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We report the results of a lattice quantum chromodynamics calculation of FK=Fπ using Möbius
domain-wall fermions computed on gradient-flowed Nf ¼ 2þ 1þ 1 highly improved staggered quark
(HISQ) ensembles. The calculation is performed with five values of the pion mass ranging from
130≲mπ ≲ 400 MeV, four lattice spacings of a ∼ 0.15, 0.12, 0.09 and 0.06 fm and multiple values of
the lattice volume. The interpolation/extrapolation to the physical pion and kaon mass point, the continuum,
and infinite volume limits are performed with a variety of different extrapolation functions utilizing both the
relevant mixed-action effective field theory expressions as well as discretization-enhanced continuum chiral
perturbation theory formulas.We find that thea ∼ 0.06 fm ensemble is helpful, but not necessary to achieve a
subpercent determination of FK=Fπ . We also include an estimate of the strong isospin breaking corrections
and arrive at a final result ofFK̂þ=Fπ̂þ ¼ 1.1942ð45Þwith all sources of statistical and systematic uncertainty
included. This is consistent with the Flavour Lattice Averaging Group average value, providing an important
benchmark for our lattice action. Combining our result with experimentalmeasurements of the pion and kaon
leptonic decays leads to a determination of jVusj=jVudj ¼ 0.2311ð10Þ.
DOI: 10.1103/PhysRevD.102.034507

I. INTRODUCTION

Leptonic decays of the charged pions and kaons provide
a means for probing flavor-changing interactions of the
Standard Model (SM). In particular, the SM predicts that

the Cabibbo-Kobayashi-Maskawa (CKM) matrix is unitary,
providing strict constraints on various sums of the matrix
elements. Thus, a violation of these constraints is indicative
of new, beyond the SM physics. There is a substantial
flavor physics program dedicated to searching indirectly for
potential violations.
CKM matrix elements may be determined through a

combination of experimental leptonic decay widths and
theoretical determinations of the meson decay constants.
For example, the ratio of the kaon and pion decay
constants, FK , Fπ , respectively, may be related to the ratio
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of light and strange CKM matrix elements jVusj, jVudj
via [1,2],

ΓðK → lν̄lÞ
Γðπ → lν̄lÞ

¼ jVusj2
jVudj2

F2
K

F2
π

mK

mπ

ð1 − m2
l

m2
K
Þ2

ð1 − m2
l

m2
π
Þ2

× ½1þ δEM þ δSUð2Þ�: ð1:1Þ

In this expression, l ¼ e, μ, the one-loop radiative quantum
electrodynamics (QED) correction is δEM [3,4] and δSUð2Þ is
the strong isospin breaking correction that relates F2

K=F
2
π

in the isospin limit to F2
Kþ=F2

πþ that includes md −mu

corrections [5]

F2
K̂þ

F2
π̂þ

¼ F2
K

F2
π
½1þ δSUð2Þ�:

Using lattice quantum chromodynamics (QCD) calcu-
lations of the ratio of decay constants in the above
expression yields one of the most precise determinations
of jVusj=jVudj [6]. Combining the results obtained through
lattice QCD with independent determinations of the CKM
matrix elements, such as semileptonic meson decays,
provides a means for testing the unitarity of the CKM
matrix and obtaining signals of new physics.
FK=Fπ is a so-called gold-plated quantity [7] for

calculating within lattice QCD. This dimensionless ratio
skirts the issue of determining a physical scale for the
lattices, and gives precise results due to the correlated
statistical fluctuations between numerator and denomina-
tor, as well as the lack of signal-to-noise issues associated
with calculations involving, for instance, nucleons. Lattice
QCD calculations of FK=Fπ are now a mature endeavor,
with state-of-the-art calculations determining this quantity
consistently with subpercent precision. The most recent
review by the Flavour Lattice Averaging Group (FLAG),
which performs global averages of quantities that have
been calculated and extrapolated to the physical point by
multiple groups, quotes a value of

FK̂þ

Fπþ
¼ 1.1932ð19Þ ð1:2Þ

for Nf ¼ 2þ 1þ 1 dynamical quark flavors, including
strong-isospin breaking corrections [8].
This average includes calculations derived from two

different lattice actions, one [9] with twisted-mass fermions
[10,11] and the other two [12,13] with the highly improved
staggered quark (HISQ) action [14]. The results obtained
using the HISQ action are approximately seven times more
precise than those from twisted mass and so the universality
of the continuum limit for FK=Fπ from Nf ¼ 2þ 1þ 1
results has not been tested with precision yet: in the
continuum limit, all lattice actions should reduce to a

single universal limit, that of SM QCD, provided all
systematics are properly accounted for. Thus, in addition
to lending more confidence to its global average, the
calculation of a gold-plated quantity also allows for precise
testing of new lattice actions, and the demonstration of
control over systematic uncertainties for a given action.
FLAG also reports averages for NF ¼ 2þ 1, FK�=Fπ� ¼
1.1917ð37Þ from Refs. [15–20] and for Nf ¼ 2,
FK�=Fπ� ¼ 1.1205ð18Þ from Refs. [21], though we restrict
our direct comparisons to the Nf ¼ 2þ 1þ 1 results just
for simplicity.
In this work, we report a new determination of FK=Fπ

calculated with Möbius domain-wall fermions computed
on gradient-flowed Nf ¼ 2þ 1þ 1 HISQ ensembles [22].
Our final result in the isospin symmetric limit, Sec. IV D,
including a breakdown in terms of statistical (s), pion
and kaon mass extrapolation (χ), continuum limit (a),
infinite volume limit (V), physical point (phys) and model
selection (M) uncertainties, is

FK

Fπ
¼ 1.1964ð32Þsð12Þχð20Það01ÞVð15Þphysð12ÞM

¼ 1.1964ð44Þ: ð1:3Þ

With our estimated strong isospin breaking corrections,
Sec. IV E, our result including md −mu effects is

FK̂þ

Fπ̂þ
¼ 1.1942ð44Þð07Þiso

¼ 1.1942ð45Þ; ð1:4Þ

where the first uncertainty in the first line is the combi-
nation of those in Eq. (1.3).
In the following sections we will discuss details of our

lattice calculation, including a brief synopsis of the action
and ensembles used, as well as our strategy for extracting
the relevant quantities from correlation functions. We will
then detail our procedure for extrapolating to the physical
point via combined continuum, infinite volume, and
physical pion and kaon mass limits and the resulting
uncertainty breakdown. We discuss the impact of the a ∼
0.06 fm ensemble on our analysis, the convergence of the
SUð3Þ-flavor chiral expansion, and the estimate of the
strong isospin breaking corrections. We conclude with an
estimate of the impact our result has on improving the
extraction of jVusj=jVudj and an outlook.

II. DETAILS OF THE LATTICE CALCULATION

A. MDWF on gradient-flowed HISQ

There are many choices for discretizing QCD, with each
choice being commonly referred to as a lattice action.
These actions correspond to different UV theories that
share a common low-energy theory, QCD. Sufficiently
close to the continuum limit, the discrete lattice actions can
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be expanded as a series of local operators known as the
Symanzik expansion [23,24], the low-energy effective field
theory (EFT) for the discrete lattice action. The Symanzik
EFT contains a series of operators having higher dimension
than those in QCD, multiplied by appropriate powers of the
lattice spacing, a. For all lattice actions, the only operators
of mass-dimension ≤ 4 are those of QCD, such that the
explicit effects from the various discretizations are encoded
only in higher-dimensional operators which are all irrel-
evant in the renormalization sense. There is a universality
of the continuum limit, a → 0, in that all lattice actions, if
calculated using sufficiently small lattice spacing, will
recover the target theory of QCD, provided there are no
surprises from nonperturbative effects.
Performing lattice QCD (LQCD) calculations with differ-

ent actions is therefore valuable to test this universality, to
help ensure a given action is not accidentally in a different
phase of QCD, and to protect against unknown systematic
uncertainties arising from a particular calculation with a
particular action. In this work, we use a mixed-action [25] in
which the discretization scheme for the valence quarks is the
Möbius domain-wall fermion (MDWF) action [26–28]
while the discretization scheme for the sea quarks is the
highly improved staggered quark action [14]. Before solving
the MDWF propagators, we apply a gradient-flow [29–31]
smoothing algorithm [32,33] to the gluons to dampen UV
fluctuations, which also significantly improves the chiral
symmetry properties of theMDWFaction [22] (for example,

the residual chiral symmetry breaking scale of domain-wall
fermions mres is held to less than 10% of ml for reasonable
values ofL5 andM5, see Table I). Ourmotivation to perform
this calculation is to improve our understanding of FK=Fπ

and to test the MDWF on gradient-flowed HISQ action we
have used to compute the π− → πþ neutrinoless double beta
decay matrix elements arising from prospective higher-
dimension lepton-number-violating physics [34], and the
axial coupling of the nucleon gA [35,36]. As there is an
otherwise straightforward path to determining gA to sub-
percent precision with pre-exascale computing such as
Summit at Oak Ridge Leadership Computing Facility
(OLCF) and Lassen at Lawrence Livermore National
Laboratory (LLNL) [37], it is important to ensure this action
is consistent with known results at this level of precision.
There are several motivations for choosing this mixed-

action (MA) scheme [25,41]. The MILC Collaboration
provides their gauge configurations to any interested
party and we have made heavy use of them. They have
generated the configurations covering a large parameter
space allowing one to fully control the physical pion mass,
infinite volume and continuum limit extrapolations [42,43].
The good chiral symmetry properties of the domain wall
(DW) action [44–46] significantly suppress sources of
chiral symmetry breaking from any sea-quark action,
motivating the use of this mixed-action setup. While this
action is not unitary at finite lattice spacing, we have tuned
the valence quark masses such that the valence pion mass

TABLE I. Input parameters for our lattice action. The abbreviated ensemble name [38] indicates the approximate lattice spacing in fm
and pion mass in MeV. The S, L, XL which come after an ensemble name denote a relatively small, large and extra-large volume with
respect to mπL ¼ 4.

Ensemble β Ncfg Volume aml ams amc L5=a aM5 b5; c5 amval
l amres

l × 104 amval
s amres

s × 104 σ N Nsrc

a15m400a 5.80 1000 163×48 0.0217 0.065 0.838 12 1.3 1.50, 0.50 0.0278 9.365(87) 0.0902 6.937(63) 3.0 30 8
a15m350a 5.80 1000 163×48 0.0166 0.065 0.838 12 1.3 1.50, 0.50 0.0206 9.416(90) 0.0902 6.688(62) 3.0 30 16
a15m310 5.80 1000 163×48 0.013 0.065 0.838 12 1.3 1.50, 0.50 0.0158 9.563(67) 0.0902 6.640(44) 4.2 45 24
a15m220 5.80 1000 243×48 0.0064 0.064 0.828 16 1.3 1.75, 0.75 0.00712 5.736(38) 0.0902 3.890(25) 4.5 60 16
a15m135XLa 5.80 1000 483×64 0.002426 0.06730 0.8447 24 1.3 2.25, 1.25 0.00237 2.706(08) 0.0945 1.860(09) 3.0 30 32

a12m400a 6.00 1000 243×64 0.0170 0.0509 0.635 8 1.2 1.25, 0.25 0.0219 7.337(50) 0.0693 5.129(35) 3.0 30 8
a12m350a 6.00 1000 243×64 0.0130 0.0509 0.635 8 1.2 1.25, 0.25 0.0166 7.579(52) 0.0693 5.062(34) 3.0 30 8
a12m310 6.00 1053 243×64 0.0102 0.0509 0.635 8 1.2 1.25, 0.25 0.0126 7.702(52) 0.0693 4.950(35) 3.0 30 8
a12m220S 6.00 1000 244×64 0.00507 0.0507 0.628 12 1.2 1.50, 0.50 0.00600 3.990(42) 0.0693 2.390(24) 6.0 90 4
a12m220 6.00 1000 323×64 0.00507 0.0507 0.628 12 1.2 1.50, 0.50 0.00600 4.050(20) 0.0693 2.364(15) 6.0 90 4
a12m220L 6.00 1000 403×64 0.00507 0.0507 0.628 12 1.2 1.50, 0.50 0.00600 4.040(26) 0.0693 2.361(19) 6.0 90 4
a12m130 6.00 1000 483×64 0.00184 0.0507 0.628 20 1.2 2.00, 1.00 0.00195 1.642(09) 0.0693 0.945(08) 3.0 30 32

a09m400a 6.30 1201 323×64 0.0124 0.037 0.44 6 1.1 1.25, 0.25 0.0160 2.532(23) 0.0491 1.957(17) 3.5 45 8
a09m350a 6.30 1201 323×64 0.00945 0.037 0.44 6 1.1 1.25, 0.25 0.0121 2.560(24) 0.0491 1.899(16) 3.5 45 8
a09m310 6.30 780 323×96 0.0074 0.037 0.44 6 1.1 1.25, 0.25 0.00951 2.694(26) 0.0491 1.912(15) 6.7 167 8
a09m220 6.30 1001 483×96 0.00363 0.0363 0.43 8 1.1 1.25, 0.25 0.00449 1.659(13) 0.0491 0.834(07) 8.0 150 6
a09m135a 6.30 1010 643×96 0.001326 0.03636 0.4313 12 1.1 1.50, 0.50 0.00152 0.938(06) 0.04735 0.418(04) 3.5 45 16

a06m310a 6.72 1000 723×96 0.0048 0.024 0.286 6 1.0 1.25, 0.25 0.00617 0.225(03) 0.0309 0.165(02) 3.5 45 8

aAdditional ensembles generated by CalLat using the MILC code. The m350 and m400 ensembles were made on the Vulcan
supercomputer at LLNL while the a15m135XL, a09m135, and a06m310L ensembles were made on the Sierra and Lassen
supercomputers at LLNL and the Summit supercomputer at OLCF using QUDA[39,40]. These configurations are available to any
interested party upon request, and will be available for easy anonymous downloading—hopefully soon.
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matches the taste-5 HISQ pion mass within a few percent,
so as the continuum limit is taken, we recover a unitary
theory.
EFT can be used to understand the salient features of

such Mixed-action LQCD (MALQCD) calculations. Chiral
perturbation theory ( χPT) [47–49] can be extended to
incorporate discretization effects into the analytic formula
describing the quark-mass dependence of various hadronic
quantities [50]. The MA EFT [51] for DW valence
fermions on dynamical rooted staggered fermions is well
developed [52–59]. The use of valence fermions which
respect chiral symmetry leads to a universal form of the MA
EFT extrapolation formulas at next-to-leading order (NLO)
in the joint quark mass and lattice spacing expansions
[55,58], which follows from the suppression of chiral
symmetry breaking discretization effects.

