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Four quark operators for kaon bag parameter with gradient flow
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To study the CP-violation using the K, — K|, oscillation, we need the kaon bag parameter which
represents QCD corrections in the leading Feynman diagrams. The lattice QCD provides us with the only
way to evaluate the kaon bag parameter directly from the first principles of QCD. However, a calculation of
relevant four quark operators with theoretically sound Wilson-type lattice quarks had to carry a numerically
big burden of extra renormalizations and resolution of extra mixings due to the explicit chiral violation.
Recently, the small flow-time expansion (SFrX) method was proposed as a general method based on the
gradient flow to correctly calculate any renormalized observables on the lattice, irrespective of the explicit
violations of related symmetries on the lattice. To apply the SF#X method, we need matching coefficients,
which relate finite operators at small flow times in the gradient flow scheme to renormalized observables in
conventional renormalization schemes. In this paper, we calculate the matching coefficients for four quark
operators and quark bilinear operators, relevant to the kaon bag parameter.

DOI: 10.1103/PhysRevD.102.034508

I. INTRODUCTION

In the study of the CP violation, the K, — K|, oscillation
plays an important role. Here, to extract Cabibbo-
Kobayashi-Maskawa matrix elements in the leading
Feynman diagrams for the K, — K, oscillation, we need
to know the kaon bag parameter which represents QCD
corrections in these diagrams. The lattice QCD provides us
with the only way to evaluate the nonperturbative value of
the kaon bag parameter directly from the first principles of
QCD [1]. However, a calculation of relevant four quark
operators with theoretically sound Wilson-type lattice
quarks had to carry a numerically big burden of extra
renormalizations and resolution of extra mixings, required
mainly due to the explicit violation of the chiral symmetry
by the Wilson quarks at nonzero lattice spacings [2—11].

Recently, a series of new methods based on the gradient
flow introduced various advances in lattice QCD [12-22].
Among them, we adopt the small flow-time expansion
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(SFtX) method, which is a general method to correctly
calculate any renormalized observables on the lattice
[18,19,23-25]. The gradient flow is a modification of
bare fields according to flow equations driven by the
gradient of an action. It is shown that the operators
constructed by flowed fields (“flowed operators”) are free
from UV divergence and also from short-distance singu-
larities at nonzero flow time ¢ > 0 [15]. The basic idea of
the SFrX method is as follows: Because of the strict
finiteness of flowed operators, we can safely evaluate their
nonperturbative values by (i) constructing their lattice
operators directly from their continuum expressions,
(ii) evaluating their values on the lattice, and (iii) taking
the continuum limit. The finiteness of the target operators
leads us automatically to their correct values by just taking
the continuum extrapolation—we do not need to introduce
any additional corrections due to the lattice artifacts, even
if the lattice model at finite lattice spacings violates some
symmetries relevant to the original derivation of the
operators.

The method has been applied to calculate the energy-
momentum tensor, which is the generator of the continuous
Poincaré transformation and thus is not straightforward
to evaluate on discrete lattices. From test studies around
the deconfinement transition temperature in quenched
QCD [26-28] and in 2+ 1 flavor QCD with improved
Wilson quarks [29-33], it was shown that the results of the
energy-momentum tensor by the SFzX method correctly
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reproduce previous results of the equation of state esti-
mated by the conventional integral methods.

Because the method is applicable also to observables
related to the chiral symmetry, we may apply the method to
cope with the difficulties of Wilson-type quarks associated
with their explicit chiral violation. Theoretical basis to
study fermion bilinear operators in the SFrX method is
given in [25]. The method was applied to compute the
disconnected chiral susceptibility in 2 + 1 flavor QCD with
improved Wilson quarks [29]. It was shown that the chiral
condensates bend sharply and the disconnected chiral
susceptibilities show peak at the pseudocritical temperature.
The method was further applied to compute topological
susceptibilities using the gluonic and fermionic definitions
[30]. In the continuum, the two definitions should lead
to the same results thanks to a chiral Ward-Takahashi
identity, but, they are largely discrepant with the conven-
tional lattice method at nonzero lattice spacings. With the
SFX method, the two definitions are shown to agree well
with each other even at a finite lattice spacing [30]. These
suggest that the SFrX method is powerful in calculating
correctly renormalized observables.

