Þ

¼P−

�
I−kðm1;m2Þω−1=2vT−

1

HTðm1Þ
v−ω−1=2

�
P−; ð10Þ

(a) (b)

FIG. 3. The deviation δðλÞ ¼ 1 − SðλÞ of the optimal DWF with Ns ¼ 2n ¼ 16 and λmax=λmin ¼ 6.20=0.05, for (a) without R5

symmetry, and (b) with R5 symmetry.
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Gþðm1; m2Þ ¼ Pþ

�
I þ kðm1; m2Þω−1=2vTþ

×
1

HTðm2Þ − Δþðm1; m2ÞPþ
vþω−1=2

�
Pþ:

ð11Þ

Here

DTðmiÞ ¼ Dw þMðmiÞ; i ¼ 1; 2

MðmiÞ ¼ ω−1=2½1 − LðmiÞ�½1þ LðmiÞ�−1ω−1=2

¼ PþMþðmiÞ þ P−M−ðmiÞ;
HTðmiÞ ¼ R5γ5DTðmiÞ;

Δðm1; m2Þ ¼ R5½Mðm2Þ −Mðm1Þ�
¼ PþΔþðm1; m2Þ þ P−Δ−ðm1; m1Þ;

Δ�ðm1; m2Þ ¼ kðm1; m2Þω−1=2v�vT�ω
−1=2;

kðm1; m2Þ ¼
m2 −m1

m2 þm1

;

vTþ ¼ ð−1; 1;…; ð−1ÞNsÞ; v− ¼ −vþ:

For the gluon fields, we use the Wilson plaquette gauge
action [21] at β ¼ 6=g20 ¼ 6.70.

SgðUÞ ¼ 6

g20

X
plaq

�
1 −

1

3
ReTrðUpÞ

�
;

where g0 is the bare coupling.
The bare mass of u=d quarks is set to mu=d ¼ 0.01 such

that MπL > 4, while the bare masses of (b, c, s) are tuned
to fmb;mc;msg ¼ f0.850ð5Þ; 0.200ð5Þ; 0.150ð2Þg such
that they give the masses of the vector mesons ϒð9460Þ,
J=ψð3097Þ, and ϕð1020Þ respectively. The tuning process
is outlined as follows.
With β ¼ 6.70 and mu=d ¼ 0.01, the tuning amounts to

search for the physical point in the 3-dimensional space of
ðmb;mc;msÞ. Basically it is a trial-and-error method, with
every trial in the 3-dimensional space involving a HMC
simulation, plus the computation of quark propagators and
the determination of meson masses. This could be a very
slow process if one performs the search iteratively starting
from one point in this 3-dimensional space. Our strategy to
speed up the search process is to use many GPUs to
perform the search simultaneously, each with a different set
of parameters. Thus all searches together cover a domain in
this 3-dimensional space, with a resolution up to the total
number of GPUs and the total number of batches.
Moreover, the search is first performed on a small lattice
103 × 32, then move on to a larger lattice 203 × 32, and
finally to the 403 × 64 lattice. At the completion of the
search for each lattice size, the optimal physical parameters
for this lattice size are obtained, which are then used as the

input to the next search on a larger lattice, and also to
reduce the domain of search by eliminating the most
unphysical parameters. The entire search process took
about one year, using 200 GPUs of various specifications,
i.e., each of them can perform the HMC on the 103 × 32

and the 203 × 32 lattices, but only 32 of them (each with
12 GB device memory) can be grouped into 16 pairs to run
16 independent streams of HMC on the 403 × 64 lattice.
The algorithm for simulating 2-flavor action for optimal

domain-wall quarks has been outlined in Ref. [14], while
that for simulating the exact one-flavor pseudofermion
action (EOFA) of domain-wall fermion has been presented
in Refs. [4,22]. In the molecular dynamics, we use the
Omelyan integrator [23], the multiple-time scale method
[24], and the mass-preconditioning [20].

B. HMC simulations

Following the common strategy to reduce the thermal-
ization time for a large lattice such as 403 × 64, we first
perform the thermalization on a smaller lattice 203 × 32
with the same set of parameters ðβ; mu=d; ms;mc;mbÞ.
Then the thermalized gauge configuration on the 203 ×
32 lattice is used to construct the initial gauge configuration
on the 403 × 64 lattice by doubling the size of the lattice in
each direction with the periodic extension. With this initial
gauge configuration, we generate the first 257 trajectories
on the 403 × 64 lattice with two Nvidia GTX-TITAN-X
GPU cards, each with device memory 12 GB. After
discarding the initial 187 trajectories for thermalization,
we sample one configuration every 5 trajectories, resulting
14 “seed” configurations. Then we use these seed con-
figurations as the initial configurations for 14 independent
simulations on 14 nodes, each of two Nvidia GTX-TITAN-
X GPU cards. Each node generates ∼40 trajectories
independently, and all 14 nodes accumulate a total of
535 trajectories. We sample one configuration every 5
trajectories in each stream, and obtain a total of 103
configurations for physical measurements.
In the following, we summarize the HMC characteristics

of the first 257 trajectories. In Fig. 4, we plot the maximum
force (averaged over all links) among all momentum
updates in each trajectory, for the gauge force, the 2-flavor
pseudofermion forces, and the one-flavor pseudofermion
forces respectively, where ϕðm1=m2Þ denotes the two-
flavor fermion force due to the pseudofermion action
Sðm1; m2Þ, and ϕ�ðm1=m2Þ denotes the one-flavor pseu-
dofermion force due to the exact one-flavor action with
� chirality, S�ðm1; m2Þ ¼ ϕ†