B. Correlation function construction and analysis

The correlation function construction and analysis
follows closely the strategy of Refs. [22] and [35,36].
Here we summarize the relevant details for this work.
The pseudoscalar decay constants F can be obtained

from standard two-point correlation functions by making
use of the 5D Ward-Takahashi identity [60,61]

Fq1q2 ¼ zq1q20p
mq1 þmq1

res þmq2 þmq2
res

ðEq1q2
0 Þ3=2 ; ð2:1Þ

where q1 and q2 denote the quark content of the meson with
lattice inputmassesmq1 andmq2 respectively. The point-sink
ground-state overlap-factor z0p and ground-state energy E0

are extracted from a two-point correlation function analysis
with the model

Cq1q2
ðssÞpsðtÞ ¼

X
n

zq1q2nðsÞpz
q1q2†
ns ðe−Eq1q2

n t þ e−E
q1q2
n ðT−tÞÞ; ð2:2Þ

where n encompasses in general an infinite tower of states,
t is the source-sink time separation, T is the temporal box
size and we have both smeared (s) and point (p) correlation
functions which both come from smeared sources. From
Ref. [22], we show that gradient-flow smearing leads to the
suppression of the domain-wall fermion oscillating mode
(which also decouples asM5 → 1, at least in free-field [62]),
and therefore this mode is not included in the correlator fit
model. Finally, the residual chiral symmetry breakingmres is
calculated by the ratio of two-point correlation functions
evaluated at the midpoint of the fifth dimension L5=2 and
bounded on the domain wall [28]

mresðtÞ ¼
P

xhπðt;x; L5=2Þπð0; 0; 0ÞiP
xhπðt;x; 0Þπð0; 0; 0Þi

; ð2:3Þ

where πðt;x; sÞ≡ q̄ðt;x; wÞγ5qðt;x; wÞ is the pseudo-
scalar interpolating operator at time t, space x and fifth

dimension s. We extract mres by fitting Eq. (2.3) to a
constant.

1. Analysis strategy

For all two-point correlation function parameters
(MDWF and mixed MDWF-HISQ), we infer posterior
parameter distributions in a Bayesian framework using a
4-state model which simultaneously describes the smeared-
and point-sink two-point correlation functions (the source
is always smeared). The joint posterior distribution is
approximated by a multivariate normal distribution (we
later refer to this procedure as fitting). The two-point
correlation functions are folded in time to double the
statistics. The analysis of the pion, kaon, s̄γ5s, and mixed
MDWF-HISQ mesons are performed independently, with
correlations accounted for under bootstrap resampling.
We analyze data of source-sink time separations between

0.72 and 3.6 fm for all 0.09 and 0.12 fm lattice spacing two-
point correlation functions, and 0.75 to 3.6 fm for all
0.15 fm lattice spacing two-point correlation functions.
We choose normally distributed priors for the ground-

state energy and all overlap factors, and log-normal dis-
tributions for excited-state energy priors. The ground-state
energy and overlap factors are motivated by the plateau
values of the effective masses and scaled correlation
function, and a prior width of 10% of the central value.
The excited-state energy splittings are set to the value of
two pion masses with a width allowing for fluctuations
down to one pion mass within one standard deviation. The
excited-state overlap factors are set to zero, with a width set
to the mean value of the ground-state overlap factor.
Additionally, we fit a constant to the correlation func-

tions in Eq. (2.3). For the 0.09 to 0.12 fm ensembles, we
analyze source-sink separations that are greater than
0.72 fm. For the 0.12 fm ensemble, the minimum
source-sink separation is 0.75 fm. The prior distribution
for the residual chiral symmetry breaking parameter is set
to the observed value per ensemble, with a width that is
100% of the central value. The uncertainty is propagated
with bootstrap resampling.
We emphasize that all input fit parameters (i.e., number

of states, fit region, priors) are chosen to have the same
values in physical units for all observables, to the extent
that a discretized lattice allows. Additionally, we note that
the extracted ground-state observables from these correla-
tion functions are insensitive to variations around the
chosen set of input fit parameters. Figure 1 shows the
stability of the determination of E0 for the pion and kaon on
the a12m130 ensemble versus tmin and the number of states.

III. EXTRAPOLATION FUNCTIONS

We now turn to the extrapolation/interpolation to the
physical point. We have three ensembles at the physical
pion mass with relatively high statistics and precise
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determinations of FK=Fπ (a15m135XL, a12m130, and
a09m135, see Table II) such that the physical quark mass
extrapolation is an interpolation. Nevertheless, we explore
how the ensembles with heavier pion masses impact the
physical point prediction and we use our dataset to explore
uncertainty arising in the SUð3Þ-flavor chiral expansion.
We begin by assuming a canonical power-counting

scheme for our MA LQCD action [52] in which Oðm2
πÞ ∼

Oðm2
KÞ ∼ Oða2Λ4

QCDÞ are all treated as small scales. For
the quark mass expansion, the dimensionless small
parameters ðmP=4πFÞ2 naturally emerge from χPT where
P ∈ fπ; K; ηg. For the discretization corrections, while
aΛ2

QCD is often used to estimate the relative size of
corrections compared to typical hadronic mass scales, it
is a bit unnatural to use this in a low-energy EFTas ΛQCD is
a QCD scale that does not emerge in χPT.
We chose to use another hadronic scale to form a

dimensionless parameter with a, that being the gradient
flow scale w0 ∼ 0.17 fm [63]. This quantity is easy to
compute, has mild quark mass dependence, and the value is
roughly w−1

0 ≃ 4πFπ. We then define the dimensionless
small parameters for controlling the expansion to be

ϵ2P ¼
�
mP

Λχ

�
2

¼
�
mP

4πF

�
2

; ϵ2a ¼
�

a
2w0

�
2

: ð3:1Þ

We leave F ambiguous, as we will explore taking F ¼ Fπ ,
F ¼ FK and F2 ¼ FπFK in our definition of Λχ . This
particular choice of ϵa is chosen such that the range of

TABLE II. Extracted masses and decay constants from correlation functions. An HDF5 file is provided with this publication which
includes the resulting bootstrap samples which can be used to construct the correlated uncertainties. The small parameters in this table
are defined as ϵπ;K ¼ mπ;K=ð4πFπÞ, ϵa ¼ a=ð2w0Þ. The normalization of ϵa is chosen such that as a small parameter, it spans the range
of ϵ2π ≲ ϵ2a ≲ ϵ2K .

Ensemble amπ amK ϵ2π ϵ2K mπL ϵ2a αS aFπ aFK FK=Fπ

a15m400 0.30281(31) 0.42723(27) 0.09216(33) 0.18344(62) 4.85 0.19378(13) 0.58801 0.07938(12) 0.08504(09) 1.0713(09)
a15m350 0.26473(30) 0.41369(28) 0.07505(28) 0.18326(60) 4.24 0.19378(13) 0.58801 0.07690(11) 0.08370(09) 1.0884(09)
a15m310 0.23601(29) 0.40457(25) 0.06223(17) 0.18285(48) 3.78 0.19378(13) 0.58801 0.07529(09) 0.08293(09) 1.1015(13)
a15m220 0.16533(19) 0.38690(21) 0.03269(11) 0.17901(48) 3.97 0.19378(13) 0.58801 0.07277(08) 0.08196(10) 1.1263(15)
a15m135XL 0.10293(07) 0.38755(14) 0.01319(05) 0.18704(59) 4.94 0.19378(13) 0.58801 0.07131(11) 0.08276(10) 1.1606(18)

a12m400 0.24347(16) 0.34341(14) 0.08889(30) 0.17685(63) 5.84 0.12376(18) 0.53796 0.06498(11) 0.06979(07) 1.0739(17)
a12m350 0.21397(20) 0.33306(16) 0.07307(37) 0.17704(83) 5.14 0.12376(18) 0.53796 0.06299(14) 0.06851(07) 1.0876(27)
a12m310 0.18870(17) 0.32414(21) 0.05984(25) 0.17657(69) 4.53 0.12376(18) 0.53796 0.06138(11) 0.06773(10) 1.1033(21)
a12m220S 0.13557(32) 0.31043(22) 0.03384(19) 0.1774(10) 3.25 0.12376(18) 0.53796 0.05865(16) 0.06673(11) 1.1378(27)
a12m220L 0.13402(15) 0.31021(19) 0.03289(15) 0.17621(79) 5.36 0.12376(18) 0.53796 0.05881(13) 0.06631(17) 1.1276(29)
a12m220 0.13428(17) 0.31001(17) 0.03314(15) 0.17666(81) 4.30 0.12376(18) 0.53796 0.05870(13) 0.06636(11) 1.1306(22)
a12m130 0.08126(16) 0.30215(11) 0.01287(08) 0.17788(71) 3.90 0.12376(18) 0.53796 0.05701(11) 0.06624(08) 1.1619(21)

a09m400 0.18116(15) 0.25523(13) 0.08883(32) 0.17633(59) 5.80 0.06515(08) 0.43356 0.04837(08) 0.05229(07) 1.0810(09)
a09m350 0.15785(20) 0.24696(12) 0.07256(32) 0.17761(68) 5.05 0.06515(08) 0.43356 0.04663(08) 0.05127(07) 1.0994(10)
a09m310 0.14072(12) 0.24106(14) 0.06051(22) 0.17757(59) 4.50 0.06515(08) 0.43356 0.04552(07) 0.05053(08) 1.1101(16)
a09m220 0.09790(06) 0.22870(09) 0.03307(14) 0.18045(70) 4.70 0.06515(08) 0.43356 0.04284(08) 0.04899(07) 1.1434(18)
a09m135 0.05946(06) 0.21850(08) 0.01346(08) 0.18175(91) 3.81 0.06515(08) 0.43356 0.04079(10) 0.04804(06) 1.1778(22)

a06m310L 0.09456(06) 0.16205(07) 0.06141(35) 0.1803(10) 6.81 0.02726(03) 0.29985 0.03037(08) 0.03403(07) 1.1205(17)

FIG. 1. Stability of the ground-state mass determination of the
pion (top) and kaon (bottom) on the a12m130 ensemble. The x
axis is the value of tmin used in the analysis and the resulting E0

for a given tmin and number of states in the analysis is plotted. The
68% confidence interval of the chosen fit (black) is plotted as a
horizontal band to guide the eye.
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values of this small parameter roughly corresponds to ϵ2π ≲
ϵ2a ≲ ϵ2K as the lattice spacing is varied, similar to the
variation of ϵ2π itself over the range of pion masses used, see
Table II. As we will discuss in Sec. IV, this choice of ϵa
seems natural as determined by the size of the discretization
low-energy constants (LECs) which are found in the
analysis. Note, this differs from the choice used in our
analysis of gA [35,36].
With this power-counting scheme, the different orders in

the expansion are defined to be

NLO∶Oðϵ2PÞ ∼ Oðϵ2aÞ;
N2LO∶Oðϵ4PÞ ∼ Oðϵ2Pϵ2aÞ ∼ Oðϵ4aÞ;
N3LO∶Oðϵ6PÞ ∼ Oðϵ4Pϵ2aÞ ∼ Oðϵ2Pϵ4aÞ ∼ Oðϵ6aÞ: ð3:2Þ

Even at finite lattice spacing, FK ¼ Fπ in the SUð3Þ flavor
symmetry limit, also known as the SUð3Þ vector limit
SUð3ÞV , and so there cannot be a pure Oðϵ2aÞ correction as it
must accompany terms which vanish in the SUð3ÞV limit,
such as ϵ2K − ϵ2π . Therefore, at NLO, there cannot be any
counterterms proportional to ϵ2a and the only discretization
effects that can appear at NLO come through modification
of the various meson masses that appear in the MA EFT.
We find that the precision of our results requires

including terms higher than NLO, and we have to work
at a hybrid N3LO order to obtain a good description of our
data. Therefore, we will begin with a discussion of the full
N2LO χPT theory expression for FK=Fπ in the continuum
limit [64–67].

