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The center vortex structure of the SUð3Þ gauge field vacuum is explored through the use of novel
visualization techniques. The lattice is partitioned into 3D time slices, and vortices are identified by
locating plaquettes with nontrivial center phases. Vortices are illustrated by rendering vortex lines that
pierce these nontrivial plaquettes. Nontrivial plaquettes with one dimension in the suppressed time
direction are rendered by identifying the visible spatial link. These visualizations highlight the frequent
presence of singular points and reveal an important role for branching points in SUð3Þ gauge theory in
creating high topological charge density regimes. Visualizations of the topological charge density are
presented, and an investigation into the correlation between vortex structures and topological charge
density is conducted. The results provide new insight into the mechanisms by which center vortices
generate nontrivial gauge field topology. This work demonstrates the utility of visualizations in conducting
center vortex studies, presenting new avenues with which to investigate this perspective of the QCD
vacuum.
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I. INTRODUCTION

In recent years the center vortex perspective of the QCD
vacuum [1,2] has emerged as the most fundamental aspect
of QCD vacuum structure, simultaneously governing the
properties of confinement and dynamical chiral symmetry
breaking in quantum chromodynamics (QCD). Center
vortices have been shown to give rise to mass splitting
in the low-lying hadron spectrum [3–5], a linear static
quark potential [6–10], appropriate Casimir scaling [11],
appropriate behavior of the quark propagator [4,12] and
infrared enhancement of the gluon propagator [13–16].
These results all support the theory that center vortices
capture the essence of QCD vacuum structure and con-
tribute significantly to a full understanding of QCD.
Center vortices naturally give rise to an area-law falloff

in the Wilson loop expectation value [17], such that

hWðCÞi ∝ exp ð−σAðCÞÞ; ð1Þ

where AðCÞ is the minimal area spanned by the Wilson
loop. This area-law behavior is often taken to be an
indicator of confinement [10,18]. The fact that one of
the defining features of the vortex model is tied so

intimately to the geometry of vortices in the vacuum
indicates that visualizing these structures may provide
valuable insight [19,20]. To this end, we construct visual-
izations of center vortices and topological charge density
on the lattice. We use these visualizations to investigate the
dynamics of the vortex model in an interactive and novel
manner.
We begin this work in Sec. II with a description of how

center vortices are identified on Monte Carlo generated
lattice gauge fields. In Sec. III we then describe in detail our
convention for plotting vortices in three-dimensional space
and present the first interactive visualizations of center
vortices on the lattice.
In the Supplemental Material [21] these visualizations

are presented as interactive 3D models embedded in the
document. To interact with these models, it is necessary to
open the supplemental document in Adobe Reader or
Adobe Acrobat (requires version 9 or newer). Linux users
may install Adobe Acroread version 9.4.1, the last edition
to have full 3D support. Note that 3D content must also be
enabled for the interactive content to be available, and for
proper rendering it is necessary to enable double-sided
rendering in the preferences menu. Figures with a corre-
sponding interactive model that can be found in the
Supplemental Material [21] are marked as interactive in
the caption. Interactive models in the Supplemental
Material [21] are also referenced as Fig. S-xx in the text.
To activate the models, simply click on the image. To rotate
the model, click and hold the left mouse button and move
the mouse. Use the scroll wheel or shift-click to zoom.
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Some preset views of the model are also provided to
highlight areas of interest. To reset the model back to its
original orientation and zoom, press the “home” icon in the
toolbar or change the view to “default view.”
As projected center vortices are inherently two-dimen-

sional objects embedded in four dimensions, we describe
the technique used to capture the behavior of vortices in the
fourth dimension in Sec. IV. In Sec. V we present
visualizations of topological charge density alongside
vortex lines. In Secs. VI and VII we describe singular
points and branching points; two of the unique vortex
structures present in the vacuum. Finally, in Sec. VIII we
investigate the correlation these structures have with
topological charge density. This investigation lays the
groundwork for the development of further visualization
techniques and emphasizes the importance of center vortex
geometry in a full understanding of the QCD vacuum.

II. VORTEX IDENTIFICATION

To visualize vortices, we first need to outline how they
are identified on the lattice. Physical center vortices are
“thick” objects, meaning that in four dimensions they form
sheets of finite thickness [22]. In contrast, on the lattice we
identify “thin” or “projected” vortices, known as P-vorti-
ces. These P-vortices have infinitesimal thickness. Whilst
not physical, P-vortices have been shown to be highly
correlated to the location of thick vortices, indicating that it
is appropriate to concern ourselves with the behavior of P-
vortices in understanding vortex structure on the lat-
tice [10].
We perform our calculations on 100 203 × 40 SUð3Þ

gauge field configurations of lattice spacing a ¼ 0.125 fm.
To identify P-vortices, we first gauge-transform each
configuration to maximal center gauge. This is performed
by creating a gauge transformationΩðxÞ that maximizes the
functional [7],

R ¼ 1

VNdimn2c

X
x;μ

jTrUΩ
μ ðxÞj2: ð2Þ

Maximizing Eq. (2) serves to bring every link UμðxÞ as
close as possible to the center of SUð3Þ, which consists of
the three elements,

Z3 ¼
�
exp

��2πi
3

�
I; I

�
: ð3Þ

Once the configuration is fixed to maximal center gauge,
we then project UμðxÞ onto the nearest center element to
obtain our vortex-only configurations, ZμðxÞ. It is these
vortex-only configurations that we shall be working with
for constructing our visualizations.
Once we have obtained our vortex-only configurations, it

is simple to identify center vortices. As we are concerned

with P-vortices, it is sufficient to calculate the smallest 1 ×
1Wilson loop on the lattice. In the μ, ν plane we denote the
plaquette by PμνðxÞ. As the center of SUð3Þ is closed and
Pμν is the product of four center elements, PμνðxÞ is itself a
center element. Noting that vortices live on the dual lattice,
the center flux associated with a plaquette is given by
[23,24]

