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Dualities provide deep insight into physics by relating two seemingly distinct theories. Here we consider
a duality between lattice fermions and bosons in (2þ 1) spacetime dimensions, relating free massive Dirac
fermions to Abelian Chern-Simons Higgs (ACSH) bosons. To establish the duality, we represent the exact
partition function of the lattice fermions in terms of the writhe of fermionic worldlines. On the bosonic side,
the partition function is expressed in the writhe of the vortex loops of the particle-vortex dual of the
ACSH Lagrangian. In the continuum and scaling limit, we show these to be identical. This result can be
understood from the closed fermionic worldlines being direct mappings of the ACSH vortex loops, with the
writhe keeping track of particle statistics.

DOI: 10.1103/PhysRevD.102.034506

I. INTRODUCTION

A duality transformation relates two theories that appear
to be very different. Such a mapping is particularly useful if
a seemingly hard question in one theory duality-transforms
into a simple one in another theory. Duality transforma-
tions, for example, often invert the coupling constant in the
dual theory, thereby transforming strongly interacting
models into weakly interacting ones and vice versa [1,2].
In other cases, the transformation of the coupling constant
is not a simple inversion, but rather a more complex
function of the original one. Analyzing the properties of
this function typically still allows one to obtain results that
would be difficult to achieve otherwise. A well-known
example is provided by the two-dimensional Ising model,
whose dual model is again an Ising model. In this case, the
self-duality allows an exact determination of the critical
temperature by just looking for the fixed point of the duality
transformation, a result obtained before Onsager derived
the exact solution of the model [3].
Of particular interest are dualities that implement a

transmutation of particle statistics in addition to a mapping
of coupling constants. In one-dimensional quantum systems
(1þ 1 dimensions), such transmuting mappings between
fermionic theories and bosonic ones are well known and
go under the general name of bosonization. Due to the

fermionic sign structure of the wave function, the situation
is, however, much more complex in higher dimensions. In
recent years, there has been intense activity surrounding
bosonization dualities in 2þ 1 dimensions [4–14], but
indeed it has turned out to be very difficult to obtain exact
statements. For instance, while the free massive Dirac
fermion in 1þ 1 dimensions can be exactly mapped into a
sine-Gordon model with a particular value of the coupling
constant [15–17], a similar statement in 2þ 1 dimensions
is argued to hold only at the infrared stable fixed point of
the dual bosonic theory. The latter is given in this case by
the following Abelian Chern-Simons Higgs (ACSH)
Lagrangian:

L ¼ 1

4π
ϵμνλaμ∂νaλ þ jð∂μ − iaμÞϕj2 −m2jϕj2 − λ

2
jϕj4:

ð1Þ

A particularly simple classical soliton solution arises in
the form of so-called “self-dual” Chern-Simons (CS)
vortices [18], where “self-dual” here means the saturation
of the Bogomolny bound [19] for the energy, achieved for
certain values of the coupling constants, which generally
leads to first-order differential equations for the fields
rather than second-order ones. The static vortex solution
obtained in this way features a nonzero angular momen-
tum, which is a direct consequence of the CS term. It is
interesting to note that a nonzero angular momentum
for vortices is forbidden in the case of an ordinary Abelian
Higgs model featuring a Maxwell term but sans CS
term [20]. But this no-go theorem does not hold for the
theory (1), as due to the CS term, the magnetic flux

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 102, 034506 (2020)

2470-0010=2020=102(3)=034506(14) 034506-1 Published by the American Physical Society

https://orcid.org/0000-0001-5164-1287
https://orcid.org/0000-0001-7296-5096
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.034506&domain=pdf&date_stamp=2020-08-17
https://doi.org/10.1103/PhysRevD.102.034506
https://doi.org/10.1103/PhysRevD.102.034506
https://doi.org/10.1103/PhysRevD.102.034506
https://doi.org/10.1103/PhysRevD.102.034506
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


becomes the source of electric fields. A closely related
result has been discussed recently in the context of an
axion electrodynamics of vortices for a superconductor-
topological insulator structure [21]. The remarkable fact is
that for the case of a CS coupling as given in Eq. (1), the
total angular momentum associated with the electromag-
netic field and vortex is quantized in units of ℏ=2, which
implies that the CS term transmutes the vortex into a
fermion. Thus, this soliton solution of the classical field
equations already suggests a boson-fermion transmutation
required by bosonization techniques.
Historically, boson-fermion transmutation within a boso-

nization framework in 2þ 1 dimensions was first discussed
by Polyakov [22] for a model closely related to Eq. (1):
namely, the CPN−1 model with a CS term. Polyakov’s
approach has been elaborated further in Refs. [23–25]
and provides an early instance where the mapping of
bosons to free massive Dirac fermions in 2þ 1 dimensions
is discussed.
One of the main results of this paper is to establish a

correspondence between free massive Dirac lattice fer-
mions and the bosonic particle-vortex duality of the
Lagrangian [Eq. (1)] in the continuum limit using an
exact representation of the partition function of Wilson
fermions in terms of the writhe associated with the
fermionic particle worldlines. Particle-vortex dualities for
the Abelian Higgs model (sans CS term) in 2þ 1 dimen-
sions are well established in several different, but closely
related approaches [2,26–29]: it consists in mapping the
worldline of a particle in a system with global Uð1Þ
symmetry (for instance, the XY model) to vortex lines of
the Abelian Higgs model. This particle-vortex duality does
not involve a change of statistics, as both sides of the
duality involve bosonic fields only. But it suggests a
pathway to establish the bosonization duality in 2þ 1
dimensions: mapping the worldline of free massive fer-
mions to the vortex loops of the Abelian Chern-Simons
Higgs (ACSH) model [Eq. (1)]. Interestingly, the lattice
form of the ACSH Lagrangian (1) can be mapped by means
of an exact duality to a Lagrangian of almost the same
form [30], differing from the original Lagrangian by the
presence of a Maxwell term.
The bosonization duality in 2þ 1 dimensions can be

established exactly in the ultraviolet (UV) regime [9] and is
assumed to hold only approximately in the infrared regime
(IR). This makes it important to establish a correspondence
between the bosonic particle-vortex duality and the boso-
nization duality in a way that is as exact as possible. This is
not an obvious task, since integrating out the bosonic
matter fields in Eq. (1) leads to a self-linking of vortex
loops, which is a less obvious occurrence in free massive
Dirac fermions, as first realized by Polyakov [22].
The plan of the paper is as follows: In Sec. II, we discuss