In this paper, we extend the SFrX method to the study of
four fermi operators. As the first step of the study, we
concentrate on the issue of the kaon bag parameter,

(K70%52|K0)

K= - ; (1.1)
$1(0I57,rsd|K)|?
where, with y% =y,(1 —ys),
08572 = (5y,;d) (57, d) (1.2)

is the AS = 2 four quark operator. In a conventional lattice
calculation with Wilson-type quarks, due to the violation of
the chiral symmetry, this four quark operator is contami-
nated by other operators which have the same parity and
different chirality: ORS-2 = ZO*5=2+3",Z,0;. Precise
evaluation of the renormalization and mixing coefficients is
computationally demanding [34]. In a real scalar field
theory, the gradient flow was shown to avoid the issue of
operator mixing [35]. See also recent studies [36-39]. We
thus expect that the SF#X method will drastically simplify
the calculation of four quark operators in QCD.

The SFrX method [18,19,23-25] is based on the expan-
sion of flowed operators at small 7 in terms of renormalized
operators at =0 in a conventional renormalization
scheme, say the MS scheme [15]. The coefficients relating
both operators are called the matching coefficients.
Because the renormalization scale for flowed operators
can be taken to be proportional to 1/+/%, in asymptotically

'See Refs. [40,41] for a different approach using twisted mass
Wilson-type quarks.

free theories such as QCD, we can calculate the matching
coefficients at small ¢ by perturbation theory. In this paper,
we perform a one-loop calculation of the matching coef-
ficient for the AS = 2 four quark operator (1.2).

This paper is organized as follows: In Sec. II, we
introduce the gradient flow and the dimensional reduction
scheme we adopt. As shown in Eq. (1.1), the kaon bag
parameter consists of a four quark operator and a quark
bilinear operator in the denominator. We study the match-
ing coefficients for four quark operators in Sec. III, and
those for quark bilinear operators in Sec. I'V. Our final result
of the matching coefficient for the kaon bag parameter is
given in Sec. V.

II. FORMULATION
A. Gradient flow

In this section, we introduce the gradient flow with the
background field method [24], which simplifies perturba-
tive calculations of renormalization factors. Our conven-
tions for the gauge group factors and Casimirs are as
follows: We normalize the gauge group generators by

Tr(T4T?) = —T§5%, (T4, T = fabeTe,  (2.1)
where f%¢ is the structure constant. The anti-Hermitian
matrices 7 satisfy

T¢T* = —Cp1. (2.2)
For the fundamental representation of SU(N), T = 1/2,
dim(R) = N, and Crp = (N> —1)/2N.

We first decompose the gauge field A, and quark field y

into background fields and quantum fields as

~

A,(x) =A,(x) +a,(x), (2.3)
wr(x) =p(x) + pr(x), (24)
Wr(x) = wp(x) + pr(x), (2.5)

where f=1,2, - ,Nf is for the flavor, Aw 17/f, If/f are
background fields, and a,, py, p are their quantum fields,
respectively.

The flow equations we adopt are basically the simplest
ones as proposed by Liischer [14,16]. The gradient flow
drives the fields, Aﬂ, Vs Wy, a,, py,oand py, into their
flowed fields, Bﬂ, X5 ;?f, b,, k¢, and I_cf, respectively [24].
Flow equations for the background fields are given by

atf?ﬂ(t,x):DyGW(t,x), f?ll(t:0,x):ﬁﬂ(x), (2.6)

O r(t.x)=D3(t.x), 2p(t=0.x)=y(x), (2.7)
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)?f(t:O,x) :lf/f(x). (2.8)
In this paper, we set the gauge parameter « in Ref. [24] to
unity, @y = 1. Then, the flow equations for the quantum
fields are given by

2 2 <2
O p(t.x)=xs(t,x)D,

b,(t=0,x) = a,(x), (2.9)
Oiks(t,x) = {D* = Db, (1, x) ks (., x)
+{2b, (t x) + b2(t, x) 1 (2, x),
ke(t=0,x) = ps(x), (2.10)
Ok (1,x) = kp(t,x){D* + D,b,(,x)}
+77(6.x){=2D,b, (.x) + b (1. x)}.
kp(t=0,x) = ps(x), (2.11)

where we define

G, (t.x) = 9,B,(t,.x) = 9,B,(t.x) + [B,(t.x), B,(t.x)].
(2.12)
D,=0,+[B,(t.x),], (for gauge fields) (2.13)
D,=0,+B,(t.x). (for quark fields) (2.14)

R,(t.x) = 2[b,(t.x), D,b,(t.x)] — [b,(t.
+ [b, (1, %), [b, (1, x), b, (2, x)]].

