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We demonstrate how an effective density of states can be derived from the S-matrix describing a
coupled-channel system. Besides the locations of poles, the phase of the determinant of the S-matrix
encodes essential details in characterizing the dynamics of resonant and nonresonant interactions. The
density of states is computed for the two channel scattering problem (ππ, KK̄, S-wave), and the influences
from the various dynamical structures: poles, roots, branch cuts, and Riemann sheets, are examined.
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I. INTRODUCTION

Thermodynamics is essentially tied to the proper count-
ing of states: the question is what states to count and how to
count them. In the scattering matrix (S-matrix) formulation
of statistical mechanics, the density of states (DOS), i.e.,
the gradation of the number of states in energy, is expressed
in terms of the following S-matrix [1,2]:

BðEÞ ¼ 1

2
ImTr

�
S−1

∂
∂ES −

� ∂
∂ES−1

�
S

�
: ð1Þ

The partition function is then given by an integral of the
DOS with the appropriate Boltzmann weight. A unique
feature of this formulation, in contrast to the standard
Matsubara approach, is the decoupling of zero temperature
dynamics and statistics [1,3–5]. This is what makes the
scheme powerful: one can make progress in understanding
the thermal medium by successively improving the
S-matrix input, including relevant channels, extension to
N > 2 scatterings, etc., thus working toward building an
accurate virial/cluster expansion.
There are clear advantages in writing the DOS in terms

of the S-matrix: the S-matrix has a direct connection to
(existing and future) experimental data [6], accompanied by
powerful theoretical tools such as chiral perturbation theory
[7,8], lattice QCD [9], effective hadron models [10], and
potential models [11,12]. An active research program has
begun to leverage the very precise information on particle
spectra in studying the thermal properties of hadron
systems, such as those created by heavy ion collisions

[13–18] or in astrophysical systems [19–24], and for
interpreting LQCD results at finite temperatures [25–31].
The connection to the S-matrix also brings in an

interesting theoretical issue: how a degree of freedom
(d.o.f) is represented by the open channels, on which the
S-matrix acts on. In the conventional construction of a
Hamiltonian (or a Lagrangian), one often needs to distin-
guish composite particles from elementary particles. In the
S-matrix framework, the (assumed asymptotically com-
plete) Hilbert space is spanned by the scattering states (plus
bound states) [32]; this makes it necessary to understand
how resonances, and other dynamically generated states,
are incorporated in the scheme.
For a narrow resonance in a single (two-body) scattering

channel, there is a clear answer: the presence of the
resonance is encoded in the phase shift, where the latter
behaves like a step function. The contribution to the
thermal trace is as if the resonance is a pointlike, elemen-
tary particle, i.e., the principle of effective elementar-
ity [33].
For a single resonance with width, decaying into a single

channel, similar principle applies: the DOS derived from
the single-channel phase shift contains the contribution of
the resonance, including its full width, and in addition a
nonresonant scattering contribution from the asymptotic
states [5,16,34,35]. The latter tend to dominate at threshold
and give a substantial contribution to the thermal pressure
due to the smaller Boltzmann suppression. Within a simple
model [35,36], one can verify the equivalence between
approaches of thermodynamics: directly computing the
partition function with the Hamiltonian via Tre−βH versus
the S-matrix formulation.
In this work, we start exploring the case of multiple

resonances with multiple channels. In particular, wewant to
investigate how a dynamically generated state is reflected
in the DOS. To this end, we study a coupled-channel model
capable of doing so and study the phase of det S in the
complex plane. The DOS is given by the energy derivative
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along the real line. We find that the S-matrix DOS is only
influenced by those states which are directly connected to
the physical sheet, suggesting not all states are counted in
the partition sum. The influence from other dynamical
features, e.g., roots and Riemann sheet structures, will also
be examined.