PμνðxÞ ¼ exp

�
πi
3
ϵμνκλmκλðx̄Þ

�
; ð4Þ

where mκλðx̄Þ is the (oriented) elementary square anchored
at the point x̄ ¼ xþ a

2
ðμ̂þ ν̂ − κ̂ − λ̂Þ on the dual lattice,

such that it pierces the plaquette. mκλðx̄Þ is antisymmetric
under index permutation.
If PμνðxÞ ≠ I then we say that the plaquette is pierced by

a center vortex of charge mκλðx̄Þ ¼ −mλκðx̄Þ ¼ �1, other-
wise if PμνðxÞ ¼ I then mκλðx̄Þ ¼ 0, and we say it is not
pierced by a vortex. Note that the epsilon tensor in Eq. (4)
removes any ambiguity in the assignment of the vortex
phase associated with the ordering of the Lorentz indices.
The orientation of vortices is significant to the behavior of
vortex models as a whole and is discussed in greater detail
in Ref. [25].
Now that we have identified P-vortices on the lattice, we

can begin to construct 3D visualizations. These visualiza-
tions aim to elucidate the properties of vortices and serve as
a guide to explaining how vortex structures give rise to the
salient features of QCD.

III. SPATIALLY ORIENTED VORTICES

A. Visualization conventions

As the lattice is a four-dimensional hypercube, we
visualise the center vortices on a set of 3D slices. The
choice of dimension to take slices along is irrelevant at low
temperature in Euclidean space where our lattice calcu-
lations take place, so to maximize the volume of each slice
we introduce a coordinate system with the z axis along the
long dimension and take slices along the t axis. This results
in Nt ¼ 20 slices each with dimensions Nx × Ny × Nz ¼
20 × 20 × 40. Within each slice we can visualize all
vortices associated with an x − y, x − z or y − z spatial
plaquette by calculating PxyðxÞ, PyzðxÞ and PzxðxÞ for all x
in the slice. These vortices will be referred to as the
“spatially oriented” vortices, as they are fixed in time.
As discussed in the previous section, the plaquettes are

evaluated on a center projected configuration, so we can
identify the spatial plaquettes with the group of integers
modulo 3 according to the vortex center charge mk ∈ f−1;
0;þ1g, such that Pij ¼ exp ð2πi

3
ϵijkmkÞI. Hereafter we will

refer to a plaquette simply by its center charge.
For a charge mk ¼ þ1 vortex, a blue jet is plotted

piercing the center of the plaquette, and for a charge
mk ¼ −1 vortex, a red jet is plotted. The direction of the
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jet is set according to the right-hand rule of the epsilon
tensor, such that

(i) Pxy ¼ �1 ⇒ �ẑ direction.
(ii) Pyz ¼ �1 ⇒ �x̂ direction.
(iii) Pzx ¼ �1 ⇒ �ŷ direction,

An example of this plotting convention is shown in Fig. 1.
As the jet direction�k̂ is aligned with the sign of the center
charge mk ¼ �1 the vortex lines show the oriented flow of
positive unit center charge (m ¼ þ1).

Projected center vortices are surfaces in four-dimen-
sional space-time, analogous to the center line of a vortex in
fluid dynamics that maps out a surface as it moves through
time. Note that, as is conventional, herein “time” simply
refers to the fourth spatial dimension on the Euclidean
lattice. Similarly, “time evolution” refers to change with
respect to the fourth spatial dimension, that is, variation in
Euclidean time (not real time). In this way, the visualiza-
tions presented here can be simply thought of as a way to
interpret the four-dimensional geometry. As the surface
cuts through the three-dimensional spatial volume of our
visualization, a P-vortex line is rendered mapping the flow
of center charge.

B. Bianchi identity

The center vortex flux satisfies the Bianchi identity,

ϵμνκλ∂κFμνðxÞ ¼ 0; ð5Þ

such that the flux through a spatial cube is conserved
[23,24]. This can be easily seen. We start by noting that the
field strength tensor can be related to the plaquette by

iga2FμνðxÞ ¼ 1 − PμνðxÞ þOða3Þ; ð6Þ

where g is the gauge coupling and a is the lattice spacing.
Drawing on Eq. (4) and noting that ∂x̄α∂xβ ¼ δαβ, the Bianchi

identity of Eq. (5) becomes

ϵμνκλϵμνστ∂̄κmστðx̄Þ ¼ 0; ð7Þ

where ∂̄κ ¼ ∂
∂x̄κ. Recalling mκλ is antisymmetric and

ϵμνκλϵμνστ ¼ 2ðδκσδλτ − δκτδλσÞ; ð8Þ

one finds

∂̄κmκλðx̄Þ ¼ 0: ð9Þ

To make contact with our 3D visualization of spatial
plaquettes where μ; ν; κ ∈ i; j; k ¼ 1, 2, 3, we set μ ¼ i,
ν ¼ j, κ ¼ k, λ ¼ 4 and examine the spatial divergence,

∂̄kmk4ðx̄Þ ¼ ∇⃗ · m⃗ðx̄Þ ¼ 0; ð10Þ

with mκ4 ¼ mk ¼ ½m⃗�k being the spatially oriented vortex
flux piercing the spatial plaquette PijðxÞ. Recalling the
divergence theorem,