X), Dﬂbu(t, x)]
(2.15)

In this paper, we set the background gauge field to zero
and the background quark fields to constant. Then, the
solution of the flow equations for the background fields
is given by

B(t,x) =A(x) =0, (2.16)
77t x) =y s(x) = (const), (2.17)
27(t,x) = yp(x) = (const). (2.18)

Taking the solution of the background fields into
account, the flow equations for the quantum fields can
be simplified as

N

d;b,(t.x) = &b, (t,x) + R,(t.x),

(2.19)

Ok s (1, x) = {D* = 0,b,(1,x) Yks (1, x)
+ {2b,,(2,x)0, + b*(t, x) W s (2, x).

ke(t=0,x) = ps(x), (2.20)
Ok (1,x) = kp(t,x){D* + 8,b,(1,x)}
(1, 0){=20,b, (1, x) + b2(1, %)},
kp(t=0,x) = plx), (2.21)
with

Ri(1,x) = 2fbb(1,x)0,b5 (1, x) — bl (t,
+ febe fedebb (1, x)bd (1, x) b (1, x).

x)aﬂbf,(t, X)
(2.22)

Formal solution of the flow equations for the quantum
fields is given by

! S n
by (t,x) = e" 19 ag(x) +A ds el=)? R;(s.x), (2.23)

= efazpf(x)
/0 ds e {2b,,(5,x)0, + b*(s,x)}

kg(t,x)

x {esPrp(x) + ky(s,x)}, (2.24)
kp(1.x) = py(x)e”
~|—A ds{ r(x 552+l_cf(s,x)}
{ 5 b,(s.x) + b*(s. x)}e<"5)52. (2.25)

In one-loop calculations discussed in this paper, we can
disregard the O(g}§) terms in the propagators. Thus, the
propagator between b(r, ) and b(s, ) can be simplified as

G“b(t s: f) ~ o= (t15)C7 Guh(f)

(one loop),  (2.26)

where

bi(1, ) = / Oxbt(r,x)e T (2.27)

is the quantum gauge field in the momentum space and
G4 (¢) is the gluon propagator at 7 = 0 with momentum 7,

1
Gz,lj(f) =g} ﬁéabéﬂy. (2.28)

Similarly, the solution for quantum quark fields k, and l_cf
can also be simplified as
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t
kp(t,x) ~ e py(x) + / ds e(=7" <b2(s,X)¢/f
0

+2b,(s, x)aﬂesazpf(x)>, (2.29)
kfapmfvpfgoe@2+l/”ds(@,b%sno
0
—2p,(x)e* T B,b, (s, x)) =97 (2.30)

in one-loop calculations.

Because quark masses and external momenta appear as
tm3 and 7p? in the matching coefficients, their dependence
appear in higher orders of the flow-time 7. Here, we set all
quark masses and all external momenta of the four quark
operators to zero for simplicity.

B. Dimensional reduction scheme

In the calculation of four quark operators, we use the
Fierz rearrangement to organize the spinor indices. Because
the Fierz rearrangement is defined for 4 x 4 Hermitian
matrices, we have to restrict the spinor indices in the
operator to run in the four dimensional space-time. In the
dimensional regularization using the D = 4 — 2¢ dimen-
sional space-time, we thus impose that only the internal
loop momenta are reduced to the D = 4 — 2¢ dimensional
space-time, while the other Lorentz indices run in four
dimensional Lorentz space-time. This procedure is called
the dimensional reduction scheme [42].

We denote the gamma matrices in four dimension as y,,,
and the gamma matrices in D dimensional space-time as y,,.
Denoting the remaining part as 7,, the four dimensional
gamma matrices are decomposed as

7//4 ]7/4 +7ﬂ7 (231)

_ 7w (1<u<D),

Vu= { g (2.32)
0 (D<pu<4),

_ 0 (1<u<D),

Vu —{ (2.33)
Tw (D<p<4)

The anticommutation relation between y, and 7, can be
calculated as

{7;47 71/} = {(77;4 + 7;4)’ }_'u} = 25#1/9 (234)

DO2: [/ﬂ (_ip;t)e_thstu(p)SFp(p - f)SFa(p)GZ[};(l’ﬂ)TaTbtr[yy?yya?pyﬂ?a]a
P

where the 5,,,, means the Kronecker delta in D dimension.
The other relations can be calculated similarly, e.g.,

7;&’1/7/4 =-Dy, + 27_/1/’ (235)

yﬂ?uYﬂ = _27711- (236)

Finally, we define the ys; matrix which anticommutes
with all the gamma matrices in this scheme:

{rs; v} =0, (2.37)
{rs; 7.} =0, (2.38)
{rs, 7.} = 0. (2.39)

We construct four quark operators with y, and ys, but the
internal quark propagators contain y, only.