II. DENSITY OF STATES OF A
COUPLED-CHANNEL SYSTEM

A. S-matrix formulation of statistical mechanics

The S-matrix theory provides a natural language to
describe resonances and multichannel dynamics. For the
simple case of a single-channel, two-body interactions, the
scattering phase shift δðEÞ uniquely identifies the DOS due
to the presence of interactions, via an effective spectral
function

BðEÞ ¼ 2
∂
∂E δðEÞ: ð2Þ

This effective spectral function defines the thermodynamics
of an interacting system [1]. Schematically, it reads1

Δ lnZ ¼
Z

dE
2π

BðEÞe−βE: ð3Þ

Note that the effective spectral function BðEÞ describes the
DOS for lnZ rather than Z. This excludes the disconnected
diagrams [1]. As energy increases, new interaction channel
opens up and the scattering becomes inelastic. The
S-matrix should be formally understood as a matrix acting
in the space of open channels. The effective spectral
function BðEÞ, in the case of a coupled-channel system,
generalizes to [5,31]

BðEÞ ¼ 1

2
ImTr

�
S−1

∂
∂ES −

� ∂
∂ES−1

�
S

�
ð4Þ

¼ ∂
∂E Im ln det SðEÞ: ð5Þ

where S is an Nch × Nch S-matrix of the coupled-channel
system.
The quantity BðEÞ summarizes the interactions among

the scattering channels. For example, inelastic processes,
expressed by the off-diagonal S-matrix elements, are

included via the determinant. This poses strong theoretical
constraints in model studies: when an inelastic process
α → β is considered, it is necessary to consider also the
processes β → α and β → β, on top of the elastic channel
α → α. Nevertheless, the trace operation implies that this
quantity is basis independent, i.e., two S-matrices related
by unitary rotations will give the same DOS. This also
suggests that BðEÞ does not depend explicitly on the
inelasticity parameters.
Based on BðEÞ, an effective phase shift Q can be

constructed,

QðEÞ ¼ 1

2

Z
E

Eref

dE0BðE0Þ

¼ 1

2
Im ln det ðSðEÞ=SðErefÞÞ: ð6Þ

This allows the discussion of a single phase shift function
for the whole multichannel system. Note that this quantity
is also equivalent to the sum of eigenphases [37].
Determining the full N-body, multichannel S-matrix of

an interacting system is in general very difficult (if not
impossible). Rigorous theoretical schemes, such as
chiral perturbation theory [38,39] and various functional
methods, are effective in describing the single-channel,
low-energy limit. Effective models are adequate for chan-
nels dominated by a single, nearby resonance. Beyond
these cases, inferring the DOS BðEÞ from individual
channels can be rather inefficient.

B. HRG approximation

A simple scheme for incorporating resonances in BðEÞ is
the hadron resonance gas (HRG) model [40,41].
Translating into the language of S-matrix, it corresponds
to the approximation scheme

det SðEÞ ¼
Y
fresg

z⋆res − E
zres − E

; ð7Þ

where fresg is a table of resonances (e.g., from the PDG
[42]) approximated as simple poles,

zres ≈mres − i0þ: ð8Þ
QHRG is then given by a sum of step functions [43],

QðEÞ → QHRGðEÞ ¼
X
res

dIJ × π θðE −mresÞ; ð9Þ

where dIJ is the degeneracy factor, and the DOS in this case
is given by the spectral function AHRG,

BðEÞ → AHRGðEÞ ¼
X
res

dIJ × 2π δðE −mresÞ: ð10Þ

One key aspect to improving the approach is by includ-
ing the widths of the resonances. Indeed, considerable

1For example, the thermal pressure due to the interaction can
be computed as

ΔP ¼
Z

dE
2π

BðEÞPð0ÞðE; TÞ

where Pð0ÞðE ¼ ma; TÞ denotes the pressure of an ideal gas of
particles with mass ma.
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theoretical efforts are involved in locating and character-
izing resonance poles. Poles may be identified by analyzing
the magnitude of det SðEÞ. Nevertheless, Eq. (6) urges us
to look at the phase of the det SðEÞ. In the following, we
shall study the phase function of a familiar two channel
scattering problem between ππ, KK̄. By directly graphing
this function in the complex plane, we can read off the
effective phase shiftQðEÞ and gain a robust comprehension
of how the various S-matrix features, nearby poles, roots,
cuts, and effects of Riemann surfaces appear in the DOS.

