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We derive the chiral effective Lagrangian for heavy-light mesons in the heavy quark limit from QCD
under proper approximations. The low energy constants in the effective Lagrangian are expressed in terms
of the light quark self-energy. With typical forms of the running coupling constant of QCD and the quark
self-energy obtained from Dyson-Schwinger equations as well as lattice QCD, we estimate the low energy
constants in the model and the strong decay widths. A comparison with data and some discussions of the
numerical results are presented.
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I. INTRODUCTION

It is widely accepted that the dynamics of strong
interaction at a large distance can be well captured by
effective theories which are controlled by certain sym-
metries and symmetry breaking, for example chiral sym-
metry breaking, of the fundamental theory of strong
interaction—QCD (see, e.g., Ref. [1]). Little progress
has been made to establish a direct relation between
QCD and an effective theory in an analytic way although
such a relation is very significant since, to our opinion,
almost all the puzzles and problems in hadron dynamics in
both matter free space and in-medium can be attributed to
our poor understanding of the nonperturbative QCD.
In Ref. [2], the authors derived a relation between QCD

and chiral perturbation theory (ChPT) including the
Nambu-Goldstone bosons, pions, only [3–5]. The deriva-
tion is based on the standard generating functional of QCD
with external bilinear light-quark field sources in the path
integral formalism so that, the coefficients in the chiral
Lagrangian can be derived from QCD Green functions.
Thanks to the developments of Dyson-Schwinger equation
(DSE) and lattice QCD methods, although an exact

calculation of the nonperturbative QCD Green functions
is not feasible so far, this derivation provides a possibility to
numerically calculate the low energy constants (LECs) of
ChPT from QCD—the fundamental theory of strong
interaction [6–10]. The extension of this approach to
include other light mesons are also investigated in the
literature [11–13].
The purpose of this work is to establish a relation

between fundamental QCD and chiral effective theory
for heavy-light mesons [14] in the widely accepted heavy
quark limit, although the extension to include the 1=M
correction—with M being the heavy quark mass—is
straightforward. Since in the heavy-light meson, there is
a heavy quark and a light quark, its dynamics is controlled
by both the heavy quark symmetry [15] and chiral
symmetry (see Ref. [16] for a systematic discussion).
This system is a good environment for studying the
mechanism of chiral symmetry breaking since it contains
only one light quark.
In addition to the lowest-lying heavy quark doublet H

with quantum numbers JP ¼ ð0−; 1−Þ, we introduce the
first orbital excitation states, the heavy quark G doublet
with quantum numbers JP ¼ ð0þ; 1þÞ (both H and G
doublets will be specified latter) to our system. Since in
these H and G doublets, the light quark clouds have
quantum numbers jP ¼ ð1=2Þþ and jP ¼ ð1=2Þ−, respec-
tively, they are regarded as chiral partners to each other, and
their mass splitting arises from the chiral symmetry break-
ing due to the quark condensation in the chiral doublet
model [17,18]. We explore the quark condensate depend-
ence of the mass splitting between the H and G doublets in
the present approach from fundamental QCD.
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We express the LECs in the effective theory, for example
the heavy-light meson mass, the coupling constant between
the heavy-light meson and pion, in terms of the light quark
self-energy (with the heavy quark mass rotated away),
therefore the LECs become calculable from fundamental
QCD. By using the light-quark self-energy calculated from
truncated DSE and lattice QCD, we calculate these LECs as
functions of quark condensate. Both the mass spectrum
of the heavy-light mesons and the one-pion transition
obtained in our calculation are comparable to the empirical
values. In addition, we find that, with the decreasing of the
quark condensate, the masses of both theH and G doublets
decrease. Although this observation agrees with Ref. [19]
with a specific choice of the parameters in the model, it
disagrees with what was found in Ref. [20] that although
the G doublet mass decreases with the decreasing of the
quark condensate, the H doublet mass increases. So far, we
cannot give a clear comment on this discrepancy between
effective model calculation and the present QCD approach.
What is interesting in the present calculation is that the
mass splitting between H and G doublets decreases with
the decreasing of the quark condensate. This tells us that the
mass splitting between chiral partners arises from the quark
condensate, at least partially if not all. A more possibly
interesting point can be drawn from the present work is
that, once the quark condensate is influenced by the
environment such as the medium density and temperature,
the LECs in the effective Lagrangian are also affected. In
the literature, such modification is referred to as intrinsic
density dependence in the dense system as opposite to the
density dependence induced by nuclear correlations (see,
e.g., Ref. [21] for a recent comprehensive discussion).
This paper is organized as follows. In Sec. II, to set up

the framework, we write down the chiral effective theory of
the heavy-light mesons that will be derived in the present
work. In Sec. III we derive the heavy-light meson
Lagrangian from QCD and express the low energy con-
stants in the effective theory in terms of the light quark self-
energy. The numerical results calculated by using the quark
self-energy obtained from a typical DSE and lattice QCD
are given in Sec. IV. Section V is devoted to our discussion
and perspective. We present some details of the derivation
in Appendix A and the expressions of the LECs with the
contribution from the renormalization factor of quark wave
function in Appendix B.

II. CHIRAL EFFECTIVE THEORY OF
HEAVY-LIGHT MESONS

To set up our framework, we write down the chiral
effective theory of heavy-light mesons that will be studied
in this work. We introduce the charmed heavy-light meson
doublets H and G with quantum numbers JP ¼ ð0−; 1−Þ
and JP ¼ ð0þ; 1þÞ, respectively. In terms of the physical
states and the notation of PDG [22], they are expressed as

H ¼ 1þ =v
2

ðD�;μγμ þ iDγ5Þ;

G ¼ 1þ =v
2

ðD0;μ
1 γμγ5 þD�

0Þ: ð1Þ

In the following, without specification, we will focus on
two light flavors although the extension to three flavors is
straightforward.
Under chiral transformation, the H doublet transforms

under the unbroken SUð2ÞV subgroup of chiral symmetry
as an antidoublet

Ha → HbV
†
ba; ð2Þ

with a and b being the light flavor indices. The same
transformation holds for the G doublet.
Then the simplest effective Lagrangian describing the

interaction between pion and the heavy-light mesons can be
written as [16,23]

L ¼ LH þ LG þ LHG; ð3Þ

where

LH ¼ −iTrðH̄v ·DHÞ − gHTrðHγμγ5AμH̄Þ
þmHTrðH̄HÞ;

LG ¼ −iTrðḠv ·DGÞ þ gGTrðGγμγ5AμḠÞ
þmGTrðḠGÞ;

LHG ¼ gHGTrðHγμγ5AμḠÞ þ H:c:; ð4Þ

where we have decomposed the chiral field UðxÞ ¼
expðiπðxÞ=fπÞ as U ¼ Ω2 and Aμ ¼ i

2
ðΩ†∂μΩ −Ω∂μΩ†Þ

and Dμ ¼ ∂μ − iΓμ with Γμ ¼ i
2
ðΩ†∂μΩþ Ω∂μΩ†Þ.