�G�ðm1; m2Þϕ�. From the
sizes of various forces in Fig. 4, the multiple time scales
can be designed in the momentum update with the gauge
force and the pseudofermion forces. With the length of the
HMC trajectory equal to one, we use 4 different timescales
for the momentum updates with (1) the gauge force; (2) the
two-flavor fermion forces associated with ϕðmc=mPVÞ and
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ϕðmH=mPVÞ; (3) the two-flavor force associated with
ϕðmu=mHÞ and the one-flavor fermion force associated
with ϕþðmb=mPVÞ; (4) the one-flavor fermion forces
associated with ϕ−ðmb=mPVÞ, ϕþðms=mcÞ, and
ϕ−ðms=mcÞ, which correspond to the step sizes
1=ðk1k2k3k4Þ, 1=ðk2k3k4Þ, 1=ðk3k4Þ, and 1=k4 respectively.
In our simulation, we set ðk1; k2; k3; k4Þ ¼ ð10; 2; 2; 5Þ.
In Fig. 5, the change of Hamiltonian ΔH versus the

HMC trajectory is plotted for the first 257 trajectories, with
hΔHi ¼ 0.376ð57Þ. The number of accepted trajectories is
173, giving the acceptance rate 0.673(29). Using the
measured value of hΔHi ¼ 0.376ð57Þ, we can obtain the
theoretical estimate of the acceptance rate with the formula
Pacc ¼ erfcð ffiffiffiffiffiffiffiffiffiffiffiffihΔHip

=2Þ [25], which gives 0.664(24), in
good agreement with the measured acceptance rate 0.673
(29). Moreover, we measure the expectation value of
expð−ΔHÞ, to check whether it is consistent with the
theoretical formula hexpð−ΔHÞi ¼ 1 which follows from
the area-preserving property of the HMC simulation [26].
The measured value of hexpð−ΔHÞi is 1.026(66), in good
agreement with the theoretical expectation value. The
summary of the HMC characteristics for the initial 257
trajectories is given in Table I.

C. Topological charge fluctuations

In this subsection, we examine the evolution of the
topological charge Qt in the first 257 trajectories, and
obtain the histogram of its distribution.

In lattice QCDwith exact chiral symmetry, the topological
charge Qt can be measured by the index of the massless
overlap-Dirac operator, since its index satisfies the Atiyah-
Singer index theorem, indexðDovÞ ¼ nþ − n− ¼ Qt.
However, to project the zero modes of the massless over-
lap-Dirac operator for the 403 × 64 lattice is prohibitively
expensive. On the other hand, the clover topological charge
Qclover ¼

P
x ϵμνλσtr½FμνðxÞFλσðxÞ�=ð32π2Þ is not reliable

[where the matrix-valued field tensor FμνðxÞ is obtained
from the four plaquettes surrounding x on the (μ̂; ν̂) plane],
unless the gauge configuration is sufficiently smooth.
Nevertheless, the smoothness of a gauge configuration can
be attained by the Wilson flow [27,28], which is a continu-
ous-smearing process to average gauge field over a spherical
region of root-mean-square radiusRrms ¼

ffiffiffiffi
8t

p
, where t is the

flow-time. In this study, the flow equation is numerically
integrated from t ¼ 0 with Δt=a2 ¼ 0.01, and measure
the Qclover at t=a2 ¼ 0.4 which amounts to averaging the
gauge field over a spherical region of root-mean-square
radius Rrms ¼

ffiffiffiffi
8t

p
∼ 1.8a. Then each gauge configuration

becomes very smooth,withQclover close to an integer, and the
average plaquette greater than 0.997. Denoting the nearest
integer ofQclover byQt ≡ roundðQcloverÞ,Qt is plotted versus
the trajectory number in the left-panel of Fig. 6, while the
right-panel displays the histogram of the probability distri-
bution ofQt of the first 257 HMC trajectories. Evidently, the
HMC simulation samples all topological sectors ergodically.
However, there are some subtle issues which wewill discuss
in the following.
Note that the topological charges are sampled at t=a2 ¼

0.4which is much smaller than the flow time t0=a2 ∼ 22 for
setting the lattice scale [see Eq. (13)]. The reason of not
using a large t=a2 ≫ 1 for measuringQclover is because that

FIG. 4. The maximum forces of the gauge field, the 2-flavor
pseudofermion fields, and the one-flavor pseudofermion fields
versus the HMC trajectory in the HMC simulations of the lattice
QCD with Nf ¼ 2þ 1þ 1þ 1 optimal DWF.

