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We study the nonleptonic two-body weak decays of A, by modifying the MIT bag model without
introducing new parameters to construct the momentum eigenstates of the baryons. We find that the
branching ratios of A) - Afz~, AfK~, pa~, and pK~ are (4.540.2)x 1073, (3.4 £0.1) x 107,
(5.0 £0.5) x 107°, and (6.0 £ 0.7) x 1075, which are all consistent with the current experimental data,
respectively. We also explore P and CP asymmetries for the decays of A) — p(z~, K~). In particular, we
obtain that the direct CP-violating rate asymmetries in Ag — px~ and Ag — pK~ are around —4.4% and
6.7%, in comparison with (=2.54+2.9)% and (—2.5 +2.2)% from the Particle Data Group in 2020,

respectively.

DOI: 10.1103/PhysRevD.102.034033

I. INTRODUCTION

There have been many interesting measurements in
the decays of b baryons by the LHCb Collaboration,
including those for the charmful modes of A) — AfM
[1] and charmless ones of Ag - pM [2](M =7n",K") as
well as the discoveries of the hidden-charm pentaquarks in
A) — J/wpM [3,4] and double-charm baryon state of /"
via Bf," - AT Kzt z" [5]. In particular, based on the new
experimental data from LHCD [6], the Particle Data Group
(PDG) of 2020 [7] has updated the average values for the
direct CP-violating rate asymmetries (Acps) in Ag - pn~
and A — pK~ to be

Acp(A) = pr7)ppg = (=2.5 £2.9)%.
Acp(A) = PK )ppg = (2.5 £2.2)%, (1)

respectively. In the standard model, these two decay
amplitudes contain V,;, and loop-induced penguin oper-
ators [8], which could provide weak and strong phases,
respectively, resulting in nonvanishing direct CP-violating
rate asymmetries (Acps). Previous theoretical studies
of Acps in Eq. (1) have been performed in various
QCD models, such as the perturbative QCD method [9],
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generalized factorization approach [10], and light-front
quark model (LFQM) [11]. These calculations in the
literature are important to check if the results in the standard
model are consistent with the experimental measurements.
In this work, we would like also to explore the CP-violating
asymmetries with the MIT bag model.

It is known that to calculate the decay processes of the
baryons, we need to know the details of the baryon wave
functions. In the MIT bag model, the quarks in the baryon
are confined in a static bag. The model enjoys various
successes in its simple structure to explain the mass spectra
and magnetic dipole moments of the baryons [12-15].
However, the construction of the baryon wave functions in
the MIT bag model is localized in a fixed space. As a result,
the center motions of the baryons are not moved. In other
words, the baryon wave functions are not in the momentum
eigenstates. Such a defect makes the model questionable
when one discusses the decay processes involving essen-
tially the momentum eigenstates. Nonetheless, many cal-
culations in the bag model have been done by ignoring
this problem [16-22]. In this work, we will modify the MIT
bag model to construct the momentum eigenstates for
the baryons to study the decays without introducing extra
parameters.

On the other hand, it is known that one can examine
the heavy quark symmetry in the charmful decays of
Ag — AIM. Particularly, the baryonic matrix element is
related to the Isgur Wise function of &(w) [23], given by

(ALfer* (1= ys)b|AY) = g &(1 = ys)upe,  (2)
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where w = v - v, with v;,, the velocities of the two
baryons, and ug is the four-component Dirac spinor for
the corresponding baryon of B. In the heavy quark limit, in
which the relative velocity between the two baryons
vanishes, we have that &(@w) = 1 with w = v, - v,. We will
check if the heavy quark symmetry is valid in our modified
MIT bag model.

This paper is organized as follows. In Sec. II, we introduce
the decay amplitudes and parameters. In Sec. III, we
constitute the baryon wave functions in the modified MIT
bag model, where we sum over the localized baryon wave
functions with different centers. In Sec. IV, we compute the
form factors accordingly. In Sec. V, we present our numeri-
cal results and compare them with the experimental data as
well as the theoretical evaluations in the literature. We
conclude our study in Sec. VI.