the properties of the effective action of the bosonic theory,

which prepares us for the identification of closed particle
worldlines to vortex loops in later sections. In Sec. III, the
fermionic sector of the duality will be considered in the
lattice using theWilson fermion technique. Since the theory
is Gaussian, the partition function can be obtained exactly
in the thermodynamic limit. However, in 2þ 1 dimensions,
free massive Dirac fermions exhibit a nontrivial topology
which can only be unveiled via a subtle path-integral
representation of the fermion determinant, detðγμ∂μþmFÞ
[22,31]. In fact, despite the absence of interactions with a
gauge field, the topologically nontrivial feature associated
with the parity anomaly is already apparent from a straight-
forward exact calculation of the current correlation function.
On the lattice, we determine the fermion partition function
by means of a hopping parameter expansion in a way similar
to Ref. [32]. This allows an exact representation of the
partition function as a summation over the weights of the all
possible fermion worldlines, which are closed loops char-
acterized by the writhe number. The way the writhe arises
here is a consequence of the interplay between parity
symmetry breaking (due to the mass) and the nontrivial
topology of spinors in 2þ 1 dimensions. In Sec. IV, we
discuss the convergence of the hopping expansion and cast
the partition function in a form more appropriate to relate to
the bosonic dual partition function. The latter is discussed in
Sec. V, where the duality transformation will be performed
exactly on the lattice, where in the dual model the CS
coupling is inverted. The bosonization duality implies that
any side of the particle-vortex duality can in principle be
mapped to the Lagrangian of a free massive Dirac fermion.
This fact necessarily constraints the CS coupling to have the
form given in Eq. (1). We emphasize here the important role
of the writhe number that naturally emerges when analyzing
vortex loops in CS theories [33]. In Sec. V, we show that
the partition function of the dual ACSH theory is given as
the summation of the weight of all possible vortex loop
configurations, where we characterize the weight of the
vortex loops in terms of the writhe of the loops. Finally,
in Sec. VI, the bosonization duality is established in the
low-energy vortex sector.

II. BOSONIC PARTICLE-VORTEX DUALITY,
AND PROPERTIES OF THE BOSONIC

CONTINUUM ACTIONS

We begin by analyzing the (purely bosonic) particle-
vortex duality of the ACSH Lagrangian. For a general CS
coupling θ=π, the duality takes the form

Lb ¼
iθ
4π2

ϵμνλaμ∂νaλ þ jð∂μ − iaμÞϕj2

þm2
Bjϕj2 þ

λ

2
jϕj4

⇕ ð2aÞ
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L̃b ¼
1

2e2
ðϵμνλ∂νbλÞ2 þ iθD

4π2
ϵμνλbμ∂νbλ

þ jð∂μ − ibμÞϕ̃j2 þ m̃2
Bjϕ̃j2 þ

λ̃

2
jϕ̃j4; ð2bÞ

where θD ¼ −4π4=θ. Unlike the free fermionic action

Lf ¼ ψ̄ðγμ∂μ þmFÞψ ; ð3Þ

the bosonic fields in Eq. (2) are interacting. A duality
between Eqs. (2) and (3) can therefore only hold in a regime
in which amplitude fluctuations of the bosonic fields are
suppressed. This section establishes when this is the case,
and what the properties of the bosonic continuum actions in
Eq. (2) are in this regime. This will be particularly helpful
in Sec. V, where we rigorously demonstrate the duality in
Eq. (2) on the lattice. The results of this section will allow
us to clearly identify the parameters of the lattice actions in
terms of the parameters of the continuum actions.
Equation (2) subscribes to the context of a standard

bosonic particle-vortex duality [2,26–29], which has also
been discussed in the presence of topological terms in the
past [30,34,35]. The dual Lagrangian L̃b features a com-
plex disorder field ϕ̃ whose coupling to the gauge field
bμ leads to superconducting vortex lines representing
the worldlines of the particles of the Lagrangian Lb. In
the limit θ → ∞, the bosonic particle-vortex duality (2)

reduces to the well-known duality between the XY model
and a superconductor described by an Abelian Higgs
model [26,28,29]. On the other hand, for e2 → ∞, both
Lagrangians have the same form, with the CS term having
inverted signs, reflecting the self-duality of the CS Abelian
Higgs model with its time-reversed partner. The gauge
coupling e2 in Eq. (2b) is given by the bare phase stiffness
of the Lagrangian of Eq. (2a). This statement will be made
more precise in Sec. V.
If one adds a Maxwell term ðϵμνλ∂νaλÞ2=ð2g2Þ to the

Lagrangian (2a) as an UV regulator, it is well known that
for θ ¼ 0 the charge-neutral Wilson-Fisher fixed point
becomes unstable, and that the charged IR stable fixed
point (sometimes called the gauged Wilson-Fisher fixed
point in the more recent literature [4,31]) is perturbatively
inaccessible for a single complex scalar [36–38]. The CS
term makes the charged fixed point perturbatively acces-
sible provided the RG calculations are performed using
a massive scalar field, while there are indications that
conformality is lost if one studies the RG flow for the
critical theory [39].
To gain intuition about the role played by the CS term,

one can, for example, compute the properties of the dual
model (2b) (featuring a regulating Maxwell term) for a
fixed uniform scalar field background, ϕ̃ ¼ ϕ̃0. Integrating
out the gauge field then yields

Ûeffðϕ̃0Þ ¼ m̃2
Bjϕ̃0j2 þ

λ̃

2
jϕ̃0j4 þ

1

V

�X
α¼�

ln det½−ΔþM2
αðϕ̃0Þ� − ln detð−Δþ 2e2jϕ̃0j2Þ − ln detð−ΔÞ

�

¼ m̃2
Bjϕ̃0j2 þ

λ̃

2
jϕ̃0j4 þ

1

2π2

Z
Λ

0

dpp2

�X
α¼�

ln

�
1þM2

αðϕ̃0Þ
p2

�
− ln

�
1þ 2e2jϕ̃0j2

p2

��
; ð4Þ

where V is the (infinite) volume, Λ is a UV cutoff, and

M2
�ðϕ̃0Þ ¼ 2e2jϕ̃0j2 þ

δ2

2
� jδj

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ 8e2jϕ̃0j2

q
; ð5Þ

where δ ¼ e2θD=ð2π2Þ. A Landau expansion of the above
effective potential up to jϕ̃0j4 yields

Ũeffðϕ̃0Þ ≈
�
m̃2

B þ Λe2

π2
−
3

ffiffiffi
2

p
e4

jθj
�
jϕ̃0j2

þ
ffiffiffi
2

p
e

3π
jϕ̃0j3 þ

λ̃

2
jϕ̃0j4; ð6Þ

implying that the one-loop photon bubble diagram at zero
external momenta gives no correction to the renormalized
coupling λ̃R ¼ λ̃þ ðquantum correctionsÞ [39]. This is in

stark contrast with the theory where a CS term is absent,
where the same diagram is IR divergent and thus cannot be
evaluated for zero external momenta [38]. This fact creates
a difficulty to smoothly interpolate between the Abelian CS
Higgs model and the standard Abelian Higgs model [39].
Given these considerations, in order to avoid the difficulties
associated with the critical theory, we will assume in this
paper that the fixed point structure is governed by a theory
with a nonzero renormalized massmR for the theory (2) [or
m̃R for the theory (2a)], and that the IR fixed point is
approached as mR → 0.
An interesting question is the role of amplitude fluctua-

tions in Eq. (2b). If the scalar field ϕ0 were in a fixed,
homogenous configuration, the analogue effective potential
Ueffðϕ0Þ could easily be obtained from Eq. (4) by replacing
the background field ϕ̃0 there with ϕ0, replacing θD with θ,
and letting e2 → ∞. We then obtain
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Ueffðϕ0Þ ¼ m2
Bjϕ0j2 þ