FIG. 5. The change of the HamiltonianΔH versus the trajectory
in the HMC simulations of lattice QCD with Nf ¼ 2þ 1þ 1þ 1

optimal DWF. The line connecting the data points is only for
guiding the eyes.
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the lattice volume V ∼ ð1.2 fmÞ3 × ð1.9 fmÞ is too small to
preserve the nonzero topological charge against any
scheme for smoothing the gauge configuration. In other
words, for lattice QCD in such a small lattice volume with a
fine lattice spacing (a ∼ 0.03 fm), any gauge configuration
must become topologically trivial after it has been flowed
for a sufficient long time t=a2 ≫ 1, thus the topologically
susceptibility χt ¼< Q2

t > =V becomes zero for t > tz,
where tz depends on the relevant parameters (e.g., lattice
volume, lattice spacing, Nf, and the quark masses) in
generating the gauge configurations. On the other hand, for
a sufficiently large lattice volume, the topologically sus-
ceptibility χt would attain a plateau for the large flow time
t=a2 ≫ 1, as shown in the right panel of Fig. 1 in Ref. [16],
where the lattice volume is V ∼ ð4 fmÞ4 for Nf ¼ 2þ 1þ
1 lattice QCD with domain-wall quarks at the physical
point. In the latter case, the topological charge fluctuations
can be sampled at any large flow time t=a2 ≫ 1. However,
for Nf ¼ 2þ 1þ 1þ 1 lattice QCD with the lattice
spacing a ∼ 0.03 fm (see the next subsection), a suffi-
ciently large lattice volume would exceed the lattice size
≳1204, which is beyond our current computational capabil-
ity. Thus, for the small lattice volume V ∼ ð1.2 fmÞ3 ×
ð1.9 fmÞ in this study, χt cannot attain a plateau at the large
flow time t=a2 ≫ 1, but goes to zero at t=a2 ∼ 1.1, as
shown in Fig. 7. Assuming that the χt of the same

Nf ¼ 2þ 1þ 1þ 1 lattice QCD on a large lattice volume
attains a plateau at the large flow time t=a2 ≫ 1, we still do
not know whether the topological charge fluctuations (as
shown in Fig. 6) sampled at the flow time t=a2 ¼ 0.4 ∼
tz=ð2a2Þ on this small lattice volume is consistent with the
plateau of the χt on the large lattice volume. To answer this
question requires to perform the HMC simulation (with the
same actions and parameters) on a large lattice with size
≳1204, which is beyond the scope of this paper.
At this point, it is interesting to point out that for the

small lattices, the tz (where χt ¼ 0 for t ≥ tz) increases as
the lattice volume gets larger, as shown in Fig. 7. Here both
ensembles (203 × 32 and 403 × 64) are generated with the
same (gauge and fermion) actions (see the Sec. III A) and
the same parameters, namely, β ¼ 6=g20 ¼ 6.70, Ns ¼ 16,
m0 ¼ 1.3, λmax=λmin ¼ 6.20=0.05, mu=da ¼ 0.01, msa ¼
0.015, mca ¼ 0.20, and mba ¼ 0.85. The number of
configurations is 252 for the 203 × 32 ensemble, while
257 for the 403 × 64 ensemble. For the 203 × 32 lattice
with volume ∼ð0.6 fmÞ3 × ð0.96 fmÞ, all configurations
become trivial and χt ¼ 0 for t=a2 ≥ tz=a2 ∼ 0.5, while for
the 403 × 64 lattice with volume ∼ð1.2 fmÞ3 × ð1.9 fmÞ,
all configurations become trivial and χt ¼ 0 for
t=a2 ≥ tz=a2 ∼ 1.1. Thus the tz of the 403 × 64 lattice is
more than twice of that of the 203 × 32 lattice. This seems
to imply that for a sufficiently large lattice volume, say,

TABLE I. Summary of the HMC characteristics for the first 257 trajectories in the simulation ofNf ¼ 2þ 1þ 1þ 1 lattice QCD with
the optimal DWF.

Ntraj Time(s)/traj Acceptance hΔHi Pacc ¼ erfcð ffiffiffiffiffiffiffiffiffiffiffihΔHip
=2Þ hexpð−ΔHÞi hplaquettei

257 76349(146) 0.673(29) 0.376(57) 0.664(24) 1.026(66) 0.63185(1)

FIG. 6. (left panel) The evolution of Qt versus the HMC trajectory. The line connecting the data points is only for guiding the eyes.
(right panel) The histogram of the probability distribution of Qt for the first 257 HMC trajectories. Here the topological charge Qt is
sampled at the Wilson flow time t=a2 ¼ 0.4 (see text for discussions).
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V ≳ ð4 fmÞ4, χt would attain a plateau for the large flow
time t=a2 ≫ 1, similar to the case of Nf ¼ 2þ 1þ 1

lattice QCD, as shown in the right panel of Fig. 1
in Ref. [16].
If the above scenario is true in general, then there must be

at least one example in lattice QCD to show that its χt on a
small latticevolumegoes to zero at the large flow-time, but its
counterpart on a large lattice volume attains a plateau at the
large flow-time. To this end, we consider the Nf¼2þ1þ1

lattice QCD with the (gauge and fermion) actions and the
same parameters as given in Ref. [4], for the 83 × 16 and
32 × 64 lattices. The results of χt versus the flow time t=a2

are plotted in Fig. 8. Here both 83 × 16 and 323 × 64

ensembles are generated with the same (gauge and fermion)
actions and the same parameters, namely, β ¼ 6=g20 ¼ 6.20,
Ns ¼ 16, m0 ¼ 1.3, λmax=λmin ¼ 6.20=0.05, mu=da ¼
0.005, msa ¼ 0.04, and mca ¼ 0.55. The 323 × 64 ensem-
ble is exactly the same as that in Ref. [4], while the 83 × 16
ensemble is generated in the present study. The number
of configurations is 401 for the 323 × 64 ensemble,
while 800 for the 83 × 16 ensemble. For the 83 × 16 lattice
with volume ∼ð0.5 fmÞ3 × ð1.0 fmÞ, χt becomes zero for
t=a2 ≳ 3.4, while for the 323 × 64 lattice with volume
∼ð2.0 fmÞ3 × ð4.0 fmÞ, its χta4 attains a plateau
(∼1.0 × 10−6) for t=a2 ≳ 3 (see also the subpanel in
Fig. 8), where t=a2 ¼ 32 is the maximum flow-time in this
study. This example shows how the topological charge
fluctuations depend on the lattice volume, and it also implies
that only in the large lattice volume limit, the topological
charge fluctuations of the QCD vacuum can be captured
properly.
Now we conjecture that even for a lattice with very fine