III. DOS IN A ππ, KK̄ COUPLED-CHANNEL
SYSTEM

In this section, we study the DOS of a ππ, KK̄ coupled-
channel system. The goal is not so much about explaining
the scattering data, as it is relatively well understood by
theoretical approaches, e.g., Refs. [44,45]. Instead, we shall
make use of this familiar example to investigate how the
various dynamical structures in the complex plane exert
their influences on the DOS. As we shall see, not all
resonances extracted can influence this quantity.
We consider the coupled-channel model in Refs. [46–

48]. In this approach, an effective Hamiltonian (represented
as a 3 × 3matrix) is constructed to describe the interactions
among the open channels: ππ, KK̄, labeled by the channel
index α ¼ 1, 2, respectively, and their coupling to a
resonance (α ¼ 3). From this, the S-matrix (2 × 2) is
derived, which acts only on the open channels. This type
of model is thus particularly suited for investigating how
resonances and other S-matrix structures arise from the
underlying Hamiltonian.

A. Constructing the S-matrix

Wework in the center of mass frame and the total energy
E is simply given by the invariant mass

ffiffiffi
s

p
. Our starting

point is the free Green’s function, which takes the form [46]

G0ðsÞ ¼ diag
�
G0

ππ; G0
KK̄;

1

s −M2
R þ i0þ

�
; ð11Þ

where

G0
α¼1;2 ¼ 16π

Z
d3q0

ð2πÞ3
1

s − ð2ϵαÞ2 þ i0þ
Rαðq0Þ;

ϵ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q02 þm2

π

q

ϵ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q02 þm2

K

q
: ð12Þ

A form factor Rαðq0Þ is needed to render the real part of the
integral G0

α finite. A good choice is

Rαðq0Þ ¼
�

Λ2
α

Λ2
α þ q02

�
2

; ð13Þ

and the integral can be computed analytically,

G0
αðsÞ ¼

Λ3
α

2ðqα þ iΛαÞ2

qα¼1;2ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=4 −m2

π;K

q
: ð14Þ

Check that as Λ → ∞, we get

ImG0
αðsÞ ¼ −qα þOð1=Λ2

αÞ
ReG0

αðsÞ ¼ −Λα=2þOð1=ΛαÞ: ð15Þ
Indeed, the imaginary part of the integral is finite even
without regulation, giving a phase space factor qα. For our
purpose, it is sufficient to treat Λα’s as model parameters,
instead of trying to remove them via a subtraction scheme.
This simple prescription also preserves the dispersion
relation [49,50] connecting the real and the imaginary
parts of the function, i.e.,

G0
αðq2Þ ¼ −

1

π

Z
∞

0

dq02
ImG0

αðq02Þ
q2 − q02 þ i0þ

: ð16Þ

The potential V describes the interactions among the
open channels (α ¼ 1, 2) and their coupling to the
resonance (α ¼ 3),

V ¼

2
64
V11 V12 V13

V21 V22 V23

V31 V32 V33

3
75: ð17Þ

The couplings are in general s dependent. Here we follow
the parametrization of Ref. [46] (Fit 4). For the reader’s
convenience, we reproduce them here,

V11 ¼ 5.299 − 2.954 × s

V22 ¼ −3.725 × s

V33 ¼ 0

V12 ¼ V21 ¼ 0.341 × s

V13 ¼ V31 ¼ 2.588

V23 ¼ V32 ¼ 0.702

Λ1;Λ2 ¼ 0.529; 0.7

mR ¼ 1.105

mπ; mK ¼ 0.1396; 0.4937: ð18Þ

All parameters are in appropriate units of GeV’s.
The Lippmann-Schwinger equation can be easily solved

by matrix inversion,

G ¼ G0 þG0VG;