λ

2
jϕ0j4

þ 1

2π2

Z
Λ

0

dpp2 ln

�
1þM2ðϕ0Þ

p2

�
; ð7Þ

whereM2ðϕ0Þ ¼ 16π4jϕ0j4=θ2. By performing the integral
explicitly and assuming Λ ≫ jMj, we obtain

Ueffðϕ0Þ ≈m2
Bjϕ0j2 þ

1

2

�
λþ 16π2Λ

θ2

�
jϕ0j4

−
32π5

3jθj3 jϕ0j6 þO
�
1

Λ

�
: ð8Þ

Thus, in contrast with the standard Higgs model in 2þ 1
dimensions (i.e., with a Maxwell term and without a CS
term) [36], the effective potential above appears to be
unstable (unbounded below) due to the generation of a
negative jϕ0j6. However, since its coefficient is dimension-
less and thus independent of the cutoff, it can be safely
neglected. A more elaborate argument would be to notice
that quite generally for a local field theory with no more
than two derivatives in the classical action a jϕj6 term is an
irrelevant operator, with the corresponding coupling con-
stant flowing to zero anyway. Hence, we could easily
absorb the constant term into a bare jϕj6 and set it to zero.
Thus, after dealing with the negative jϕj6 contribution,

we see that the effective potential resembles a standard
Landau theory, with λ receiving a large shift proportional to
the UV cutoff Λ. We see that even if one starts with λ ¼ 0, a
scalar field self-interaction ∼Λ=θ2 is generated. We find
therefore that the value of the order parameter correspond-
ing to the minimum of the effective potential [Eq. (8)] is
attained for m2

B < 0 and depends on θ:

jϕ0;minj2 ¼ −
m2

Bθ
2

16π2Λþ θ2λ
; ð9Þ

which trivially reduces to the usual mean-field Landau
theory result for jθj → ∞. Note that one can use the UV
scale Λ to define dimensionless quantities out of both bare
parameters m2

B and λ, as is customary in RG theory [15].
Thus, we would have λ ¼ Λλ̂, where λ̂ is dimensionless.
The coupling constant λ can only be disregarded in Eq. (9)
if θ2λ̂ ≪ 16π2.
So far, we have not considered the vortices of the theory,

which are connected with the phase of the field ϕ. This
motivates us to parametrize the complex scalar field in
terms of an amplitude and a phase as ϕ ¼ ρeiφ=

ffiffiffi
2

p
, such

that the Lagrangian of Eq. (2) becomes

Lb ¼ i
θ

4π2
ϵμνλaμ∂μaλ þ

ρ2

2
ð∂μφ − aμÞ2

þ 1

2
ð∂μρÞ2 þ

m2
B

2
ρ2 þ λ

8
ρ4: ð10Þ

After performing the gauge transformation aμ → aμ þ ∂μφ
and accounting for the periodic character of φ, we integrate
out aμ exactly to obtain

Seff ¼
1

2
Tr ln

�
−i

θ

2π2
ϵμνλ∂λ þ ρ2δμν

�
−
1

2
Tr ln ρ2

þ θ2

4π4

Z
d3x

Z
d3x0Dμνðx; x0ÞVμðxÞVνðx0Þ

þ
Z

d3x

�
1

2
ð∂μρÞ2 þ

m2
B

2
ρ2 þ λ

8
ρ4
�
; ð11Þ

where Dμνðx; x0Þ is the inverse of the operator
−i θ

2π2
ϵμνλ∂λ þ ρ2δμν and

VμðxÞ ¼ ϵμνλ∂ν∂λφðxÞ ¼ 2π
X
a

na

I
dyaμδ3ðx − yaÞ ð12Þ

is the vortex loop current, with na being the vortex quan-
tum. The term ð1=2ÞTr ln ρ2 arises from the Jacobian of the
transformation from complex fields to ϕ ¼ ρeiφ=

ffiffiffi
2

p
. It

cancels out against explicit calculation of the first term of
Eq. (11) in the unitary gauge [40].
For later use in the analysis of the duality using a lattice

model, we integrate out the amplitude fluctuations approx-
imately at one-loop order. This is easily done by consid-
ering the Gaussian fluctuations around ρ0 ¼ 2jϕ0;minj in the
effective action [Eq. (11)]; i.e., we consider ρ ¼ ρ0 þ δρ
and integrate out the Gaussian fluctuations in δρ. The result
adds the following contribution to the effective action:

δSeff ¼
1

2
Tr ln

�
−Δþm2

B þ 3λ

2
ρ20

�
: ð13Þ

A more accurate result would involve replacing ρ20 in the
above equation with hρ2i [15], and even more precise is
to consider the full response and have the phase stiffness
ρs appearing as a coefficient of ð∂μφ − aμÞ2. It is now
instructive to recall a well-known random path representa-
tion for the above result [2,27,41]. In this case, we write the
cutoff in terms of the shortest element of the path, a, which
we later identify to be the lattice spacing, so we can write
Λ ¼ π=a. Denoting PðL̃Þ as the number of closed paths of
length L̃, we can use the known results of Refs. [2,27] to
write

δSeff ¼ −
Z

∞

0

dLPðL̃Þe−ϵL̃; ð14Þ
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where

ϵ ¼ a
6

�
m2

B þ 3λ

2
ρ20

�
þ ln 6

a
: ð15Þ

The particle-vortex duality will map the particles’ closed
paths to vortex loops. We can use the well-known general
expression for the partition function for a statistical
ensemble of vortex loops as derived from particles’ random
worldlines [2,27]:

Z ¼
X∞
N¼0

1

N!

YN
j¼1

X
fCjg

e−Svortex−ϵL̃ðCjÞ; ð16Þ

where Svortex is the action yielding the (long-range) inter-
action energy between two loops Ci and Cj, L̃ðCjÞ is the
length of the jth loop, and here ϵ is identified as the vortex
core energy [2,42].