lattice spacing, the gauge configurations generated in the
HMC simulation might not suffer from the topology
freezing, provided that the lattice volume is kept suffi-
ciently large, e.g., V ≳ ð4 fmÞ4.
Before closing this section, we discuss the role of heavy

quarks in enhancing the topological fluctuations of the
QCD vacuum. First, we recall the relationship between
the topological susceptibility χt ¼ hQ2

t i=V (where V is the
4-dimensional volume) and the quark condensates, which
holds for lattice QCD with exact chiral symmetry, and for
any number of heavy/light quark flavors. For lattice QCD
with (u, d, s, c, b) quarks, in the chiral limit of u and d
quarks (mu=d → 0), it can be shown that (see the Appendix
of Ref. [29])

χt ¼
�
Σu

mu
þ Σd

md
þ Σs

ms
þ Σc

mc
þ Σb

mb

�

×

�
1

mu
þ 1

md
þ 1

ms
þ 1

mc
þ 1

mb

�
−2
; ð12Þ

where the quark condensate is defined as

Σq ¼ lim
V→∞

1

V
hTrðDc þmqÞ−1i:

It should be emphasized that the derivation of (12) only relies
on the exact chiral symmetry on the lattice, without using the
chiral perturbation theory (ChPT) at all, thus it holds for any
number of heavy/light quark flavors. In the limit of Nf ¼ 2

QCD, it reproduces the Leutwyler-Smilga relation at the
leading order of the ChPT. In general, for a sufficiently large
lattice, empirically, we have Σq=mq ∼ constant. This implies
that on the rhs of (12), each quark flavor contributes almost
equally to the numerator (the first factor), while the heavy
flavors (c and b) are highly suppressed in the denominator

FIG. 7. The topological susceptibility versus the wilson flow
time t for Nf ¼ 2þ 1þ 1þ 1 lattice QCD on the 203 × 32 and
403 × 64 lattices. See text for detailed descriptions.

FIG. 8. The topological susceptibility versus the wilson flow
time t for Nf ¼ 2þ 1þ 1 lattice QCD on the 83 × 16 and 323 ×
64 lattices. See text for detailed descriptions.
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(the second factor). Thus the topological susceptibility is
enhanced by including more heavy quark flavors in the sea.
This asserts that the heavy quark flavors indeed play an
important role in enhancing the topological charge fluctua-
tions of the QCD vacuum.

D. Lattice scale

First, we recap the generation of the gauge ensemble.
From the initial 257 trajectories generated by a single node,
we discard the first 187 trajectories for thermalization, and
sample one configuration every 5 trajectories, resulting 14
“seed” configurations. Then we use these seed configura-
tions as the initial configurations for 14 independent
simulations on 14 nodes, each of two Nvidia GTX-
TITAN-X GPU cards. Each node generates∼40 trajectories
independently, and all 14 nodes accumulate a total of 535
trajectories. We sample one configuration every 5 trajecto-
ries in each stream, and obtain a total of 103 configurations
for physical measurements.
To determine the lattice scale, we use the Wilson flow

[27,28] with the condition

ft2hEðtÞigjt¼t0
¼ 0.3;

and obtain
ffiffiffiffi
t0

p
=a ¼ 4.6884ð36Þ for the 103 configurations

for physical measurements. Using
ffiffiffiffi
t0

p ¼ 0.1416ð8Þ fm
obtained by the MILC Collaboration for the ð2þ 1þ 1Þ-
flavors QCD [30], we have a−1 ¼ 6.503� 0.037 GeV. The
lattice spacing is a ¼ 0.0303ð2Þ fm, giving the spatial
volume ∼ð1.213 fmÞ3, which is too small for studying
physical observables involving the light quarks.

E. Quark propagator

We compute the valence quark propagator of the
effective 4D Dirac operator with the point source at the
origin, and with the mass and other parameters exactly
the same as those of the sea quarks. The boundary
conditions are periodic in space and antiperiodic in time.
First, we solve the following linear system with mixed-
precision conjugate gradient algorithm, for the even-odd
preconditioned D [31]

DðmqÞjYi ¼ DðmPVÞB−1jsource vectori; ð13Þ

where B−1
x;s;x0;s0 ¼ δx;x0 ðP−δs;s0 þ Pþδsþ1;s0 Þ with periodic

boundary conditions in the fifth dimension. Then the
solution of (13) gives the valence quark propagator

ðDc þmqÞ−1x;x0 ¼ ðmPV −mqÞ−1½ðBYÞx;1;x0;1 − δx;x0 �;
mPV ¼ 2m0: ð14Þ

Each column of the quark propagator is computed by a
single node with 2 Nvidia GTX-TITAN-X GPU cards,
which attains more than 1000 Gflops/sec (sustained).