From PDG [22], one can obtain the spin-averaged
masses of H and G doublets as

mH ≃ 1970 MeV; mG ≃ 2400 MeV; ð5Þ

which yields the mass splitting

Δm ¼ mG −mH ¼ 430 MeV: ð6Þ

It is believed that the value of the mass splitting between
chiral partners arises from the chiral symmetry breaking.
In the chiral doublet structure, the mass splitting Δm is

attributed to the chiral symmetry breaking, i.e., the vacuum
expectation value of the sigma field in the linear sigma
model [17,18]. Therefore, the magnitude of this mass
splitting measures the magnitude of the chiral symmetry
breaking, i.e., the larger Δm, the stronger chiral symmetry
breaking.
The Lagrangian (3) is written down with respect to

the chiral symmetry and heavy quark symmetry of QCD.
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Only the terms with the minimal number of derivatives
are included. The parameters gH; gG; gHG;mH, and mG
are free ones at the level of effective theory since they
cannot be controlled by symmetry argument which the
effective theory relies on. We next evaluate these LECs
from fundamental QCD.

III. CHIRAL EFFECTIVE LAGRANGIAN OF
HEAVY-LIGHT MESONS FROM QCD

We derive the heavy-light meson effective theory (3)
from the generating functional of QCD (with an external
source JðxÞ introduced for the composite light quark fields)

Z½J� ¼
Z

DqDq̄DQDQ̄DGμΔFðGμÞ

× exp
�
i
Z

d4x½LQCDðq; q̄; Q; Q̄; GμÞ þ q̄Jq�
�
;

ð7Þ

where qðxÞ, QðxÞ and GμðxÞ are the light-, heavy-quark
fields and gluon fields, respectively. By integrating in the
chiral field UðxÞ and the heavy-light meson fields, and
integrating out gluon fields and quark fields, we obtain the
effective action for the chiral effective theory as

S½U;Π2; Π̄2� ¼ −iNcTr0 ln fði=∂ − Σ̄ÞI1 þ J0Ω
þ ði=∂ þM=v −MÞI4−Π2 − Π̄2g; ð8Þ

where Π2 and Π̄2 are the heavy-light meson field and its
conjugate, respectively. Σ̄ is the self-energy of the light
quark propagator. I1 ¼ diagð1; 1; 0Þ and I4 ¼ diagð0; 0; 1Þ
are matrices in the flavor space. JΩ is the chiral rotated
external source and J0Ω is its extension to the whole flavor
space (including the heavy flavor). Tr0 represents a func-
tional trace over the flavor space, spinor space, and
coordinate space. To obtain the effective action, we have
taken advantage of both the chiral symmetry and heavy
quark symmetry, and made a few approximations. The
details of the derivation are given in Appendix A.
The dynamical content of action (8) could be under-

stood easily once we rewrite eiS with fermionic fields
reintroduced:

eiS ∼
Z

DqDq̄DQDQ̄ exp

�
i
Z

d4x

�
q̄ði=∂ − Σ̄þ JΩÞq

þ Q̄ði=∂ þM=v −MÞQ − Q̄Πq − q̄ Π̄Q

��
: ð9Þ

From this expression one can easily conclude that the
action (8) is just the summation of quark loops with all
possible insertions of JΩ and heavy-light meson fields Π,
Π̄. In addition, one can see that the contribution of gluon
fields are included in the self-energy Σ̄.
We are only interested in the ð0−; 1−Þ and ð0þ; 1þÞ

states, so that the two nonzero elements in Π2 take the form

Π2ðxÞ ¼ HqðxÞ þ GqðxÞ; ð10Þ

where q ¼ 1, 2 denotes light flavor indices and H and G
fields are given by Eq. (1).
Expanding the action S (8) with respect to U, Π2 and Π̄2

generates the chiral effective Lagrangian. Since the U field
is attached to the rotated external source, we actually take
derivatives on the action S with respect to JΩ. So that we
can formally write

S ¼ S0 þ S1 þ S2 þ S3 þ � � � ; ð11Þ

where the subscripts 0; 1; 2; 3;… denote the order in the
expansion in terms of JΩ,Π2 and Π̄2. In the expansion (11),
the S0 term, a constant of the action S, has no physical
significance and, the first order term S1 vanishes due to the
saddle point equation. Therefore, the leading order con-
tribution comes from S2. Due to the symmetry arguments,
only the following terms survive:

S2 ¼
1

2!

δ2S
δJΩδJΩ

JΩJΩ þ δ2S
δΠ̄2δΠ2

Π2Π̄2: ð12Þ

The first term generates the nonlinear sigma model of the
Nambu-Goldstone bosons which has been extensively
discussed in Ref. [2]. We will not go to the details here.
The second term of S2 generates the model of the heavy-
light mesons which is interested in the present work.
We denote the second term in S2 as S22, then for the

fields H and H̄, we have

S22 ¼ iNc½ðði=∂ − Σ̄ÞI1 þ ði=∂ þM=v −MÞI4Þ−1�b2a1ξ2η1
ðx2; x1ÞH̄a1b1

η1ξ1
ðx1Þ

× ½ðði=∂ − Σ̄ÞI1 þ ði=∂ þM=v −MÞI4Þ−1�b1a2ξ1η2
ðx1; x2ÞHa2b2

η2ξ2
ðx2Þ;

¼ iNc

Z
d4x1d4x2trlf½ði=∂ − Σ̄Þ−1δðx2 − x1ÞH̄ðx1Þðiv · ∂Þ−1δðx1 − x2ÞHðx2Þ�; ð13Þ

where we have used the identity H̄i=∂H ¼ H̄iv · ∂H and =vH ¼ H. Equation (13) is expressed diagrammatically in Fig. 1
(left panel), which is simply the heavy-light quark loop with one H and one H̄ inserted properly. The mass and the kinetic
terms of the heavy-light meson are dynamically generated by this quark loop. In order to keep the invariance of the vector
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part of the chiral transformation, we follow Ref. [6] and take the form of the self-energy of the light quark as
Σ̄ðx − yÞ ¼ Σð∇2Þδðx − yÞ, where Σ is the self-energy function in the momentum space and ∇≡ ∂ − iVΩ is the covariant
derivative. This form retains the correct chiral transformation properties in the theory. By taking the derivative expansion,
we obtain (up to the first order)