A. N2LO χPT

The analytic expression for FK=Fπ up to N2LO is [67]

FK

Fπ
¼ 1þ 5

8
lπ −

1

4
lk −

3

8
lη þ 4L̄5ðϵ2K − ϵ2πÞ

þ ϵ4KFF

�
m2

π

m2
K

�
þ K̂r

1λ
2
π þ K̂r

2λπλK

þ K̂r
3λπλη þ K̂r

4λ
2
K þ K̂r

5λKλη þ K̂r
6λ

2
η

þ Ĉr
1λπ þ Ĉr

2λK þ Ĉr
3λη þ Ĉr

4: ð3:3Þ

The first line is the LO (1) plus NLO terms, while the next
three lines are the N2LO terms. Several nonunique choices
were made to arrive at this formula. Prior to discussing
these choices, we first define the parameters appearing in
Eq. (3.3). First, the small parameters were all defined as

ϵ2P ¼
�

mP

4πFπðmPÞ
�

2

; ð3:4Þ

where FπðmPÞ is the “on-shell” pion decay constant at the
masses mP. The quantities lP are defined as

lP ¼ ϵ2P ln

�
m2

P

μ2

�
; ð3:5Þ

where μ is a renormalization scale. The coefficient L̄5 ¼
ð4πÞ2Lr

5ðμÞ is one of the regulated Gasser-Leutwyler LECs
[68] which has a renormalization scale dependence that
exactly cancels against the dependence arising from the
logarithms appearing at the same order. In the following,
we define all of the Gasser-Leutwyler LECs with the extra
ð4πÞ2 for convenience:

L̄i ≡ ð4πÞ2Lr
i ðμÞ: ð3:6Þ

The η mass has been defined through the Gell-Mann–
Okubo (GMO) relation

m2
η ≡ 4

3
m2

K −
1

3
m2

π; ð3:7Þ

with the corrections to this relation being propagated into
Eq. (3.3) for consistency at N2LO. The logs are

λP ≡ ln

�
m2

P

μ2

�
: ð3:8Þ

The ln2 terms are encapsulated in the FFðxÞ function,
defined in Eqs. (8-17) of Ref. [67],1 and the K̂r

iλPλP0 terms
whose coefficients are given by2

K̂r
1 ¼

11

24
ϵ2πϵ

2
K −

131

192
ϵ4π; K̂r

2 ¼ −
41

96
ϵ2πϵ

2
K −

3

32
ϵ4π;

K̂r
3 ¼

13

24
ϵ2πϵ

2
K þ 59

96
ϵ4π; K̂r

4 ¼
17

36
ϵ4K þ 7

144
ϵ2πϵ

2
K;

K̂r
5 ¼ −

163

144
ϵ4K −

67

288
ϵ2πϵ

2
K þ 3

32
ϵ4π;

K̂r
6 ¼

241

288
ϵ4K −

13

72
ϵ2πϵ

2
K −

61

192
ϵ4π: ð3:9Þ

The single log coefficients Ĉr
1−3 are combinations of the

NLO Gasser-Leutwyler coefficients

Ĉr
i ¼ cππi ϵ4π þ cKπi ϵ2Kϵ

2
π þ cKKi ϵ4K; ð3:10Þ

where

1They also provide an approximate formula which is easy to
implement, but our numerical results are sufficiently precise to
require the exact expression. To implement this function in our
analysis, we have modified an interface C++ file provided by
Bijnens to CHIRON [69], the package for two-loop χPT functions.
We have provided a PYTHON interface as well so that the function
can be called from our main analysis code, which is provided
with this article.

2We correct a typographical error in the Kr
6 term presented

in Ref. [67]: a simple power-counting reveals the ξ2K ¼ ϵ4K
accompanying this term should not be there.
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cππ1 ¼ −
113

72
− 2ð2L̄1 þ 5L̄2Þ −

13

2
L̄3 þ

21

2
L̄5;

cKπ1 ¼ −
7

9
−
11

2
L̄5;

cKK1 ¼ cππ2 ¼ 0;

cKπ2 ¼ 209

144
þ 3L̄5;

cKK2 ¼ 53

96
þ 2ð2L̄1 þ 5L̄2Þ þ 5L̄3 − 5L̄5;

cππ3 ¼ 19

288
þ 1

6
L̄3 þ

11

6
L̄5 − 8ð2L̄7 þ L̄8Þ;

cKπ3 ¼ −
4

9
−
4

3
L̄3 −

25

6
L̄5 þ 16ð2L̄7 þ L̄8Þ;

cKK3 ¼ 13

18
þ 8

3
L̄3 −

2

3
L̄5 − 8ð2L̄7 þ L̄8Þ: ð3:11Þ

Finally, Ĉr
4 is a combination of these Lr

i coefficients as well
as counterterms appearing at N2LO. At N2LO, only two
counterterm structures can appear due to the SUð3ÞV
constraints:

Ĉr
4 ¼ ðϵ2K − ϵ2πÞ½ðA4

K þ L4
KÞϵ2K þ ðA4

π þ L4
πÞϵ2π� ð3:12Þ

which are linear combinations of the N2LO counterterms

A4
K ¼ 16ð4πÞ4ðCr

14 þ Cr
15Þ;

A4
π ¼ 8ð4πÞ4ðCr

15 þ 2Cr
17Þ; ð3:13Þ

and contributions from the Gasser-Leutwyler LECs (Eq. 7
of Ref. [67])

L4
K ¼ 8L̄5ð8ðL̄4 − 2L̄6Þ þ 3L̄5 − 8L̄8Þ

− 2L̄1 − L̄2 −
1

18
L̄3 þ

4

3
L̄5 − 8ð2L̄7 þ L̄8Þ;

L4
π ¼ 8L̄5ð4ðL̄4 − 2L̄6Þ þ 5L̄5 − 8L̄8Þ

− 2L̄1 − L̄2 −
5

18
L̄3 −

4

3
L̄5 þ 8ð2L̄7 þ L̄8Þ: ð3:14Þ

There were several nonunique choices that went into the
determination of Eq. (3.3). When working with the full
N2LO χPT expression, the different choices one can make
result in different N3LO or higher corrections and exploring
these different choices in the analysis will expose sensi-
tivity to higher-order contributions that are not explicitly
included. The first choice we discuss is the Taylor expan-
sion of the ratio of FK=Fπ

FK

Fπ
¼ 1þ δFNLO

K þ δFN2LO
K þ � � �

1þ δFNLO
π þ δFN2LO

π þ � � �
¼ 1þ δFNLO

K−π þ δFN2LO
K−π

þ ðδFNLO
π Þ2 − δFNLO

π δFNLO
K þ � � � ; ð3:15Þ

where the � � � represent higher order terms in the expansion
and δFN2LO

K−π ¼ δFN2LO
K − δFN2LO

π . Equation (3.3) has been
derived from this standard Taylor-expanded form with the
choices mentioned above: the use of the on-shell renor-
malized value of F → Fπ and the definition of the η mass
through the GMO relation. The NLO expressions are the
standard ones [68],

δFNLO
K ¼ −

3

8
lπ −

3

4
lK −

3

8
lη þ 4L̄5ϵ

2
K

þ 4L̄4ðϵ2π þ 2ϵ2KÞ;

δFNLO
π ¼ −lπ −

1

2
lK þ 4L̄5ϵ

2
π þ 4L̄4ðϵ2π þ 2ϵ2KÞ;

δFNLO
K−π ¼ 5

8
lπ −

1

4
lK −

3

8
lη þ 4L̄5ðϵ2K − ϵ2πÞ: ð3:16Þ

The δFN2LO
P terms have been determined in Ref. [64] and

cast into analytic forms in Refs. [65,66]. The NLO terms
are of Oð20%Þ and so Taylor expanding this ratio leads to
sizable corrections from the ðδFNLO

π Þ2 − δFNLO
π δFNLO

K con-
tributions. Utilizing the full ratio expression could in
principle lead to a noticeable difference in the analysis
(a different determination of the values of the LECs for
example). Rather than implementing the full δFN2LO

P
expressions for kaon and pion, we explore this convergence
by instead just resumming the NLO terms which will
dominate the potential differences in higher-order correc-
tions. A consistent expression at N2LO is

FK

Fπ
½ð3.3Þ� ¼ 1þ δFNLO

K

1þ δFNLO
π

þ δFN2LOþ δN
2LO

ratio þ� � � ; ð3:17Þ

where δFN2LO is the full N2LO expression in Eq. (3.15)

δFN2LO ¼ δFN2LO
K−π þ ðδFNLO

π Þ2 − δFNLO
π δFNLO

K ; ð3:18Þ

and the ratio correction is given by

δN
2LO

ratio ¼ δFNLO
π δFNLO

K − ðδFNLO
π Þ2: ð3:19Þ

Another choice we explore is the use of F → Fπ in the
definition of the small parameters. Such a choice is very
convenient as it allows one to express the small parameters
entirely in terms of observables one can determine in the
lattice calculation (unlike the bare parameters, such as
χPT’s F0 and Bmq, which must be determined through
extrapolation analysis). Equally valid, one could have

FK=Fπ FROM MÖBIUS DOMAIN-WALL … PHYS. REV. D 102, 034507 (2020)

034507-7



chosen F → FK or F2 → FπFK. Each choice induces
explicit corrections one must account for at N2LO to have
a consistent expression at this order. The NLO corrections
in Eq. (3.3) are proportional to

ϵ2P ¼ m2
P

ð4πFπÞ2

¼ m2
P

ð4πÞ2FπFK

FK

Fπ
¼ m2

P

ð4πÞ2FπFK
ð1þ δFNLO

K−π Þ

¼ m2
P

ð4πFKÞ2
F2
K

F2
π
¼ m2

P

ð4πFKÞ2
ð1þ 2δFNLO

K−π Þ; ð3:20Þ

plus higher-order corrections.
Related to this choice, Eq. (3.3) is implicitly defined at

the standard renormalization scale [67]

μρ0 ¼ mρ ¼ 770 MeV: ð3:21Þ

While FK=Fπ of course does not depend upon this choice,
the numerical values of the LECs do. Further, a scale setting
would be required to utilize this or any fixed value of μ.
Instead, as was first advocated in Ref. [70] to the best of our
knowledge, it is more convenient to set the renormalization
scale on each ensemble with a lattice quantity. For example,
Ref. [70] used μ ¼ flattπ ¼ ffiffiffi

2
p

Flatt
π where Flatt

π is the lattice-
determined value of the pion decay constant on a given
ensemble. The advantage of this choice is that the entire
extrapolation can be expressed in terms of ratios of lattice
quantities such that a scale setting is not required to perform
the extrapolation to the physical point.
At NLO in the expansion, one is free to make this choice

as the corrections appear at N2LO. In the present work, we
must account for these corrections for a consistent expres-
sion at this order, which is still defined at a fixed
renormalization scale. To understand these corrections,
we take as our fixed scale

μ0 ¼ 4πF0; ð3:22Þ

where F0 is the decay constant in the SUð3Þ chiral limit.
Define μπ ¼ 4πFπ and consider the NLO expression

FK

Fπ
¼ 1þ 5

8
lμ0
π −

1

4
lμ0
K −

3

8
lμ0
η þ 4ðϵ2K − ϵ2πÞL̄5ðμ0Þ

¼ þ 5

8
ϵ2π ln

�
ϵ2π

μ2π
μ20

�
−
1

4
ϵ2K ln

�
ϵ2K

μ2π
μ20

�

−
3

8
ϵ2η ln

�
ϵ2η
μ2π
μ20

�
þ 4ðϵ2K − ϵ2πÞL̄5ðμ0Þ

¼ 1þ 5

8
lμπ
π −

1

4
lμπ
K −

3

8
lμπ
η þ 4ðϵ2K − ϵ2πÞL̄5ðμ0Þ

þ ln

�
μ2π
μ20

��
5

8
ϵ2π −

1

4
ϵ2K −

3

8
ϵ2η

�
; ð3:23Þ

where we have introduced the notation

lμ
P ¼ ϵ2P ln

�
ϵ2P
μ2

�
: ð3:24Þ

If we chose the renormalization scale μπ and add the second
term of the last equality, then this expression is equivalent
to working with the scale μ0 through N2LO. The conven-
ience of this choice becomes clear as μπ=μ0 has a familiar
expansion