F. Residual masses

To measure the chiral symmetry breaking due to finite
Ns, we compute the residual mass according to [32],

mres ¼
	

trðDc þmqÞ−10;0
tr½γ5ðDc þmqÞγ5ðDc þmqÞ�−10;0



−mq; ð15Þ

where ðDc þmqÞ−1 denotes the valence quark propagator
with mq equal to the sea-quark mass, tr denotes the trace
running over the color and Dirac indices, and the brackets
h� � �i denote the averaging over the gauge ensemble. In the
limit Ns → ∞, Dc is exactly chiral symmetric and the first
term on the rhs of (15) is exactly equal to mq, thus the
residual massmres is exactly zero, and the quark massmq is
well-defined for each gauge configuration. On the other
hand, for any finite Ns with nonzero residual mass, the
quark mass is not well-defined for each gauge configura-
tion, but its impact on any physical observable can be
roughly estimated by the difference due to changing the
valence quark mass from mq to mq þmres.
For the 103 gauge configurations generated by HMC

simulation of lattice QCD with Nf ¼ 2þ 1þ 1þ 1 opti-
mal domain-wall quarks, the residual masses of u=d, s, c,
and b quarks are listed in Table II. We see that the residual
mass of any quark flavor is less than 0.007 MeV, which
should be negligible in comparison with other systematic
uncertainties.
In the following, we discuss the relationship between the

residual mass (15) and the effective residual mass (a
function of time)

mresðtÞ ¼
P

x⃗hJ5ðx⃗; t;Ns=2Þq̄ð0Þγ5qð0ÞiP
x⃗hq̄ðx⃗; tÞγ5qðx⃗; tÞq̄ð0Þγ5qð0Þi

; ð16Þ

where J5ðx;Ns=2Þ is the pseudoscalar density at the center
of the fifth dimension, as defined in Ref. [32]. Note that
both (15) and (16) can be obtained from the axial Ward
identity. The only difference between them is whether the
axial Ward identity is summed over x ¼ ðx⃗; tÞ or x⃗, before
the residual mass is extracted. That is, in (16), if summing
over all t in both the numerator and the denominator
respectively, then it recovers (15), as shown in Ref. [32].
The denominator of (16) is exactly the time-correlation
function of the pseudoscalar (PS), which behaves as
∼½expf−mPStg þ expf−mPSðT − tÞg� at large t, say for

TABLE II. The residual masses of u=d, s, c, and b quarks.

Quark mqa mresa mres [MeV]

u=d 0.010 7.93ð52Þ × 10−7 0.0052(3)
s 0.015 8.21ð52Þ × 10−7 0.0053(3)
c 0.200 9.43ð54Þ × 10−7 0.0061(4)
b 0.850 1.06ð6Þ × 10−6 0.0069(4)
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1 ≪ t1 < t < T=2. If the numerator of (16) also behaves
similar to the denominator at large t, then their ratio mresðtÞ
would attain a plateau in the range t1 < t < T=2. The RBC/
UKQCD Collaboration has been taking the plateau value of
mresðtÞ as the residual mass, which should be compatible
with that computed with (15). On the other hand, if the
numerator decays much slower than the exponential func-
tion at large t, then mresðtÞ would behave like a monoton-
ically-increasing function of t, resulting a peak at t ¼ T=2,
as observed by the RBC/UKQCD Collaboration in the case
of Möbius DWF with mqa ¼ 0.45 [33]. Such anomalous
behavior of the numerator of (16) at heavy quark masses
implies that the physical modes are not exponentially local
to the boundaries of the fifth dimension, thus the Möbius
DWF has difficulties to treat heavy quarks. In this case, if
one uses (15) to measure the residual mass, then one would
also observe a dramatic increase of the residual mass for
heavy quark masses, e.g., the residual mass would increase
∼3–4x by changing mqa from 0.40 to 0.45, a rough
estimate using the data in the left-panel of Fig. 2 in
Ref. [33]. In other words, the anomalous behavior of
J5ðx; Ns=2Þ in DWF can be observed by both definitions
of residual mass, (15) and (16). Since the residual masses in
Table II are almost the same for mqa ¼ 0.01–0.85, it rules
out the possibility that mresðtÞ for the optimal DWF could
have any anomalous behavior with heavy quarks.

IV. MASS SPECTRA OF BEAUTY MESONS

In the following, we determine the masses of the low-
lying mesons with valence quark contents b̄b, b̄c, b̄s, and
c̄c. We construct the quark-antiquark meson interpolators
and measure their time-correlation functions using the
point-to-point quark propagators computed with the same
parameters (Ns ¼ 16,m0 ¼ 1.3, λmax=λmin ¼ 6.20=0.05) of
the sea quarks, for the quark masses (mu=da ¼ 0.01,
msa ¼ 0.015, mca ¼ 0.20, mba ¼ 0.85), where mb, mc
and ms are fixed by the masses of the vector mesons
ϒð9460Þ, J=ψð3097Þ, and ϕð1020Þ respectively. Then we
extract the mass of the lowest-lying meson state from the
time-correlation function.
The time-correlation function of the beauty meson

interpolator b̄Γq (where q ¼ fb; c; sg) is measured accord-
ing to the formula

CΓðtÞ ¼
	X

x⃗

trfΓðDc þmbÞ−1x;0ΓðDc þmqÞ−10;xg


; ð17Þ

whereΓ ¼ f1; γ5; γi; γ5γi; ϵijkγjγkg, corresponding to scalar
(S), pseudoscalar (P), vector (V), axial-vector (A), and
pseudovector (T) respectively, and the valence quark propa-
gator ðDc þmqÞ−1 is computed according to the for-
mula (14). Note that q̄γ5γiq transforms like JPC ¼ 1þþ,
while q̄ϵijkγjγkq like JPC ¼ 1þ−.