S22 ¼ iNc

Z
d4x

Z
d4p
ð2πÞ4

�
−

1

p2 − Σ2
þ Σ
ðp2 − Σ2Þv · p

�
Tr½H̄ðxÞHðxÞ�

þ iNc

Z
d4x

Z
d4p
ð2πÞ4

�
−

1

ðp2 − Σ2Þv · p −
2Σ

ðp2 − Σ2Þ2 −
2Σ0ðp2 þ Σ2Þ
ðp2 − Σ2Þ2

�
Tr½HðxÞiv · ∂H̄ðxÞ�

þ iNc

Z
d4x

Z
d4p
ð2πÞ4

�
−
2Σ0ðp2 þ Σ2Þ
ðp2 − Σ2Þ2

�
Tr½HðxÞv · VΩH̄ðxÞ�; ð14Þ

where we have used the relation H=v ¼ −H. From Eq. (14) one can easily see that S22 includes the mass term, the kinetic
term and a part of the interaction term of the H fields.
We next consider the part of the S3 which generates the interaction between the heavy-light meson field H and the light

Goldstone boson field up to the leading order of the chiral counting. This can be obtained as

S3 ¼
δ3S

δJΩδH̄δH
JΩHH̄;

¼ −iNc

Z
d4x1d4x2d4x3Tr½ði=∂ − ΣÞ−1δðx2 − x3ÞJðx3Þði=∂ − ΣÞ−1δðx3 − x1ÞH̄ðx1Þðiv · ∂Þ−1δðx1 − x2ÞHðx2Þ�: ð15Þ

Recalling that SΩ and PΩ are ofOðp2Þwhile Aμ
Ω and Vμ

Ω are ofOðpÞ in the chiral counting, we neglect the SΩ and PΩ terms.
The diagram representation of Eq. (15) is shown in Fig. 1 (right panel). Taking the derivative expansion, we obtain

S3 ¼ −iNc

Z
d4x

Z
d4p
ð2πÞ4

�
Σ2 þ 1

3
p2

ðp2 − Σ2Þv · p −
2Σ

ðp2 − Σ2Þ2
�
Tr½HðxÞγμγ5Aμ

ΩðxÞH̄ðxÞ�

− iNc

Z
d4x

Z
d4p
ð2πÞ4

�
1

ðp2 − Σ2Þv · pþ 2Σ
ðp2 − Σ2Þ2

�
Tr½HðxÞvμVμ

ΩðxÞH̄ðxÞ�: ð16Þ

Summing up Eqs. (14) and (16), one can obtain the
expressions of the constants mH and gH as mH ¼ iNc

ZH

Z
d4p
ð2πÞ4

�
1

p2 − Σ2
−

Σ
ðp2 − Σ2Þv · p

�
;

gH ¼ −
iNc

ZH

Z
d4p
ð2πÞ4

�
Σ2 þ 1

3
p2

ðp2 − Σ2Þ2v · p −
2Σ

ðp2 − Σ2Þ2
�
;

ð17Þ

with ZH being the wave function renormalization factor

ZH ¼ iNc

Z
d4p
ð2πÞ4

�
−

1

ðp2 − Σ2Þv · p

−
2Σ

ðp2 − Σ2Þ2 −
2Σ0ðp2 þ Σ2Þ
ðp2 − Σ2Þ2

�
:

It is interesting to note that the summation of the S22 and S3
terms yields the same coefficients for the Tr½HðxÞiv ·
∂H̄ðxÞ� term and Tr½HðxÞv · VΩH̄ðxÞ� term. This means
that the vector part of the chiral symmetry is reserved in our
approach, in agreement with the pattern of the chiral
symmetry breaking in QCD.

FIG. 1. Left panel: diagrammatic expression for Eq. (13), i.e.,
one heavy-light quark loop with one H and one H̄ insertions;
Right panel: diagrammatic expression for Eq. (15), i.e., one
heavy-light quark loop with one H, one H̄ and one JΩ insertions.
The solid arrow line represents the full light-quark propagator.
The dashed arrow line represents the heavy-quark propagator (in
the heavy quark limit). The doubled line attached with a cross
represents the H=H̄ insertion. The zigzag line attached with a
cross represents the JΩ insertion.
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By using the same argument, we obtain the LECs of the
heavy-light mesons in the positive parity sector. The
expressions are

mG ¼ iNc

ZG

Z
d4p
ð2πÞ4

�
1

p2 − Σ2
þ Σ
ðp2 − Σ2Þv · p

�
;

gG ¼ −
iNc

ZG

Z
d4p
ð2πÞ4

�
Σ2 þ 1

3
p2

ðp2 − Σ2Þ2v · pþ 2Σ
ðp2 − Σ2Þ2

�
;

ð18Þ

with ZG being the renormalization factor of the G field

ZG ¼ iNc

Z
d4p
ð2πÞ4

�
−

1

ðp2 − Σ2Þv · p

þ 2Σ
ðp2 − Σ2Þ2 þ

2Σ0ðp2 þ Σ2Þ
ðp2 − Σ2Þ2

�
:

And, we obtain the coupling constant between the parity
partner fields H and G as

gHG ¼ −i
Ncffiffiffiffiffiffiffiffiffiffiffiffi
ZHZG

p
Z

d4p
ð2πÞ4

�
Σ2 þ p2

ðp2 − Σ2Þ2v · p
�
: ð19Þ

In above expressions, Σð−p2Þ stands for self-energy of
light quarks to be calculated from QCD. This is an
improvement compared to Ref. [17]. In addition, our
procedure of deriving the chiral Lagrangian allows a
systematic improvement in the calculation.
The LECs discussed so far only receive contributions

from one loop diagrams, because we have been using a
simplified effective action S (8). The contributions to these
LECs from the other effects are too complicated to be
quantitatively analyzed, so we only make some qualitative
discussions here: In deriving S (8), we took three approx-
imations, namely, the chiral limit, the heavy quark limit and
the large Nc limit. So, our results suffer from corrections of
Oðmu=dÞ, of Oð1=mQÞ and of Oð1=NcÞ order. In addition,
the non-“Tr ln” terms existing in the full large Nc action
[see Eq. (A25)] have been omitted in action S (8) in the
sense of dynamical pertubation which has been found
workable for the calculation of the pion decay constant

[24]. The dynamical content of these non-Tr ln terms is
relatively simple for the H̄H term (but not for all the terms)
in the effective Lagrangian, because only the ḠðΦcÞ term in
Eq. (A25) contributes. One can easily see that the ḠðΦcÞ
term is actually the summation of the vacuum diagrams
which are composed of one connected full gluon Green’s
function (pure Yang-Mills) and a number of quark loops
with quark propagating on the background of meson fields
[ΠðxÞ and UðxÞ]. This term gives rise to the contribution
from higher-loop diagrams. For illustration, we show a few
of those diagrams contributing to the H̄H term in the
effective Lagrangian in Fig. 2.1 We shall not calculate these
contributions in the present work, but stick to the leading
order contributions given by action S (8).