III. WILSON FERMIONS IN THREE-
DIMENSIONAL EUCLIDEAN SPACETIME

In this section, we determine the partition function of a
free massive Dirac theory in a three-dimensional cubic
Euclidean lattice. In order to put the Dirac theory into the
lattice, we use Wilson fermions [43]; see also Ref. [44].
This results in lattice action for the free massive Dirac
fermions:

S ¼ a2
h
ðm0aþ 3RÞ

X
n

ψ̄nψn −
1

2

X
nμ

½ψ̄nðR − γμÞψnþμ̂Uμn

þ ψ̄nþμ̂ðRþ γμÞψnU
†
μn−μ̂�

i
; ð17Þ

where R is the Wilson parameter and a is the lattice
spacing, which we set to unity until otherwise specified.
The Euclidean Dirac matrices above are given by the Pauli
matrices.
In the continuum limit, Eq. (17) will converge to Eq. (3)

independent of the value of the R as long as R ≠ 0. We also
assume that m0 > 0. The coupling of the Wilson fermions
to the field Uμn ¼ expð−iAμ;nÞ enforces the local gauge
invariance of Eq. (17) in the lattice. Rewriting Eq. (17) as in
Ref. [32], we find

S ¼ 1

2κ

X
nm

ψ̄nKnm½U�ψm; ð18aÞ

K½U�nm ¼ δnm1 − κMnm½U�; ð18bÞ

Mnnþμ̂½U� ¼ ðR − γμÞUμn; ð18cÞ

Mnn−μ̂½U� ¼ ðRþ γμÞU†
μn−μ̂; ð18dÞ

where κ ¼ 1
2ðm0þ3RÞ and Eqs. (18c) and (18d) give nonzero

elements of M. This leads to the lattice partition function

Z ¼
Z

Dψ̄Dψe−
1
2κ

P
nm

ψ̄nKnm½U�ψm ð19aÞ

¼ det

�
1

2κ
K½U�

�
ð19bÞ

¼ exp

�
−
X∞
n¼1

κ2n

2n
Tr½M2n½U��

�
; ð19cÞ

where we have dropped a constant term exp½−Tr½lnð2κÞ�� in
the last step. We only sum over even numbers of products
of M’s, since the trace of an odd number of M’s vanishes,
as is apparent from Eqs. (18c) and (18d). The convergence
of this series is explicitly discussed in Sec. IV.
In the next steps, we will calculate Tr½M2n�. Being a

trace, only paths forming closed loops contribute. Thus,

Z ¼ exp

�
−
X
n¼1

X
fC2ng

κ2n

IðC2nÞ
tr½MC2n

�
�
; ð20Þ

where the trace symbol tr½…� is over products of Pauli
matrices and should not be confused with Tr½…�, which
denotes the trace over spacetime indices in the lattice.MC2n

is a 2n-fold path-ordered product of M’s along a path C2n
consisting of 2n number of lattice sites. From now on, we
choose the value of the Wilson parameter to be R ¼ 1. One
main advantage of this choice is that now summation will
be over all possible connected, nonbacktracking paths of
length 2n, with IðC2nÞ being the number of times a fermion
travels along the path C2n. Thus, IðC2nÞ plays the role of a
winding number. Simple examples of loops are illustrated
in Fig. 1. Backtracking paths like the one arising in the
loop of Fig. 1(d) yield no contribution when R ¼ 1, since in
this case R� γμ are projection operators and we have
ð1 − γμÞð1þ γμÞ ¼ 0. This special choice of R is irrelevant
in the scaling limit implied by the continuum model, which
corresponds to the regime where m0a ≪ 1.
From this point forward, we take Aμn ¼ 0 and define the

projector

Γðe⃗ðiÞÞ ¼ 1 − γ⃗ · e⃗ðiÞ; ð21Þ

where e⃗ðiÞ is a unit vector tangent to an ith segment of a
given path. Thus,

tr½MC2n
� ¼ tr

�Y2n
i¼1

Γðe⃗ðiÞÞ
�
; ð22Þ

yielding [32]

BOSONIZATION IN 2þ 1 DIMENSIONS VIA CHERN-SIMONS … PHYS. REV. D 102, 034506 (2020)

034506-5



tr

�Y2n
i¼1

Γðe⃗ðiÞÞ
�
¼ tr

�Yk
i¼1

Γðe⃗ðiÞÞpk

�
with e⃗ðiÞ ≠ e⃗ðiþ 1Þ

¼ 22n−ktr

�Yk
i¼1

Γðe⃗ðiÞÞ
�

with

e⃗ðiÞ ≠ e⃗ðiþ 1Þ; ð23Þ

where k is the number of straight sections (or sides) of a
given loop, pk is the length of the kth straight section, and
in the last equality we use Γðe⃗ðiÞÞn ¼ 2n−1Γðe⃗ðiÞÞ.
Next, we parametrize the unit tangent vectors in spheri-

cal coordinates as

e⃗ðiÞ ¼ ðsin θi cosϕi; sin θi sinϕi; cos θiÞ ð24Þ

and represent the eigenstates of the vector of Pauli matrices
as je⃗ðiÞ;�i, which satisfy

γ⃗ · e⃗ðiÞje⃗ðiÞ;�i ¼ �je⃗ðiÞ;�i; ð25Þ

implying in this way

Γðe⃗ðiÞÞ ¼ 2je⃗ðiÞ;−ihe⃗ðiÞ;−j: ð26Þ

Therefore,

tr

�Yk
i¼1

Γðe⃗ðiÞÞ
�
¼ 2k

Yk
i¼1

he⃗ðiÞ;−je⃗ðiþ 1Þ;−i; ð27Þ

where je⃗ðkþ 1Þ;−i ¼ je⃗ð1Þ;−i. From now on, we denote
je⃗ðiÞ;−i≡ je⃗ðiÞi for notational simplicity. The inner prod-
uct can be written in terms of amplitude and phase, as

he⃗ðiÞje⃗ðiþ 1Þi
¼ jhe⃗ðiÞje⃗ðiþ 1Þij expði arg½he⃗ðiÞje⃗ðiþ 1Þi�Þ: ð28Þ

Note that jhe⃗ðiÞje⃗ðiþ 1Þij ¼ 1ffiffi
2

p for all i, which can be

seen by simply calculating the magnitude of the inner
product between all distinct pairs. For the phase factor,
we have

arghe⃗ðiÞje⃗ðiþ 1Þi ¼ arctan

�
sinΔϕi cot

θi
2
cot θiþ1

2

1þ cosΔϕi cot
θi
2
cot θiþ1

2

�

¼ Ω0
i

2
; ð29Þ

where Ω0
i is the area of a spherical triangle on a unit sphere

[45,46], which is shown in Fig. 2 with the corners defined
by the unit vectors −ẑ, e⃗ðiÞ, and e⃗ðiþ 1Þ. Now, if we
combine Eq. (29) with Eq. (27), we obtain

tr

�Yk
i¼1

Γðe⃗ðiÞÞ
�
¼ 2k=2

Yk
i¼1

exp

�
i
Ω0

i

2

�

¼ 2k=2 exp i
Ω0

2
ð30Þ

Note that e⃗ is a unit tangent to the path C2n. Now, if we
consider a moving frame on path C2n, we define C̃ as the
path such that the tip of e⃗ draws in this moving frame; see
Fig. 3. As is shown in Fig. 2, if we define Ω as the total
solid angle acquired by e⃗ while traveling the given loop,
then Ω0 ¼ 4π − Ω. This can be better seen if we assume
for a moment a continuous case such that Δϕi ≪ 1 and
θi ∼ θiþ1. In this case, we would have

Ω0
i ∼ Δϕið1þ cos θiÞ; ð31Þ

and thus

(a) (b)

FIG. 2. For a given C̃, (a)Ωi is the solid angle traced by e⃗i while
traveling from i to iþ 1. (b) Ω0 is 4π − Ω.