C. Quark field renormalization

It is known that, with the simple gradient flow driven by
the pure gauge action as we adopt, quark field renormal-
ization is required to keep the flowed fields finite [16].
Here, to avoid complications due to the matching between
the lattice and dimensional regularization schemes, we
adopt the quark field renormalization proposed in Ref. [19],
in which the renormalized quark fields at # > 0 (“ringed
quark fields”) are given by

—2dim(R)

< )(f(t’ X)

(47)22 (7 (t.3)7, Dyt s (1. %))
= g!2 (1) (1. x).

)?f(tvx) =

(2.40)

Note that the summation of the flavor index is not taken in
this expression. Because we treat all quarks massless, the
renormalization factor ¢(¢) is independent of f.

In Ref [19], ¢(r) has been calculated to the one-loop
order of the perturbation theory with the dimensional
regularization scheme. We revisit the calculation and
compute ¢(¢) with the dimensional reduction scheme
(DRED). Feynman diagrams relevant to the quark field
renormalization are listed in Fig. 1. See Ref. [19] for the
Feynman rule we adopt. The diagrams mean

(2.41)

t
DO3: / ds / (mip, )= =R 028 (p)Spo(p = £)(=2i(p = £),)G(5.0: )T T ulp, 71, 7,). (242)
0 Z,p
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@ @
D02 D03 D04
D05 D06
@ @
D07 D08

FIG. 1. One-loop Feynman diagrams for the quark field renormalization factor ¢(7). See Ref. [19] for the Feynman rule.

t S 2 2 2 2
p0s: (a5 [Mdu [ (cip)Sn(p)e I oo o (221 (p - £),) (<20, ) Gl 5. )T Tl 7).
0 0 Z.p

(2.43)
13 t
DOS:/ ds/ du/ (—ipﬂ)SFD(p—f)e_“_"')”ze‘("”)i’ze—(~"+u)(17—f)2
0 0 ‘.p
X (<2i(p - £),) 2ilp - £),)Gib(s. 1 OT T'ul7, 7, (244
t
DO6:/0 dsép(—ipﬂ)SFl,(p)e‘(’_s)l’ze—sgﬂe"sz;,’l’D’(s,s;f)T“Tbtr[)?ﬂj?y], (2.45)
DO7: [ﬂ ) e e e PO S (p)Ska(p + €)GUb(1,0,6)T T e[y, 7,7,7,). (2.46)
!
DO8: A ds é =90 =) (22i(p — £),)Sp, (p + £)GEL (1, 53 )T Thie [y, 7,), (2.47)
P
where [, = [, [, with [, = [d”¢/(2z)P, and
.,
Srul€) = =i%h. (2.48)
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1
Gb(t,5:0) = ghe 97 ﬁéabéﬂy. (2.49)

Carrying out the computations similar to those given in
Ref. [19], we find that the diagrams contribute as

1

1
DO3|prep i 2— + 4log(8xt) + 2 4 41og(2) — 21og(3),
€

(2.51)
D04|ppep: —201log(2) + 1610g(3).  (2.52)
DO5|ppep: 1210g(2) — 51og(3), (2.53)

1

€

in units of
-2dim(R) ¢}

m(R) 20 o (2.57)

Collecting these contributions, we obtain the quark
field renormalization factor in the dimensional reduction
scheme,

2
¢(1)PRED — (8m)‘€{1 + ?475/;2) Cr (g +3yp

+ 3log (2tu?) +3 — 10g(432)> }, (2.58)

where we have replaced the bare gauge coupling ¢, by
the dimensionless ¢ (u) using the prescription of the MS
scheme [43],

g = (125) 20l + ot 259

with y; the Euler-Mascheroni constant. Since ¢(¢) is
defined in terms of the expectation value of bare fields
in Eq. (2.40), it is independent of the renormalization
scale 4. We may thus choose any value for u in the
expressions above, provided that the perturbative expan-
sions are well converged. Some conventional choices for y

are yy = 1/v/81 [14] and po = 1/v/2e’e1 [32].

III. FOUR QUARK OPERATORS

In this study, we consider four quark operators of the
form

Oy = [(Wnrw2) Wariws) = (Wyiws) Wsrpws)]l. (3.1)
where the subscripts 1, ..., 4 are for the flavor of the quark
fields. We assume that these four flavors fulfill 1 # 2,
2 #3,3#4,and 4 # 1, to avoid closed quark loops within
the four quark operator. For the calculation of By, the case
1 =3 #2 =4 is relevant.