μπ
μ0

¼ 1þ δFNLO
π þ � � � : ð3:25Þ

Using the GMO relation Eq. (3.7) and expanding lnð1þ xÞ
for small x, this expression becomes

FK

Fπ
¼ 1þ 5

8
lμπ
π −

1

4
lμπ
K −

3

8
lμπ
η þ 4ðϵ2K − ϵ2πÞL̄5ðμ0Þ

−
3

2
ðϵ2K − ϵ2πÞδFNLO

π : ð3:26Þ

Similar expressions can be derived for the choices μπK ¼
4πFπK (where FπK ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

FπFK
p

) and μK ¼ 4πFK which are
made more convenient if one also makes the replacements
F2
π → fFπFK; F2

Kg in the definition of the small parameters
plus the corresponding N2LO corrections that accompany
these choices.
If we temporarily expose the implicit dependence of the

expression for FK=Fπ on the choices of F and μ, such that
Eq. (3.3) is defined as

FK

Fπ
½ð3.3Þ� ¼ FK

Fπ
ðFπ; μ

ρ
0Þ; ð3:27Þ

then the following expressions are all equivalent at N2LO:

FK

Fπ
ðFπ; μ0Þ ¼

FK

Fπ
ðFK; μKÞ þ δN

2LO
FK

¼ FK

Fπ
ðFπK; μπKÞ þ δN

2LO
FπK

¼ FK

Fπ
ðFπ; μπÞ þ δN

2LO
Fπ

; ð3:28Þ

where

δN
2LO

FK
¼ −

3

2
ðϵ2K − ϵ2πÞδFNLO

K þ 2ðδFNLO
K−π Þ2;

δN
2LO

FπK
¼ −

3

4
ðϵ2K − ϵ2πÞðδFNLO

K þ δFNLO
π Þ þ ðδFNLO

K−π Þ2;

δN
2LO

Fπ
¼ −

3

2
ðϵ2K − ϵ2πÞδFNLO

π ; ð3:29Þ

and the LECs in these expressions are related to those at the
standard scale by evolving them from μρ0 → μ0 with their

NOLAN MILLER et al. PHYS. REV. D 102, 034507 (2020)

034507-8



known scale dependence [68]. Implicit in these expressions
is the normalization of the small parameters

ϵ2P ¼

8>>>>><
>>>>>:

m2
P

ð4πFπÞ2 ; for F → Fπ

m2
P

ð4πÞ2FπFK
; for F →

ffiffiffiffiffiffiffiffiffiffiffiffi
FπFK

p

m2
P

ð4πFKÞ2 ; for F → FK

: ð3:30Þ

We have described several choices one can make in
parametrizing the χPT formula for FK=Fπ. The key point
is that if the underlying chiral expansion is well behaved, the
formulas resulting fromeach choice are all equivalent through
N2LO in the SUð3Þ chiral expansion, with differences only
appearing at N3LO and beyond. Therefore, by studying the
variance in the extrapolated answer upon these choices, one is
assessing some of the uncertainty arising from the truncation
of the chiral extrapolation formula.

B. Discretization corrections

We now turn to the discretization corrections. We explore
two parametrizations for incorporating the corrections aris-
ing at finite lattice spacing. The simplest approach is to use
the continuum extrapolation formula and enhance it by
adding contributions from all allowed powers of ϵ2P and ϵ2a
to a given order in the expansion. This is very similar to
including only the contributions from local counterterms that
appear at the given order. At N2LO, the set of discretization
corrections is given by3

δN
2LO

a ¼ A4
sϵ

2
aðϵ2K − ϵ2πÞ þ A4

αSαSϵ
2
aðϵ2K − ϵ2πÞ; ð3:32Þ

where A4
s and A4

αS are the LECs and αS is the running QCD
coupling that emerges in the Symanzik expansion of the
lattice expansion through loop corrections. Each contribution

at this order must vanish in the SUð3ÞV limit because the
discretization corrections are flavor blind and sowe have the
limiting constraint

lim
ml→ms

FK

Fπ
¼ 1; ð3:33Þ

at any lattice spacing.
From a purist EFT perspective, we should instead utilize

the MA EFT expression. Unfortunately, the MA EFT
expression is only known at NLO [52] and our results
require higher orders to provide good fits. Nevertheless, we
can explore the utility of the MA EFT by replacing the
NLO χPT expression with the NLO MA EFT expression
and using the continuum expression enhanced with the
local discretization corrections at higher orders, Eq. (3.32).
Using the parametrization of the hairpin contributions

from Ref. [55], the NLO MA EFT expressions are

δFMA
π ¼ −lju −

lru

2
þ 4L̄5ϵ

2
π þ 4L̄4ðϵ2π þ 2ϵ2KÞ þ ϵ2aL̄a;

δFMA
K ¼ −

lju

2
þ lπ

8
−
lru

4
−
ljs

2
−
lrs

4
þ lss

4
−
3lX

8

þ 4L̄5ϵ
2
K þ 4L̄4ðϵ2π þ 2ϵ2KÞ þ ϵ2aL̄a

−
δ2ju
8

ðdlπ − 2KπXÞ −
δ4ju
24

Kð2;1Þ
πX

þ δ2rs
4

�
KssX −

2

3
ðϵ2K − ϵ2πÞKð2;1Þ

ssX

�

þ δ2juδ
2
rs

12
ðKð2;1Þ

ssX − 2KπssXÞ: ð3:34Þ

In these expressions, we use the partially quenched flavor
notation [74] in which

π∶ valence-valence pion

K∶ valence-valence kaon

u∶ valence light flavor quark

j∶ sea light flavor quark

s∶ valence strange flavor quark

r∶ sea strange flavor quark

X∶ sea-sea eta meson

; ð3:35Þ

and so, for example

lju ¼
m2

ju

ð4πFπÞ2
ln

�
m2

ju

ð4πFπÞ2
�
; ð3:36Þ

where mju is the mass of a mixed valence-sea pion. The
partial quenching parameters δju2 and δ

2
rs provide a measure

of the unitarity violation in the theory. For our MDWF on
HISQ action, at LO in MA EFT, they are given by the

3One can use the renormalization-group to resum corrections
from radiative gluons that modify the leading asymptotic scaling
behavior [71,72]. For actions without dimension-5 operators in
the Symanzik EFT, these resummed scaling violations are known
to be proportional to

δSymanzik
a ¼ cO2 a

2αnþγ̂1
S ; ð3:31Þ

where cO2 is an LEC for operator O and whose value depends
upon the lattice action. The power is n ¼ 0 for unimproved
actions (such as our MDWF valence action), n ¼ 1 for tree-level
improved actions (such as the HISQ action) and n ¼ 2 for one-
loop improved actions. The anomalous dimension γ̂1 can be
determined in the asymptotic scaling regime which has been
recently done for Yang-Mills and Wilson fermion actions with
γ̂YM1 ¼ 7=11 [73]. This anomalous dimension is not known for
our action. In principle, one could perform a fit where instead of
treating the a2 and αSa2 terms with different LECs, one could
combine them as in Eq. (3.31) and try and fit both cO2 and γ̂1. We
leave this to future studies and in this work, we use Eq. (3.32).
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splitting in the quark masses plus a discretization correction
arising from the taste-identity splitting

δ2ju ¼
2B0ðmj −muÞ þ a2ΔI

ð4πFπÞ2
;

δ2rs ¼
2B0ðmr −msÞ þ a2ΔI

ð4πFπÞ2
: ð3:37Þ

For the tuning we have done, setting the valence-valence
pion mass equal to the taste-5 sea-sea pion mass, these
parameters are given just by the discretization terms as
mu ¼ mj and ms ¼ mr within 1%–2%. The sea-sea eta
mass in this tuning is given at LO in MA EFT as

m2
X ¼ 4

3
m2

K −
1

3
m2

π þ a2ΔI: ð3:38Þ

These parameters, and the corresponding meson masses are

provided in Table III. The expressions for dlπ,Kϕ1ϕ2
,Kð2;1Þ

ϕ1ϕ2

and Kϕ1ϕ2ϕ3
are provided in the Appendix B.

At NLO in the MA EFT, the LECs which contribute to
δFK and δFπ are the same as in the continuum, L4 and L5,
plus a discretization LEC which we have denoted L̄a. Just
like the L4 contribution, the contribution from L̄a exactly
cancels in δFK − δFπ. At N2LO, beyond the continuum
counterterm contributions, Eq. (3.12), there are the two
additional LECs contributions, Eq. (3.32).

C. Finite volume corrections

We now discuss the corrections arising from the finite
spatial volume. The leading finite volume (FV) corrections
arise from the tadpole integrals which arise at NLO in both
the χPT and MA expressions. The well-known modifica-
tion to the integral can be expressed as [75–77]

lμπ ;FV
P ¼ lμπ

P þ 4ϵ2P
X
jnj≠0

cn
mPLjnj

K1ðmPLjnjÞ; ð3:39Þ

where the sum runs over all nonzero integer three-vectors.
Each value of jnj can be thought of as a winding of the
meson P around the finite universe. The cn are multiplicity
factors counting all the ways to form a vector of length jnj
from triplets of integers, see Table IV for the first few.
K1ðxÞ is a modified Bessel function of the second kind. In
the asymptotically large volume limit, the finite volume
correction to these integrals is

δFVlP ≡ lFV
P − lP

¼ ϵ2P2
ffiffiffiffiffiffi
2π

p e−mPL

ðmPLÞ3=2

þ ϵ2P × O

�
e−mPL

ffiffi
2

p

ðmPL
ffiffiffi
2

p Þ3=2 ;
e−mPL

ðmPLÞ5=2
�
: ð3:40Þ

TABLE III. Extracted masses of the mixed MDWF-HISQ mesons. We use the notation from Ref. [74] in whichmπ andmK denote the
masses of the valence pion and kaon and j and r denote the light and strange flavors of the sea quarks while u and s denote the light and
strange flavors of the valence quarks. Since we have tuned the valence MDWF pion and s̄s mesons to have the same mass as the HISQ
sea pion and s̄s mesons within a few percent, the quantities m2

ju −m2
π and other splittings provide an estimate of the additive mixed-

meson mass splitting due to discretization effects, a2ΔMix [52] and additional additive corrections [59]. At LO in MA EFT, these
splittings are predicted to be quark mass independent, which we find to be approximately true, with a notable decrease in the splitting as
the valence-quark mass is increased as first observed in Ref. [56] as well as a milder decrease as the seq-quark mass is increased.

Ensemble amju amjs amru amrs amss w2
0Δ2

Mix;ju w2
0Δ2

Mix;js w2
0Δ2

Mix;ru w2
0Δ2

Mix;rs w2
0a

2ΔI

a15m400 0.3597(17) 0.4586(24) 0.4717(19) 0.5537(11) 0.5219(02) 0.0486(15) 0.0359(28) 0.0516(23) 0.0440(16) 0.112(14)
a15m350 0.3308(23) 0.4463(14) 0.4598(16) 0.5526(10) 0.5201(02) 0.0508(20) 0.0362(17) 0.0519(19) 0.0451(15) 0.112(14)
a15m310 0.3060(17) 0.4345(16) 0.4508(14) 0.5490(12) 0.5188(02) 0.0489(13) 0.0324(18) 0.0511(17) 0.0416(16) 0.112(14)
a15m220 0.2564(27) 0.4115(17) 0.4320(29) 0.5420(08) 0.5150(01) 0.0495(18) 0.0253(19) 0.0476(33) 0.0368(11) 0.112(14)
a15m135XL 0.232(13) 0.4058(56) 0.4337(84) 0.5560(31) 0.5257(02) 0.0559(75) 0.0187(59) 0.0489(94) 0.0423(45) 0.112(14)

a12m400 0.2678(06) 0.3560(08) 0.3624(07) 0.4333(06) 0.4207(01) 0.0251(07) 0.0177(12) 0.0271(10) 0.0217(11) 0.063(05)
a12m350 0.2303(08) 0.3446(07) 0.3454(10) 0.4322(05) 0.4197(01) 0.0147(07) 0.0158(10) 0.0168(15) 0.0214(09) 0.063(05)
a12m310 0.2189(09) 0.3344(10) 0.3439(09) 0.4305(05) 0.4180(02) 0.0248(08) 0.0136(14) 0.0266(13) 0.0213(09) 0.063(05)
a12m220S 0.1774(14) 0.3187(12) 0.3323(17) 0.4286(10) 0.4158(02) 0.0264(10) 0.0105(16) 0.0283(24) 0.0219(18) 0.063(05)
a12m220L 0.1774(14) 0.3187(12) 0.3323(17) 0.4286(10) 0.4156(02) 0.0273(10) 0.0107(16) 0.0286(23) 0.0222(18) 0.063(05)
a12m220 0.1774(14) 0.3187(12) 0.3323(17) 0.4286(10) 0.4154(01) 0.0272(10) 0.0110(16) 0.0289(23) 0.0225(18) 0.063(05)
a12m130 0.1491(20) 0.3080(15) 0.3240(26) 0.4271(08) 0.4141(01) 0.0316(12) 0.0073(19) 0.0276(34) 0.0220(14) 0.063(05)