(a)

(c) (d)

(b)

FIG. 1. (a) For this loop, the perimeter L is equal to the number
of lattice sites 2n ¼ 6, the number of straight sections/sides is
k ¼ 4, and the number of windings I ¼ 1. (b) Here, 2n ¼ 8,
k ¼ 6, and I ¼ 1 (the number of winding would not change with
the orientation of the loop). (c) Here, 2n ¼ 16, I ¼ 2, and k ¼ 12.
(d) Nonallowed loop, since it consists of backtracking.
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exp i
Ω0

2
¼ exp

�
i
2

Z
C̃
ds _ϕð1þ cos θÞ

�

¼ exp

�
i
2
½4π −Ω�

�

¼ exp

�
−
i
2
Ω
�
: ð32Þ

Thus, after Taylor-expanding the exponential in Eq. (20),
we can express the partition function as

Z ¼
X∞
N¼0

1

N!

YN
j

�X
fCjg

− 2L½Cj�−kj=2 κ
L½Cj�

ICj

e−
i
2
ΩCj

�
; ð33Þ

where
P

fCjg is summation over all nonbacktracking
connected loops and L½Cj� is the perimeter of the loop,
which is simply given by the number of sites on the loop. In
Eq. (33), we sum over all possible loops, where some
of these loops trace a path several times, as is shown in
Fig. 1(c). We can rewrite Eq. (33) in an equivalent form
where we sum over loops with single winding as

Z ¼
X∞
N¼0

1

N!

YN
j

"X
fCjg0

X∞
nj¼1

−2njL½Cj�−
njkj
2
κnjL½Cj�

nj
e−

i
2
njΩCj

#
;

ð34Þ

where
P

fCjg0 denotes the sum over loops with single
windings and nj is the winding number.
Finally, we can write the solid angle Ω swept out by e⃗ in

terms of the writhe of the curve. To do so, we follow the
approach of Refs. [23,47]: Assume that we have a closed
curve C1 of length L with parametrization r⃗1ðsÞ where
0 ≤ s ≤ L. We also set s as the arc length between r⃗1ð0Þ
and r⃗1ðsÞ of the curve, which implies j_r⃗1j ¼ 1. Now,
assume that we have another curve C2, with parametriza-
tion r⃗2, such that r⃗2 ¼ r⃗1 þ ϵa⃗, where a⃗ is the unit vector
normal to r⃗1; i.e., r⃗1 · a⃗ ¼ 0, and ϵ is an infinitesimal
constant; see Fig. 4. Now, recall the Călugăreanu-White
theorem [48–50], which relates and defines the linking
number G, the writhe W, and the twist T of two curves
as [23,47]

G½C1; C2� ¼ W½C1� þ T½C1; C2�; ð35aÞ

G½C1; C2� ¼
1

4π

I
C1

I
C2

dr⃗1 × dr⃗2 · ½r⃗1 − r⃗2�
jr⃗1 − r⃗2j3

; ð35bÞ

W½C1� ¼
1

4π

I
C1

I
C1

dr⃗1 × dr⃗2 · ½r⃗1 − r⃗2�
jr⃗1 − r⃗2j3

; ð35cÞ

T½C1; C2� ¼
1

2π

Z
L

0

ds½a⃗ðsÞ × ⃗_aðsÞ� · ⃗_r1ðsÞ: ð35dÞ

We now seek to relate the writheW toΩ, and we proceed by
first relating the twist T to Ω and then using Eq. (35a). Since

j_r⃗1j ¼ 1, _r⃗1 is the unit tangent vector to the curve C1—i.e.,
_r⃗1ðsÞ ¼ e⃗ðsÞ—and we parametrize it as e⃗ðsÞ ¼ ˆe⃗rðsÞ, where
ˆe⃗rðsÞ is a radial unit vector in spherical coordinates as in
Eq. (24), and we can choose the frame vector [23]
a⃗ðsÞ ¼ ˆe⃗ϕðsÞ, where ˆe⃗ϕðsÞ is the azimuthal unit vector in
spherical coordinates. We then evaluate Eq. (35d) as

T½C1; C2� ¼
1

2π

I
C1

dr⃗1 · ½a⃗ðsÞ × ⃗_aðsÞ�

¼ 1

2π

Z
L

0

ds _ϕðsÞ cos θðsÞ: ð36Þ

Next, the solid angle traced by ˆe⃗r while traveling on C1 is
given as

Ω ¼
I
C̃1

de⃗r · ˆe⃗ϕ
1 − cos θ
jerj sin θ

ð37aÞ

¼
Z

L

0

ds _ϕðsÞð1 − cos θðsÞÞ ð37bÞ

¼ 2πu −
Z

L

0

ds _ϕðsÞ cos θðsÞ; u ∈ Z ð37cÞ

¼ −2πT½C1; C2� mod ð2πÞ: ð37dÞ

(a) (b)

FIG. 3. (a) C is the worldline of a fermion and e⃗ is the unit
tangent to C. (b) C̃ is the curve drawn by the tip of e⃗ while
traveling on C.

(a) (b)

FIG. 4. (a) Here e⃗ is the tangent vector at point r⃗1 on curve C1,
and ϵa⃗ is the distance between C2 and C1, where a⃗ · r⃗1 ¼ 0. (b) If
C2 winds around C1, a⃗ rotates around C1. If we view C1 and C2

as edges of a ribbon, then a⃗ rotates as the ribbon twists. The

expression a⃗× ⃗_aϵ2

ϵ2
· e⃗ can be regarded as the angular speed of the

point ϵa⃗ around e⃗, and the expression for the twist as given in
Eq. (35d) is the angular displacement of ϵa⃗ divided by 2π.
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Note that in Eq. (37) we take the line integral over a vector
potential of a Dirac monopole along the curve C̃1, which
yields the solid angle associated with C̃1, which corresponds
to the solid angle swept by e⃗ traveling alongC1. In Eq. (37c),
we use the fact that r⃗1ð0Þ ¼ r⃗1ðLÞ. Finally, we substitute
Eq. (37d) into Eq. (35a) to get

W½C� ¼ Ω
2π

þ p; ð38Þ

where p ¼ G − u. Finally, we can use the observation that p
is an odd integer [23].
Now, by putting Eq. (38) into Eq. (34), we obtain the

exact fermionic partition function as a series in κ of the
form

Z ¼
X∞
N¼0

1

N!

YN
j

�X
fCjg0

X∞
nj¼1

z½Cj; nj�
�
; ð39aÞ

z ¼ −2njL½Cj�−
njkj
2
κnjL½Cj�

nj
ð−1Þnje−iπnjW½Cj�; ð39bÞ

where Cj denotes a closed loop with straight sections kj,
length L½Cj�, winding number nj, and—most importantly—
writhe W½Cj�.
As a side note, the above result is closely related to the

usual loop representation of the fermionic determinant in
terms of loops, within a so-called hopping parameter
expansion (more details can be found in Sec. 5.1.3
of Ref. [51]).