We denote the background part of O as

Oi = [(@175‘2’2)(112/3}’,51/74) + (@17,%@4)(1/2137,51/72)]- (3-2)
We then denote flowed four quark operators as
0.(1) = [(1rix2) Gsviixa) = Gvixa) Tarixa)l. (3.3)

and their renormalized ones in terms of the ringed quark
fields as

o

O0.(1) = [()_{1}’,5)?2)()_(3}’,5)?4) + ()?1?’;5)?4)()?37,5)?2)]- (3.4)
Since the tree-level contributions of the flowed and bare

operators are the same,

(for t — 0),

(0+(1))1pilyee = 0. (3.5)

N

<0:|:>]PI|tree =0y, (36)

we can write the small flow-time expansion for O_ (7) as

0.(t) = (1+185(1)) 04 + O(1), (3.7)
where we put the vertex correction as 19F(). To compute
the I$F(#), it is convenient to consider one-particle irre-
ducible vertex correction of O, (1) — O, because, with the
background field method, the vertex correction is propor-
tional to the background part of the operator:

(04(1) = O0s)1p =15 (1)(0) 1y
=15°(1)Z5' 0. ~19°(1)O.. (oneloop).

(3.8)

In the second line of Eq. (3.8), we used the fact that the
vertex correction I§(¢) is O(g3). From these relations,
renormalized operators at small-z are then given by

o

0.(1) = (1 + 17 (1)) (P (1))20. + O(r).  (3.9)
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We now consider renormalized four quark operators in
the MS scheme with the dimensional reduction,

2
OMS :DRED ZMS DRED( ZMs DREDY2 ) (3.10)
where Z%[is;DRED and Z};fls PRED are renormalization factors

for the four quark operator O_. and for the quark field y (x),
respectively. Combining these relations, we obtain the
one-loop expression for the matching coefficient

ZGF—»W;DRED(I) to compute 0]\:‘/:[S;DRED from Oi(l) in the
t — 0 limit:

OMS DRED __ — lim

GF—MS;DRED
HOZOi (t)oi(t)’

(3.11)

- _ 5
Zl\O/IiS ;DRED ( 7MS:DRED

GF—-MS;DRED [\ __ v
Zo (1) T+ 190) (pDRED<t)>' (3.12)

The renormalization factor @PREP(¢)
Eq. (2.58). We calculate 197 (1), Zg> %™, an
in the following subsections.

is given by
d ZI[?//IS;DRED

A. Calculation of I (¢)

Setting all the external momenta to zero, we find that five
diagrams shown in Fig. 2 contribute to (O (1) — O_),p in
the one-loop order. Concrete forms of the diagrams are
given by

(@): ["ds [ rka Vi) rarkyViin) & (Fiera)| (=220 Sy, (Sp(-E)GEE). (13
0): ["as [ 1 ViFrbin) (GrsraViin) & (Fiera)[(2)e S5, (O)SrlO0GH ). (3.14)
o [as [ Vit Vi) (srbin) & (Fiera)|(-222) Sy, ()Sp(OGEE). (315)
2 (a5 [ (s =0ET R V002) (Psrbie) & (Fierz} e 51, (£)Gih(.0:2), (3.16)
) [ds [T T (srbin) = (Fiera) G (s.5:0) (3.17)
where
Ve =y,Te (3.18)

g4

<

>

FIG. 2. One-loop 1PI diagrams for four quark operators with zero external momentum in the gradient flow scheme.
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is the quark-gluon vertex, and the symbol {Fierz} means
the Fierz partner of each original operator, i.e.,

W1 VA4,) (w3 VEy,) £ {Fierz}
= (9 VA (3 VEr) £ (0 VA) (3 V).
(3.19)

with V4 and V® some combinations of Yus T, etc.

1. Contribution of diagrams c, d, and e

We first evaluate the diagrams (c), (d) and (e) of Fig. 2.
The calculation is similar to those for fermion bilinear
operators discussed in Ref. [25]. The main difference
comes from O(e) term called the evanescent operator,
which is a byproduct of the dimensional reduction
scheme [44,45].