a09m400 0.1878(05) 0.2581(06) 0.2607(06) 0.3162(05) 0.3133(01) 0.0094(07) 0.0056(12) 0.0109(11) 0.0071(12) 0.020(02)
a09m350 0.1654(06) 0.2498(05) 0.2526(06) 0.3159(04) 0.3124(01) 0.0093(07) 0.0054(10) 0.0108(12) 0.0083(11) 0.020(02)
a09m310 0.1485(06) 0.2428(05) 0.2472(10) 0.3150(04) 0.3117(01) 0.0086(07) 0.0032(10) 0.0114(20) 0.0080(09) 0.020(02)
a09m220 0.1090(09) 0.2303(06) 0.2334(07) 0.3115(03) 0.3094(01) 0.0088(07) 0.0028(10) 0.0083(12) 0.0051(08) 0.020(02)
a09m135 0.0786(15) 0.2187(11) 0.2270(15) 0.3079(05) 0.3027(07) 0.0102(09) 0.0004(19) 0.0146(26) 0.0123(19) 0.020(02)

a06m310L 0.0957(08) 0.1619(11) 0.1619(12) 0.2103(10) 0.2098(01) 0.0020(14) −0.0004ð34Þ −0.0004ð34Þ 0.0020(40) 0.004(00)
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The full finite volume corrections to the continuum
formula are also known at N2LO [78] as well as in the
partially quenched χPT [79]. In this work, we restrict the
corrections to those arising from the NLO corrections
as our results are not sensitive to higher-order FV correc-
tions. This is because, with the ensembles used in this
work, all ensembles except a12m220S satisfymπL≳ 4 (see
Table II). MILC generated three volumes for this a12m220
ensemble series to study FV corrections. Figure 2 shows a
comparison of the results from the a12m220L, a12m220,
and a12m220S along with the predicted volume corrections
arising from NLO in χPT. The uncertainty band arises from
an N3LO fit using the full N2LO continuum χPT formula
enhanced with discretization LECs and N3LO corrections
arising from continuum and finite lattice spacing correc-
tions. Even with one of the most precise fits, we see that the
numerical results are consistent with the predicted NLO FV
corrections.

D. N3LO corrections

The numerical dataset in this work requires us to add
N3LO corrections to obtain a good fit quality. At this
order, we only consider local counterterm contributions, of
which there are three new continuumlike corrections and
three discretization corrections. A nonunique, but complete
parametrization is

δN
3LO ¼ ðϵ2K − ϵ2πÞfϵ4aA6

s þ ϵ2aðA6
s;Kϵ

2
K þ A6

s;πϵ
2
πÞ

þ A6
Kπϵ

2
Kϵ

2
π þ ðϵ2K − ϵ2πÞðA6

Kϵ
2
K þ A6

πϵ
2
πÞg: ð3:41Þ

In principle, we could also add counterterms proportional to
higher powers of αS but with four lattice spacings, wewould
not be able to resolve the difference between the complete set
of operators including all possible additional αS corrections.
The set of operators we do include is sufficient to para-
metrize the approach to the continuum limit.

IV. EXTRAPOLATION DETAILS AND
UNCERTAINTY ANALYSIS

We now carry out the extrapolation/interpolation to the
physical point, which we perform in a Bayesian framework.
To obtain a good fit, we must work to N3LO in the mixed
chiral and continuum expansion. The results from the
a06m310L ensemble drive this need, in particular, for
higher-order discretization corrections to parametrize the
results from all the ensembles. We will explore the impact
of the a06m310L ensemble in more detail in this section.
First, we discuss the values of the priors we set and the
definition of the physical point.

A. Prior widths for LECs

The number of additional LECs we need to determine at
each order in the expansion is

order NLi
Nχ Na

NLO 1 0 0
N2LO 7 2 2
N3LO 0 3 3
Total 8 5 5

NLi
is the number of Gasser-Leutwyler coefficients, Nχ the

number of counterterms associated with the continuum χPT
expansion and Na is the number of counterterms associated
with the discretization corrections. In total, there are 18
unknown LECs. While we utilize 18 ensembles in this
analysis, the span of parameter space is not sufficient to
constrain all the LECs without prior knowledge. In par-
ticular, the introduction of all 8 Li coefficients requires
prior widths informed from phenomenology.

In the literature, the Li are typically quoted at the
renormalization scale μρ ¼ 770 MeV while in our work,
we use the scale μF0

¼ 4πF0. We can use the BE14 values
of the Li LECs from Ref. [80] and the known scale
dependence [68] to convert them from μρ to μF0

:

Lr
i ðμ2Þ ¼ Lr

i ðμ1Þ −
Γi

ð4πÞ2 ln
�
μ2
μ1

�
; ð4:1Þ

with the values of Γi listed in Table V for convenience.
We use F0 ¼ 80 MeV, which is the value adopted by

TABLE IV. Multiplicity factors for the finite volume correc-
tions of the first 10 vector lengths, jnj.

jnj 1
ffiffiffi
2

p ffiffiffi
3

p ffiffiffi
4

p ffiffiffi
5

p ffiffiffi
6

p ffiffiffi
7

p ffiffiffi
8

p ffiffiffi
9

p ffiffiffiffiffi
10

p

cn 6 12 8 6 24 24 0 12 30 24

FIG. 2. We compare the finite volume results on a12m220L,
a12m220 and a12m220S to the predicted finite volume correc-
tions from NLO χPT. The uncertainty band is from the full N3LO
χPT extrapolation, plotted with fixed mesons masses (ϵ2P) and
fixed lattice spacing (ϵ2a), determined from the a12m220L
ensemble. At the one-sigma level, our data are consistent with
the leading FV corrections.
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FLAG [8]. We set the central value of all the Li with this
procedure and the widths are set as described in Table V.
Next, we must determine priors for the N2LO and N3LO

local counterterm coefficients, An
K;π;s. We set the central

value of all these priors to 0 and then perform a simple grid
search varying the widths to find preferred values of the
width, as measured by the Bayes factor. Our goal is not to
optimize the width of each prior individually for each
model used in the fit, but rather find a set of prior widths
that is close to optimal for all models. To this end, we vary
the width of the χPT LECs together at each order (N2LO,
N3LO) and the discretization LECs together at each order
(N2LO, N3LO) for a four-parameter search. We apply a
very crude grid where the values of the widths are taken to
be 2, 5, or 10.
We find taking the width of all these An

K;π;s LECs equal to
2 results in good fits with near-optimal values. This
provides evidence the normalization of small parameters
we have chosen for ϵ2P and ϵ2a, Eq. (3.1), is “natural” and
supports the power-counting we have assumed, Eq. (3.2).
The N2LO LECs mostly favor a width of 2 while the N3LO
discretization LECs prefer 5 and the N3LO χPT LECs vary
from model to model with 5 a reasonable value for all. As a
result of this search, we pick as our priors

Ã4
K;π ¼ 0� 2; Ã4

s ¼ 0� 2;

Ã6
K;π ¼ 0� 5; Ã6

s ¼ 0� 5: ð4:2Þ

B. Physical point

As our calculation is performed with isospin symmetric
configurations andvalence quarks,wemust define a physical
point to quote our final result. We adopt the definition of the
physical point from FLAG. FLAG[2017] [81] defines the
isospin symmetric pion and kaon masses to be [Eq. (16)]

M̄π ¼ 134.8ð3Þ MeV;

M̄K ¼ 494.2ð3Þ MeV: ð4:3Þ

The values of Fπþ and FKþ are taken from the Nf ¼ 2þ 1

results from FLAG[2020] [8] (we divide the values by
ffiffiffi
2

p
to

convert to the normalization used in this work)

Fphys
πþ ¼ 92.07ð57Þ MeV;

Fphys
Kþ ¼ 110.10ð49Þ MeV: ð4:4Þ

The isospin symmetric physical point is then defined by
extrapolating our results to the values (for the choice
F → Fπ)

ðϵphysπ Þ2 ¼
�

M̄π

4πFphys
πþ

�
2

;

ðϵphysK Þ2 ¼
�

M̄K

4πFphys
πþ

�
2

: ð4:5Þ

C. Model averaging procedure

Our model average is performed under a Bayesian
framework following the procedure described in [36,82].
Suppose we are interested in estimating the posterior
distribution of Y ¼ FK=Fπ , i.e., PðYjDÞ given our data
D. To that end, we must marginalize over the different
models Mk.

PðYjDÞ ¼
X
k

PðYjMk;DÞPðMkjDÞ: ð4:6Þ

Here PðYjMk;DÞ is the distribution of Y for a given model
Mk and dataset D, while PðMkjDÞ is the posterior
distribution of Mk given D. The latter can be written,
per Bayes’s theorem, as

PðMkjDÞ ¼ PðDjMkÞPðMkÞP
lPðDjMlÞPðMlÞ

: ð4:7Þ

We can be more explicit with what the latter is in the
context of our fits. First, mind that we are a priori agnostic
in our choice ofMk. We thus take the distribution PðMkÞ to
be uniform over the different models. We calculate
PðDjMkÞ by marginalizing over the parameters (LECs)
in our fits:

PðDjMkÞ ¼
Z Y

j

dθðkÞj PðDjθðkÞj ;MkÞPðθðkÞj jMkÞ: ð4:8Þ

TABLE V. Γi coefficients that appear in the scale dependence of the LiðμÞ. We evolve the LiðμÞ from the typical scale μ ¼ 770 MeV,
Eq. (3.21) to μ0 ¼ 4πF0, beginning with the BE14 estimates from the review [80] (Table 3), using their known scale dependence [68],
Eq. (4.1). We assign the following slightly more conservative uncertainty as a prior width in the minimization: If a value of Li is less than
0.5 × 10−3, we assign it a 100% uncertainty at the scale μ ¼ 770 MeV; if the value is larger than 0.5 × 10−3, we assign it the larger of 0.5
or 1=3 of the mean value.

Li L1 L2 L3 L4 L5 L6 L7 L8

Γi 3/32 3/16 0 1/8 3/8 11/144 0 5/48
103LiðmρÞ 0.53(50) 0.81(50) −3.1ð1.0Þ 0.30(30) 1.01(50) 0.14(14) −0.34ð34Þ 0.47(47)
103Liðμ0Þ 0.37(50) 0.49(50) −3.1ð1.0Þ 0.09(30) 0.38(50) 0.01(14) −0.34ð34Þ 0.29(47)
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After marginalization, PðDjMkÞ is just a number.
Specifically, it is the Bayes factor of Mk: PðDjMkÞ ¼
expðlog GBFÞMk

, where logGBF is the log of the Bayes
factor as reported by LSQFIT [83]. Thus

PðMkjDÞ ¼ expðlogGBFÞMkP
K
l¼1 expðlogGBFÞMl

ð4:9Þ

with K the number of models included in our average. We
emphasize that this model selection criterion not only rates
the quality of the description of data but also penalizes
parameters which do not improve this description. This
helps rule out models which overparametrize data.
Now we can estimate the expectation value and variance

of Y:

E½Y� ¼
X
k

E½YjMk�PðMkjDÞ; ð4:10Þ

Var½Y�¼
�X

k

Var½YjMk�PðMkjDÞ
�

þ
��X

k

E2½YjMk�PðMkjDÞ
�
−E2½YjD�

�
: ð4:11Þ

The variance Var½Y� results from the total law of variance;
the first term in brackets is known as the expected value of
the process variance (which we refer to as the model
averaged variance), while the latter is the variance of the
hypothetical means (the root of which we refer to as the
model uncertainty). After this work was completed, a
similar, but more thorough discussion of Bayesian
Model Averaging in the context of lattice QCD was
presented [84].