Z
V
d3r∇⃗ · m⃗ðr⃗Þ ¼

Z
∂V

dS⃗ · m⃗ðr⃗Þ ¼ 0; ð11Þ

and mk ¼ �1, center-vortex flux entering a face of a spatial
cube V has to leave by another face. In our visualizations,
mk ¼ �1 is represented by a jet in the�k̂ direction plotted at
x̃ ¼ xþ a

2
ðîþ ĵ − k̂Þ, such that the above implies a con-

tinuous flow of center vortex flux through a spatial cube.
The spatially oriented vortices for the 3D slices with

t ¼ 1, 2 are illustrated in Figs. 2, 3. At first glance the
vortex structure appears highly complex, and it is difficult
to identify the significant features. As such, we make use of
the 3D models to hone in and isolate the important features
present in these slices. We present some of these features in
Fig. 4. We observe that the vortices do indeed form closed
lines (as required by the Bianchi identity), highlighted in
the view “vortex path” in Fig. S-1 and the middle panel of
Fig. 4. We also see that the vortex loops tend to be large.
This agrees with the determination made of SUð2Þ vortices
in Refs. [26,27].

FIG. 1. An example of the plotting convention for vortices
located within a 3D time slice. Left: A þ1 vortex in the þẑ
direction. Right: A −1 vortex in the −ẑ direction.

FIG. 2. The t ¼ 1 slice with all spatially oriented vortices
plotted. The flow of m ¼ þ1 center charge is illustrated by the
jets as described in the text. (interactive. See Sec. I for more
information about interacting with the 3D models available in the
Supplemental Material [21].)
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C. Branching/monopole points

The presence of branching/monopole points is of par-
ticular interest, as previous studies have primarily focussed
on SUð2Þ theory which is free from these structures. In
SUð3Þ it is possible to conserve center flux at the
intersection of three or five vortex lines within a 3D slice.
An example of a branching/monopole point in our visu-
alizations is shown in the right panel of Fig. 4 and the
interactive view “monopole” in Fig. S-1.
The ambiguity between monopoles and branching points

[24] arises from the periodicity of the center phase
z ¼ exp ð2πi=3Þ. By our conventions, each jet denotes
the directed flow of þ1 center charge. However, because
expð2πi=3Þ ¼ expð−4πi=3Þ, one unit of positive charge is
equivalent to two units of negative charge (and vice versa),
and hence we could also interpret our illustrations as
representing the directed flow of two units of negative
charge. This results in a difficulty distinguishing between
branching points and monopoles.
This ambiguity is highlighted in Fig. 5, where we see the

equivalence between a branching point and a monopole.
For the remainder of this work we will refer to intersections
of three or five vortices as branching points rather than
monopoles, as the terms are interchangeable without a strict
vortex charge limit.

Branching points are well defined only on a 3D lattice
slice, rather than the full 4D lattice [24]. They can be
identified at sites x̃ on the dual lattice by counting the
number of vortex lines piercing the elementary 3D cube
around x̃, denoted Ncubeðx̃Þ. Ncubeðx̃Þ then takes values
from 0 to 6. The interpretation of each value of Ncubeðx̃Þ is
summarized in Table I.
The distribution ofNcubeðx̃Þ over our ensemble is shown in

Fig. 6. As required, we observe that Ncubeðx̃Þ ¼ 1 points are
not present. Branching points correspond toNcubeðx̃Þ ¼ 3, 5,
or 6. As someNcubeðx̃Þ ¼ 6 points cannot be unambiguously
classified as branching points, they are excluded from our
subsequent branching point analysis. This is an acceptable
exclusion, as we can see from Fig. 6 Ncubeðx̃Þ ¼ 6 points
make up only 0.00006% of the total number of 3D cubes
in our ensemble, whereas Ncubeðx̃Þ ¼ 3, 5 branching
points are far more prevalent. Thus, we will only consider
Ncubeðx̃Þ ¼ 3, 5 branching points in the following sections.
The fact that branching points are only well defined on

3D slices can be understood by considering the implication
of a branching into the fourth dimension. In this case one
would observe two vortex jets emerging from or converg-
ing into a 3D cube. However, this situation does not occur
in our visualizations as is required for conservation of
flux lines.
It is clear from our visualizations and the data in Fig. 6

that branching points occur frequently in the confining

FIG. 3. The t ¼ 2 slice with all spatially oriented vortices
plotted. Only a small subset of jets are stationary between t ¼ 1
and t ¼ 2. Symbols are as in Fig. 2. (interactive).

FIG. 4. Left: Vortices form directed continuous lines, high-
lighted with orange arrows in this diagram. Note that because of
the lattice periodicity, these lines may wrap around to the
opposite edge of the lattice. Middle: Vortices must form closed
loops to conserve the vortex flux. Right: SUð3Þ vortices are
capable of forming monopoles or branching points where three or
five vortices emerge or converge at a single point.

FIG. 5. Avortex branching point with center chargeþ2 flowing
into a vertex (left) is equivalent to a vortex monopole with charge
þ1 flowing out of the vertex (right). The arrows indicate the
direction of flow for the labeled charge. Our illustrations adopt
mk ∈ f−1; 0;þ1g and jets denoting the oriented flow of a
positive unit of charge (m ¼ þ1).

TABLE I. A summary of the possible number of center vortices
piercing a 3D cube centered on x̃ and the interpretation of such
points.