IV. CONVERGENCE OF THE LATTICE
FERMIONIC DETERMINANT

The series expansion for the lattice determinant for
Wilson fermions above in Eq. (19c) raises the question
as to its radius of convergence, and in particular the critical
value of κ. For this discussion we adopt the approach of
Ref. [52]. Since the term in the exponential of Eq. (19c)
is the series expansion of Tr½ln½1 − κM��, the series con-
verges for

κjjMjj∞ < 1; ð40Þ

where the infinity norm is given as the square root of the
largest [53] eigenvalue ofM†M [52]. In order to find it, we
first use the Fourier representation of M,

Mnm ¼
X
μ

Z
π

−π

d3p
ð2πÞ3 e

ipðn−mÞ2½cosðpμÞ − iγμ sinðpμÞ�

¼
Z

π

−π

d3p
ð2πÞ3 e

ipðn−mÞX
α¼�

jαihαjEαðpÞ; ð41Þ

where in the last line we write M in a diagonal form
using the eigenvectors jαi of Mnm, and E�ðpÞ ¼
2½Pμ cosðpμÞ � i½Pμ sin

2ðpμÞ�1=2�. Thus, we can Fourier-
transform M†M as

ðM†MÞnm ¼
Z

π

−π

d3p
ð2πÞ3 e

ipðn−mÞX
α

jαihαjjEαðpÞj2; ð42Þ

where jEðpÞj2 ¼ 4½½Pμ cosðpμÞ�2 þ
P

μ sin
2ðpμÞ�. Thus,

jEð0Þj2 ¼ 36 is the highest eigenvalue, and the norm is
jjMjj∞ ¼ 6. We parametrize κ as

κ ¼ 1

6
e−m; ð43Þ

wherem ¼ lnð1þ m0

3
Þ; then, using Eq. (40) we find that the

series converges form0 > 0. Thus, not surprisingly, we find
that the series converges only for a nonzero bare mass. We
can now rewrite Eq. (39a) using Eq. (43) as

Z ¼
X∞
N¼0

1

N!

YN
j

�X
fCjg0

X∞
nj¼1

z½Cj; nj�
�
; ð44aÞ

z ¼ −
2L½Cj�nj−njkj½Cj�=2

6njL½Cj�
ð−1Þnj
nj

e−mnjL½Cj�e−iπnjW½Cj�: ð44bÞ

This final form of the fermionic partition sum expressed in
terms of the writhe is our first key result.

V. PARTICLE-VORTEX DUALITY IN THE
CHERN-SIMONS LATTICE ABELIAN

HIGGS MODEL

Having studied the bosonic continuum actions of Eq. (2)
in Sec. II, and having given the form of the partition sum of
the fermionic action in terms of the writhe derived in the
last section, we aim to establish the bosonization duality
between the lattice versions of Eqs. (2) and (3) by also
expressing the bosonic partition sum in terms of the writhe.
We proceed in three steps: first, we connect the bosonic
particle-vortex duality in the continuum to its lattice
equivalent; then, we calculate the bosonic partition sum
in the dual bosonic action; and finally, we compare it with
the fermionic result.

A. Particle-vortex duality on the lattice

The partition function for the Abelian CS Higgs model
on the lattice with a noncompact gauge field is given by

Z ¼
�Y

j;μ

Z
2π

0

dφj

2π

Z
∞

−∞
dajμ

�X
fnjμg

e−S; ð45Þ
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where the lattice action is given in the Villain approxima-
tion as

S ¼
X
j

�
i
θ

4π2
ϵμνλajμΔνajν þ

J
2
ðΔμφj − 2πnjμ − ajμÞ2

�
;

ð46Þ

where
P

fniμg ¼
Q

iμ

P∞
niμ¼−∞, J > 0 is the bare phase

stiffness, and Δμ represents the forward discrete derivative,
Δμfi ¼ fiþ1 − fi. In the above action, the integer-valued
lattice fields njμ enforce the periodicity of φj fulfilling the
integer (or vortex) gauge invariance, φj → φj þ 2πLjμ,
njμ → njμ þ Ljμ, where Ljμ is an arbitrary integer. This
discrete gauge invariance is a common feature of the so-
called Villain action [2] and arises here in addition to the
usual gauge invariance associated with the lattice gauge
field ajμ.
In order to derive the dual model, we follow closely the

approach of Ref. [26] and use the Poisson summation
formula,

ð2πaÞ1=2
X∞
n¼−∞

e−
a
2
ðx−2πnÞ2 ¼

X∞
m¼−∞

e−
1
2am

2þixm; ð47Þ

to introduce an auxiliary integer-valued lattice field Jjμ, i.e.,

X
fnjμg

e−
J
2
ðΔμφj−2πnjμ−ajμÞ2 ∼

X
fJjμg

e−
1
2JJ

2
jμþiJjμðajμ−ΔμφjÞ: ð48Þ

Next, we use summation by parts in the term −JjμΔμφj to
convert it toΔμJjμφj, which allows us to integrate the phase
variables out to obtain the zero divergence constraint,
ΔμJjμ ¼ 0. The latter implies that we are dealing with a
sum over configurations where the vortices form loops [2].
The action is thus rewritten as

S0 ¼
X
j

�
i
θ

4π2
ϵμνλajμΔνajν þ

1

2J
J2jμ − iJjμajμ

�
: ð49Þ

The constraint is solved by introducing the curl of another
integer field, Mjμ, such that Jjμ ¼ ϵμνλΔνMjλ, which
leads to

S00 ¼
X
j

�
i
θ

4π2
ϵμνλajμΔνajν þ

1

2J
ðϵμνλΔνMjλÞ2

− iðϵμνλΔνMjλÞajμ
�
: ð50Þ

Thus, upon integrating out the gauge field ajμ, we obtain

Z ¼
X
fMjμg

e−S
000
;

S000 ¼ 1

2

X
j

�
1

J
ðϵμνλΔνMjλÞ2 − i

2π2

θ
ϵμνλMjμΔνMjλ

�
: ð51Þ

We now use the Poisson summation formula in the form

X∞
n¼−∞

fðnÞ ¼
X∞

m¼−∞

Z
∞

−∞

dk
2π

ei2πkmfðkÞ ð52Þ

to convert the integer field Mjμ into a real-valued gauge
field bjμ, and noting that this last step introduces another
integer field J̃jμ, we obtain finally the dual action in the
form

S̃ ¼ 1

2

X
j

�
1

J
ðϵμνλΔνbjλÞ2 − i

2π2

θ
ϵμνλbjμΔνbjλ

�

− i2π
X
j

J̃jμbjμ; ð53Þ

after integrating out ajμ. Note that unlike the original action
[Eq. (46)], the dual action above features a Maxwell term
with the bare phase stiffness of the original model appear-
ing as a gauge coupling. As a consequence of gauge
invariance, the lattice vortex current field J̃jμ also has a
vanishing divergence.
By letting J → ∞ in Eq. (53), we see that for θ ¼ π and

after rescaling bjμ → bjμ=ð2πÞ, the latter is the same as the
one arising in the partition function [Eq. (49)] up to the
sign of the CS term. As far as the partition function is
concerned, the sign of the CS term is immaterial, since
integrating out either ajμ or bjμ in the J → ∞ limit leads to
the same vortex current interaction when θ ¼ π as we sum
over all integer-valued vortex currents. The theory is thus
self-dual in this regime.
If we smear the constraint ΔμJ̃jμ ¼ 0 by adding the term

