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We discuss the canonical approach for the study of QCD phase at finite densities and temperatures in the
confinement phase. The canonical approach, which is a method to extrapolate observables calculated at
pure imaginary chemical potentials to those at real chemical potentials, is useful to overcome the sign
problem in lattice QCD simulations at finite density. To validate the applicability of the approach, we
employ the Nambu-Jona-Lasinio (NJL) and Polyakov-NJL (PNJL) models where exact solutions for the
number density are available, which is the basic input of the fugacity expansion and can be compared with
those of the canonical approach. We find that the number densities computed from the canonical approach
are consistent with the exact solutions in most of the confinement phase. The results in the present study are
applicable to the study of lattice QCD.
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I. INTRODUCTION

Understanding of quantum chromodynamics (QCD) at
finite temperature and density has been highly demanded as
fundamental inputs for the studies of various interesting
questions such as the generation of matter in the early
universe, the galaxy formations and mysterious stellar
objects such as neutron stars and black holes. The high
energy accelerators at such as J-PARC (KEK/JAEA), FAIR
(GSI) and NICA (JINR) will be expected to operate in the
near future to approach these questions. In the theoretical
side, lattice QCD is an almost unique method for the first
principle approach to QCD.
As already well known, however, lattice QCD simula-

tions at finite density suffer from the sign problem due to a
complex value of the grand canonical partition function. To
attack this problem, the canonical approach has been
proposed [1], and has been developed rapidly by using
multiple-precision arithmetic [2–18]. In the canonical
approach, lattice QCD simulations are performed at pure
imaginary chemical potentials where the grand canonical
partition function is real, that overcomes the sign problem.

The canonical approach can be applied to the study of
physical observables such as particle number distributions
in heavy-ion collisions and of the phase structure at the
chemical potential. Despite these advantages, there remains
a question of accuracy of the method when only limited
amount of lattice data are available.
In this paper, we would like to address this question by

using QCD effective models such as the Nambu–Jona-
Lasinio (NJL) and Polyakov-NJL (PNJL) ones where exact
solutions are known in principle. The advantage of the
models is that it is possible to perform (semi) analytically
the canonical approach.
The NJL model has been successful in describing

various properties of nonperturbative QCD [19–22]. In
our previous paper [18], the model was applied to the Lee-
Yang zero method for the QCD phase structure. The PNJL
model incorporates not only spontaneous symmetry break-
ing of chiral symmetry but also the spontaneous breaking of
ZðNcÞ center symmetry. The latter is governed by the
expectation value of the Polyakov loop hΦi as an order
parameter for confinement and deconfinement phases
[23,24]. In this way, the PNJL model incorporates an
important feature of the gluon dynamics of QCD.
Our strategy is as follows. In accordance with the lattice

data analyses, first, we compute the quark number density
at pure imaginary chemical potentials in the effective
models. The resulting quark number density as a function
of the chemical potential is parametrized by a Fourier series
of a finite number of terms Nsin. The validity of the
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canonical approach is determined by the accuracy of the
parametrization, the investigation of which is the main
subject of the present paper. Furthermore, we introduce the
maximum value of fluctuations of the net quark number
Nmax that is needed in lattice simulations due to finite
amounts of resources. A comparison of the results of finite
Nmax with the exact ones also provides a measure of the
validity of the canonical approach in the actual lattice
simulations.
From the numerical results, we find that the canonical

approach works qualitatively well even near the phase-
transition line for relatively small values of Nmax and Nsin,
Nmax=V ≳ 0.56 ½fm−3� and Nsin ≈ 4, where V is a volume
in the system. Especially, Nsin ¼ 1 or 2 is enough to
reconstruct the number density within 10% accuracy for
the temperature below one of the critical endpoint and for
the baryon chemical potential <900 ½MeV�.
The present paper is organized as follows: In Sec. II, we

briefly explain the canonical approach in the PNJL model.
The numerical results are given in Sec. III with detailed
discussions. Section IV is devoted to summary and future
perspectives.