IV. NUMERICAL RESULTS

We have obtained the chiral effective Lagrangian for the
heavy-light mesons and the integral forms of the LECs in
terms of the dynamical quark mass Σð−p2Þ. To have a
quantitative idea, we make some numerical calculations in
this section. For this purpose, we should know the light
quark self-energy Σð−p2Þ, of which only the information
from DSEs and lattice QCD is available at this moment.
First, we consider the information from the DSE method.

Here, we take the following differential form of DSE for the
quark self-energy [6]2

�
αsðxÞ
x

�0
ΣðxÞ00 −

�
αsðxÞ
x

�00
ΣðxÞ0

−
3C2ðRÞ
4π

xΣðxÞ
xþ Σ2ðxÞ

�
αsðxÞ
x

�02
¼ 0; ð20Þ

with boundary conditions

FIG. 2. Examples of higher loop diagrams contributing to H̄H term in the effective Lagrangian. The gluon propagators are the
(quenched) full ones. The shaded ovals with gluon legs represent (quenched) full connected gluon Green functions.

1The ḠðΦcÞ term given in Eq. (A25) only contains ð1=NcÞ0
order contributions due to its definition. Higher order Oð1=NcÞ
contributions of this term should arise when we go beyond
the large Nc limit. So the diagrams given in Fig. 2 give rise
to higher loop corrections as well as 1=Nc corrections.

2There might be a tiny difference of the numerical values given
below if we take other forms. But it does not affect the main
conclusion of this work.
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Σ0ð0Þ ¼ −
3C2ðRÞαsð0Þ

8πΣð0Þ ;

ΣðΛ0Þ ¼ 3C2ðRÞαsðΛ0Þ
4πΛ0

Z
Λ0

0

dx
xΣðxÞ

xþ Σ2ðxÞ ; ð21Þ

where αs is the running coupling constant of QCD. Λ0 is an
ultraviolet cutoff regularizing the integral, which should be
taken Λ0 → ∞ eventually.
Since the low energy behavior of the QCD running

coupling constant is unclear to us, as a comparison, we
take two models for αs. One is a segmented form of the
coupling constant [6], which has a finite infrared limit
(Model A):

αsðp2Þ ¼ 12π

33 − 2Nf

×

8>>>>><
>>>>>:

a ln p2

Λ2
QCD

≤ b

a − c
	
2þ ln p2

Λ2
QCD



2

b ≤ ln p2

Λ2
QCD

≤ d

1
lnðp2=Λ2

QCDÞ
d ≤ ln p2

Λ2
QCD

;

where Nf ¼ 2 and ΛQCD ¼ 0.25 GeV; a, b and d are
parameters of the model, and c is an independent parameter
keeping the strong coupling constant continuous at the
boundary via the relation c ¼ ða − 1=dÞ=ð2þ dÞ2. We
have found that the values of d ¼ 4 and b ¼ 3 give
reasonable sets of results, so we fix them and focus on
the variation of the results on the parameter a alone.
The other form of the strong coupling constant is taken

from the refined Gribov-Zwanziger formalism [25], which
has a vanishing infrared limit (Model B):

αsðp2Þ ¼ α0p2
p2 þM2

p4 þ ðM2 þm2Þp2 þ λ4
; ð22Þ

where M2 ¼ 4.303 GeV2; ðM2 þm2Þ ¼ 0.526 GeV2 and
λ4 ¼ 0.4929 GeV4; α0 is the parameter of the model. It
should be noted that, different from Model A, αs in this
model does not respect the UV behavior of QCD. However,
since the LECs are mostly controlled by the low energy
behavior of QCD, this should not be a problem. Model A
and B are sketched in Fig. 3.
By solving the DSE, and choosing the parameters, we

obtain Σð−p2Þ for both models. Then LECs are calculated
according to Eqs. (17)–(19). It is clear that the integrals of

0 1 2 3 4 5 6 7 8 9 10

p2 [Gev2]

0

0.5

1

1.5

s(p
2
)

Model A
Model B

FIG. 3. Running coupling constant of model A with a ¼ 0.79
and of model B with a0 ¼ 0.58.

TABLE I. The heavy-light meson masses and the coupling constants calculated from Model A. Δm ¼ mG −mH .
(b ¼ 3, d ¼ 4, ΛQCD ¼ 0.25 GeV).

a −hψ̄ψi (GeV3) Σð0Þ (GeV) fπ (GeV) gG gH gHG mG (GeV) mH (GeV) Δm (GeV)

0.81 ð0.290Þ3 0.380 0.095 1.269 0.272 0.667 1.064 0.577 0.486
0.80 ð0.285Þ3 0.357 0.092 1.194 0.249 0.694 1.015 0.564 0.451
0.79 ð0.280Þ3 0.340 0.089 1.140 0.231 0.713 0.979 0.555 0.424
0.78 ð0.276Þ3 0.323 0.086 1.089 0.214 0.730 0.947 0.546 0.400
0.77 ð0.270Þ3 0.304 0.083 1.031 0.193 0.750 0.910 0.536 0.373

TABLE II. The heavy-light meson masses and the coupling constants calculated from Model B. Δm ¼ mG −mH .
(M2 ¼ 4.303 GeV2, M2 þm2 ¼ 0.526 GeV2, λ4 ¼ 0.4929 GeV2).

a0 −hψ̄ψi (GeV3) Σð0Þ (GeV) fπ (GeV) gG gH gHG mG (GeV) mH (GeV) Δm (GeV)

0.60 ð0.319Þ3 0.484 0.113 1.636 0.459 0.321 1.259 0.705 0.554
0.59 ð0.316Þ3 0.450 0.111 1.526 0.434 0.378 1.177 0.684 0.494
0.58 ð0.313Þ3 0.418 0.109 1.425 0.408 0.432 1.103 0.663 0.440
0.57 ð0.309Þ3 0.386 0.106 1.330 0.381 0.482 1.035 0.643 0.392
0.56 ð0.304Þ3 0.354 0.103 1.240 0.353 0.530 0.972 0.623 0.349
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the LECs have a physical ultraviolet cutoff Λc which
should be of the order of the chiral symmetry breaking
scale. We have found that Λc ¼ 0.9 GeV gives the best
global-fitting results for the LECs. The results of LECs as
well as the quark condensate hq̄qi calculated with different
parameters are shown in Tables I and II. As expected, we
find that the mass splitting between the chiral partners
increases as the quark condensate increases. Our results
directly show how the dynamics of the fundamental theory
affects the LECs of the effective theory.
For the mass splitting, we find that both Model A (with

parameter a ¼ 0.79) and Model B (with parameter
a0 ¼ 0.58) can give the results which agree with empirical
data (6). To compare the masses of H and G doublets
calculated here with experimental data of D mesons, the
charm quark mass which has been rotated away should
restored. By using mc ≈ 1.27 GeV [22] we obtain m̃H ≈
1.825 GeV and m̃G ≈ 2.249 GeV when using the data with
parameter a ¼ 0.79 in Table I or m̃H ≈ 1.933 GeV and
m̃G ≈ 2.373 GeV when using the data with parameter a ¼
0.58 in Table II. These results are consistent with exper-
imental data of spin-averaged masses of the charmed D
mesons (5). For the coupling constants, we find Model B
with parameter a0 ¼ 0.58 is more favorable. In this case,
the coupling gH ¼ 0.408, which directly determines the
width of the D� → Dπ decay. By using the expression