Ncubeðx̃Þ Interpretation

0 No vortices present
1 Terminating vortex, forbidden by

conservation of center charge
2 Vortex line flowing through the cube
3 Simple three-way branching point
4 Vortex self-intersection
5 Complex five-way branching point
6 Vortex self-intersection or double branching
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phase, with an average of 110(14) branching points per 3D
slice. This corresponds to a physical density of ρBP ¼
3.5ð5Þ fm−3. Work presented in Refs. [7,24] confirms that
indeed the branching point density possesses the correct
scaling behavior over different values of β governing the
lattice spacing such that ρBP may be considered a physical
quantity. Further discussion of branching points and their
relationship with topological charge is presented in Sec. VII.

IV. SPACE-TIME ORIENTED VORTICES

For each link in a given 3D slice there are two additional
plaquettes that lie in the xi − t plane, pointing in the
positive and negative time directions. Vortices associated
with space-time oriented plaquettes contain information
about the way the linelike vortices evolve with time, or
equivalently, how the vortex surfaces appear in four
dimensions.
In a given 3D slice we only have access to one link

associated with a space-time oriented vortex, and as such
we plot an arrow along this link to indicate its association
with this vortex. Considering the four-dimensional Levi-
Cevita tensor, we adopt the following plotting convention
for these space-time oriented vortices:

þ1 vortex;
forward in time;

⇒
cyan arrow;

positively oriented;

þ1 vortex;
backward in time;

⇒
cyan arrow;

negatively oriented;

−1 vortex;
forward in time;

⇒
orange arrow;

positively oriented;

−1 vortex;
backward in time;

⇒
orange arrow;

negatively oriented:

These conventions are shown diagrammatically in Fig. 7.
Utilizing these conventions, the first time slice now con-
tains temporal information as highlighted in Fig. 8. The full
3D models are difficult to interpret in full as a 2D image;
however the interactive 3D models for the first two time
slices are available in Figs. S-3, S-4.
As we step through time, we expect to see the positively

oriented space-time vortex indicator links retain their color
but swap direction as they transition from being forwards in

FIG. 6. The ensemble average of the number of vortices
piercing each 3D cube. As it is necessary to preserve continuity
of the vortex flux, we see that there are no cubes with one vortex
piercing them. The largest vortex contribution is from Ncube ¼ 2,
arising from vortices propagating without branching or touching.
We also see that Ncube ¼ 3 branching points dominate the
Ncube ¼ 5 branching points.

FIG. 7. Top: A þ1 vortex in the forward (left)/backward (right)
x − t plane (shaded blue) will be plotted as a cyan arrow in the�x̂
direction respectively. Bottom: A −1 vortex in the forward (left)/
backward (right) x − t plane (shaded red) will be plotted as an
orange arrow in the �x̂ direction respectively.

FIG. 8. On the t ¼ 1 time slice, the flow of m ¼ þ1 center
charge is illustrated by the jets, and the spatial links indicate the
presence of center vortices in the suppressed time direction.
These indicator links show how the jets will evolve through the
suppressed Euclidean time direction. Rendering conventions are
described in the text.
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time to backwards in time, as shown in Fig. 9 and in the
views “forward/backward arrows” in Figs. S-3 and S-4.
The space-time oriented indicator links act as predictors

of vortex line motion between slices. The simplest case of
vortex motion is shown diagrammatically in Fig. 10. The
shaded red plaquettes indicate the location of a spatially
oriented vortex which would be plotted in the suppressed x̂
direction, and the red line demonstrates how the center
charge pierces between the two time slices. This figure
demonstrates a spatially oriented vortex shifting one lattice
spacing in the ŷ direction between time slices. For a
vortex located at x and pointing in the �x̂ direction, this
motion will be indicated by an orange indicator link on the
Zzðxþ ŷÞ link. Thus we see that spatially oriented vortices
move in a direction perpendicular to both the jet and the
indicator link.
To see this predictive power in action, consider Fig. 11.

Here we see in Fig. 11(a) a line of three m ¼ þ1 spatially
oriented vortices each with an associated m ¼ −1 space-
time oriented vortex below them. As we step to t ¼ 2 in
Fig. 11(b) we observe the space-time oriented arrows

change direction, and the spatially oriented vortex line
shifts one lattice spacing down in the direction
perpendicular to the indicator links, such that the space-
time oriented vortices are now above them.
Another example of space-time oriented vortices pre-

dicting the motion of spatially oriented vortex lines is
shown in Fig. 12. In Fig. 12(a), we observe a line of four
m ¼ −1 (red) spatially oriented vortices with no space-time
oriented links associated with them, indicating that this line
should remain fixed as we step through time. Alternatively,
towards the top of the red line we observe a branching point
with two associated −1 space-time indicator arrows. The

FIG. 9. Space-time oriented vortices changing as we step
through time. We observe the space-time indicator links change
direction as we transition from (a) t ¼ 1 to (b) t ¼ 2; however the
phase (color) of the vortex remains the same.

FIG. 10. An example of a spatially oriented vortex at the space-
time coordinate x moving one plaquette between time slices. The
solid red line indicates how the flow of vortex charge pierces
between time slices. By our visualization conventions, the shaded
red plaquettes would have a spatially oriented jet plotted in the
suppressed x̂ direction. Space-time vortices are illustrated by the
orange indicator links belonging to the space-time plaquette. We
observe that spatially oriented vortices move in the time direction
(hidden in our 3D models), perpendicular to the indicator link.

FIG. 11. An example of space-time oriented vortices predicting
the motion of the spatially oriented vortices. Here we see the
m ¼ þ1 (blue) vortex line transition one lattice spacing down as
we step from (a) t ¼ 1 to (b) t ¼ 2. Note that the orange space-
time vortex indicator links have changed direction.