II. THE CANONICAL APPROACH
IN THE PNJL MODEL

A. The canonical approach

In this subsection, we review the canonical approach. Let
us start with the relation between the grand canonical
partition function ZGC and the canonical partition functions
ZC as a fugacity expansion,

ZGCðμ; T; VÞ ¼
X∞
n¼−∞

ZCðn; T; VÞξn; ð1Þ

where μ, T, V and ξð≡eμ=TÞ are the quark chemical
potential, temperature, volume of the system and the quark
fugacity, respectively. The canonical partition function is
computed by the Fourier transform of Eq. (1) over the
imaginary chemical potential,

ZCðn; T; VÞ ¼
Z

π

−π

dθ
2π

e−inθZGCðμ ¼ iμI; T; VÞ; ð2Þ

where μI is real and θ ¼ μI=T. Because the Fourier
transform has cancellations of significant digits that come
from the high frequency part of e−inθ at large n, multiple-
precision arithmetic is needed in numerical calculations.
The integrationmethod is also used to extractZC for larger

n in lattice QCD calculations [13–17]. In the integration
method, ZGCðiμIÞ in Eq. (2) is derived from the number
density at the pure imaginary chemical potential,

nq
T3

ðiμIÞ ¼
1

VT2

∂
∂ðiμIÞ lnZGCðiμIÞ: ð3Þ

Because ZGCðiμIÞ is real, we can define as nqðiμIÞ ¼ inqI
with the real valuednqI. The imaginary number densitynqI is
approximated by a Fourier series,

nqI
T3

ðθÞ ¼
XNsin

k¼1

fk sinðkθÞ; ð4Þ

with a finite number of terms ofNsin [25–27]. After getting a
set of coefficients fk, we can evaluate ZGCðiμIÞ in good
approximation from

ZGCðiμI; T; VÞ ¼ C exp

�
−V

Z
θ

0

dθ0nqIðθ0Þ
�

¼ C exp

�
VT3

XNsin

k¼1

fk
k
cosðkθÞ

�
; ð5Þ

where C is an integration constant.

B. The PNJL model

The effective potential ω of the PNJL model is given as

ω ¼ 1

2G
ðM −mqÞ2 − 2NcNf

Z
d3p
ð2πÞ3 Ep

− 2NfT
Z

d3p
ð2πÞ3

n
Trc ln

h
1þ Le−

Ep−μ
T

i

þ Trc ln
h
1þ L†e−

Epþμ

T

io
þ ωg; ð6Þ

where the energy and the constituent quark mass are
defined by Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
and M ¼ mq − Gσ, respec-

tively, with the current quark mass mq, the coupling
constant G and the chiral condensate σ. The Polyakov
loop L is defined by

Lðx⃗Þ ¼ P exp

�
i
Z

1=T

0

dx4A4ðx⃗; x4Þ
�
; ð7Þ

where P stands for the path ordering and A4 ¼ iA0 is the
SUðNcÞ temporal-gauge field in Euclidian space.Moreover,
we express the polynomial Polyakov-loop potential as the
gauge-field contribution of the effective potential,

ωgðT;μÞ¼T4

�
−
b2ðTÞ
2

ll̄−
b3
6
ðl3þ l̄3Þþb4

4
ðll̄Þ2

�
; ð8Þ

wherel and l̄ are the thermal expectationvalues of the color
trace of the Polyakov loop and its conjugate,

lðx⃗Þ≡ 1

Nc
hTrcLðx⃗Þi; l̄ðx⃗Þ≡ 1

Nc
hTrcL†ðx⃗Þi: ð9Þ

Note that TrcL and TrcL† are generally complex in SUðNcÞ
for Nc ≥ 3. We choose the parameters in Eq. (8) as in
Ref. [28]:
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b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

þ a3

�
T0

T

�
3

; ð10Þ

a0 ¼ 6.75, a1 ¼ −1.95, a2 ¼ 2.625, a3 ¼ −7.44,
b3 ¼ 0.75, b4 ¼ 7.5 and T0 ¼ 270 ½MeV�.
For Nc ¼ 3, Polyakov loops are represented as