T ¼ V þ VG0T: ð19Þ
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A key step is in extracting the S-matrix: this can be
achieved by constructing the operator [5,35]

S̃ ¼ ðI −G0
−VÞðI þG0þTÞ

¼ I − G0
−V þG0þT − G0

−VG0þT

¼ I − G0
−V þG0þV þG0þVG0þT − G0

−VG0þT

¼ I þ ðG0þ −G0
−ÞV þ ðG0þ − G0

−ÞVG0þT

¼ I þ ðG0þ −G0
−ÞT

→ I þ 2i ImðG0þÞ × T: ð20Þ
The last line works for on-shell limit: E is real [51]. The
actual S-matrix S can be obtained by projecting the upper
2 × 2 subspace of S̃.
The effective spectral function Bð ffiffiffi

s
p Þ for the coupled-

channel system can be computed based on the determinant
of such an S-matrix, evaluated on the real line; see Eq. (4).
As we shall see, the contribution from the resonance
(dressed) and other dynamically generated states are
naturally included/excluded in the physical quantity
BðEÞ, or equivalently the phase shift Q.

B. Phase of detS in the complex plane

We compute det S in the complex plane of
ffiffiffi
s

p
. The two

branches of qα¼1;2 from taking the square root, distin-
guished by the sign of their imaginary parts, constitute the
four energy sheets labeled by (Im q1, Im q2). See Table I.
It is natural to expect the values of the complex function

det Sð ffiffiffi
s

p Þ in the upper and lower half-planes in a given
sheet to be related by complex conjugates, as instructed by
the Schwarz reflection principle [54] for analytic functions:
Fðz̄Þ ¼ FðzÞ. We numerically verified it is indeed the case
for the model. Hence, it suffices to show one of the half-
planes in each sheet. In the following, we choose to plot the
upper planes of sheets I and IV and the lower planes of
sheets II and III. As we shall see, this arrangement helps to
investigate the connectedness of Riemann sheets. See the
Appendix for the motivation behind.
The complex function is shown in Fig. 1. This method of

visualizing a complex function is similar to the technique of
domain coloring (instead of using brightness we show
contours); see Ref. [55] for details. The value of the phase
angle is represented as color, and the contour lines signify
the magnitude of ln j det Sj. This way, poles (roots) are

characterized by the clockwise (anticlockwise) rotation of
the color phase and by a large, positive (negative) values of
the magnitude function.
Physical observables are extracted along the real line offfiffiffi
s

p
. Thus, the actual influence of an S-matrix object on

physical quantities depends on its distance to the real line
and the Riemann sheet it is on. In close proximity, a pole (or
root) causes rapid phase motion, well described by a
standard Breit-Wigner treatment. When probed afar, the
influence becomes a nontrivial background, which in some
cases can be significant. This point is obvious in Fig. 1: for
the same horizontal distance (ΔE), the phase (color) change
is much more rapid near the source. It is also clear that roots
act as antipoles with regard to phase motion. A pole and a
root lying close to each other will tend to neutralize the
phase motion outside the pair—a situation similar to
arrangement of electric charges. In fact, the Cauchy’s
argument principle [54] relates the change in phase around
a loop to the difference between the total number of poles
versus that of roots. For phase motion, roots are as
important as poles.
Unlike the K-matrix approach, the coupled-channel

model considered here allows the dynamical generation
of resonances. Starting from a single bare resonance state, a
total of five resonance poles can be identified in the model.
See Table II. In particular p1, p2 are the familiar reso-
nances σð500Þ, f0ð980Þ. The resonances are distributed
across the Riemann sheets II (three poles) and III (two
poles). It turns out that the phase value on the physical line
(the color at Reð ffiffiffi

s
p Þ þ i0þ) is only strongly affected by

three out of the five poles: p1, p2, and p5. This is naturally
understood when considering the continuity of the phase of
det S across the Riemann sheets.
The continuity can be understood as follows: in going

across the real line from i0þ to −i0þ, for Re
ffiffiffi
s

p
below the

KK̄ threshold, we essentially travel from sheet I to sheet II.
This is indicated by the smooth color change across the real
line, i.e., top left to bottom left (left figure). Similar
observation is made from sheet IV to sheet III, i.e., top
left to bottom left (right figure). Above the threshold,