The spinor factor of the diagram (c) is calculated as

(y/l}_/pyo‘LT/pYﬂ)aﬂ(yg)y(s = ZD(}/g)(lﬁ(y{;)y(‘i - 4(7&)(1ﬁ(}7g>y5'
(3.20)

The new Dirac structure (75),4(75),5 must be removed

appropriately to achieve the correct physical operator.
Then, we define the corresponding evanescent operator

E [44.45] by

E = (8) 1)y~ 7E)op(7) 0 (321)
= (PR)ap 755 =5 1)ap )5 + (). (3:22)

Because the remnant gamma matrices j, live in the 2e
dimensional space, we consider that the first term of
Eq. (3.22) is O(€) and thus £ itself is O(e). For the diagram
(c) of Fig. 2, we subtract DE from Eq. (3.20) to obtain

(7//4}7/)7/([;77/)}/;4)(1/}(}’([;);/5 = D(Y%)aﬂ(%&)yﬁ' (323)
Note that the definition of evanescent operator links to a
finite renormalization (or subtraction) of four quark oper-
ators because of O(1/¢) UV divergences. Together with its
Fierz partner, O is formed. The spinor factors for other
diagrams can be calculated similarly.

The integrations over the internal momentum can be
evaluated by the formula,

1 . 17P2T1(D/)2-1)
fﬁe 2 _(47[)D/2 F(D/z) s (324)

where I'(x) is the gamma function. We find that
Eqgs. (3.15)—(3.17) are evaluated as

(0): (;—f)%ch{% log(811) + 1}@, (3.25)

2

(d): (fTO)z cp{é + log(8a7) + 1 }Oi, (3.26)

2

. —2g 1 A
(e): (4”)(2) CF{E + log(8xt) + I}Oi.

(3.27)

2. Contribution of diagrams a and b

We now evaluate the diagrams (a) and (b). The color
indices in Egs. (3.13) and (3.14) can be handled using the
relation

1

_75,.,.5,(,) (3.28)

T;l]TZZ = _T<5i16jk —_ dlm(R)

The complicated structure of the spinor indices in
Egs. (3.13) and (3.14) can be simplified using the Fierz
rearrangement,

(M)Al = =3 AP A) 5T, (3.29)

FA = {“’75’7ﬂ’i7/,uYS’6ﬂu}’ (330)

where ¢, = é [V, 7,). Using relations (2.35) and (2.36) of
the dimensional reduction scheme, we find

(a) : (7§7p7y)a/3(7§7p7u)y5

= 4D<y{;)(15(}/§)yﬁ = 4D(y{;)aﬁ<yg)y57 (331)
(b) : (yﬂ?/)yg)a/j (yé7/)yﬂ)y5
=2D(r5)as(r5),5 = 4(75)as(75) 5
= D(15)ap(r5)ys = DE = D(rf)ap(rs) 5 (3.32)

where the evanescent operator defined by Eq. (3.21) is
removed to obtain the second line of Eq. (3.32).

Carrying out the integrations, we obtain the contributions
of the diagrams (a) and (b) given by

g (T
(@) Gy (dim(R)

1 A
F T> { + log(8xt) + I}Oi,
€

(3.33)

(b): (if’)z ( dimT(R) ¥ T> {é + log(81) + 1}Oi.

(3.34)
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3. Result for I1S¥ ()

We now combine the results of Egs. (3.25), (3.26),
(3.27), (3.33), and (3.34), taking into account the fact that
there exist two different diagrams for each of the types (a),
(b), and (c), while four diagrams for each of the types (d)
and (e). Note that, by removing the evanescent operator
defined by Eq. (3.21), the background fields are correctly
combined to form the @i. Our result for the coefficient

ISF () in front of the O is given by

2
0 =629 (

dim(R) FI+ CF)

1
X {E +ye + log(2tu?) + 1}, (3.35)

where we have replaced g by ¢ (u) using Eq. (2.59). From
the definition of ISt given in Eq. (3.7), ISF is independent
of the renormalization scale x. We may choose any value
for u provided that the perturbative expansions are well
converged.

B. MS renormalization factors
ZIII\,/IS;DRED and Zg[S;DRED
+

The last pieces to be calculated are the renormalization
factors for the quark field y(x) and the four quark operator
|

1 . 1 1
WP = / Lot _ pc, / R

p iV

O in the MS scheme with the dimensional reduction. See
Refs. [46,47] for previous efforts to connect four quark
operators in the MS scheme with those in the lattice
scheme. We again set the external momentum to zero,
but introduce a gluon mass A to regularize the infrared
divergences. Then, the gluon propagator G,‘j,’,’ (7) is given by

1
Gﬂf (¢52) = g(z) m5 b5ﬂ,,. (3.36)
A convenient formula in these calculations is
/ S S
o (2)(* +2?)
_ 1 o T(P/2-all(a+1-D)2)
(4m)P/? T(D/2)
(3.37)