L ¼ diagðeiφ1 ; eiφ2 ; e−iðφ1þφ2ÞÞ in the Polyakov gauge.
Therefore, we can rewrite the color traces in Eq. (6) as
follows,

Trc ln
h
1þ Le−

Ep−μ
T

i

¼ ln
h
1þ TrcLe−

Ep−μ
T þ TrcL†e−

2ðEp−μÞ
T þ e−

3ðEp−μÞ
T

i

→ ln
h
1þ 3le−

Ep−μ
T þ 3l̄e−

2ðEp−μÞ
T þ e−

3ðEp−μÞ
T

i
; ð11Þ

Trc ln
h
1þ L†e−

Epþμ

T

i

¼ ln
h
1þ TrcL†e−

Epþμ

T þ TrcLe−
2ðEpþμÞ

T þ e−
3ðEpþμÞ

T

i

→ ln
h
1þ 3l̄e−

Epþμ

T þ 3le−
2ðEpþμÞ

T þ e−
3ðEpþμÞ

T

i
; ð12Þ

where we replace TrcL and TrcL† by l and l̄ in the mean
field approximation in the third lines of each equation. The
values of l, l̄ and σ are the solutions of the gap equations
that are nothing but the three stationary conditions:

∂ω
∂σ ¼ 0;

∂ω
∂l ¼ 0;

∂ω
∂l̄ ¼ 0: ð13Þ

C. The PNJL model at the pure imaginary
chemical potential

In this paper, we compute nqI in Eq. (4) in the PNJL
model. Practically, it is convenient to evaluate nqI numeri-
cally by

nqIðμIÞ¼
1

T
∂ω

∂ðμI=TÞ
≈
ωðμI=TþδðμI=TÞÞ−ωðμI=T−δðμI=TÞÞ

2TδðμI=TÞ
; ð14Þ

where we use δðμI=TÞ ¼ 10−18. The calculations of nqI
are carried out with 128 significant digits in decimal
notation by using a multiple-precision arithmetic package,
FMLIB [29].
For pure imaginary chemical potentials, l and l̄ are

complex conjugate to each other, l≡ lreilϕ , l̄ ¼ l† ¼
lre−ilϕ , where lr and lϕ are real. Therefore, ωðμI=TÞ is
obtained from the three stationary conditions:

∂ω
∂σ ¼ 0;

∂ω
∂lr

¼ 0;
∂ω
∂lϕ

¼ 0: ð15Þ

The resulting three gap equations are as follows:

M ¼ mq þ
3NfGM

π2

Z
Λ

0

dp
p2

Ep

×

�
1 −

le−
Ep−iμI

T þ 2l�e−
2ðEp−iμI Þ

T þ e−
3ðEp−iμI Þ

T

1þ 3le−
Ep−iμI

T þ 3l�e−
2ðEp−iμI Þ

T þ e−
3ðEp−iμI Þ

T

−
l�e−

EpþiμI
T þ 2le−

2ðEpþiμI Þ
T þ e−

3ðEpþiμI Þ
T

1þ 3l�e−
EpþiμI

T þ 3le−
2ðEpþiμI Þ

T þ e−
3ðEpþiμI Þ

T

�
; ð16Þ

lr ¼
1

b2ðTÞ
�
−b3l2

r cosð3lϕÞ þ b4l3
r −

3Nf

π2T3

Z
Λ

0

dpp2

×

�
eilϕe−

Ep−iμI
T þ e−ilϕe−

2ðEp−iμI Þ
T

1þ 3le−
Ep−iμI

T þ 3l�e−
2ðEp−iμI Þ

T þ e−
3ðEp−iμI Þ

T

þ e−ilϕe−
EpþiμI

T þ eilϕe−
2ðEpþiμI Þ

T

1þ 3l�e−
EpþiμI

T þ 3le−
2ðEpþiμI Þ

T þ e−
3ðEpþiμI Þ

T

��
; ð17Þ

sinðlϕÞ ¼
4

3
sin3ðlϕÞ þ

iNf

π2b3l3
rT3

Z
Λ

0

dpp2

×

�
le−

Ep−iμI
T − l�e−

2ðEp−iμI Þ
T

1þ 3le−
Ep−iμI

T þ 3l�e−
2ðEp−iμI Þ

T þ e−
3ðEp−iμI Þ

T

þ −l�e−
EpþiμI

T þ le−
2ðEpþiμI Þ

T

1þ 3l�e−
EpþiμI

T þ 3le−
2ðEpþiμI Þ

T þ e−
3ðEpþiμI Þ

T

�
:

ð18Þ

Note that M is real for pure imaginary chemical potentials.
We take Nf ¼ 2, mq ¼ 5.5 ½MeV�, G ¼ 0.214 ½fm2� and
the tree-momentum cutoff Λ ¼ 631 ½MeV�, respectively,
which are fixed to reproduce the pion decay constant fπ ¼
93 ½MeV� and the constituent quark mass M ¼ 335 ½MeV�
in the mean field approximation.

III. NUMERICAL RESULTS

A. Exact results in the PNJL model

Figure 1 shows the exact result of the real baryon number
density nB ¼ nq=3 as a function of temperature and baryon
chemical potential ðμB ¼ 3μÞ in the PNJL model. The
critical end point ðCEPÞ∶ðTCEP; μCEPB Þ ≃ ð114; 965Þ ½MeV�
is represented as a star in Fig. 1. These results are
essentially the same as the previously obtained results
[23], and will be compared with the results in the following
subsections.

B. Imaginary number density in the PNJL model

Now let us evaluate the imaginary number density nqI at
the pure imaginary chemical potential from Eq. (14). The
momentum integrations in Eqs. (16)–(18) are calculated
with the Gaussian quadrature method. Figure 2 shows the
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θ ð¼ μI=TÞ dependence of the imaginary number density.
nqI=T3 are calculated at 161 values of μI for various
temperatures. Because the PNJL model has the Z3 sym-
metry and an anti-symmetry, nqIðθÞ ¼ nqIðθ þ 2π=3Þ and
nqIðθÞ ¼ −nqIð−θÞ, we only show the region 0 ≤ θ ≤ π=3
in Fig. 2. From Fig. 2, we find that nqI is well approximated
by the Fourier series

nqI
T3

ðθÞ ¼
XNsin

k¼1

f3k sinð3kθÞ; ð19Þ

which is used instead of Eq. (4) since fk for mod ðk; 3Þ ≠ 0
are zero due to the Z3 symmetry. As long as we are
interested in the confinement phase of QCD here, the Z3

symmetric feature in Eq. (19) remains intact. The obtained
coefficients f3k are listed in Table I.

C. Nmax dependence of the number density
in the PNJL model

Next, we calculate the grand canonical partition function
at pure imaginary chemical potential with the integration

method in Eq. (5). Here, the finite volume effect is included
as the coefficient V in Eq. (5), although the imaginary
number densities and f3k in Eq. (19) are computed by the
formula for the infinite volume. In this paper, since we
study the Nmax and Nsin dependences of the canonical
approach, we use V ¼ ð6 ½fm�Þ3 to minimize the finite V
effect, which is justified in comparison with the argument
of Ref. [30], where V ∼ ð5 ½fm�Þ3 is shown to be suffi-
ciently large.
By performing Fourier transforms in Eq. (2) with 8,192

significant digits in decimal notation, we obtain the
canonical partition functions. Finally, we can reconstruct
the grand canonical partition function,

ZGCðμ; T; VÞ ¼
XNmax

n¼−Nmax

ZCðn; T; VÞξn; ð20Þ

where Nmax is a maximum value of fluctuation of the net
quark number in the system. Although theoretically, Nmax
should be taken infinity, practically in numerical calcu-
lations it is set at a finite value.
In Fig. 3, we present the Nmax dependence of the baryon

number density nB obtained from the canonical approach at
T ¼ 80 ½MeV�. The solid line is the exact number density
calculated at the real chemical potential. The figure shows

FIG. 2. The θ dependence of the imaginary number density in
the PNJL model.