TABLE I. Definition of Riemann sheets. Convention follows
Refs. [52,53].

Im qππ Im qKK̄

Sheet I þ þ
Sheet II − þ
Sheet III − −
Sheet IV þ −

TABLE II. Location of resonance poles (pi) and roots (ri)
identified in the model.

Re
ffiffiffi
s

p
Im

ffiffiffi
s

p
Sheet

p1 0.4637 −0.2357 II
p2 0.975 −0.0164 II
p3 1.401 −0.249 II
p4 0.6654 −0.2263 III
p5 1.4176 −0.2640 III

r1 0.787 þ0.259 I
r2 1.410 þ0.691 I
r3 0.981 −0.032 II
r4 1.393 −0.669 II
r5 0.918 þ0.248 IV
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however, this becomes a transition from sheet I to sheet III.
In this case, color changes smoothly across the real line
from sheet I to sheet III, i.e., top right, left figure to bottom
right, right figure. For the latter case, objects on sheet II
(e.g., p3 pole) would barely influence the real energy line.
A similar conclusion is made for objects in sheet III (e.g.,
p4 pole) in the former case. In any case, the smoothness of
color in transiting the real line indicates the connectedness
of the Riemann sheets. This gives an intuitive criterion for
the relevance of poles (and roots) in the complex plane
when calculating the physical DOS.
S-matrix roots are also important in determining the

phase motion in the physical sheet. See Table II. The

importance of roots on channel amplitudes have been
stressed in previous analyses [56,57]. For the density of
state, we find substantial contribution from the root: r1, r2,
and r3. The roots r4 in sheet II and r5 in sheet IV, with the
continuity argument, can be safely neglected.
The phase shift function Q in Eq. (6) encapsulates the

effects from the various S-matrix objects. This quantity is
evaluated on the physical line and can be directly read off
from Fig. 1: ð1=2Þ the value of the phase function along the
real line of sheet I. From the Riemann sheet structure, we
expect the same result can be extracted from sheet II (III)
below (above) the KK̄ threshold. Last but not least, it can
be directly evaluated via an integral of the effective spectral

FIG. 2. Left: the effective phase shifts for the coupled-channel system.QB is computed using Eq. (6). It agrees with that extracted from
Fig. 1 along sheet I. It also agrees with that extracted from sheet II (III) below (above) theKK̄ threshold, as expected from the analysis of
the Riemann sheet structure. Note that an extra 2π is added to the phase of det S in sheet III and IV for continuity. Also included is the
result based on an HRG-like approximation scheme by including only the relevant poles and roots. (See text) right: the effective spectral
function B and the spectral functions A of the model.

FIG. 1. Landscape of the phase of the determinant of the S-matrix for the ππ, KK̄ coupled-channel system on the energy sheets (left) I
(upper) and II (lower) and (right) IV (upper) and III (lower). See Table I for the definition of Riemann sheets. Color signifies the value of
the phase angle, and contour lines specify magnitudes of ln j det Sj. Poles (roots) are characterized by the clockwise (anticlockwise)
rotation of the color phase and by a large, positive (negative) value of ln j det Sj reflected in the contour lines. The physical line is
identified with the real line in sheet I (Reð ffiffiffi

s
p Þ þ i0þ). This is where the value ofQ in Eq. (6) is evaluated. How rapid the phase motion