FIG. 12. An second example of space-time oriented vortices
predicting the motion of the spatially oriented vortices. We
observe the −1 (red) vortex line with no associated space-time
vortex indicator links remains stationary as we transition from
(a) t ¼ 1 to (b) t ¼ 2. However, the branching point with
associated space-time vortex indicator link moves down and to
the left during the transition.
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forward-oriented arrow indicates that this branching point
will move. That is, the sheet piercing the t ¼ 1 slice is
generating nontrivial space-time vortices as it proceeds to
pierce the t ¼ 2 slice. Observing the same region at t ¼ 2 in
Fig. 12(b), we see that this is precisely what occurs. The
vortex line has remained fixed, whereas the branching point
has shifted. This vortex motion can also be examined in the
views “vortex line behavior” in Figs. S-3 and S-4.
The cases presented in Fig. 11 and Fig. 12 are ideal, where

the spatially oriented vortex lines shift only one lattice
spacing between time slices. However, it is frequently the
casewhere the spatially oriented vortices shiftmultiple lattice
spacings per time step, as demonstrated in Fig. 13. In
Fig. 13(a), we observe a large sheet of space-time oriented
vortices with a line of spatially oriented vortices above them.
As we transition to t ¼ 2 in Fig. 13(b), the line is carried
along the sheet and now appears at the bottom.
To see how this occurs diagrammatically, consider

Fig. 14. The conventions in this figure are the same as

in Fig. 10. Within each slice we would observe the space-
time oriented links shown; however the spatially oriented
vortex appears to move three plaquettes in one time step.
These multiple transitions make it difficult to track the
motion of vortices between time slices. However, the space-
time oriented vortices remain a useful tool for under-
standing how center vortices evolve with time. Note that
if a spatially oriented vortex has no associated space-time
oriented vortices then it is guaranteed to remain stationary.
In this respect, the lack of space-time oriented vortices is
also a valuable indicator of vortex behavior.

V. TOPOLOGICAL CHARGE

We now wish to explore the relationship between
vortices and topological charge. The topological charge
density is given by

qðxÞ ¼ 1

32π2
ϵμνρσTrðFμνðxÞFρσðxÞÞ: ð12Þ

Topological charge is calculated on the lattice by evaluation
of clover terms Cμν. The simplest 1 × 1 clover term is given
by [28]

CμνðxÞ ¼
1

4
Im½PμνðxÞ þ Pμνðx − μ̂Þ

þPμνðx − ν̂Þ þ Pμνðx − μ̂ − ν̂Þ�: ð13Þ

From these terms, we obtain

qðxÞ ¼ 1

32π2
ϵμνρσTrðCμνðxÞCρσðxÞÞ: ð14Þ

To improve the topological charge density calculation by
removing higher-order error terms, it is possible to make
use of an improved lattice field-strength tensor by taking
into account larger Wilson loops in the definition of the
clover terms, as described in Ref. [28]. In this paper we
make use of the simple 1 × 1 topological charge definition
when analyzing projected configurations, as the gauge link
information is highly localized around the projected vortex
locations. However, for the original and smoothed con-
figurations we instead employ a 5-loop improved definition
as it produces more accurate results and shows better
convergence to integer values on smoothed configura-
tions [28].
We calculate the topological charge density on an

original lattice configuration after eight sweeps of three-
loop Oða4Þ-improved cooling [28]. This smoothing is
necessary to remove short-range fluctuations and associ-
ated large perturbative renormalizations, but is a suffi-
ciently low number of sweeps so as to minimally perturb
the configuration. Topological charge density obtained
after minimal overimproved stout-link smearing is explored
in Sec. VIII.

FIG. 13. An example of a sheet of space-time oriented vortices
predicting the motion of spatially oriented vortices over multiple
lattice sites from (a) t ¼ 1 to (b) V. The highlighted line of red
vortices flows along the sheet of cyan time-oriented indicator links.

FIG. 14. A demonstration of how spatially oriented vortices can
transition multiple lattice spacings in a single time step. Con-
ventions are the same as in Fig. 10.

VISUALIZATION OF CENTER VORTEX STRUCTURE PHYS. REV. D 102, 034504 (2020)

034504-7



We plot regions of positive topological charge density in
yellow, and regions of negative topological charge density
in blue, with a color gradient to indicate the magnitude.
Only topological charge density of sufficient magnitude is
plotted to better emphasize regions of significance.
Overlaying the topological charge density visualization
onto our previous 3D models, we obtain the visualization
shown in Fig. 15. The full 3D models are available in
Figs. S-5 and S-6.
Under center projection the topological charge changes

notably, as might be expected for a local operator. Figure 16
shows a histogram of the total topological charge Q across
the ensemble obtained with the gluonic definition after 5
sweeps of overimproved stout-link smearing. This is
compared to Q obtained from the singular points of the
projected configurations. Clearly, the topological charge is
not preserved. We also check in panel (c) of Fig. 16 whether
the relative sign of the topological charge calculated on
each configuration is the same. Here we also observe little
correlation in the relative sign.
Observing the percolation of nontrivial center vortices in

the context of topological charge density provides new
insight into the instability of instantonlike objects to center-
vortex removal [8]. We can quantitatively evaluate the
correlation between the locations of center vortices and
the regions of significant topological charge density
obtained from the vortex-only configurations by using
the measure,

C ¼ V

P
xjqðxÞjLðxÞP

xjqðxÞj
P

xLðxÞ
− 1; ð15Þ

where V is the lattice volume, and

LðxÞ

¼
�
1; vortex associated with anyplaquette touchingx;

0; otherwise;

ð16Þ

contains information from the full 4D volume. This method
of constructing LðxÞ allows for a single vortex to result in
multiple nonzero LðxÞ locations. However, LðxÞ is defined
in this way so that vortex information associated with
plaquettes is shifted to the regular lattice, allowing it to be
compared with the topological charge density. A value of
C ¼ 0 indicates no correlation. C < 0 and C > 0 indicate
anticorrelation or correlation respectively.
We can also compare the results of this calculation to the

maximally correlated value forC, which can be obtained by
postulating that all x for which LðxÞ ¼ 1 correlate to theP

x LðxÞ highest values of jqðxÞj, denoted jqij. As we are

FIG. 15. Regions of high topological charge density are
rendered as translucent blue [qðxÞ < 0) and yellow (qðxÞ > 0]
volumes, overlaying the t ¼ 1 slice.