FIG. 1. The temperature and chemical potential dependences of
the baryon number density nB ½MeV3� in the PNJLmodel. The star
is the critical endpoint (CEP) ðTCEP; μCEPB Þ ≃ ð114; 965Þ ½MeV�.

TABLE I. The coefficients f3k from the data of nqI=T3 for each
temperature.

T ½MeV� f3 f6 f9 f12

200 2.2 × 10−2 1.7 × 10−4 1.9 × 10−6 2.2 × 10−8

160 5.5 × 10−3 9.0 × 10−6 2.1 × 10−8 5.8 × 10−11

120 7.2 × 10−4 9.9 × 10−8 2.0 × 10−11 4.7 × 10−15

80 1.4 × 10−5 1.7 × 10−11 3.0 × 10−17 � � �

FIG. 3. The Nmax dependence of the number density in the
PNJL model. The solid line is the exact number density
calculated at the real chemical potential. The other symbols
are the number densities obtained from the canonical approach
for several Nmax.
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numerical results only up to the point of phase transition
density because the Fourier transforms in the canonical
approach are no longer effective beyond the phase tran-
sition point. Actually, in Fig. 4, we can see that the
canonical approach is ineffective beyond the phase tran-
sition point. From Fig. 3, we find that the behavior of the
number density converges for Nmax ¼ 120 and larger. Note
that the difference between nB calculated from the canoni-
cal approach and the exact values near the phase transition
density comes from the finite Nsin effect, which we discuss
in the next subsection. Now we can understand the
converging behavior of nB by comparing Nmax=ð3VÞ ¼
120=ð3 × 63Þ ∼ 0.19 ½fm−3� with the normal nuclear matter
density 0.17 ½fm−3�. It is reasonable to expect that the
fluctuations of the number density are in the same order of
the nuclear matter density in the region of the chemical
potential and temperature that we are looking at now.

D. Nsin dependence of the number density
in the PNJL model

In this subsection, we discuss the Nsin dependence by
using a sufficiently large number Nmax ¼ 1200 to suppress

possible uncertainties due to finite Nmax. In Fig. 5, we show
the Nsin dependence of the baryon number density at
T ¼ 80, 160 and 200 [MeV]. As in the case of Fig. 3,
the figures show numerical results only up to the point of
phase transition or crossover densities. The reason that the
plot range is restricted to the lower density side up to a
certain maximum point for T > TCEP is that as shown in
Fig. 4, the gradient of the number densities obtained from
the canonical approach for T ¼ 160 ½MeV� monotonically
increases and the canonical approach becomes ineffective
beyond the crossover density. The solid lines are the exact
number densities nexactB calculated at the real chemical
potential. The symbols represent the number densities
obtained from the canonical approach, ncanonicalB . As Nsin

increases, the difference between nexactB and ncanonicalB
becomes smaller.
In Fig. 6, we show the Nsin dependence of the ratio of

ncanonicalB to nexactB at T ¼ 80, 160, and 200 [MeV]. In this
paper, to discuss the accuracy of the approximation, we
set the effective region of the canonical approach as the
region where the difference is less than 10%, 0.9 <
ncanonicalB =nexactB < 1.1. For Nsin ¼ 1 at T ¼ 80, 160, and
200 [MeV], the boundaries between the effective and
ineffective regions of the canonical approach appear at
the 89%, 74%, and 65% of the phase transition or crossover
densities, respectively. It turns out that as the temperature
decreases, the Fourier series approximation with Nsin ¼ 1
becomes better. These observations for Nsin ¼ 1 are useful
when actual lattice study is performed. For Nsin ¼ 3 at T ¼
80 ½MeV� and Nsin ¼ 4 at T ¼ 160 ½MeV�, we can recon-
struct the exact baryon number density from the canonical
approach up to the densities of ð97–98Þ% of the phase
transition or crossover density within 10% accuracy.
Moreover, for Nsin ¼ 4 at T ¼ 200 ½MeV�, ncanonicalB can
be computed with difference only less than 1.8% from the
exact value until the crossover density.
In Fig. 7, we plot the boundaries between the