on the physical line determines the magnitude of the density of states. The smoothness of color in transiting the real line indicates the
connectedness of the Riemann sheets (see text): between sheets I and II (I and III) below (above) the KK̄ threshold. Five resonances can
be identified in this model: 3 on sheet II (left, lower half) and 2 on sheet III (right, lower half).
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function B along the real line [first line of Eq. (6)]. The last
option seems to be superfluous, but is in fact one of the
most useful. For one thing, it is free of the ambiguity of
adding/subtracting multiples of the 2π when computing the
phase function. Also, the effective spectral function B in
Eq. (4) is generally continuous, though sometimes (inte-
grably) diverging at thresholds [29]. It is reassuring to see
the various ways of extracting Q to agree. See Fig. 2 (left).

C. Improving the HRG approximation

We now examine the efficacy of several approximations
for the DOS. The exact result in this model can be easily
calculated by

Bð ffiffiffi
s

p Þ ¼ 2
∂

∂ ffiffiffi
s

p Qð ffiffiffi
s

p Þ; ð21Þ

or be obtained from the trace of products of S-matrix via
Eq. (4). See Fig. 2 (right). A prominent feature of the
effective spectral function B is the divergence at thresholds.
This appears for S-wave scattering, where Q ≈ aS × qðsÞ
close to thresholds, and

B ≈ 2aS
∂

∂ ffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=4 −m2

π;K

q

¼ 2aS

ffiffiffi
s

p
=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s=4 −m2
π;K

q : ð22Þ

Clearly, it diverges when
ffiffiffi
s

p
→ 2mπ;K , behaving like

∝ 1=q. Note that the sign of the divergence mirrors that
of the scattering length aS. The first line of Eq. (22) also
makes it clear that

R
d

ffiffiffi
s

p
Bð ffiffiffi

s
p Þ is finite, i.e., the diver-

gence is integrable.
Other than the threshold effects, we observe that the

σð500Þ contribution is strongly suppressed, significantly
less than even a Breit-Wigner treatment. (Further negative
contribution comes from the I ¼ 2 sector.) This leads to the
suggestion that this state should be excluded in the thermal
model [29,58]. On the other hand, the phase motion from
the p2 pole, i.e., the f0ð980Þ resonance, is clearly visible.
When a single narrow resonance dominates the inter-

action, it is common to approximate B by the spectral
function A of the resonance. The latter is obtained by

A ¼ ð2 ffiffiffi
s

p Þ × ð−2ImGþ
33Þ: ð23Þ

In this model, the spectral function A of the dressed
resonance deviates significantly from the DOS. See
Fig. 2 (right). In particular, it is not dominated by the
f0ð980Þ resonance: this is expected since the interacting
system is dominated by the dynamically generated
f0ð980Þ, rather than by the original seed resonance.
From Fig. 2, it is obvious that a naive application of the

HRG approximation scheme in Eqs. (9) and (10) will not

work: a sum of step functions will not adequately describe
the phase shift function Q. Fortunately, in this simple
model, we have complete information of the resonance
poles and hence correcting for widths is straightforward.
However, including all the resonances in Table II will still
significantly overestimate the DOS.
Based on our analysis on the Riemann sheet structure,

we propose a novel (HRG-like) approximation scheme
for describing dynamics: by patching together relevant
S-matrix objects, e.g., resonances, roots, and possibly
branch points and cuts. A rudimentary example for the
current model is given by

det SðEÞ ¼
8<
:

ðr1−EÞðr2−EÞ
ðp1−EÞðp2−EÞ for E < 2mK

ðr1−EÞðr2−EÞðr3−EÞ
ðp5−EÞ for E ≥ 2mK:

ð24Þ

The selection of poles and roots is based on their con-
nection to the physical line (sheet I). The exception is for
r3, which is a rather unusual root lying on sheet II. It lies
very close the p2 pole and gives a strong subtractive
contribution to the DOS. Unlike the spectral function A,
negative contributions are allowed in forming B, as it
measures the change in the DOS due to the interactions,
i.e., corrections compared to the free (two-body) scattering
state. A prime example for a negative contribution to the
DOS is repulsions among hadrons, e.g., an excluded
volume effect [59,60]. Here we see an alternative source:
due to the dynamical generation of roots.
The r3 root also lies very close to the KK̄ threshold.