For the vector meson, we average over i ¼ 1, 2, 3
components, namely,

CVðtÞ ¼
	
1

3

X3
i¼1

X
x⃗

trfγiðDc þmbÞ−1x;0γiðDc þmqÞ−10;xg


:

Similarly, we perform the same averaging for the axial-
vector and pseudovector mesons. Moreover, to enhance
statistics, we average the forward and the backward time-
correlation function.

C̄ðtÞ ¼ 1

2
½CðtÞ þ CðT − tÞ�:

The time-correlation function (TCF) and the effective
mass of the meson interpolators b̄Γb, c̄Γc, b̄Γc, and b̄Γs
are plotted in Figs. 9–28, in the Appendixes A–D
respectively.

A. Bottomonium and charmonium

First of all, we check to what extent we can reproduce the
bottomonium masses which have been measured precisely
in high energy experiments.
Our results of the mass spectrum of the low-lying states

of bottomonium are summarized in Table III. The time-
correlation function and the effective mass of b̄Γb are
plotted in Appendix A.
The first column in Table III is the Dirac matrix used for

computing the time-correlation function (17). The second
column is JPC of the state. The third column is the ½t1; t2�
used for fitting the data of CΓðtÞ to the usual formula

z2

2Ma
½e−Mat þ e−MaðT−tÞ� ð18Þ

to extract the ground state meson mass M, where the
excited states have been neglected. We use the correlated fit
throughout this work. The fifth column is the massM of the
meson state, where the first error is statistical, and the
second is systematic. Here the statistical error is estimated
using the jackknife method with the bin size of which the

TABLE III. The masses of low-lying bottomonium states
obtained in this work. The fifth column is the mass of the meson
state, where the first error is statistical, and the second is
systematic. The last column is the experimental state we have
identified, and its PDGmass value [34]. For a detailed description
of each column, see the paragraph with Eq. (18).

Γ JPC ½t1; t2� χ2=dof Mass(MeV) PDG

1 0þþ [19,29] 1.10 9859(14)(11) χb0ð9859Þ
γ5 0−þ [15,31] 1.04 9403(4)(5) ηbð9399Þ
γi 1−− [21,31] 0.51 9468(7)(6) ϒð9460Þ
γ5γi 1þþ [19,26] 1.15 9884(27)(35) χb1ð9893Þ
ϵijkγjγk 1þ− [19,25] 0.97 9910(20)(25) hbð9899Þ
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statistical error saturates, while the systematic error is
estimated based on all fittings satisfying χ2=dof < 1.2
and jt2 − t1j ≥ 6 with t1 ≥ 10 and t2 ≤ 32. The last column
is the experimental state we have identified, and its PDG
mass value [34].
The analysis and the descriptions in the above paragraph

apply to all results obtained in this work, as given in
Table III–VI.
Evidently, the masses of bottomonium in Table III are

in good agreement with the PDG mass values, even though
the axial-vector (1−−) and pseudovector (1þ−) mesons
have relatively larger errors than other meson states.
Note that the theoretical result of the hyperfine splitting
(13S1 − 11S0) is 65(8)(7) MeV, in good agreement with the
PDG value 61 MeV.
Next, we turn to the charmonium states extracted from

the ground states of c̄Γc. Our results of the masses of the
low-lying states of charmonium are summarized in
Table IV. The time-correlation function and the effective
mass of c̄Γc are plotted in Appendix B. Evidently,
the theoretical masses of charmonium in Table IV are in
good agreement with the PDG values. Note that the
theoretical result of the hyperfine splitting (13S1 − 11S0)
is 123(9)(6) MeV, in good agreement with the PDG value
113 MeV.

B. Bs and Bc mesons

Our results of the masses of the low-lying states of Bs
mesons are summarized in Table V. The time-correlation
function and the effective mass of b̄Γs are plotted in
Appendix D. Here we have identified the scalar b̄s meson
with the state B�

sJð5850Þ observed in high energy experi-
ments, due to the proximity of their masses. This predicts
that B�

sJð5850Þ possesses JP ¼ 0þ, which can be verified
by high energy experiments in the future. Moreover, the
pseudovector meson (the last entry in Table V) has not been
observed in high energy experiments, thus it serves as a
prediction of Nf ¼ 2þ 1þ 1þ 1 lattice QCD.
Finally, we turn to the heavy mesons with beauty

and charm. In Table VI, we summarize our results of the

masses of Bc mesons extracted from the ground states of
b̄Γc. The time-correlation function and the effective mass
of b̄Γc are plotted in the Appendix C. Except for the
pseudoscalar meson Bcð6275Þ, other four meson states
have not been observed in high energy experiments. It is
interesting to see to what extent the experimental results
will agree with our theoretical predictions.
Before we close this section, we would like to point out

that the theoretical predictions of the meson masses in
Tables III–VI are subject to other systematic uncertainties,
e.g., due to the finite lattice spacing, and the tuning of
(b, c, s) quark masses. Since there is only one lattice
spacing in this study, it is impossible to extrapolate the
meson masses to the continuum limit. Nevertheless, in view
of the fine lattice spacing (a ∼ 0.03) and the action is OðaÞ
improved, we expect that the discretization uncertainty is
negligible in comparison with the combined statistical and
systematic uncertainties in Tables III–VI. Moreover, we
also expect that the systematic uncertainty due to the tuning
of quark masses (with δmq=mq ≲ 1%) is negligible in
comparison with the combined statistical and systematic
uncertainties in Tables III–VI.
Most importantly, all systematic uncertainties in this

study (i.e., the unphysical u=d quark masses, the residual
masses, the tuning of quark masses, the finite volume,
and the finite lattice spacing) can be systematically

TABLE IV. The masses of low-lying charmonium states ob-
tained in this work. The fifth column is the mass of the meson
state, where the first error is statistical, and the second is
systematic. The last column is the experimental state we have
identified, and its PDGmass value [34]. For a detailed description
of each column, see the paragraph with Eq. (18).