The renormalization factor ZF;D RED for the quark field
is calculated via the self-energy. Denoting ¥ = p,y,,
we find

1 1

_ﬁ eip'(x_y)
iy(p—q)” +4

’

1 Vel 1 4 1 .
= [ —|1= c.l-— log| —= — U eir (=)
il gperterevoulz) )]

_ (L[, 2@, [1 N\ N iy
/p&[l‘w CF{ﬁl"g(P)*aHe” }

(3.38)

in the dimensional reduction scheme. In the last line of Eq. (3.38), we have replaced g by ¢ (ji) using Eq. (2.59), where i is
the renormalization scale for the MS scheme. A conventional choice for i is 2 GeV. Thus the quark field renormalization

factor reads

TS 2(f 1
Zyl\//[s,DRED 1+ q (/4) CFE

Gy (3.39)

in the one-loop order of the dimensional reduction scheme.
The renormalization factors ng;DRED for the four quark operators O, are evaluated considering the 1PI vertex

corrections to O_. Diagrams showing what we need to evaluate are given in Fig. 3. The contributions from the three
diagrams are given by

(a>:/f[(li_/lyg?pvzl/,\/2)(@3}/{;71‘/1{71/}\/4):t{Fierz}]SFp(K>SF/1(_£)G2£)(£;A>’ (3.40)
(b): L (01 VT, v50) (Wrsrs 72V i) £ {Fierz}|Sp,(€)Spi(€)Git (£34). (3.41)
(c): /f (1 Vg, r 57,V 0ms) (Warsia) + {Fierz}|Sg, (€)Sp(€) Gy (£34). (3.42)
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g4

FIG. 3.

We again use the Fierz rearrangement adopting the same

evanescent operator defined by Eq. (3.21). We obtain

o 8 )L l) o
(3.43)

o e e (5) o
(3.44)

(c): é%)z CF{E—}/E—i-log(j—Z) n 1}@. (3.45)

Collecting them, we obtain the one-loop 1PI vertex
correction

(0L p = {1 + 2?;}5’;’2) ( dijlfR) 3T+ cp>

1 2 .

The MS renormalization factor in the dimensional reduc-
tion scheme is extracted as

(3.46)

ZW;DRED —1- 2£Z2(ﬁ)
0, =

3T
(47)? <dim(R)

1
$3T+CF)—
€

(3.47)

C. Matching coefficient for four
quark operators O

Combining the results of Eqgs. (2.58), (3.35), (3.39), and
(3.47) for gPRED (1), 19F (1), ZYSPRED gnd ZNSDRED e

find that the matching coefficient for O, is given by

One-loop 1PI diagrams for four quark operators with zero external momentum in the MS scheme.

GF—MS;DRED
Z 0: (1)

ZI(\)TS;DRED ZIV\//IS;DRED 2
YD) (¢DRED<r>>

LW m) (T 1
= o e <dim<R) T)

€

?4:5/;2) {6 <dimT(R) i T) (log (24%) +yp + 1)

+2Cr log432}.

_|_

(3.48)

From Eq. (2.59), we have the tree-level running of the
coupling constant,

e 00 = 24" ) (3.49)

Integrating this equation, we obtain

2= = [1- (%) ] 2

~2
7

=elog <;7) 72°(u) + 0(e?).  (3.50)

We thus find that the one-loop matching coefficient for

O, (1) is given by

GF—MS;DRED
Z 0: (1)

=1 ?475/)12 {6<dimT(R) + T) (log (2t7%) +yp + 1)
+2Cp10g432}, (3.51)

where 2 in the log of Eq. (3.48) is replaced by fi* due to the
contribution from ¢?(u) — ¢>(ji).
Zgi_’MS;DRED (1), we evalu-

ate the MS renormalized four quark operators OI\iAS;D RED in

the dimensional reduction scheme from the corresponding

With the matching coefficient

lattice operators O (¢) at small flow-time ¢,
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Olils ;DRED — 1 ZGF—)MS DRED(t) 0i (l) (352)

Note that the 1/e UV divergences in Egs. (2.58), (3.35),
(3.39), and (3.47) cancel out with each other in the
combination of the matching coefficient Zgi_’MS;DRED(t).
This is expected from the finiteness of the matching

coefficients in the SFrX method: Because both OMS "DRED

and O_i() are finite in the matching relation (3.52),
ZGi*MS;DRED(t) should also be finite. This is explicitly

confirmed by Eq. (3.51).