Empirically, we find a much better fit if we assign r3 to the
second case in Eq. (24) [61]. The scheme is shown in Fig. 2.
It is comparable to the DOS B, although the threshold
effects are not reproduced.
By varying the couplings in this model, we can infer that

the f0ð980Þ resonance starts off being a shallow bound
state, generated within the KK̄ channel. It then becomes a
resonance due to the coupling to the ππ channel. The
characteristic phase motion onQ, i.e., a rapid rise similar to
a standalone narrow state, accompanied by a rapid drop
soon after, appears in many states with molecular origin.
Nevertheless, it should be stressed that these observations
are essentially model dependent. A potential way to make
progress is by studying the landscape of the phase of det S
in different models and tracking its changes when model
parameters are altered.
Even for this simple system we uncover a rich dynamics

in the complex plane. In particular, the phase function gives
an intuitive account of how a cluster of poles and roots
modifies the DOS. The exploratory nature of this study
most likely means that the analytic continuation [56,62] of
the S-matrix into the complex plane needs to be signifi-
cantly improved. Also, there are more dynamical structures
in the S-matrix than studied here: e.g., coupled-channel
cusps [63], logarithmic divergences induced from triangle
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diagram [64], the effects of Regge poles [65–67], etc. It is
not yet clear how they will enter the DOS and is a subject of
future research.

IV. GOING FURTHER

Studying the phase of the determinant of the scattering
matrix (S-matrix) in the complex plane reveals rich
particle dynamics: poles, roots, and Riemann sheet
structures, and give an intuitive account of how they
contribute to the DOS. Of course, modeling becomes
more involved in describing high-energy processes, when
multiple channels open up and N > 2 scatterings need to
be treated. The aim here is to build on these insights to
inventing a more robust approximation scheme. For
example, based on the analysis of the Riemann sheets
and the continuity of the effective phase shift function, we
can select the most relevant poles and roots in the
complex plane, and build an approximation scheme
analogous to the hadron resonance gas (HRG) model.
Carefully treating the low-lying roots allows a more
accurate description of repulsive forces among the
hadrons.
Relating the density of states to the determinant of the

S-matrix simplifies the way we understand the thermal
aspects of a coupled-channel system: instead of studying
Nch × Nch physical processes separately (represented by
individual S-matrix elements), we focus on a single
quantity which can be readily computed for an arbitrary
coupled-channel model. For example, the thermal analysis
of hadron yields in Ref. [30] can be extended to include the
ηN, KΛ, and KΣ contributions, in addition to πN channel
studied, based on existing models (e.g., Ref. [68]) [69]. In
principle, three-body contributions can also be included in
the thermal trace using the same theoretical scheme, e.g.,
via quasi-two-body channels [31]. This will be considered
in future studies.
Given the large number of predicted states (e.g., by

LQCD [70]) which are unobserved, and the observed states
which are unconfirmed in experiments, a criterion for
selecting the most relevant states in constructing the
DOS is urgently needed [71,72]. This is also essential
for reliably computing the bulk properties of thermal
medium at high temperatures and densities [31]. We can
imagine a scenario where some of the bound states
predicted from a quark model calculation, after coupling
to the continuum (i.e., open channels), they are so redis-
tributed that they have little influence on the DOS and will
therefore not be counted in the thermal trace. A word of
caution: this may be erroneously taken as a repulsive
correction. Further work needs to be done to fully under-
stand the change in the DOS (and the thermal sum) when
unquenching the quark model [73–75].
Up to now, we have been arguing for the relevance of a