Γ JPC ½t1; t2� χ2=dof Mass(MeV) PDG

1 0þþ [14,25] 1.01 3403(16)(13) χc0ð3415Þ
γ5 0−þ [15,29] 1.17 2989(6)(4) ηcð2984Þ
γi 1−− [15,28] 0.65 3112(7)(5) J=ψð3097Þ
γ5γi 1þþ [14,21] 1.13 3513(23)(10) χc1ð3510Þ
ϵijkγjγk 1þ− [17,25] 0.39 3527(14)(19) hcð3524Þ

TABLE V. The masses of low-lying Bs meson states obtained in
this work. The fifth column is the mass of the meson state, where
the first error is statistical, and the second is systematic. The last
column is the experimental state we have identified, and its PDG
mass value [34]. For a detailed description of each column, see
the paragraph with Eq. (18).

Γ JP ½t1; t2� χ2=dof Mass(MeV) PDG

1 0þ [15,24] 0.37 5839(30)(18) B�
sJð5850Þ

γ5 0− [23,29] 0.79 5406(16)(17) Bsð5367Þ
γi 1− [18,29] 0.66 5430(17)(18) B�

sð5415Þ
γ5γi 1þ [16,22] 0.58 5839(23)(14) Bs1ð5830Þ
ϵijkγjγk 1þ [16,23] 0.56 5909(26)(34)

TABLE VI. The masses of low-lying Bc meson states obtained
in this work. The fifth column is the mass of the meson state,
where the first error is statistical, and the second is systematic.
The last column is the experimental state we have identified, and
its PDG mass value [34]. For a detailed description of each
column, see the paragraph with Eq. (18).

Γ JP ½t1; t2� χ2=dof Mass(MeV) PDG

1 0þ [20,28] 1.17 6766(38)(16)
γ5 0− [15,31] 1.02 6285(6)(5) Bcð6275Þ
γi 1− [16,31] 0.68 6375(6)(7)
γ5γi 1þ [21,32] 0.62 6787(34)(28)
ϵijkγjγk 1þ [19,26] 0.97 6798(33)(17)
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reduced/eliminated, i.e., by increasing the lattice volume
such that MπL ≫ 1 for the physical pion mass, by
increasing Ns to reduce the residual masses, by tuning
the quark masses to a higher precision, and by generating
several gauge ensembles with different lattice spacings
such that the extrapolation to the continuum limit can be
performed. On the other hand, this is not the case for other
approaches not treating the b and c quarks (in the sea/
valence) as excitations of Dirac quark fields, e.g., with the
absence of b=c quarks in the sea, just using the non-
relativistic approximation, the heavy quark effective field
theory, or some relativistic action to treat the valence b=c
quarks. These approaches often introduce a large number of
interaction terms with associated parameters, thus largely
limit the predictive power of the theory, and introduce the
systematic errors which cannot be reduced/eliminated by
going to larger volumes and/or smaller lattice spacings.
Strictly speaking, results coming from these studies are not
theoretical predictions from the first principles of QCD (or
the Standard Model), regardless of whether these results are
in good agreement with the HEP experimental results
or not.

V. QUARK MASSES OF (b, c, s)

The quark masses cannot be measured directly in high
energy experiments since quarks are confined inside
hadrons. Therefore, the quark masses can only be deter-
mined by comparing theoretical calculations of physical
observables with the experimental values. For any field
theoretic calculation, the quark masses depend on the
regularization, as well as the renormalization scheme and
scale. For lattice QCD, the hadron masses can be computed
nonperturbatively from the first principles, and from which
the quark masses can be determined.
We have used the mass of the vector meson ϒð9460Þ to

fix the bare mass of b quark equal tomb ¼ 0.850ð5Þa−1. To
transcribe the bare mass to the corresponding value in the
usual renormalization scheme MS in high energy phenom-
enology, one needs to compute the lattice renormalization
constant Zm ¼ Z−1

s , where Zs is the renormalization con-
stant for ψ̄ψ. In general, Zm should be determined non-
perturbatively. However, in this study, the lattice spacing is
rather small (a ≃ 0.03 fm), thus it is justified to use the one-
loop perturbation formula [35]