ΓðD�þ → DπÞ ¼ 3

2

g2HjPπj3
12πf2π

ð23Þ

with Pπ being the three momentum of the decay products,
we obtain the decay width ΓðD�þ → DπÞ ¼ 48 KeV
which is roughly comparable to the experimental result
83.4� 1.8 KeV [22].
In addition to the above intramultiplet transition, one can

also calculate the intermultiplet transitions. The coupling
constant responsible for these transitions is calculated as
gHG ¼ 0.432. From this value, the intermultiplet one-pion
transition D�0þ

0 → Dπ is obtained as

ΓðD�0
0 → DπÞ ¼ 3

2

g2HG

4πf2π

mD

mD�
0

jPπj3 ¼ 183 MeV; ð24Þ

which is at the same order as the experimental value 274�
40 MeV [22].
Next, we consider the information from lattice QCD. In

Ref. [26], the authors fitted the lattice results (correspond-
ing to Mπ ¼ 295 MeV) for the quark wave function
renormalization Zð−p2Þ and the running quark mass
Mð−p2Þ. These functions are plotted in Fig. 4. We shall
use these fitted functions to calculate the LECs. The LECs
including the contributions from Zð−p2Þ are given in
Appendix B. Zð−p2Þ gives additional correction to the
LECs, but, it also introduces additional uncertainties due to
its dependence on the renormalization point (the running
quark mass Mð−q2Þ is renormalization independent and
has no such uncertainties). As a comparison, we calculate
LECs in two manners—one using the fitted Zð−p2Þ and the
other using Zð−p2Þ ¼ 1—in this lattice based analysis. The
results are shown in Table III.
From Table III we find that the wave function renorm-

alization affects the positive parity states more significantly.
In turn, it affects the mass splitting Δm. The Δm’s given
here deviate from the empirical value by about 140 MeV.
However, recalling that the mass splitting of 0−–1− and that
of 0þ–1þ are both≳100 MeV, these results are not strange.
The real masses (i.e., with mc added up) are m̃H ≈
1.853 GeV and m̃G ≈ 2.153 GeV for the “fitted Zð−p2Þ”
case and m̃H ≈ 1.807 GeV and m̃G ≈ 2.395 GeV for the
“Zð−p2Þ ¼ 1” case. For the coupling constants, the results
with lattice fittings are closer to those of model A than those
of model B in the DSE based analysis.
In general, the lattice-based results are not so good as

the best-fitted DSE results. But one should notice that
lattice data themselves are still suffering from some
uncertainties. For instance, the lattice fitted Zð−p2Þ and
Mð−p2Þ used here correspond to an overestimated pion
mass mπ ¼ 295 MeV. So that the difference is acceptable.
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1.2

Z
(-

p2
)

Model A M(-p2)
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Lattice QCD M(-p2)
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FIG. 4. The lattice fittings of Zð−p2Þ and Mð−p2Þ given in
Ref. [26] and Σð−p2Þ (¼ Mð−p2Þ) from DSE with Model A and
Model B.

TABLE III. LECs calculated from lattice fittings given in Ref. [26].

fπ (GeV) gG gH gHG mG (GeV) mH (GeV) Δm (GeV)

fitted Zð−p2Þ 0.089 0.919 0.176 0.706 0.883 0.583 0.299
Zð−p2Þ ¼ 1 0.089 1.267 0.215 0.757 1.125 0.537 0.588
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V. DISCUSSION AND PERSPECTIVE

In this paper, we derive the chiral effective Lagrangian of
heavy-light mesons from QCD. The relationship between
the LECs and the quark self-energy is obtained. Using the
quark self-energy calculated from DSEs as well as fitted
from lattice QCD, we calculated the values of the LECs in
the Lagrangian. With properly chosen parameters, the
numerical results are roughly consistent with the exper-
imental data.
The deviations between our numerical results and the

available empirical data can be understood as follows: First,
as the leading order calculation in heavy quark expansion
and large Nc expansion, the results suffer from high order
corrections from both 1=Nc terms and 1=M terms as we
mentioned before. Second, the non-Tr ln term in the action
has been omitted in our calculation for simplicity. However
these terms generate contributions with complicated forms
which in general cannot be described by the self-
energy alone.
The scheme developed here for deriving the chiral

effective Lagrangian of heavy-light mesons and calculating
the LECs from QCD can be straightforwardly extended to
include the 1=M corrections, higher order derivatives as
well as excited heavy-light mesons. This is beyond the
scope of the present work and will be reported elsewhere.
In addition, it might be possible to extend the present work
to the exotic heavy hadrons such as the tetraquark states.
Such kind of study is in progress.

The last but not the least point wewant to mention is that,
the results shown here illustrate the quark condensate
dependence of the LECs in the effective theory. When
the change of the quark condensate due to the environment
is known, one can easily translate our results to the change
of the LECs therefore obtain the intrinsic environment,
such as the density, dependence of the effective theory.
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APPENDIX A: DERIVATION OF THE ACTION

In this Appendix, we derive Eq. (8) from Eq. (7) in detail.
Essentially, the procedure is summarized as integrating in
the (pseudo-)Nambu-Goldstone boson fields, the heavy-
light meson fields and integrating out the quark fields.

1. Integrate in the (pseudo-)Nambu-Goldstone
boson fields

First, we focus on the (pseudo-)Nambu-Goldstone boson
part in the effective Lagrangian. In the chiral limit con-
sidered in this work the QCD generating functional Eq. (7)
can be written as

Z½J� ¼
Z

DqDq̄DQDQ̄ exp

�
i
Z

d4x½q̄ði=∂ þ JÞqþ Q̄ði=∂ −MÞQ�
�

×
Z

DGμΔFðGμÞ exp
�
i
Z

d4x

�
−
1

4
Gi

μνG
μν
i −

1

2ξ
½FiðGμÞ�2 − gIμ

i G
i
μ

��
; ðA1Þ

whereM is the mass matrix for the heavy quark fields. Here
and in the following, we use i; j; � � � to represent color
indices in the adjoint representation, and Iμ

i ¼ q̄ λi
2
γμqþ

Q̄ λi
2
γμQ to denote the quark composite operator. The

external source JðxÞ can be generally decomposed into
scalar, pseudoscalar, vector, and axialvector parts