state based on its proximity to the physical line. This is a

natural requirement but more work is needed to explore the
consequences. In particular, poles (and other S-matrix
objects) “move” when the effective interaction strengths
are altered. The change may be induced by varying the
quark mass or unquenching the calculations, in the context
of LQCD, or brought about from the presence of an
external electric/magnetic field, in a condensed matter
system. At the moment, we can only study case by case,
and no general rule is known for deciding the fate of
a state.
It would also be useful to explore other interacting

system. Of course, more sophisticated coupled-channel
models exist to describe a variety of systems. As demon-
strated in this work, computing the DOS would require the
complete S-matrix, including channels where experimental
data are unavailable, and the dummy channels for restoring
unitarity. A study exploring the thermodynamics of hyper-
ons, based on the DOS extracted from a coupled-channel
partial wave analysis, can be found in Ref. [31].
Studying the thermal properties of the system of exotics

[76–78] is also possible using this approach. A good
example of this is the X(3872) system. Previous works
have focused on the single-channel phase shift [14,79]. Our
study here suggests that analyzing the structure of det S
may yield a better understanding for characterizing the
density of states.
The S-matrix framework discussed in this work is very

flexible: the degrees of freedom used in the Hamiltonian
can be different from those appearing in the S-matrix. Such
a separation would become interesting when quarks and
gluons are employed in the Hamiltonian [80–82], while the
S-matrix is employed in computing the DOS. Presumably
at low temperatures, probing low energies due to
Boltzmann suppression, it should yield a gas of pions
(or pion concepts [83,84]). Working out the details in the
S-matrix approach could yield novel insights into describ-
ing the thermal properties of interacting hadrons and
eventually the deconfinement phase transition in QCD [85].
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APPENDIX: STITCHING TOGETHER RIEMANN
SHEETS

We shall motivate an arrangement of half-sheets that aids
the investigation of the continuity of the phase of det S across
the real line. The selection is the upper planes of sheets I and
IV and the lower planes of sheets II and III.
First, it is natural to explore the upper plane of sheet I, as it

is where the physical line belongs. Consider going across the
real line below (above) the 2-kaon threshold in the manner
depicted in Fig. 3 (top), shown in red (green) arrow. The
correspondingmotions of the square of the channelmomenta
qα¼1;2 are also displayed. The two branches of qα¼1;2 are
related to each other by multiplying −1. In the complex
plane, this corresponds to a reflection about the origin.
In the calculation, we always take the positive root of

q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ iyÞ2=4 −m2

π

p
(shaded in gray). This way, the

sign of Imq1 essentially follows that of y. For the motion
below the 2-kaon threshold (red arrow), we expect only the
imaginary part of q1 to flip sign, while that of q2 stays: e.g.,
going from upper (þ;þ) (sheet I) to lower (−;þ) (sheet II).

Above the 2-kaon threshold (green arrow), the imaginary
parts of both qα’s should flip sign: e.g., going from upper
(þ;þ) (sheet I) to lower (−;−) (sheet III).
We then perform two calculations in the complex plane:

choosing q2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ iyÞ2=4 −m2

K

p
for Imq2 > 0 in one

case and Imq2 < 0 in another. This binds sheets (I, upper
and II, lower) and sheets (IV, upper and III, lower) together
and explains the sheet arrangement in Fig. 1. Thus, the
transition of phase (color) across the real line is smooth
below 2-kaon threshold. Above the threshold, one needs to
exchange the lower half of the two graphs to see the
continuity in the phase in sheets (I and III) and sheets (IV
and II). In any case, the smoothness of color in transiting
the real line indicates the connectedness of the Riemann
sheets.
Note that in common numerical implementation (e.g., C+

+, FORTRAN, PYTHON) the positive square root, i.e., positive
real part, of a complex number is returned. In this case, q1
can be computed directly but Imq2 > 0 and Imq2 < 0 need
to be separately implemented.

FIG. 3. The motions of various dynamical variables as
ffiffiffi
s

p
moves across the real line in the complex plane.
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