ZsðμÞ¼ 1þ g2

4π2
½lnða2μ2Þþ0.17154� ðm0¼ 1.30Þ: ð19Þ

At β ¼ 6.70, a−1 ¼ 6.503ð37Þ GeV, and μ ¼ 2 GeV, (19)
gives Zs ¼ 1.1001ð2Þ, which transcribes the bare mass mb

to the MS mass at μ ¼ 2 GeV

m̄bð2 GeVÞ ¼ mbZmð2 GeVÞ ¼ 5.024� 0.025 GeV;

where the error bar combines (in quadrature) the statistical
error and the systematic errors of the lattice spacing and the
b quark bare mass.
To compare our result with the PDG value of m̄bðm̄bÞ at

the scale μ ¼ m̄b, we solve the equation m̄b ¼ mbZmðμ ¼
m̄bÞ and obtain

m̄bðm̄bÞ ¼ 4.85� 0.04 GeV; ð20Þ

which is higher than the PDG value ð4.18� 0.03Þ GeV for
Nf ¼ 2þ 1þ 1 lattice QCD, but is closer to the value in
the 1S scheme m1S

b ¼ 4.65ð3Þ GeV [34].
Next we turn to the charm quark mass. Using (19), the

charm quark bare mass mc ¼ 0.200ð5Þa−1 is transcribed to

m̄cð2 GeVÞ ¼ 1.14� 0.03 GeV;

where the error bar combines (in quadrature) the statistical
and the systematic errors from the lattice spacing and the
charm quark bare mass. To compare our result with the
PDG value of m̄cðm̄cÞ, we solve m̄c ¼ mcZmðμ ¼ m̄cÞ and
obtain

m̄cðm̄cÞ ¼ 1.21� 0.03 GeV; ð21Þ

which is slightly smaller than the PDG value ð1.280�
0.025Þ GeV for Nf ¼ 2þ 1þ 1 lattice QCD [34].
Finally we turn to the strange quark mass. Using (19),

the strange quark bare mass ms ¼ 0.0150ð2Þa−1 is tran-
scribed to

m̄sð2 GeVÞ ¼ 88.7� 1.3 MeV; ð22Þ

where the error bar combines (in quadrature) the statistical
and the systematic ones from the lattice spacing and the s
quark bare mass. Our result of the strange quark mass (22)
is slightly smaller than the PDG value ð92.9� 0.7Þ MeV
for Nf ¼ 2þ 1þ 1 lattice QCD [34].

VI. CONCLUDING REMARKS

This study demonstrates that the Dirac b quark can be
simulated dynamically in lattice QCD, together with the
ðc; s;d;uÞ quarks. Even with unphysically heavy u and d
quarks in the sea, the low-lying mass spectra of mesons
with valence quark contents b̄b, b̄c, b̄s, and c̄c are in good
agreement with the experimental values. Also, we have
several predictions which have not been observed in high
energy experiments, i.e., predicting the mass and the JP of
four Bc meson states (see Table VI), the JP of B�

sJð5850Þ to
be 0þ, and the mass and the JP of the pseudovector Bs
meson state (see Table V). Moreover, we have determined
the masses of (b, c, s) quarks, as given in (20), (21), and
(22) respectively.
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These results imply that it is feasible to simulate lattice
QCD with physical (u, d, s, c, b) domain-wall quarks on a
large (∼2004) lattice, with the Exaflops supercomputers
which will be available ∼2022. Then physical observables
with any (u, d, s, c, b) quark contents can be computed
from the first principles of QCD. This will provide a viable
way to systematically reduce the uncertainties in the
theoretical predictions of the Standard Model (SM),
which are largely stemming from the sector of the strong
interaction [36]. This is crucial for unveiling any new
physics beyond the standard model (SM), by identifying
any discrepancies between the high energy experimental
results and the theoretical values derived from the first

principles of the SM with all quarks (heavy and light) as
Dirac fermions, without using nonrelativistic approxima-
tion or heavy quark effective field theory for b and c
quarks.
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APPENDIX A: CðtÞ AND THE EFFECTIVE MASS OF b̄Γb

FIG. 9. The time-correlation function and the effective mass of the meson interpolator b̄γ5b.
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FIG. 10. The time-correlation function and the effective mass of the meson interpolator b̄γib.

FIG. 11. The time-correlation function and the effective mass of the meson interpolator b̄b.
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FIG. 12. The time-correlation function and the effective mass of the meson interpolator b̄γ5γib.

FIG. 13. The time-correlation function and the effective mass of the meson interpolator b̄ϵijkγjγkb.
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APPENDIX B: CðtÞ AND THE EFFECTIVE MASS OF c̄Γc

FIG. 15. The time-correlation function and the effective mass of the meson interpolator c̄γic.

FIG. 14. The time-correlation function and the effective mass of the meson interpolator c̄γ5c.
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FIG. 16. The time-correlation function and the effective mass of the meson interpolator c̄c.

FIG. 17. The time-correlation function and the effective mass of the meson interpolator c̄γ5γic.
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APPENDIX C: CðtÞ AND THE EFFECTIVE MASS OF b̄Γc

FIG. 18. The time-correlation function and the effective mass of the meson interpolator c̄ϵijkγjγkc.

FIG. 19. The time-correlation function and the effective mass of the meson interpolator b̄γ5c.
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FIG. 20. The time-correlation function and the effective mass of the meson interpolator b̄γic.

FIG. 21. The time-correlation function and the effective mass of the meson interpolator b̄c.
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FIG. 22. The time-correlation function and the effective mass of the meson interpolator b̄γ5γic.

FIG. 23. The time-correlation function and the effective mass of the meson interpolator b̄ϵijkγjγkc.
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APPENDIX D: CðtÞ AND THE EFFECTIVE MASS OF b̄Γs

FIG. 24. The time-correlation function and the effective mass of the meson interpolator b̄γ5s.

FIG. 25. The time-correlation function and the effective mass of the meson interpolator b̄γis.
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FIG. 26. The time-correlation function and the effective mass of the meson interpolator b̄s.

FIG. 27. The time-correlation function and the effective mass of the meson interpolator b̄γ5γis.
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