D. Full analysis and uncertainty breakdown

In total, we consider 216 different models of extrapo-
lation/interpolation to the physical point. The various
choices for building a χPT or MA EFT model consist of

×2∶ χPT or MA EFT at NLO
×3∶ use F2 ¼ fF2

π; FπFK; F2
Kg in defining ϵ2P

×2∶ fully expanded ð3.15Þ or ratio ð3.17Þ form
×2∶ at N2LO; use full χPT or just counterterms
×2∶ include or not an αS term at N2LO
×2∶ include or not the NLO FV corrections
×2∶ includeN3LO counterterms or not

192∶ total choices

:

We also consider pure Taylor expansion fits with only
counterterms and no log corrections. For these fits, the set
of models we explore is

×2∶ work toN2LOor N3LO
×3∶ useF2 ¼ fF2

π; FπFK; F2
Kgin defining ϵ2P

×2∶ include or not an αS term at N2LO
×2∶ include or not FV corrections

24∶ total choices

:

Based upon the quality of fit (gauged by the Bayesian
analog to the p-value, Q, or the reduced chi square, χ2ν)
and/or the weight determined as discussed in the previous
section, we can dramatically reduce the number of models
used in the final averaging procedure. First, any model
which does not include the FV correction from NLO is
heavily penalized. This is not surprising given the observed
volume dependence on the a12m220 ensembles, Fig. 2.
However, even if we remove the a12m220S ensemble
from the analysis, the Taylor-expanded fits have a relative
weight of e−6 or less compared to those that have χPT form
at NLO.
If we add FV corrections to the Taylor expansion fits

(pure counterterm) and use all ensembles,

FK

Fπ
¼ 1þ L̄5ðϵ2K − ϵ2πÞ

�
1þ tFV

X
jnj≠0

cn
mπLjnj

K1ðmπLjnjÞ
�

þ � � � ð4:12Þ

they still have weights which are ∼e−8 over the normalized
model distribution and also contribute negligibly to the
model average.
We observe that the fits which use the MA EFT at NLO

are also penalized with a relative weight of ∼e−8, and fits
which only work to N2LO have unfavorable weights by
∼e−5 (and are also accompanied by poor χ2ν values).
Cutting all of these variations reduces our final set of
models to be N3LO χPT with the following variations:

×3∶ useF2 ¼ fF2
π; FπFK; F2

Kg in defining ϵ2P
×2∶ fully expanded ð3.15Þ or ratio ð3.15Þ form
×2∶ at N2LO; use full χPTor just counterterms
×2∶ include or not an αS term atN2LO

24∶ total choices which enter the model average

:

The final list of models, with their corresponding weights
and resulting extrapolated values to the isospin symmetric
physical point, is given in Table VII in Appendix A. Our
final result in the isospin symmetric limit, defined as in
Eq. (4.5) and analogously for other choices of F2, including
a breakdown in terms of statistical (s), pion mass extrapo-
lation ( χ), continuum limit (a), infinite volume limit (V),
physical point (phys) and model selection (M) uncertain-
ties, is as reported in Eq. (1.3)
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FK

Fπ
¼ 1.1964ð32Þsð12Þχð20Það01ÞVð15Þphysð12ÞM

¼ 1.1964ð44Þ:

The finite volume uncertainty is assessed by removing the
a12m220S ensemble from the analysis, repeating the model
averaging procedure and taking the difference. The final
probability distribution broken down into the three choices
of F2 is shown in Fig. 3.

1. Impact of a06m310L ensemble

Next, we turn to understanding the impact of the
a06m310L ensemble on our analysis. The biggest differ-
ence upon removing the a06m310L ensemble is that the
data are not able to constrain the various terms contributing
to the continuum extrapolation as well, particularly since
there are up to three different types of scaling violations:

ðϵ2K − ϵ2πÞ × fϵ2a; αSϵ2a; ϵ4ag;

and thus, the statistical uncertainty of the results grows as
well as the model variance, with a total uncertainty growth
from ∼0.0044 to ∼0.0057, and the mean of the extrapolated
answer moves by approximately half a standard deviation.
Furthermore, N2LO fits become acceptable, though they
are still grossly outweighed by the N3LO fits. Including
both effects, the final model average result shifts from

FK

Fπ
¼ 1.1964ð44Þ → FK

Fπ

				
no a06

¼ 1.1941ð57Þ: ð4:13Þ

In Fig. 4, we show the continuum extrapolation from
three fits:

(i) Left: all ensembles, N3LO χPT with only counter-
terms at N2LO and N3LO and F ¼ Fπ;

(ii) Middle: no a06m310L, N3LO χPT with only coun-
terterms at N2LO and N3LO and F ¼ Fπ;

(iii) Right: no a06m310L, N2LO χPT with only counter-
terms at N2LO and F ¼ Fπ .

As can be seen from the middle plot, the a15, a12 and a09
ensembles prefer contributions from both ϵ2a and ϵ4a con-
tributions and are perfectly consistent with the result on the
a06m310L ensemble. They are also consistent with an
N2LO fit (no ϵ4a contributions) as can be seen in the right
figure. However, the weight of the N3LO fits is still
significantly greater than the N2LO fits even without the
a06m310L data.
We conclude that the a06m310L ensemble is useful, but

not necessary to obtain a subpercent determination of
FK=Fπ with our lattice action. A more exhaustive com-
parison can be performed with the analysis notebook
provided with this publication.
In Fig. 5, we show the stability of our final result for

various choices discussed in this section.

2. Convergence of the chiral expansion

While the numerical analysis favors a fit function in
which only counterterms are used at N2LO and higher, it is
interesting to study the convergence of the chiral expansion

FIG. 3. Final probability distribution giving rise to Eq. (1.3),
separated into the three choices of F2 ¼ fF2

π; FπFK; F2
Kg in the

definition of the small parameters, Eq. (3.1). The parent “gray”
distribution is the final PDF normalized to 1 when integrated.

FIG. 4. Left: N3LO fit to all ensembles. Middle: same fit to all ensembles excluding a06m310L. Right: representative N2LO fit to all
ensembles excluding a06m310L. In all plots, the results from each ensemble are shifted to the physical values of ϵ2π and ϵ2K and the
infinite volume limit, with only the ϵ2a dependence remaining. The labels are explained in Appendix A; the data points at each spacing
are slightly offset horizontally for visual clarity.
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by studying the fits which use the full χPT expression
at N2LO.
In Fig. 6, we show the resulting light quark mass

dependence using the N3LO extrapolation with the full
N2LO χPT formula. After the analysis is performed, the
results from each ensemble are shifted to the physical kaon
mass point, leaving only dependence upon ϵ2π and ϵ2a as well
as dependence upon the η mass defined by the GMO
relation. The magenta band represents the full 68% con-
fidence interval in the continuum, infinite volume limit.
The different colored curves are the mean values as a
function of ϵ2π at the four different lattice spacings. We also
show the convergence of this fit in the lower panel plot.
From this convergence plot, one sees that roughly that at the
physical pion mass (vertical gray line) the NLO contribu-
tions add a correction of ∼0.16 compared to 1 at LO, the

N2LO contributions add another ∼0.04, and the N3LO
corrections are not detectable by eye. The band at each
order represents the sum of all terms up to that order
determined from the full fit. The reduction in the uncer-
tainty as the order is increased is due on large part to the
induced correlation between the LECs at different orders
through the fitting procedure.
In Fig. 3, we observe that the different choices of F are

all consistent, indicating higher-order corrections (starting
at N3LO in the noncounterterm contributions) are smaller
than the uncertainty in our results. It is also interesting to
note that choosing FπK or FK is penalized by the analysis,
indicating the numerical results prefer larger expansion
parameters. In Table VI, we show the resulting χPT LECs
determined in this analysis for the two choices
F ¼ fFπ; FKπg, as well as whether the ratio form of the

FIG. 5. Stability plot of final result compared to various model
choices. The black square at the top is our final answer for the
isospin symmetric determination of FK=Fπ . The vertical magenta
band is the uncertainty of this fit to guide the eye. The solid
magenta squares are various ways of decomposing the model
selection that goes into the final average. The right panel shows
the relative weight with respect to the maximum logGBF value,
expflogGBFi − logGBFmaxg. Below the set of models included
in the average, we show sets of analyses that are not included in
the average for comparison, which are indicated with open gray
symbols. First, we show the impact of excluding the a06m310L
ensemble. The logGBF cannot be directly compared between
these fits and the main analysis as the number of data points are
not the same, so the overall normalization is different; their
logGBF are shown as open diamonds. The relative logGBF
between the N3LO and N2LO analysis can be compared which
indicates a large preference for the N3LO analysis. We also show
the MA EFT analysis, which agrees well with the main analysis.
Finally, we show the results if one were to change the widths of
the N2LO and N3LO priors from those chosen in Eq. (4.2).

FIG. 6. Sample light quark mass dependence from a χPT fit
with F ¼ Fπ (N2LO χPTþ N3LO counterterms). Top: curves are
plotted with ϵ2K ¼ ðϵphysK Þ2, at fixed ϵ2a for each lattice spacing, as
a function of ϵ2π . The magenta band is the full uncertainty in the
continuum, infinite volume limit. The data points have all been
shifted from the values of ϵlattK . to ϵphysK and to the infinite volume
limit. Bottom: We show the convergence of the resulting fit as a
function of ϵ2π . Each band corresponds to all contributions up to
that order with the LECs determined from the full fit. The N3LO
band corresponds to the continuum extrapolated band in the top
figure.
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fit is used, Eq. (3.17). For the Gasser-Leutwyler LECs, we
evolve the values back from μ0 → μρ for a simpler
comparison with the values quoted in literature. For most
of the Li, we observe the numerical results have very little
influence on the parameters as they mostly return the prior
value (also listed in the table for convenience). The only
LECs influenced by the fit are L5, L7, and L8 with L5

getting pulled about one sigma away from the prior value
and L7 and L8 only shifting by a third or half of the prior
width. One interesting observation from our results is that
our fit prefers a value of L5 that is noticeably smaller than
the value obtained by MILC [16] and HPQCD [12] and is
also smaller than the BE14 result from Ref. [80], although
the discrepancy is still less than 2 sigma. We also note
that our value of L5 is very compatible with that determined
by RBC/UKQCD with domain-wall fermions and near-
physical pion masses [18]. Those interested in exploring
this in more detail can utilize our numerical results,
and if desired, extrapolation code made available with this
publication.
In Fig. 7, we show the impact of using the fully expanded

expression, Eq. (3.15), versus the expression in which the
NLO terms are kept in a ratio, Eq. (3.17). To simplify the
comparison we restrict it to the choice F ¼ Fπ and the full
N2LO χPT expression. We see that fits without the ratio
form are preferred, but the central value of the final result
depends minimally upon this choice.
In Fig. 8, we show that the results strongly favor the use

of only counterterms at N2LO as opposed to the full χPT fit
function at that order. We focus on the choice F ¼ Fπ to
simplify the comparison.

Our results are not sufficient to understand why the fit
favors only counterterms at N2LO and higher. While the
linear combination of LECs in Eq. (3.12) are redundant, the
Li LECs also appear in the single-log coefficients,
Eqs. (3.10) and (3.11) in different linear combinations.
Nevertheless, we double check that the fit is not penalized
for the counterterm redundancy, Eq. (3.12). Using the
priors for Li from Table V, we find the contribution from
the Gasser-Leutwyler LECs to these N2LO counterterms,
Eq. (3.14), are given by

TABLE VI. Resulting LECs from full N2LO χPT analysis (also including N3LO counterterms). For the Gasser-
Leutwyler LECs Li, we evolve them back to the standard scale μ ¼ 770 MeV, while for the other LECs, we leave
them at the scale μ0 ¼ 4πF0 ≃ 1005 MeV.

F2 ¼ F2
π F2 ¼ FπFK

LEC Ratio Ratio

μ ¼ 770 Prior No Yes No Yes

103L1 0.53(50) 0.47(49) 0.50(49) 0.45(49) 0.48(49)
103L2 0.81(50) 0.77(46) 0.84(46) 0.69(44) 0.77(45)
103L3 −3.1ð1.0Þ −3.02ð85Þ −2.84ð86Þ −3.26ð81Þ −3.05ð82Þ
103L4 0.30(30) 0.24(29) 0.14(29) 0.24(29) 0.16(29)
103L5 1.01(50) 0.48(35) 0.52(34) 0.40(33) 0.47(34)
103L6 0.14(14) 0.14(14) 0.14(14) 0.14(14) 0.14(14)
103L7 −0.34ð34Þ −0.55ð32Þ −0.57ð32Þ −0.52ð33Þ −0.53ð33Þ
103L8 0.47(47) 0.30(46) 0.28(46) 0.35(46) 0.32(46)

μ ¼ μ0
A4
K 0(2) 0.06(1.42) 0.09(1.41) 0.2(1.6) 0.2(1.5)

A4
π 0(2) 2.5(1.2) 2.4(1.2) 2.0(1.3) 2.0(1.3)

A6
Kπ 0(5) 2.8(4.7) 2.8(4.7) 1.9(4.7) 2.0(4.7)

A6
K 0(5) 0.008(4.016) 0.3(4.0) 0.1(4.4) 0.2(4.4)

A6
p 0(5) 2.6(4.0) 2.1(4.1) 2.4(4.4) 2.0(4.4)

FIG. 7. Comparison of fits with the fully expanded Eq. (3.15)
and ratio Eq. (3.17) expressions, all with the choice F ¼ Fπ . The
PDFs are taken from the parent PDF, Fig. 3, without renormaliz-
ing such that height in this figure reflects the relative weight
compared to the total PDF.
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L4
K ¼ 0.3ð1.3Þ; L4

π ¼ −0.64ð94Þ: ð4:14Þ
As the A4

P terms are priored at 0(2), it is sufficient to rerun
the analysis by simply setting L4

P ¼ 0. We find this result
marginally improves the Bayes factors but not statistically
significantly, leaving us with the puzzle that the optimal fit
is a hybrid NLO χPT plus counterterms (analytic terms) at
higher orders. We note that it has been known for some time
that using χPT at NLO plus purely analytic terms at NNLO
and higher results in good quality extrapolation fits, at least
in part because the NNLO chiral logarithms are relatively
slowly varying for the range of pion masses for which the
NNLO analytic terms are sizable enough to be important
[2]. This is discussed in more detail in the review by
Bernard [85]. The MILC Collaboration no longer reports
analysis with just the analytic terms at NNLO [16] and so it
is not clear if other groups observe the same preference for
counterterms only at NNLO or not.
If the Taylor expansion fits (pure counterterm) were good

and favored over the χPT fits, this could be a sign that the
SUð3ÞχPT formula was failing to describe the lattice
results. However, we have to include the NLO χPT expre-
ssion, including its predicted (counterterm free) volume
dependence to describe the numerical results. It would be
nice to have the full N2LO MA EFT expression to under-
stand why the hybrid MA EFT fits are so relatively
disfavored in the analysis. There may be compensating
discretization effects that cancel against those at NLO to
some degree that might allow the full N2LO MA EFT to
better describe the results. However, at two loops in χPT,
the universality of MA EFT expressions [58] breaks down
such that the MA EFT expression can no longer be
“derived” from the corresponding PQχPT one (which is
known for FK=Fπ at two loops [79,86–88]). It is therefore
unlikely that the NNLOMA EFTexpression specific to this
MALQCD calculation will ever be derived, so this issue
will most likely not be resolved with more clarity.