ðγ=2ÞJ̃2jμ to the dual action (53), corresponding to adding a
chemical potential for the vortex loops [26,28], and apply
once more the Poisson formula [Eq. (47)], we obtain

S̃0 ¼ 1

2

X
j

�
1

J
ðϵμνλΔνbjλÞ2 − i

2π2

θ
ϵμνλbjμΔνbjλ

þ 1

γ
ðΔμφ̃j − 2πNjμ − 2πbjμÞ2

�
; ð54Þ

where Njμ is an integer lattice field and φ̃j is a phase
variable originating from the integral representation of the
Kronecker delta constraint enforcing ΔμJ̃jμ ¼ 0, i.e.,
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δΔμJ̃jμ;0 ¼
Z

π

−π

dφ̃j

2π
eiφ̃jΔμJ̃jμ : ð55Þ

Equation (10), Eq. (46), and its dual form in Eq. (54)
establish a lattice version of the field theory duality of
Eq. (2) in the regime where amplitude fluctuations of the
bosonic fields are negligible. The continuum limit of the
lattice duality is expected to approach the field theory
duality in the vicinity of the critical point. However, we
should emphasize that precise statements to this effect can
only be achieved within the lattice formalism.

B. Duality and writhe

In the case of the partition function for Wilson fermions,
we have seen that in order to make the writhe more
apparent, we had to partially evoke a continuum limit
while still counting fermionic loop configurations. We will
employ a similar strategy for the dual bosonic partition
function (53) in order to express it terms of linking and
writhe numbers. Thus, the continuum version of Eq. (53)
can be obtained by first writing a functional integral for a
given configuration featuring N vortex loops:

Z ∝
X
fJ̃xμg

0
Z

Dbe−SMCS ; ð56aÞ

SMCS ¼
Z

d3x

�
1

2J
ðϵμνλ∂νbλÞ2

−
iπ2

θ
ϵμνλbμ∂νbλ − i2πJ̃μbμ

�
; ð56bÞ

with

J̃μðxÞ ¼
XN
a¼1

na

Z
L̃a

0

ds
dyaμðsÞ
ds

δ3ðx − yaðsÞÞ; ð57Þ

where na ∈ Zþ [54] is the quantum number of the ath
vortex loop, and yaμðsÞ, s ∈ ½0; L̃a� is a parametrization of
the curve describing a loop Ca with length L̃a satisfying the
boundary conditions yaμð0Þ ¼ yaμðL̃aÞ. Equation (57) clearly
satisfies ∂μJ̃μ ¼ 0.
We can write the partition function as a summation over

all possible vortex current field configurations J̃ as

Z ¼
X∞
N¼0

1

N!

YN
j¼1

X
fCjg0

X
nj

ZðC1; n1;…;CN; nNÞ; ð58Þ

where ZðC1; n1;…;CN; nNÞ is a partition function with a
fixed vortex configuration which consists of N number of
vortex loops, where the ath loop has a shape Ca and vortex
quantum number na. Multiplication by 1

N!
provides the

symmetry factor preventing the overcounting of identical

configurations, and
P

fCg0 is summation over all connected
nonbacktracking loops with single winding and with both
orientations. Explicitly, we can write the partition function
for a fixed configuration as

ZðC1; n1;…;CN; nNÞ ¼
Z

Dbμe−SMCS ; ð59Þ

normalized such that Zð0Þ ¼ 1. We now integrate out bμ, in
momentum space so that

ZðC1; n1;…;CN; nNÞ

¼ exp

�
−2π2

Z
d3p
ð2πÞ3 DμνðpÞJ̃μðpÞJ̃νð−pÞ

�
; ð60Þ

where

DμνðpÞ ¼
J

p2 þ 4π4J2=θ2

�
δμν −

pμpν

p2
−
2π2J
θ

ϵμνλpλ

p2

�
ð61Þ

in the Landau gauge. Equation (60) gives a vortex inter-
action identical to the one in Eq. (11) when ρ is uniform.
In the limit where J → ∞, which corresponds to Λ → ∞

in the case of ρ0, we obtain

ZðC1; n1;…;CN; nNÞ

¼ exp

�
iθ
4π

X
a;b

nanb

I
Ca

I
Cb

dyaμdybν
ϵμνλðyaλ − ybλÞ
jya − ybj3

�
;

ð62Þ

which in view of Eq. (35) can be rewritten as

ZðfCgÞ¼ exp

�
iθ
X
a

n2aW½Ca�þ i2θ
X
a<b

nanbGab

�
; ð63Þ

where we have introduced the notation fCg ¼ fC1; n1;…;
CN; nNg. For θ ¼ π, the term proportional to Gab does not
contribute to the partition function due to the Gauss linking
number theorem. If we use a statistical mechanical lan-
guage and interpret J as the exchange energy divided by
the temperature and refer to the original lattice action
[Eq. (46)], we see that the limit J → ∞ corresponds to a
zero-temperature limit in this context. Furthermore, J is
related to the amplitude of the scalar field ϕ, such that
J ∼ ρ20, and we have seen in Sec. II that ρ20 is indeed very
large. Peskin [26] in his analysis of the particle-vortex
duality referred to this regime as a “frozen superconductor.”
The analysis in Ref. [26] ignores the vortex core energy and
adds it by hand as a small chemical potential for the vortices
[26,28]. However, the vortex core energy arises quite
naturally, since it is related to the correlation length in
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the continuum theory. Furthermore, there is a direct relation
between it and the bare mass, as we discussed in Sec. II.
Therefore, the actual result corresponding to large J is
given by

ZðfCgÞ

¼ exp
�
iθ
X
a

n2aW½Ca� þ i2θ
X
a<b

nanbGab − ϵ
X
a

n2aL̃a

�
;

ð64Þ
where ϵ is the vortex core energy given by Eq. (15). As in
Eq. (63), for θ ¼ π the second term does not contribute,
since Gab ∈ Z by virtue of the Gauss linking number
theorem. Thus, after summing over all loop configurations,
we obtain the partition function as

Z ¼
X∞
N¼0

1

N!

YN
j¼1

X
fCjg

X
nj

½expðiπW½Cj�Þ expð−ϵL̃½Cj�Þ�n
2
j ;

ð65Þ
an equation that has the same form as Eq. (16), with
Svortex ¼ −iπW. The factor expðiπW½Cj�Þ is crucial for the
fermion-boson transmutation in 2þ 1 dimensions and is
referred to as a “spin factor” in the literature [25,31,55].