FIG. 16. A histogram of total topological chargeQ (a) using the
gluonic definition after five sweeps of overimproved stout-link
smearing and (b) direct center projection from the original gauge
fields. It is apparent that singular points following center
projection do not preserve the total topological charge [note
also the scale change between (a) and (b)]. Panel (c) shows
whether the sign matches between plots (a) and (b); again it is
apparent that there is little correlation.
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assuming perfect correlation, LðxÞ ¼ 1 for all i, and hence
the numerator of Eq. (15) reduces to a sum over jqij. Hence,

CIdeal ¼ V

P
N
i¼1 jqijP

xjqðxÞj
P

xLðxÞ
− 1; ð17Þ

where N is the number of sites with LðxÞ ¼ 1. By
evaluating C=CIdeal for each configuration, we obtain a
normalized measure ranging between 0 and 1 for positively
correlated quantities. Averaging over our configurations,
we can make use of C=CIdeal to quantitatively express the
correlation strength between LðxÞ and jqðxÞj.
Evaluating C=CIdeal and averaging over our ensemble of

100 configurations provides C=CIdeal ¼ 0.672ð6Þ. Thus,
there is a significant correlation between the positions of
vortices and topological charge density. The small uncer-
tainty also indicates that this correlation is consistent across
the ensemble.
Finally, we visualize the vortex configurations after

smoothing to investigate how the vortex structure changes.
The results, presented in Fig. 17, follow eight sweeps of
Oða4Þ-improved cooling. We note that an enormous
amount of the vortex matter is removed. However, it is
well established that, under smoothing, the vortex-only
configurations retain many of the salient long-range fea-
tures of QCD [3,8,14], suggesting that the removed vortices
are in some way irrelevant to these long-range properties.

VI. SINGULAR POINTS

Given the presence of the antisymmetric tensor in the
definition of topological charge density presented in
Eq. (12), it is clear that for there to be nontrivial topological
charge present on the projected vortex configurations, we
require the vortex field strength to span all four dimensions.
This condition is met at singular points, where the tangent
vectors of the vortex surface span all four dimensions. The
contribution to the topological charge from these singular
points is discussed in detail in Refs. [25,29–31].
In our visualizations, singular points appear as a spatially

oriented vortex running parallel to the link identifier of a

space-time oriented vortex, as shown in Fig. 18. z this
condition, whilst being difficult to locate by eye in our
visualizations of space-time oriented vortices, actually
occur frequently, as illustrated in Fig. 19 (the interactive
model is available in Fig. S-8). At these points we have
vortices generating field strength in all four space-time
dimensions. An example of a singular point from the
visualization in Fig. S-4 is shown in Fig. 20.
The vortex configuration in Fig. 18 spans all four

dimensions because the jet indicates a vortex in the

FIG. 17. The center vortex structure and topological charge
density after eight sweeps of cooling, for t ¼ 1. (interactive).

FIG. 18. The signature of a singular point, in which the tangent
vectors of the vortex surface span all four dimensions. In this
case, the blue jet is associated with field strength in the x − y
plane, and the orange space-time vortex indicator link is asso-
ciated with a vortex generating field strength in the z − t plane.
Hence, the vortex surface spans all four dimensions.

FIG. 19. All points on the t ¼ 1 time slice in which a singular
point occurs; i.e., a spatially oriented vortex jet runs parallel to a
space-time oriented vortex indicator link as shown in Fig. 18. The
color indicates the multiplicity M observed on this slice, with the
lowest value in blue (M ¼ 1) and the highest in red (M ¼ 12).
(interactive).

FIG. 20. A singular point (green sphere) resembling the
structure of Fig. 18. This singular point is generated by the
red jet and the orange indicator link running in parallel.
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x − y plane generating nonzero field strength FxyðxÞ, and
the z-oriented indicator link denotes a vortex in the z − t
plane, giving rise to nonzero FztðxÞ. Hence, at the point x
the topological charge density can be nontrivial.
Around the lattice site x in Fig. 18 there are four x − y and

four z − t plaquettes, allowing for a multiplicity of 16. As
there are three unique combinations of orthogonal planes in
4D (x − y and z − t, x − z and y − t, y − z and x − t), this
gives a total maximum multiplicity of 48 for each singular
point. However, this maximum is highly unlikely, and the
highest multiplicity in the configuration shown in Fig. 19 is
12. This point is shown in the view “maximum multiplicity
singular point” in Figs. S-3 and S-8.
We can verify the relationship between singular points

and topological charge by identifying vortices satisfying
the parallel condition shown in Fig. 18 and plotting these
points against the results of the topological charge calcu-
lation performed on the projected vortex-only configura-
tions. As seen in Fig. 21, when we apply the correct sign to
the odd index permutations we observe that there is perfect
agreement between the location of singular points and the
identified topological charge.
To quantify the correlation between qðxÞ and singular

points, we make use of a measure similar to that defined in
Eq. (15),

C ¼ V

P
xjqðxÞjLsðxÞP

xjqðxÞj
P

xLsðxÞ
− 1: ð18Þ

However, we redefine our identifier LðxÞ to be

LsðxÞ ¼
�
1; singular point at x;

0; otherwise:
ð19Þ

In the case of singular points and jqðxÞj obtained from the
projected configurations, we expect that the obtained
correlation will be identical to the ideal value, calculated
in the same manner as Eq. (17). This is indeed what we
observe, with C=CIdeal ¼ 1. In Sec. VIII we will make use
of this measure again to examine the correlation between

singular points and different topological charge density
calculated prior to center vortex projection where the
expected values are less apparent.