JðxÞ ¼ −sðxÞ þ ipðxÞγ5 þ =vðxÞ þ =aðxÞγ5; ðA2Þ

where sðxÞ, pðxÞ, vμðxÞ, and aμðxÞ are Hermitian matrices
in the flavor space, and the light quark masses have been
absorbed into the definition of sðxÞ. The vector and axial-
vector sources vμðxÞ and aμðxÞ are taken to be traceless. To
introduce the pseudoscalar meson field U ¼ Ω2 ¼ eiπðxÞ=fπ
into the theory, following Ref. [2], we sandwich the
following constant

I ¼
Z

DUδðU†U − 1ÞδðdetU − 1Þ

× F ½O�δðΩO†Ω − Ω†OΩ†Þ; ðA3Þ

into the QCD generating functional (A1). In Eq. (A3),
F ½O�≡ fQx detO

R
DσδðO†O − σ†σÞδðσ − σ†Þg−1, and

OðxÞ ¼ e−i½θðxÞ=Nf �trl½PRBTðx; xÞ�. B is the abbreviation
of the bilocal composite light quark fields: Bab

ηξ ðx; yÞ≡
1
Nc
q̄aηαðxÞqbξαðyÞ, where η; ξ; � � � represent spinor indices,

a; b; � � � denote flavor indices and α; β; � � � stand for color
indices in the fundamental representation.Nf is the number
of light flavors, and trl denotes tracing over the spinor

space. θðxÞ is defined as ei2θðxÞ ≡ det trl½PRBTðx;xÞ�
det trl½PLBT ðx;xÞ�. Inserting

Eq. (A3) into Eq. (A1) we get
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Z½J� ¼
Z

DqDq̄DQDQ̄DGμΔFðGμÞDUδðU†U − 1ÞδðdetU − 1ÞδðΩO†Ω − Ω†OΩ†Þ

× exp

�
i
Z

d4x

�
q̄ði=∂ þ JÞqþ Q̄ði=∂ −MÞQ −

1

4
Gi

μνG
μν
i −

1

2ξ
½FiðGμÞ�2 − gIμ

i G
i
μ

�
þ iΓI½B�

�
; ðA4Þ

where eiΓI ½B� ≡ F ½O�.
The exponential part in Eq. (A4) is invariant under the chiral rotation

q → qΩ ¼ ðΩPL þΩ†PRÞq;
q̄ → q̄Ω ¼ q̄ðΩPL þ Ω†PRÞ; ðA5Þ

if the external field JðxÞ undergoes the following transformation

JðxÞ → JΩðxÞ ¼ ½ΩðxÞPR þΩ†ðxÞPL�
× ½JðxÞ þ i=∂�½ΩðxÞPR þ Ω†ðxÞPL�:

In addition, one can find

ΩO†Ω −Ω†OΩ† ¼ O†
Ω −OΩ:

In this work, we concentrate on the normal part of the chiral Lagrangian of the heavy-light mesons and ignore the chiral
anomaly. In this case, the generating functional can be reexpressed in terms of rotated fields as:

Z½J� ¼
Z

DqΩDq̄ΩDQDQ̄DGμΔFðGμÞDŪδðO†
Ω −OΩÞ

× exp

�
i
Z

d4x

�
q̄Ωði=∂ þ JΩÞqΩ þ Q̄ði=∂ −MÞQ −

1

4
Gi

μνG
μν
i −

1

2ξ
½FiðGμÞ�2 − gIμ

iΩG
i
μ

�
þ iΓI½BΩ�

�
; ðA6Þ

where DŪ ¼ DUδðU†U − 1ÞδðdetU − 1Þ.
Now we integrate out the gluon fields, which generates pure Yang-Mills gluon Green’s functionsGi1���in

μ1���μnðx1;…; xnÞ in the
action. By Fierz reordering, we can further diagonalize the color indices of the quark fields, and get

Gi1���in
μ1���μnðx1;…; xnÞ

�
ψ̄a1
α1

�
λi1
2

�
α1β1

γμ1ψa1
β1
ðx1Þ

�
� � �

�
ψ̄an
αn

�
λin
2

�
αnβn

γμnψan
βn
ðxnÞ

�

¼
Z

d4x01 � � � d4x0ngn−2Ḡσ1���σn
ρ1���ρn ðx1; x01;…; xn; x0nÞ × ψ̄ σ1

α1ðx1Þψρ1
α1ðx01Þ � � � ψ̄σn

αnðxnÞψρn
αnðx0nÞ; ðA7Þ

where ψ stands for both the light and heavy quarks, i.e., ψ ¼ ðq;QÞ. Ḡσ1���σn
ρ1���ρn ðx1; x01;…; xn; x0nÞ is a generalized gluon

Green’s function. Then, the generating functional becomes

Z½J� ¼
Z

DqDq̄DQDQ̄DŪδðO† −OÞ exp
�
i
Z

d4x

�
q̄ði=∂ þ JΩÞqþ Q̄ði=∂ −MÞQ

�
þ iΓI½B�

þ
X∞
n¼2

Z
d4x1 � � � d4x0nd4x01 � � � d4x0n

ð−iÞnðNcg2Þn−1
n!

Ḡσ1���σn
ρ1���ρn ðx1; x01;…; xn; x0nÞψ̄σ1

α1ðx1Þψρ1
α1ðx01Þ � � � ψ̄σn

αnðxnÞψρn
αnðx0nÞ

�
:

ðA8Þ

2. Integrate in the heavy-light meson fields

Next, we introduce the heavy-light meson fields into the system by considering the heavy quark symmetry. Following the
standard heavy quark effective theory (HQET) (see, e.g., Ref. [16] for a pedagogical discussion), we introduce the velocity-
dependent heavy quark field by using the following substitution

CHIRAL EFFECTIVE LAGRANGIAN FOR HEAVY-LIGHT … PHYS. REV. D 102, 034034 (2020)

034034-9



Q0ðxÞ≡ eiMv·xQðxÞ; ðA9Þ

where vμ is related to the heavy quark momentum pμ

by pμ ¼ Mvμ þ kμ with kμ the residue momentum.
Introducing the projection operator ð1� =vÞ=2, one can
decompose the heavy quark field as

NvðxÞ ¼
1þ =v
2

eiMv·xQðxÞ;

N vðxÞ ¼
1 − =v
2

eiMv·xQðxÞ: ðA10Þ

The Nv field is the large component of the quark field
which survives in the heavy quark limit whereas the N v

field is the small component of the quark field which
disappears in the heavy quark limit. Applying Eq. (A9)
to Eq. (A8) amounts to the replacement Q̄ði=∂ −MÞQ →
Q̄0ði=∂ þM=v −MÞQ0.
To proceed, we introduce a bilocal auxiliary field Φab

ηξ by
sandwiching the following constant into Eq. (A8):