E. QCD isospin breaking corrections

Finally, we discuss the correction to our result to obtain a
direct determination of FKþ=Fπþ including strong isospin
breaking corrections, but excluding QED corrections. This
is the standard value quoted in the FLAG reviews [8,81].
Our calculations, like most, are performed in the isospin
symmetric limit, and therefore, the strong isospin breaking
correction must be estimated, rather than having a direct
determination. The optimal approach is to incorporate both
QED and QCD isospin breaking corrections into the
calculations such that the separation is not necessary, as
was done in Ref. [89] by incorporating both types of
corrections through the perturbative modification of the
path integral and correlation functions [90,91]. In this
work, we have not performed these extensive computations
and so we rely upon the SUð3ÞχPT prediction to estimate
the correction due to strong isospin breaking. As we have
observed in Sec. IV D, the SUð3Þ chiral expansion behaves
and converges nicely, so we expect this approximation to be
reasonable.
The NLO corrections to FK and Fπ including the strong

isospin breaking corrections are given by

δFNLO
π� ¼ −

lπ0

2
−
lπ�

2
−
lK0

4
−
lK�

4

þ 4L̄4ðϵ2π� þ ϵ2K� þ ϵ2K0Þ þ 4L̄5ϵ
2
π� ;

δFNLO
K� ¼ −

lπ0

8
−
lπ�

4
−
3lη

8
−
lK0

4
−
lK�

2

þ 1

4
ðϵ2K0 − ϵ2K�Þ

lη − lπ0

ϵ2η − ϵ2
π0

þ 4L̄4ðϵ2π� þ ϵ2K� þ ϵ2K0Þ þ 4L̄5ϵ
2
K� ; ð4:15Þ

where we have kept explicit the contribution from each
flavor of meson propagating in the loop. There are three
points to note in these expressions:
(1) At NLO in the SUð3Þ chiral expansion, there are no

additional LECs that describe the isospin breaking
corrections beyond those that contribute to the
isospin symmetric limit. Therefore, one can make
a parameter-free prediction of the isospin breaking
corrections using lattice results from isospin sym-
metric calculations, with the only assumption being
that SUð3ÞχPT converges for this observable.

(2) If we expand these corrections about the isospin
limit, they agree with the known results [5], and
δFπ� is free of isospin breaking corrections at
this order.

(3) We have used the kaon mass splitting in place of
the quark mass splitting, which is exact at LO in
χPT Bðmd −muÞ ¼ ðM̂2

K0 − M̂2
K�Þ.

The estimated shift of our isospin-symmetric result to
incorporate strong isospin breaking is then

FIG. 8. Comparison of N3LO χPT analysis with F ¼ Fπ using
the full N2LO χPT expression (smaller histogram) versus only
counterterms at N2LO, Eqs. (3.12) and (3.32). As in Fig. 7, the
PDFs are drawn from the parent PDF.
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δFiso
K−π ≡ FK̂þ

Fπ̂þ
−
FK

Fπ

¼ −
1

4
ðlK̂þ − lK̄Þ þ 4L̄5ðϵ2K̂þ − ϵ2K̄Þ

þ 1

4
ðϵ2K0 − ϵ2K�Þ

lη − lπ0

ϵ2η − ϵ2
π0

: ð4:16Þ

Reference [5] suggested replacing L̄5 with the NLO
expression equating it to the isospin symmetric FK=Fπ

which yields

δFiso0
K−π ¼ −

1

6

ϵ2K0 − ϵ2K�

ϵ2η − ϵ2
π0

×

�
4

�
FK

Fπ
− 1

�
þ ϵ2π̄ ln

�
ϵ2K̄
ϵ2π̄

�
− ϵ2K̄ þ ϵ2π̄

�
: ð4:17Þ

In this expression, we have utilized the two relations

lK̂þ − lK̄ ¼ −
2

3

ϵ2K0 − ϵ2K�

ϵ2η − ϵ2
π0

ðϵ2K̄ − ϵ2π̄Þðln ϵ2K̄ þ 1Þ

ϵ2η − ϵ2π̄ ¼
4

3
ðϵ2K̄ − ϵ2π̄Þ: ð4:18Þ

At this order, both Eqs. (4.16) and (4.17) are equivalent.
However, they can result in shifts that differ bymore than one

standard deviation. Further, the direct estimate of the strong
isospin breaking corrections [9] is larger in magnitude than
either of them. Therefore, to estimate the strong isospin
breaking corrections, we take the larger of the two correc-
tions as the mean and the larger uncertainty of the two, and
then add an additional 25% uncertainty for SUð3Þ truncation
errors. In Sec. IV D 2 we observe the N2LO correction is
∼25% of the NLO correction (while NLO is ∼16% of LO).
In order to evaluate these expressions, we have to define

the physical point with strong isospin breaking and without
QED isospin breaking. We employ the values from FLAG
[2017] [81] (except M̂π0 ¼ 134.6ð3Þ MeV):

M̂π0 ¼ M̂πþ ¼ 134.8ð3Þ MeV;

M̂K0 ¼ 497.2ð4Þ MeV;

M̂Kþ ¼ 491.2ð5Þ MeV: ð4:19Þ

With this definition of the physical point, we find (under the
same model average as Table VII)

δFiso
K−π ¼ −0.00188ð51Þ;

δFiso0
K−π ¼ −0.00215ð24Þ; ð4:20Þ

resulting in our estimated strong isospin breaking correction

TABLE VII. List of models used in final result, as described in the text.

Model χ2ν Q logGBF Weight FK=Fπ

xpt-ratio_nnnlo_FV_ct_PP 0.847 0.645 77.728 0.273 1.1968(40)
xpt-ratio_nnnlo_FV_alphaS_ct_PP 0.843 0.650 77.551 0.229 1.1962(46)
xpt_nnnlo_FV_ct_PP 0.908 0.569 76.830 0.111 1.1974(40)
xpt_nnnlo_FV_alphaS_ct_PP 0.902 0.576 76.668 0.095 1.1966(46)
xpt-ratio_nnnlo_FV_ct_PK 1.014 0.439 76.343 0.068 1.1952(37)
xpt-ratio_nnnlo_FV_alphaS_ct_PK 1.006 0.449 76.234 0.061 1.1944(42)
xpt_nnnlo_FV_PP 0.949 0.517 75.371 0.026 1.1989(40)
xpt_nnnlo_FV_alphaS_PP 0.946 0.522 75.196 0.022 1.1983(46)
xpt_nnnlo_FV_ct_PK 1.135 0.309 75.084 0.019 1.1950(36)
xpt_nnnlo_FV_alphaS_ct_PK 1.123 0.321 75.007 0.018 1.1941(41)
xpt-ratio_nnnlo_FV_PP 1.014 0.439 74.765 0.014 1.1987(40)
xpt-ratio_nnnlo_FV_alphaS_PP 1.009 0.445 74.599 0.012 1.1980(46)
xpt_nnnlo_FV_PK 1.100 0.344 74.421 0.010 1.1969(37)
xpt_nnnlo_FV_alphaS_PK 1.093 0.352 74.306 0.009 1.1962(42)
xpt-ratio_nnnlo_FV_ct_KK 1.262 0.202 74.014 0.007 1.1920(36)
xpt-ratio_nnnlo_FV_alphaS_ct_KK 1.244 0.215 74.004 0.007 1.1912(39)
xpt-ratio_nnnlo_FV_PK 1.159 0.286 73.880 0.006 1.1967(37)
xpt-ratio_nnnlo_FV_alphaS_PK 1.150 0.295 73.780 0.005 1.1959(41)
xpt_nnnlo_FV_KK 1.288 0.184 72.757 0.002 1.1938(36)
xpt_nnnlo_FV_alphaS_KK 1.273 0.194 72.718 0.002 1.1930(40)
xpt-ratio_nnnlo_FV_KK 1.338 0.152 72.348 0.001 1.1938(36)
xpt-ratio_nnnlo_FV_alphaS_KK 1.322 0.162 72.323 0.001 1.1929(39)
xpt_nnnlo_FV_alphaS_ct_KK 1.536 0.068 71.459 0.001 1.1900(38)
xpt_nnnlo_FV_ct_KK 1.558 0.061 71.430 0.001 1.1909(35)

Bayes Model Average 1.1964(42)(12)
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FK̂þ

Fπ̂þ
−
FK

Fπ
¼ −0.00215ð72Þ ð4:21Þ

and our final result as reported in Eq. (1.4)

FK̂þ

Fπ̂þ
¼ 1.1942ð44Þð07Þiso

¼ 1.1942ð45Þ;

where the first uncertainty in the first line is the combi-
nation of those in Eq. (1.3).

V. SUMMARY AND DISCUSSION

The ratio FK=Fπ may be used, in combination with
experimental input for leptonic decay widths, to make a
prediction for the ratio ofCKMmatrix elements, jVusj=jVudj.
Using the most recent data, Eq. (1.1) becomes [6]

jVusj
jVudj

FK̂þ

Fπ̂þ
¼ 0.2760ð4Þ; ð5:1Þ

where strong isospin breaking effects must be included for
direct comparison with experimental data. Combining this
expression with our final result, we find

jVusj
jVudj

¼ 0.2311ð10Þ: ð5:2Þ

Utilizing the current global average, jVudj¼0.97420ð21Þ,
extracted from superallowed nuclear beta decays [6]
results in

jVusj ¼ 0.2251ð10Þ: ð5:3Þ

Finally, we may use our results, combined with the value
jVubj¼ð3.94ð36ÞÞ×10−3, as a test of unitarity for the CKM
matrix, which states that jVudj2 þ jVusj2 þ jVubj2 ¼ 1.
From our calculation we find

jVudj2 þ jVusj2 þ jVubj2 ¼ 0.99977ð59Þ: ð5:4Þ

Alternatively, rather than using the experimental deter-
mination of jVudj as input for our test of unitarity, we may
instead use the global lattice average for jVusj ¼ 0.2231ð7Þ
[8], extracted via the quantity fþð0Þ, the zero momentum
transfer limit of a form factor relevant for the semileptonic
decay K0 → π−lν. This leads to

jVudj2 þ jVusj2 þ jVubj2 ¼ 0.9812ð95Þ; ð5:5Þ

leading to a roughly 2σ tension with unitarity. Our result,
along with the reported experimental results for jVudj and
lattice results for jVusj, are shown in Fig. 9. One could also
combine our results with the more precise average in the

FLAG review which would lead to a slight reduction their
reported uncertainties, but we will leave that to the FLAG
Collaboration in their next update.
Another motivation for this work was to precisely test