VI. COMPARISON OF FERMIONIC AND BOSONIC
PARTITION FUNCTIONS

Let us now compare the fermionic partition function with
the bosonic one in the continuum. In order to take the
continuum limit of the lattice fermionic partition function,
we first return to Eq. (27) and introduce the lattice spacing
explicitly:

tr½MC2n
� ¼ tr

�Y2n
j¼1

Γðe⃗ðjaÞÞ
�
¼

Y2n
j¼1

2he⃗ðjaÞje⃗ððjþ 1ÞaÞi

¼
Y2n
j¼1

2

�
1þ ahe⃗ðsÞj d

ds
e⃗ðsÞijs¼ja þOða2Þ

�

¼
Y2n
j¼1

2

�
1þ i

2
a _ϕðsÞð1þ cosðθðsÞÞÞ þOða2Þ

�

∼ 2
L̃
a exp−

i
2
Ω½CL̃�; ð66Þ

where L̃½C� ¼ aL½C�, and in the last line we use Eq. (32). In
this case Eq. (44) becomes

Z ¼
X∞
N¼0

1

N!

YN
j

�X
fCjg0

X∞
nj¼1

z½Cj; nj�
�
; ð67aÞ

z ¼ −2L̃½Cj�nj=ae−iπnjW½Cj�−ðmþln 6ÞL̃½Cj�nj=a ð−1Þnj
nj

: ð67bÞ

We confine ourselves to the low-energy sector correspond-
ing to nj ¼ 1, in which case the fermionic partition
function becomes

ZF ¼
X∞
N¼0

1

N!

YN
j¼1

X
fCjg

2L̃½Cj�=ae−iπW½Cj�−ðmþln 6ÞL̃½Cj�=a: ð68Þ

In the limit m0a ≪ 1, we have m ¼ lnð1þm0a=3Þ≈
m0a=3, which implies

ZF ∝
X∞
N¼0

1

N!

YN
j¼1

X
fCjg

e−iπWðCjÞ−M̃0L̃ðCjÞ; ð69Þ

where

M̃0 ¼
m0

3
þ 1

a
ln 3: ð70Þ

The key observation is that the bosonic partition function
[Eq. (65)] [56]

ϵ ¼ M̃0 ¼
m0

3
þ 1

a
ln 3: ð71Þ

It is possible to connect this result to the continuum theory
via the ensemble of paths discussed in Sec. II. Accordingly,
by using Eq. (15), we obtain a relation between the fermion,
the boson mass mB, and the jϕj4 coupling λ of the
continuum model:

m0a
3

¼ a2

6

�
m2

B þ 3λ

2
ρ20

�
þ ln 2: ð72Þ

Thus, we have found that in the regime where the vortex
energy entering the Boltzmann weight is minimum, corre-
sponding to the winding nj ¼ 1 in Eq. (65), the latter is
identical to the fermionic partition function where in the
fermion loop worldlines the particle travels the loop only
once. This establishes a correspondence between the fer-
mionic particle worldline loops and vortex loops in the
bosonic dual CS theory, which in turn sheds new light on
Polyakov’s result for a first-quantized path-integral descrip-
tion of massive Dirac fermions in 2þ 1 dimensions [22].

VII. DISCUSSION

The duality transformation from the Villain action
[Eq. (46)] to Eq. (54) identifies the continuum limit to
the duality [Eq. (2)]. In contrast to the situation in 3þ 1
dimensions, the Maxwell term is IR-irrelevant in 2þ 1
dimensions, and therefore both theories in Eq. (2) flow to
the same gauged (IR-stable) Wilson-Fisher fixed point.
This situation corresponds in the lattice to J large compared
to the momentum scale. In the field theory, we identify
e2 ¼ J. The renormalization of e2 can be obtained as usual
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from the parity-even contribution to the vacuum polariza-
tion, ΠðpÞ. Thus, the renormalized gauge coupling is given
simply by

e2R ¼ e2

1þ e2Πð0Þ : ð73Þ

Gauge invariance implies that Πð0Þ ¼ k=m̂R, where k is
some universal constant. Therefore, for e2 → ∞ we obtain
that e2R ≈ m̃R=k. Equivalently, keeping e2 fixed and
approaching the critical point, m̃R → 0 yields the same
scaling behavior, leading once more to e2R ≈ m̃R=k. Since
e2 is identified by the duality as the bare phase stiffness, the
scaling behavior e2R ≈ m̃R=k corresponds precisely to the
Josephson scaling relation [57]. At the same time, we
expect that the dimensionless renormalized coupling
λ̃R=m̃R approaches the (gauged) Wilson-Fisher fixed point
as m̃R → 0.
What does the above picture imply for the Dirac

fermions? It is usually conjectured that m2
B ¼ 0 implies

m0 ¼ 0 [4,5,9]. Inserting this into Eq. (72) yields, at the
lowest order based on the mean-field result [Eq. (9)],

m0a
3

¼ ln 2; ð74Þ

which clearly never vanishes. However, it is important to
realize that the actual critical point corresponds to mR ¼ 0,
which is in general not attained for m2

B ¼ 0. Furthermore, a
more accurate picture should relatem0 to the phase stiffness
beyond the one-loop result. But then other complications
may arise, as the fermions will presumably not be in the
free theory regime any longer.

VIII. CONCLUSION

In Sec. V, we performed in the lattice an exact duality
transformation mapping the partition function of bosons in
the ACSH model to the partition function for an ensemble
of closed vortex loop excitations of the same model, which
corresponds in field theory language to the correspondence
shown in the first two lines of the above equation.
Furthermore, in Sec. VI, we were able to identify the
partition function for an ensemble of vortex loops of the

ACSH model in the low-energy regime to the partition
function for an ensemble of closed fermion worldlines.
More precisely, we have studied in this work the corre-

spondence between the ACSH model and free massive
fermions within the framework of a particle-vortex duality.
This was achieved via an exact duality transformation where
closed worldlines of bosonic particles arising in the partition
function of the ACSH model are brought to an equivalent
form by summing over an ensemble of closed vortex loops
of the same model. Thanks to the CS term in the action, this
standard particle-vortex duality features a phase factor in the
partition function where the phase is given by the writhe
number of a pair of vortex loops. We then showed that the
fermionic partition function represented as a sum over an
ensemble of closed paths of fermionic particles features
exactly the same phase factor involving the writhe. In this
case, the match between the fermionic and bosonic partition
functions is established in the low-energy regime, where the
mass of the fermions is naturally related to the vortex core
energy. It turns out that the latter also corresponds to the
energy density per element of the path of the bosons in the
particle representation of the partition function.
Various aspects of this bosonization duality have been

studied intensely in the past, providing conjectures as well
as exact results in several limiting cases. Our calculation
focuses on the self-dual point θ ¼ π of the particle-vortex
duality of the ACSH model and provides exact duality
mappings for the lattice versions of Eqs. (2) and (3). We
find that the bosonization duality holds for θ ¼ π because
the Gauss linking number contributions are then suppressed
from the bosonic partition function, leaving only the writhe
number contribution. Concretely, the bosonic dual partition
function takes the form of a sum over all possible vortex
loops with a given writhe yielding the phase factor
mentioned above.
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