VII. BRANCHING POINTS

As mentioned in Sec. III, the SUð3Þ gauge group permits
branching points, identified as the intersection of three or
five spatially oriented vortices in an elementary 3D cube.
The branching points are highlighted for t ¼ 1 on our
sample configuration in Fig. 22.
Branching points are of particular interest as they are

important for generating regions of high topological charge
density on the projected vortex configurations. To under-
stand the reason why, consider a clover term Cμν as defined
in Eq. (13). On a projected configuration, each of the four
imaginary parts of the plaquettes in Eq. (13) can take one of
three possible values: � ffiffiffi

3
p

=2 or 0. Topological charge
density of the lowest magnitude will be given by each of the
orthogonal clover terms in Eq. (14) contributing � ffiffiffi

3
p

=2,
either because the remaining plaquettes in each clover do
not contribute, or because they contribute but cancel due to
opposing signs. To obtain larger values of jqðxÞj, it is
therefore necessary for multiple plaquettes in at least one of
the clover terms to contribute both nontrivially and with the
same sign so that the magnitude of the topological charge
density increases above the lowest nontrivial value. This is
equivalent to requiring that multiple vortex jets pierce the
clover parallel to each other, such that they form a pattern
like that shown in Fig. 23. To conserve the vortex flux, the
configuration in Fig. 23 is most simply achieved by placing
a branching point immediately below the two parallel
vortices. Hence, there is reason to suspect that branching
points may be well-correlated with regions of high topo-
logical charge.
The argument made above by no means claims that

branching points must be associated with large values of
jqðxÞj, as there are most certainly alternative vortex

FIG. 21. Topological charge density from singular points
(shown as dots) is compared with topological charge calculated
from vortex-only configurations for t ¼ 1. (interactive).

FIG. 22. Points with two or more vortices piercing a 3D cube
are shown on the t ¼ 1 time slice. The number of vortices
piercing a cube is denoted by the color: blue ¼ 3, green ¼ 4,
orange ¼ 5, red ¼ 6. Whilst there are no red points present in this
slice, they occur rarely on other slices. (interactive).
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arrangements that will lead to the same values. For
example, a branching point could generate two parallel
vortex lines that then continue parallel to one another for
some distance, generating topological charge density away
from the original branching point. Or alternatively, two
separate vortex lines could come close to one another,
running parallel without the need for any local branching
point. Thus, the correlation between large values of jqðxÞj
and branching points is not expected to be perfect; however
the presence of a correlation provides information on the
role of branching points in generating large topological
charge density. Inspection of the 3D model in Fig. 24
suggests a significant correlation, as is highlighted in
Fig. 25 and in the view “two branching points and their
associated topological charge” in Fig. S-11.
To evaluate the correlation numerically we again make

use of the measure defined in Eq. (15). As branching points
are defined as the intersection of three or five vortices, they
exist on the dual 3D lattice of each time slice. The dual
lattice sites are denoted by x̃. For the four unique combi-
nations of three dimensions, xyz, xyt, xzt and yzt, we
define our branching point indicator measure as

Lμðx̃Þ ¼

8>><
>>:

1; branching point associated with x̃

in 3D slices of constant μ;

0; otherwise:

ð20Þ

The μ index in Eq. (20) indicates which dimension is
playing the role of time, i.e., which dimension is not
included in the 3D cubes. Similarly, we define qμðx̃Þ to be
the average of the topological charge over each 3D cube
around x̃. We then have four correlation measures for each
3D combination that can be averaged over, giving a total
correlation of

C ¼ 1

4

X
μ

V

P
x̃jqμðx̃ÞjLμðx̃ÞP

x̃jqμðx̃Þj
P

x̃Lμðx̃Þ
− 1: ð21Þ

By constructing the ideal correlation as defined in Eq. (17)
for each choice of 3D coordinates and averaging as done in
Eq. (21), we can also calculate the ideal correlation with
which we can compare against.
With this measure now suitably defined, we find that we

obtain an ensemble average of C=CIdeal ¼ 0.518ð7Þ. This
result indicates that there is a notable correlation between
branching points and topological charge density and, as
expected, they are not the only source of large topological
charge. This result is interesting as it speaks to the tendency
of vortex lines to either recombine or diverge away from
branching points, rather than remain in close proximity to
one another, which provides an interesting consideration
for the construction of SUð3Þ vortex models such as those
presented in Refs. [23,30].

VIII. CORRELATION WITH TOPOLOGICAL
CHARGE DENSITY

When considering correlations between vortex matter
and topological charge density, it is natural to wonder
whether the vortex structures identified on the projected
vortex-only configurations correlate to the topological

FIG. 24. Branching points (dots) plotted alongside the topo-
logical charge density from the projected vortex configurations. It
can be observed that the branching points are almost always
neighboring topological charge density. (interactive).