IV. QUARK BILINEAR OPERATORS

To calculate the kaon bag parameter, we also need the
matching coefficient of the quark bilinear operator in the
denominator of Eq. (1.1). In this study, we consider general
bilinear operators of the form

wily, (4.1)

with I' =1, ys, y,, ir,rs, and o,,. We assume that the
flavors satisfy 1 # 2 to avoid a closed quark loop within the
operator. The calculations in the dimensional regularization
scheme are similar to those given in Sec. III. We thus just
show the final results.

We find that, at small flow-time #, the one-loop 1PI
vertex corrections for the bilinear operators are given by

1 (Ox2(1) FO@n ) (4.2)

— i Tya) i = IF
with
I77(1)
(—6)%CF{%+}’E+log(2fﬂ2)+l}» C=1ys,
=9 (= 3)?:,£)>CF{ +7E+10g(2t/“2)+1}7 C=y,.ir,7s,
(—2)?:,5’;2CF{%+yE+log(2t,u2)—l—l}, I'=o,,

(4.3)

ZMS;DRED Z,II\;IS;DRED

(1 +1GF( 1) 9 P(1)

ZGF—»MS DRED ( )

1+ g P 4 C{3yp + 3log (21

= 1+<»’ W C{log(432)},

4x)?
1+g MCF{ YE—

where we have replaced ¢ by ¢ (u) using Eq. (2.59). The
evanescent operators we adopt are defined by

0, I'=1 , Y5,
4 =
. Yu =Dl L=y
Er=q " "0 . (4.4)
YuVs —1p¥ulss = yurs,
(D-4)o,,. I'=o0,.
Corresponding results at = 0 are given by
W Tya)ip = I DRED(‘// [r), (4.5)
with
IIE;DRED

R A
2

( ) { + IOg <_2) } - 7,4, i}’,ﬁ’s,

1, I'=o0,,

(4.6)

where we have replaced ¢, by ¢(ii) with setting the
renormalization scale of the MS scheme to ji. From the

results of IMSPRED " we obtain the MS renormalization
factors,

(1) 1 _
]—4?47:;26‘}7?, F—ﬂ,]/s,
MS;DRED __ 25 .
TSV I-GRG L Tegeinys 47
L, I'=o0,.
Combining these results as well as that for ¢PRED(r)

given in Eq. (2.58), we obtain the matching coefficients for
the quark bilinear operators 'y,

?)+3+1og(432)}, T'=T.ys,

I'= ylw i}’,,}’5,

log(267*) — 1 +10g(432)}, T =o0,,.
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We confirm that the 1/e divergences in IS5 (7) etc. cancel
out with each other in the combination of the matching

coefficient ZSF~MSDRED (1)

V. SUMMARY AND OUTLOOK

In this paper we computed the matching coefficient
Zgi ~MS:DRED (1) for four quark operators O, defined by
Eq. (3.1), and ZSF"MSDRED (1) for quark bilinear operators
w Iy, defined by Eq. (4.1), adopting the dimensional
reduction scheme. Our results for the one-loop matching
coefficients are given by Eqgs. (3.51) and (4.8), respectively.
Combining these results, we also obtain the matching
coefficient for the kaon bag parameter By defined by
Eq. (1.1),

GF—MS;DRED
Zy~ (1)

GF—MS;DRED
Zo,~ (1)

"~/ >GF—=MS;DRED / \\2
(Zyys (1))

7% (u) -3N +3
(4n)> N

=1+ (log (2t3*) +yg + 1), (5.1)

where N =3 for QCD. We are planning to perform
simulations to study the kaon bag parameter by the

SFrX method, adopting nonperturbatively O(a)-improved
dynamical Wilson quarks [48].

These matching coefficients are important in evaluating
the MS renormalized operators in the dimensional reduc-
tion scheme at the renormalization scale ji, from corre-
sponding lattice operators measured at small flow-time ¢ of
the gradient flow. A conventional choice for i is 2 GeV. On
the other hand, we are free to choose the renormalization
scale u for the matching of MS and gradient flow schemes,
provided that the perturbative expansions are well con-
verged. Some conventional choices for y are yu, = 1//8¢
[14] and py = 1/+/2e"Et [32], which are natural scales for
flowed operators because the smearing range is ~/8¢ by
the gradient flow. In practice, however, because the
perturbative expansions are truncated, the quality of the
results may be affected by the choice of u. Recently, we
found that an optimal choice of y can improve the reliability
and applicability of the SFrX method [33]. Such improve-
ment may be important in evaluating complicated oper-
ators, such as O for the kaon bag parameter.
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