effective and ineffective regions of the canonical approach
for various Nsin and temperatures. Due to the definition
of the (in)effective regions, in the left regions of the
boundaries, nB can be computed in the accuracy
0.9<ncanonicalB =nexactB <1.1. In general the boundary deviates

FIG. 4. The number densities around the phase transition or the
crossover densities in the PNJL model. The solid and dashed lines
are the exact number densities calculated at the real chemical
potentials at T ¼ 80 and 160 [MeV], respectively. The open
circles and open triangles are the number densities obtained from
the canonical approach with ðNmax; NsinÞ ¼ ð1200; 3Þ and
(1200,4) at T ¼ 80 and 160 [MeV], respectively.

FIG. 5. The Nsin dependence of nB=T3 in the PNJL model. The solid lines are the exact number densities calculated at the real
chemical potential.

USE OF THE CANONICAL APPROACH IN EFFECTIVE MODELS … PHYS. REV. D 102, 034035 (2020)

034035-5



from the phase transition or crossover line. For Nsin ¼ 2
and 4, the boundaries reach the crossover line that is
plotted. For instance, for Nsin ¼ 4, this occurs at
T ¼ ð184 − 224Þ ½MeV�. The reason is that there is no
crossover or phase transition structure in the Fourier
series approximation with finite Nsin since the function
is analytic. From Fig. 7, we find that most of the confine-
ment phase can be reliably studied by the canonical
approach with Nsin ¼ 4. Furthermore, for T < TCEP and
μB < 900 ½MeV�,Nsin ¼ 1 or 2 is enough to reconstruct the
exact number density from the canonical approach. The
results suggest that the application of the canonical
approach to the lattice QCD is useful, especially in the
confinement phase.

E. Comparison with the NJL and PNJL models

At the end of this section, we consider the model
dependence by comparing the results of the PNJL model
with those of the NJL one. In the NJL model, we obtain the
coefficients fk from 161 values of data of nqI=T3 such as
Table II. Here, we use not Eq. (19) but Eq. (4) since the NJL
model does not have the Z3 symmetry. As it was done in
the PNJL model, we set V in Eq. (3) to ð6 ½fm�Þ3 and
reconstruct the grand canonical partition function by
performing the Fourier transforms with 8,192 significant
digits in decimal notation.

FIG. 6. The Nsin dependence of ncanonicalB =nexactB in the PNJL model. ncanonicalB is the number density obtained from the canonical
approach and nexactB is the exact number density calculated at the real chemical potential. The solid and dashed lines represent the exact
value (ncanonicalB =nexactB ¼ 1.0) and the 10% difference values (ncanonicalB =nexactB ¼ 0.9 and 1.1).

FIG. 7. The boundaries between the effective and ineffective
regions of the canonical approach for Nsin in the PNJL model.
The black solid and dashed lines represent the first-order phase
transition and crossover lines, respectively. The points of making
a 10% difference between the exact nB and the results from
the canonical approach are plotted. We plot the symbols on the
crossover line when the difference is less than 10% in the
confinement phase.

TABLE II. The coefficients fk from the data of nqI=T3 for each
temperature in the NJL model.