(below 1%) whether the action we have used for our
nucleon structure calculations [35–37] can be used to
reproduce an accepted value from other lattice calculations
that are known at the subpercent level. Our result provides
the first subpercent cross-check of the universality of the
continuum limit of this quantity with Nf ¼ 2þ 1þ 1
dynamical flavors, albeit with the same sea-quark action
as used by MILC/FNAL and HPQCD [12,13].
Critical in obtaining a subpercent determination of any

quantity is control over the continuum extrapolation. This
is relevant to our pursuit of a subpercent determination of
gA as another calculation, utilizing many of the same HISQ
ensembles but with a different valence action (clover
fermions), obtains a result that is in tension with our
own [92,93]. While there has been speculation that this
discrepancy is due to the continuum extrapolations [93],
new work suggests the original work underestimated the
systematic uncertainty in the correlation function analysis,
and when accounted for, the tension between our results
goes away [94].
In either case, to obtain a subpercent determination of gA,

which is relevant for trying to shed light on the neutron
lifetime discrepancy [95], it is important to understand the
scaling violations of our lattice action. While a smooth
continuum extrapolation in one observable does not guar-
antee such a smooth extrapolation in another, it at least
provides some reassurance of a well-behaved continuum
extrapolation. Furthermore, the determination of FK=Fπ

involves the same axial current that is relevant for the

FIG. 9. Result for the ratio of CKM matrix elements,
jVusj=jVudj, extracted from the ratio FK=Fπ reported in this work
(red band). The global lattice value for jVusj extracted from a
semileptonic decay form factor, fþð0Þ [8], is shown as a horizontal
blue band, while the global experimental average for jVudj from
nuclear beta decay [6] is given as a vertical green band. Note that
the intersection between the red and green bands agrees well with
the unitarity constraint for the CKMmatrix, while the intersection
between the red and blue bands shows ∼2σ tension.
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computation of the nucleon matrix element used to com-
pute gA.
Figure 4 shows the continuum extrapolation of FK=Fπ

from our analysis. The size of the discretization effects are
noticeably larger than we observed in our calculation of gA
[36]. In Sec. IV D 1, we demonstrated that, while helpful,
the a06m310L ensemble is not necessary to achieve a
subpercent determination of FK=Fπ . This is in contrast to
the determination by MILC which requires the a ∼ 0.06 fm
(or smaller) lattice spacings to control the continuum
extrapolation (though we note, the HPQCD calculation
[12], also performed on the HISQ ensembles, does not
utilize the a ∼ 0.06 fm ensembles but agrees with the
MILC result). It should be noted, the MILC result does
not rely on the heavier mass ensembles except to adjust for
the slight mistuning of the input quark masses on their near-
physical point ensembles. In Fig. 10, we compare our
continuum extrapolation to that of MILC [96].
In Ref. [96], they also utilize the same four lattice

spacings as in this work (they have subsequently improved
their determination with an additional two finer lattice
spacings [13].) A strong competition between the Oða2Þ

and Oða4Þ corrections was observed in that work, such that
the a ∼ .06 fm ensemble is much more instrumental for a
reliable continuum extrapolation than is the case in our
setup. At the same time, the overall scale of their discre-
tization effects is much smaller than we observe in the
MDWF on gradient-flowed HISQ action for this quantity.
This is not entirely surprising as the HISQ action has been
tuned to perturbatively remove all Oða2Þ corrections such
that the leading corrections formally begin as OðαSa2Þ.
The analysis and supporting data for this article are

openly available [97].
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APPENDIX A: MODELS INCLUDED
IN FINAL ANALYSIS

We list the models that have entered the final analysis as
described in Sec. IV D and listed in Table VII. For example,
the model

xpt-ratio nnnlo FV alphaS PP

indicates the model uses the continuum χPT fit function
through N3LO with discretization corrections added as in

Eqs. (3.32) and (3.41). The NLO contributions are kept in a
ratio form, Eq. (3.17), and we have included the corre-
sponding N2LO ratio correction δN

2LO
ratio . The finite volume

corrections have been included at NLO. The discretization
terms at N2LO include the αSϵ2aðϵ2K − ϵ2πÞ counterterm. The
renormalization scale appearing in the logs is μ ¼ 4πFπ as
indicated by _PP, and we have included the corresponding
N2LO correction δN

2LO
Fπ

, Eq. (3.29), to hold the actual
renormalization scale fixed at μ0 ¼ 4πF0.
When _ct appears in the model name, the only N2LO

terms that are added are from the local counterterms while
all chiral log corrections are set to zero.

APPENDIX B: NLO MIXED ACTION FORMULAS

The expression for dlπ arises from the integral

dlπ ¼
Z
R

ddk
ð2πÞd

i
ðk2 −m2

πÞ2
¼ 1þ lnðm2

π=μ2Þ
ð4πÞ2 ; ðB1Þ

which has been regulated and renormalized with the
standard χPT modified dimensional-regularization scheme
[48]. The finite volume corrections to δlπ are given by

δFVdlπ

¼
X
jnj≠0

cn
ð4πÞ2

�
2K1ðmLjnjÞ

mLjnj −K0ðmLjnjÞ−K2ðmLjnjÞ
�
:

ðB2Þ
The expression for Kϕ1ϕ2

arises from the integral

Kϕ1ϕ2
¼ ð4πÞ2

Z
R

ddk
ð2πÞd

i
ðk2 −m2

ϕ1
Þðk2 −m2

ϕ2
Þ

¼ lϕ2
− lϕ1

ϵ2ϕ2
− ϵ2ϕ1

: ðB3Þ

Similarly, Kð2;1Þ
ϕ1ϕ2

is given by

Kð2;1Þ
ϕ1ϕ2

¼
Z
R

ddk
ð2πÞd

ið4πÞ2ð4πFÞ2
ðk2 −m2

ϕ1
Þ2ðk2 −m2

ϕ2
Þ

¼ lϕ2
− lϕ1

ðϵ2ϕ2
− ϵ2ϕ1

Þ2 −
dlϕ1

ϵ2ϕ2
− ϵ2ϕ1

: ðB4Þ

Finally, Kϕ1ϕ2ϕ3
is given by

Kϕ1ϕ2ϕ3
¼

Z
R

ddk
ð2πÞd

ið4πÞ2ð4πFÞ2
ðk2 −m2

ϕ1
Þðk2 −m2

ϕ2
Þðk2 −m2

ϕ3
Þ

¼ lϕ1

ðϵ2ϕ1
− ϵ2ϕ2

Þðϵ2ϕ1
− ϵ2ϕ3

Þ þ
lϕ2

ðϵ2ϕ2
− ϵ2ϕ1

Þðϵ2ϕ2
− ϵ2ϕ3

Þ

þ lϕ3

ðϵ2ϕ3
− ϵ2ϕ1

Þðϵ2ϕ3
− ϵ2ϕ2

Þ : ðB5Þ
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In each of these expressions, the corresponding expression
including FV corrections are given by replacing lϕ → lFV

ϕ ,
Eq. (3.39).

APPENDIX C: HMC FOR NEW ENSEMBLES

We present various summary information for the three
new ensembles used in this work, a06m310L, a15m135XL

and a09m135. In Table VIII, we list the parameters of
the HISQ ensembles used in the HMC. In Fig. 11, we show
the MDTU history of the ΔS for the three ensembles.
For the a15m135XL ensemble, we reduced the trajectory
length significantly compared to the a15m130 from
MILC to overcome spikes in the HMC force calculations.
To compensate, we lowered the acceptance rate to
encourage the HMC to move around parameter space with

TABLE VIII. Input parameters and measured acceptance rate for the new HISQ ensembles. In addition to the columns standardly
reported by MILC (see Table IV of Ref. [43]), we list the abbreviated ensemble name, the number of streams Nstream, and the total
number of configurations Ncfg. For a given ensemble, each stream has an equal number of configurations. The gauge coupling, light,
strange, and charm quark masses on each ensembles are given as well as the tadpole factor u0 and the Naik-term added to the charm
quark action ϵN . Here s denotes the total length in molecular dynamics time units (MDTU) between each saved configuration, Len.
denotes the length between accept/reject steps (in MDTU), and Acc. denotes the fraction of trajectories accepted. The microstep size ϵ
used in the HMC is provided as Len./Nsteps which was input with single precision. The average acceptance rate over all streams is listed
as well as the number of streams.

Ensemble 10=g2 aml ams amc u0 ϵN s Len. ϵ Acc. Nstream Ncfg

a15m135XL 5.80 0.002426 0.06730 0.8447 0.85535 −0.35892 5 0.2 0.2/150 0.631 4 2000
a09m135 6.30 0.001326 0.03636 0.4313 0.874164 −0.11586 6 1.5 1.5/130 0.693 2 1010
a06m310L 6.72 0.0048 0.024 0.286 0.885773 −0.05330 6 2.0 2.0/120 0.765 2 1000

FIG. 11. The ΔS values computed in the accept/reject step of the HMC versus MDTU. The different colors correspond to the different
streams which are separated and shifted in MDTU for clarity.
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larger jumps in an attempt to reduce the auto-
correlation time. We ran 25 HMC accept/reject steps before
saving a configuration for a total trajectory length of 5.
For each accept/reject step we also measure the quark-

antiquark condensate ψ̄ψ using a stochastic estimate with 5
random sources that are averaged together. We compute it
for each of the quark masses aml, ams, and amc. On the
a15m135XL we have measured ψ̄ψ only on every saved
configuration for the first half of each stream, while we
measured it at each accept/reject step for the second half.
The integrated autocorrelation time, as well as the average
and statistical errors of ψ̄ψ , are computed using the Γ-
method analysis [107] with the Python package UNEW

[108]. We report the results in Table IX. In Fig. 12 we
report the value of the ψ̄ψ on each saved configuration for
the three quark masses on each ensemble.
Because we observe a long autocorrelation time of the

hψ̄ sψ si on the a15m135XL ensemble, we also studied the
uncertainty on the extracted pion and kaon effective masses
as a function of block size to check for possible longer
autocorrelations than usual, with blocking lengths of 10, 25,
and 100 MDTU (Fig. 13). We observe that these hadronic
quantities have a much shorter autocorrelation time as the
uncertainty is independent of τb and consistent with the
unblocked data. On this a15m135XL ensemble, while we
have generated 2000 configurations, we have only utilized

FIG. 12. The quark-antiquark condensate on each configuration of the three ensembles. The different streams are plotted separately for
clarity. The plots in each column correspond to the light, strange and charm quark masses, respectively.

TABLE IX. Average values of the quark-antiquark condensate ψ̄ψ with statistical errors and integrated autocorrelation times τ
measured with the Γ-method analysis. Each value is averaged over all the available streams (which are all statistically compatible). The
integrated autocorrelation time is reported in units of MDTU. The a15m135XL results are obtained from the second half of each stream
because we have more measurements.

Ensemble Nstream ψ̄ψ l τl ψ̄ψ s τs ψ̄ψc τc

a15m135XL 4 0.02390(2) 11(2) 0.08928(2) 71(26) 0.4800580(5) <1
a09m135 2 0.005761(6) 9(2) 0.003935(3) 32(9) 0.3205399(5) 1.5(1)
a06m310L 2 0.006599(4) 30(8) 0.002356(2) 34(8) 0.2275664(4) 2.0(2)
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1000 in this paper (the first half from each of the four
streams).
Finally, in Table X, we list the parameters of the

overrelaxed stout smearing used to measure the topologi-
cal charge Q on each configuration [109] and we
show the resulting Q distributions in Fig. 14. While the

Q-distribution on the a06m310L ensemble is less than
ideal and the integrated autocorrelation time is long,
the volume is sufficiently large (aL ¼ 72a ≃ 4.1 fm) that
we do not anticipate any measurable impact from the
poorly distributed Q-values, which nonetheless average to
nearly 0.

FIG. 13. The effective mass in the mid- to long-time region of the kaon (top) and pion (bottom) on the a15m135XL ensemble are
plotted as a function of the blocking time, τb in MDTU. For example, τb ¼ 10 blocks nearest neighbor configurations while τb ¼ 100 is
blocking in groups of 20 configurations. That the uncertainty is independent of τb indicates the autocorrelation time for these hadronic
quantities is very short.

FIG. 14. Distribution of topological charge Q measurements on each configuration. The Q-values were determined by using the
overrelaxed stout smearing technique outlined in [109] with weight parameters ρ given in Table X and ε ¼ −0.25. We cross-checked a
sample of our stout smeared measurements with the more expensive Symanzik flow technique and saw good agreement between the
two. We determined the ρ parameter and the number of steps to perform on an ensemble-to-ensemble basis, i.e., for a handful of
configurations per ensemble we choose a spread of ρs and step numbers and observe which combination gives the best plateau. These
values of ρ and step number (ε is always −0.25) are then applied to the entire ensemble.

TABLE X. Values of the overrelaxed stout smearing parameters used to measure the topological charge Q and the resulting mean (Q̄)
and width (σ) of the distribution for each stream. The last column reports the integrated autocorrelation time in units of MDTU using the
Γ-method analysis. These measurements were performed with QUDA which is now available via the su3_test test executable in the
develop branch [39,40].

Q̄streamðσÞ
Ensemble ρ Nstep a b c d e Q̄allðσÞ τallðσÞ
a15m135XL 0.068 2000 � � � −10ð34Þ −3ð35Þ −2ð33Þ 5(32) −3ð33Þ 15(3)
a09m135 0.065 2000 0.5(12.0) 2(12) � � � � � � � � � 1(12) 18(4)
a06m310L 0.066 1800 � � � 4(12) −1.2ð7.4Þ � � � � � � 1(10) 420(198)
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