Z
DΦδðNcΦab

ηξ ðx; x0Þ − ψ̄ 0a
η ðxÞψ 0b

ξ ðx0ÞÞ; ðA11Þ

where ψ 0 ¼ ðq;NvÞ in the sense that only the contribution
fromNv—the large component of the heavy quark field—is
considered.3 The generating functional then becomes

Z½J� ¼
Z

DqDq̄DQ0DQ̄0DŪDΦδðO† −OÞδðNcΦðaηÞðbξÞðx; x0Þ − ψ̄ 0a
η ðxÞψ 0b

ξ ðx0ÞÞ

× exp i

�Z
d4x

�
q̄ði=∂ þ JΩÞqþ Q̄0ði=∂ þM=v −MÞQ0

�
þ iΓI½Φ� þ Nc

X∞
n¼2

Z
d4x1 � � � d4x0nd4x01 � � � d4x0n

×
ð−iÞnðNcg2Þn−1

n!
Ḡσ1���σn

ρ1���ρn ðx1; x01;…; xn; x0nÞ ×Φσ1ρ1ðx1; x01Þ � � �Φσnρnðxn; x0nÞ
�
; ðA12Þ

where we have replaced the bilocal quark fields with Φ in the spirit of the heavy quark limit.
The δ function can be further expressed in the Fourier representation

δðNcΦab
ηξ ðx; x0Þ − ψ̄ 0a

η ðxÞψ 0b
ξ ðx0ÞÞ ∼

Z
DΠexpi

R
d4xd4x0Πab

ηξ ðx;x0Þ½NcΦab
ηξ ðx;x0Þ−ψ̄ 0a

η ðxÞψ 0b
ξ ðx0Þ�: ðA13Þ

Then the generating functional becomes

Z½J� ¼
Z

DqDq̄DQ0DQ̄0DŪDΦDΠδðO† −OÞ

× exp

�
i
Z

d4x

�
q̄ði=∂ þ JΩÞqþ Q̄0ði=∂ þM=v −MÞQ0

�
þ iΓI½Φ� þ iNcḠðΦÞ

þ i
Z

d4xd4x0
�
NcΠab

ηξ ðx; x0ÞΦab
ηξ ðx; x0Þ − ψ̄ 0ðxÞΠðx; x0Þψ 0ðx0Þ

��
; ðA14Þ

where

ḠðΦÞ ¼
X∞
n¼2

Z
d4x1 � � � d4x0nd4x01 � � � d4x0n

ð−iÞnðNcg2Þn−1
n!

Ḡσ1���σn
ρ1���ρn ðx1; x01;…; xn; x0nÞΦσ1ρ1ðx1; x01Þ � � �Φσnρnðxn; x0nÞ:

Since NvðxÞ ¼ 1þ=v
2
Q0ðxÞ, only the “positive projected”

part (the part projected by 1þ=v
2
) of Πabðx; yÞ contributes. For

example, for ΠqQ,

q̄ðxÞΠqQðx; yÞNvðyÞ ¼ q̄ðxÞΠqQðx; yÞ 1þ =v
2

Q0ðyÞ
¼ q̄ðxÞΠqQ

þ ðx; yÞQ0ðyÞ; ðA15Þ

where ΠqQ
� ¼ ΠqQ 1�=v

2
. Since we are only interested in the

leading contribution from heavy quark expansion, ΠqQ
− has

no contributions here. So eventually, we can keep only the
positive projected parts of theΦ andΠ fields for their heavy
flavor components in the generating functional.

3Here, we focus on the physics in the heavy quark limit. The
finite corrections to the LECs calculated later and the form of the
effective theory from the heavy quark mass can be easily included
in our approach along Ref. [27].
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3. Integrate out quark fields

Now, we are ready to integrate out quark fields q and Nv. The standard procedure yields

Z½J� ¼
Z

DŪDΦDΠδðO† −OÞ

× expfiNc½−iTr0 ln½i=∂I1 þ J0Ω þ ði=∂ þM=v −MÞI4 − Π�� þ iNcTr0ðΠΦTÞ þ iNcḠðΦÞ þ iΓI½Φ�g; ðA16Þ

where we have defined the functional trace Tr0 taking over
the flavor space, spinor space and coordinate space and I1
and I4 are the following matrices in the flavor space

I1 ¼

0
B@

1 0 0

0 1 0

0 0 0

1
CA; I4 ¼

0
B@

0 0 0

0 0 0

0 0 1

1
CA:

In this work we only consider two light flavors plus one
heavy flavor. The generalization to include more flavors is
straightforward. J0Ω is the extension of JΩ into the whole
flavor space with J0Qq

Ω ¼ J0qQΩ ¼ J0QQ
Ω ¼ 0.

In flavor space the matrix Π can be decomposed as

Π ¼ Π1 þ Π2 þ Π3 þ Π4; ðA17Þ

where

Π1 ¼
�
Πqq

2×2 0

0 0

�
; Π2 ¼

�
0 0

ΠQq
1×2 0

�
;

Π3 ¼
�
0 ΠqQ

2×1

0 0

�
; Π4 ¼

�
0 0

0 ΠQQ

�
: ðA18Þ

A similar decomposition holds for Φ. Tracing back to
Eq. (A14) and from the term ψ̄ 0ðxÞΠðx; x0Þψ 0ðx0Þ, one can

find that Π directly couples to quark-anti-quark pairs and
has the same transformation properties as the composite
quark fields, so that it is reasonable to identify Π2 and Π3

as the bosonic interpolating fields for the heavy-light
mesons. However, since Π is a bilocal field, to get a local
effective Lagrangian, we need a suitable localization on Π2

and Π3 fields. Here we take the following localization
conditions which are essentially the point coupling between
quarks [28]

Π2ðx; yÞ ¼ Π2ðxÞδðx − yÞ;
Π3ðx; yÞ ¼ Π3ðxÞδðx − yÞ: ðA19Þ

It is easy to check that Φ and Π have the following
properties:

γ0½ΦTbaðy; xÞ�†γ0 ¼ ΦTabðx; yÞ;
γ0½Πabðx; yÞ�†γ0 ¼ Πbaðy; xÞ:

So that

Π̄2ðx; xÞ≡ γ0Π†
2ðx; xÞγ0 ¼ Π3ðx; xÞ:

Then the generating functional can be written as

Z½J� ¼
Z

DŪDΦDΠ exp

�
iΓI½Φ�

þ iNc

�
Tr0ðΠΦTÞ þ ḠðΦÞ þ

Z
d4xTr

�
Ξ
��

−i sin
θ

Nf
þ cos

θ

Nf

�
ΦT

��

− iTr0 lnði=∂I1 þ J0Ω þ ði=∂ þM=v −MÞI4 − Π1 − Π2 − Π̄2 − Π4Þ
��

; ðA20Þ

where the δðO† −OÞ term has been reexpressed as

δðO† −OÞ ¼
Z

DΞeiNc

R
d4xTrfΞðxÞ½ΘΦTðx;xÞ�g; ðA21Þ

with ΞabðxÞ being a new auxiliary field and

Θ≡ ð−i sin θðxÞ=Nf þ cos θðxÞ=NfÞ: ðA22Þ

Now, by integrating out the fields Φ, Ξ, Π1 and Π4, we
can obtain the action, denoted as S½U;Π2; Π̄2�, for the chiral
effective theory with heavy-light mesons