T ½MeV� f1 f2 f3 f4

79 2.7 × 10−1 2.3 × 10−3 2.9 × 10−5 4.2 × 10−7

49 3.7 × 10−2 1.8 × 10−5 1.3 × 10−8 1.1 × 10−11

29 6.5 × 10−4 1.9 × 10−9 7.9 × 10−15 3.9 × 10−20

FIG. 8. The Nmax dependence of the number density in the NJL
model. The solid line is the exact number density calculated at the
real chemical potential. The other symbols are the number
densities obtained from the canonical approach for several Nmax.
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Figure 8 shows the Nmax dependence of the baryon
number density at T ¼ 49 ½MeV� in the NJL model. The
solid line is the exact number density calculated at the real
chemical potential. We find that the behavior of the number
density converges for Nmax ¼ 120 and larger, which is the

same as the result of the PNJL model. In the following
discussion for the NJL model, we use Nmax ¼ 400.
In Fig. 9, we show the Nsin adependence of the number

density at T ¼ 29, 49, and 79 [MeV] in the NJL model. The
solid lines are the exact number densities nexactB calculated
at the real chemical potential. The symbols represent the
number densities obtained from the canonical approach,
ncanonicalB . As Nsin increases, the difference between nexactB
and ncanonicalB becomes small.
In Fig. 10, we show the Nsin dependence of the ratio of

ncanonicalB to nexactB in the NJL model. For Nsin ¼ 4 at T ¼ 29,
49, and 79 [MeV], we can reconstruct the exact baryon
number density from the canonical approach up to the
densities of 99%, 97%, and 96% of the phase transition or
crossover density within 10% accuracy, respectively.
In Fig. 11, we plot the symbols on the high-density limits

of the effective region of the canonical approach for each
Nsin and temperature in the NJL model. We find that the
effective region of the canonical approach for Nsin ¼ 4 can
cover in most of the confinement phase. For T ≲ 49 ∼
TCEP ½MeV� and μB ≲ 900 ½MeV�, Nsin ¼ 1 or 2 is enough
to reconstruct the exact number density from the canonical
approach. The results have universality for at least the NJL
and PNJL models.

IV. SUMMARY

We have investigated the effective region in the phase
diagram where the canonical approach in the NJL and

FIG. 9. The Nsin dependence of nB=T3 in the NJL model. The solid lines are the exact number densities calculated at the real chemical
potential.

FIG. 10. The Nsin dependence of ncanonicalB =nexactB in the NJL model. ncanonicalB is the number density obtained from the canonical
approach and nexactB is the exact number density calculated at the real chemical potential.

FIG. 11. The boundaries between the effective and ineffective
regions of the canonical approach for Nsin in the NJL model. The
black solid and dashed lines represent the first-order phase
transition and crossover lines, respectively. The points of making
a 10% difference between the exact nB and the results from the
canonical approach are plotted.
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PNJLmodels works. We have calculated the 161 data of the
imaginary number densities as functions of the pure imagi-
nary chemical potential. By using the integration method of
a Fourier series with finite Nsin for the imaginary number
densities and performing Fourier transforms with the multi-
ple-precision arithmetic, we have reconstructed the grand
canonical partition function, which is written as a fugacity
expansion with finite Nmax. After that, we have calculated
the number densities at the real chemical potential from the
grand canonical partition function. Because the number
densities are already known in the NJL and PNJL models,
we can clarify the region where the canonical approach
works well by comparing the number densities obtained
from the canonical approach with the exact ones.
We have shown the Nmax and Nsin dependences of the

number densities obtained from the canonical approach in
each model. In the investigation of the Nmax dependence,
we have found that the finite Nmax effect for the number
density is suppressed for the maximum value of the
fluctuation of the net quark number density in the system,
Nmax=V, larger than 0.56 ½fm−3�.
For the Nsin dependence, we have found that the results

forNsin up to 4 can reconstruct the number density from the
canonical approach up to the densities of 96% of the phase
transition or crossover density within 10% accuracy.
Moreover, Nsin ¼ 1 or 2 is enough to reconstruct the exact
number density within 10% accuracy for T < TCEP and

μB < 900 ½MeV�. The results have universality for at least
the NJL and PNJL models. They suggest that the appli-
cation of the canonical approach to the lattice QCD is
useful, especially in the confinement phase.
In this paper, we have discussed the effective region of

the canonical approach for the number density in the NJL
and PNJL models. It remains to be investigated for other
physical quantities and other models.
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