FIG. 25. An example of two branching points and their
associated topological charge density.FIG. 23. An example of vortex branching generating a region of

high topological charge by piercing two out of the four plaquettes
that make up a clover.
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charge density identified on the original configurations. As
is well established, to accurately identify topological charge
density directly from the lattice gauge links it is necessary
to first perform smoothing to filter short-range fluctua-
tions [32,33].
To this end, we perform five sweeps of overimproved

stout-link smearing, with smearing parameters ϵ ¼ −0.25
and ρ ¼ 0.06, tominimally smooth the configurations before
extracting the topological charge density [32]. To ensure the
smoothed configurations maintain information captured in
the vortex projection, we also produce smeared configura-
tions that are preconditioned in maximal center gauge.
We also obtain vortices from these smoothed configura-

tions by fixing them tomaximal center gauge and then center
projecting, giving us in total three vortex configurations and
three topological charge configurations. The methods by
which these ensembles are obtained are summarized in
Fig. 26.
We now repeat our correlation calculations for the

singular points, branching points and the vortices them-
selves for four new combinations of vortex and topological
charge density configurations. These results, as well as the
correlation results from the previous sections, are summa-
rized in Fig. 27. We see that for all of the new correlations
presented, there is a soft correlation between the vortex
structures and the topological charge density. Of all the
correlations of qSðxÞ or qPSðxÞ with vortex information, the
strongest correlation is with the original ZVO

μ ðxÞ. It is
notable that the branching point correlation is similar to the
vortex correlation in panels (a) and (b) of Fig. 27. These
configurations best represent the physical gauge fields with
minimal smoothing to extract the topological charge, and as
such this correlation has notable implications for the
significance of branching points in regards to generating
regions of significant topological charge density.

FIG. 26. Summary of the processes used to obtain vortex and
topological charge density configurations. “MCG” denotes gauge
fixing to maximal center gauge and “smear” denotes application
of five sweeps of overimproved stout-link smearing as described
in the text. From these methods we obtain the vortex only (VO),
smeared (S) and preconditioned smeared (PS) topological charge
and vortex configurations. As the topological charge density is
gauge invariant, it could equivalently be calculated following
gauge fixing to maximal center gauge.

FIG. 27. Correlation values for vortices (V), singular points (SP) and branching points (BP) obtained from centre projected
configurations, ZμðxÞ, with topological charge density, qðxÞ, obtained via various means described in the text and shown diagrammatically
in Fig. 26. Data points indicate results for the normalised correlation values, C=CIdeal. (a) Smeared qðxÞ vs projected ZμðxÞ. (b)
Preconditioned smeared qðxÞ vs projected ZμðxÞ. (c) Smeared qðxÞ vs smeared ZμðxÞ. (d) Preconditioned smeared qðxÞ vs preconditioned
smeared ZμðxÞ. (e) Projected qðxÞ vs projected ZμðxÞ.
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Of particular interest is the fact that the correlation does
not improve when the vortex configuration is precondi-
tioned by the same degree of smoothing as the topological
charge, as shown in Fig. 27(c) and (d). This suggests that
the primary cause of the more subtle correlation is the
vortex projection rather than the smoothing. In fact, we
even observe that the correlation shifts closer further from
the ideal value of 1 when the vortex configuration is
obtained following five sweeps of smoothing. This arises
because the number of vortex structures is reduced under
smearing, as seen in Fig. 28, but the overlap with
topological charge has clearly not improved substantially.
As noted earlier in Fig. 17, under cooling this sparsity of
vortices is further amplified, indicating that as the degree of
smoothing increases, vortices are increasingly removed
from the lattice.
An additional consideration for the observed correlation

is the fact that projected vortices do not perfectly correlate
with the location of the physical thick vortices. Rather, the
projected vortices appear within the thick vortex core, but
under different Gribov copies of maximal center gauge they
will be identified at different specific lattice sites [10]. This
variability can contribute to the more subtle correlation
observed in Fig. 27.
These findings reinforce the result that whilst center

vortices reproduce many of the salient features of QCD,
vortex-only configurations are only subtly correlated with
the topological charge density of the configurations from
which they are obtained. However, the correlation does
exist and is consistent across the ensemble, indicating that
center vortices are connected to the topological charge
density of the lattice.

IX. CONCLUSIONS

In this work we have presented a new way to examine the
four-dimensional structure of center vortices on the lattice
through the use of 3D visualization techniques. These
visualizations give new insight into the geometry and
Euclidean time-evolution of center vortices and reveal a
prevalence of singular points and branching points in the
vortex vacuum. It is especially remarkable how common
branching points are in SU(3) gauge theory.
We have also explored the connection between these

vortex structures and topological charge density. While
demonstrating that the topological charge density obtained
on projected vortex configurations is generated by singular
points, we discovered an interesting correlation between
branching points and topological charge; namely that
branching points provide an important mechanism for
generating large values of topological charge density.
We explored the connection with topological charge

density obtained from the original configurations after
varying degrees of smoothing. We deduced that the
topological charge density of the gauge fields is signifi-
cantly affected under center projection; however the modi-
fication maintains a positive correlation with the original
topological charge density identified on the lattice.
Future work exploring the nature of the Gribov copy

problem in regard to SUð3Þ vortex locations is of interest,
as is an investigation into methods for identifying thick
vortex objects. Additionally, exploration of the change in
vortex structure as the temperature tends towards the
deconfining phase is an exciting area of future research.
From this work, it is clear that visualizations of center
vortices provide valuable information about the structure of
the QCD vacuum and provide an elegant complement to
numerical results.
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FIG. 28. The vortex structure and topological charge present
after five sweeps of overimproved stout-link smearing, precondi-
tioned with maximal center gauge [ZPS

μ ðxÞ and qPSðxÞ]. (inter-
active).
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