Z½J� ¼
Z

DŪDΠ2DΠ̄2 expfiS½U;Π2; Π̄2�g; ðA23Þ

where
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eiS ≡
Z

DΦDΠ1DΠ4DΞ exp

�
iΓI½Φ� þ iNc

�
Tr0ðΠΦTÞ þ ḠðΦÞ þ

Z
d4xTr

�
Ξ
��

−i sin
θ

Nf
þ cos

θ

Nf

�
ΦT

��

− iTr0 lnði=∂I1 þ J0Ω þ ði=∂ þM=v −MÞI4 − Π1 − Π2 − Π̄2 − Π4Þ
��

: ðA24Þ

The heavy-light meson effective theory can be derived by expanding the action S with respect to the Goldstone boson field
U and the heavy-light meson fields Π2; Π̄2.

4. The action in the large Nc Limit

The action defined in the previous subsection is not practically useful. In order to calculate the coefficients in the chiral
Lagrangian, we make a further approximation, namely, keeping the leading order of the largeNc expansion. Under largeNc
limit, the effective action is simply the corresponding classical action, so we have

S½U;Π2; Π̄2� ¼ Nc

�
Tr0ðΠcΦT

c Þ þ ḠðΦcÞ þ
Z

d4xTr

�
Ξc

��
−i sin

θðΦcÞ
Nf

þ cos
θðΦcÞ
Nf

�
ΦT

c

��

− iTr0 ln ½i=∂I1 þ J0Ω þ ði=∂ þM=v −MÞI4 − Π1c − Π2 − Π̄2 − Π4c�
�
; ðA25Þ

where Φc;Ξc;Π1c;Π4c are classical fields satisfying the saddle point equations

δS
δΦc

¼ δS
δΞc

¼ δS
δΠ1c

¼ δS
δΠ4c

¼ 0: ðA26Þ

and ΓI term has been ignored because it is of Oð1=NcÞ [2].
These saddle point equations provide important information. For instance, equations δS

δΠ1c
¼ 0 and δS

δΦ1c
¼ 0 generate the

coupled equations

ΦTab
1cηξðx; yÞ ¼ −i½ði=∂ þ J0Ω − Π1cÞ−1�abηξ ðx; yÞ; ðA27Þ

with

Πab
1cηξðx; yÞ ¼ −

X∞
n¼1

Z
d4x1 � � � d4x0nd4x01 � � � d4x0n

ð−iÞnþ1ðNcg2Þn
n!

× Ḡaa1���an;bb1���bn
ηη1���ηn;ξξ1���ξn ðx; y; x1; x01;…; xn; x0nÞΦa1b1

1cη1ξ1
ðx1; x01Þ � � �Φanbn

1cηnξn
ðxn; x0nÞ; ðA28Þ

where the term involving Ξ has been omitted because it
vanishes once the external sources J are turned off [2].When
J0Ω is turned off, the coupled equations (A27) and (A28) are
nothing but the DSEs for the quark propagators with Π1c
being the self-energy for light quarks. So that we rewrite
Π1cðx; yÞ as Σ̄ðx − yÞI1. Along the same procedure, theDSE
for the heavy quark propagator which depends on the self-
energy of heavy quark,Π4c, can be obtained.However, since
the contribution from the heavy quark self-energy is less
significant than the light ones, we will simply ignore it.
The direct calculation of the LECs in the effective

Lagrangian from action (A25) is not so easy, if not
impossible, because the fields Φc and Ξc are functionals
of U, Π2 and Π̄2 through the saddle point equations (A26).
To proceed, we follow Ref. [6] and keep only the “Tr ln”
term in the action in the spirit of the dynamical perturbation
which works well in the calculation of pion decay constant
[24]. Then the action becomes

S½U;Π2; Π̄2� ¼ −iNcTr0 ln fði=∂ − Σ̄ÞI1 þ J0Ω
þði=∂ þM=v −MÞI4−Π2 − Π̄2g: ðA29Þ

It should be noted that although the contribution from
gluon fields is not explicit appeared in the action, it is
included in the quark self-energy Σ̄, which requires the
application of the DSE.

APPENDIX B: FORMULA FOR LECS
WITH Zð− p2Þ EFFECT

The quark propagator can be generally written as

SðpÞ ¼ i
Aðp2Þp − Bð−p2Þ ¼ i

Að−p2Þpþ Bð−p2Þ
A2ð−p2Þp2 − B2ð−p2Þ

¼ iZð−p2Þ pþMð−p2Þ
p2 −M2ð−p2Þ ;
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where Zð−p2Þ ¼ 1=Að−p2Þ stands for the quark wave function renormalization and Mð−p2Þ ¼ Bð−p2Þ=Að−p2Þ is the
renormalization group invariant running quark mass.
Using this full expression of the quark propagator, we obtain the LECs as follows:

mH ¼ iNc

ZH

Z
d4p
ð2πÞ4

�
1

p2 −M2
−

M
ðp2 −M2Þv · p

�
Z;

gH ¼ −
iNc

ZH

Z
d4p
ð2πÞ4

�
M2 þ 1

3
p2

ðp2 −M2Þ2v · p −
2M

ðp2 −M2Þ2
�
Z2;

ZH ¼ iNc

Z
d4p
ð2πÞ4

��
−

1

ðp2 −M2Þv · p −
2M

ðp2 −M2Þ2
�
Z −

2ZM0ðp2 þM2Þ
ðp2 −M2Þ2 −

2Z0M
p2 −M2

�

mG ¼ iNc

ZG

Z
d4p
ð2πÞ4

�
1

p2 −M2
þ M
ðp2 −M2Þv · p

�
Z;

gG ¼ −
iNc

ZG

Z
d4p
ð2πÞ4

�
M2 þ 1

3
p2

ðp2 −M2Þ2v · pþ 2M
ðp2 −M2Þ2

�
Z2;

ZG ¼ iNc

Z
d4p
ð2πÞ4

��
−

1

ðp2 −M2Þv · pþ 2M
ðp2 −M2Þ2

�
Z þ 2ZM0ðp2 þM2Þ

ðp2 −M2Þ2 þ 2Z0M
p2 −M2

�
;

gHG ¼ −i
Ncffiffiffiffiffiffiffiffiffiffiffiffi
ZHZG

p
Z

d4p
ð2πÞ4

�
M2 þ p2

ðp2 −M2Þ2v · p
�
Z2: ðB1Þ
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