II. DECAY AMPLITUDES AND PARAMETERS

We start with the two-body decays of B, — B, M,
where B, is the initial (final) baryon with spin 1/2
and M represents the pseudoscalar meson. In this study, we
concentrate on the corresponding decays with B; = A,
B, = (Af.p), and M = (z7,K~). The spin-dependent
amplitude for B; — B,M can be written as

A(B; —» BqM) = ug, (A - B?’S)”Bi’ (3)

where A and B are the s-wave and p-wave amplitudes,
corresponding to the parity violating and conserving
ones, and ugp, are the baryon Dirac spinors, respectively.
In general, A and B are not relatively real, resulting in
CP-violating effects. The decay branching ratio and for-
ward-backward asymmetry for the initial baryon in the rest
frame are given as [24]

p.| (Mg + Mg )*>—m3
F(BianM):MC i ‘;‘i) MAP

kY4 My,

(MB,-_MB,,)Z_m/zVI|B|2>

Mg

2kRe(A*B) A
ap(B; > BM) = ——— "/ =4
r(Bi q ) |A|2+K2|B|2 EBq‘l’mBq (4)

where m,,; is the meson mass and ﬁq represents the
3-momentum of the daughter baryon B, while ap

describes the decay asymmetry between the helicity states
of Bq, defined by

r §
B,—-B M) =
aP( i q ) F(ﬁq gq:1)+1—w(i)q§q:_l)

(5)

with p,(3,) the unit vector in the p,(5,) direction of B,
provided with the initial baryon B; unpolarized. We can

also define the decay asymmetries for the antiparticles,
given by

ap(B; > B,M) = ap(B; > B, M). (6)

The nonzero mean value between ap and ap is a
consequence of CP violation, which is defined by [25,26]

aP(Bi e d BqM) + &P(Bi e BqM>
ap(B; > B,M) —ap(B; > B,M) "
(7)

On the other hand, the direct CP-violating rate asymmetries
of the decays are given by

Acp(B; = B,M) =

(B, - B,M)-T(B;

B, —B,M)= _
Acp(Bi = B,M) I'(B; - B M)+ (B,

In the present work, to relate ap, ./Zlcp, and Acp directly
to the weak interactions, we ignored the final state
interactions in our calculations. As a result, the complex
phases of A and B solely come from the Wilson coefficients
and the Cabibbo-Kobayashi-Maskawa (CKM) elements.
We note that possible sizable CP-violating effects in A, —
p(z~, K~) could be induced due to the weak phase from the
CKM matrix element of V.

III. BARYON WAVE FUNCTIONS

In the MIT bag model, the quarks in the baryon are
constrained in a certain bag with radius R. Inside the bag,
each quark obeys the free Dirac equation, given by

i0/w —mgy =0, )

due to the mean field approximation of the gluon field,
where m, is the current quark mass. The boundary
condition on the surface of the bag is given as

inOy =y, (10)

where n; is the unit vector toward the surface.

In this work, we only consider the ground states of the
baryons with their angular momenta to be J = 1/2, where
the spatial parts of the quark wave functions satisfy the
spherical symmetry. Consequently, by inserting the boun-
dary condition of Eq. (10) into Eq. (9), we get

PyR

an(peR) =1 R E R
q q

(11)
where p, is the magnitude of the 3-momentum for the
quark and E, = |/ p2 + m2. The lowest momentum given

in Eq. (11) corresponds to the ground state. The quark wave
function centered in X = 0 is written as
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a)+j0(pqr))( ) iEt
iw_j(p,r)t- 6y ’
(12)

e N
w(x) = p(R e = m(

where w, = /1 +m,/E,, y is the two-component spinor
of the quark, describing the orientation of the angular
momentum, j; represents the ith spherical Bessel function
of the first kind, and N stands for the normalized factor,
given by

B E,(E,—m,)
M= \/ R A RREE, D5

Since the baryon is made of the product of the three quarks,
we write its wave function in term of the quark wave
functions v, given by

\P(E‘h ’ )—C)lh ’ )—C)lh ’ t)

= ¢, (X,)04, (X4, )by, (55113)6_1.@” e tE ) (14)

where g; (i = 1, 2, 3) denote the ith quarks and E,, are the
corresponding energies. Here, the spin, flavor, and color
configurations have not been written down explicitly.

However, the above construction of the baryon wave
function is valid only around X = 0, which is mainly used
to discuss the mass spectrum and magnetic dipole moment
of the baryon. To calculate the dynamical processes, we
need the baryon state to be in the particular 4-momentum
eigenstate of the spacetime translation.

On the other hand, in Eq. (14) one assumes that the
baryons are at rest, and the centers of the initial and final
baryons locate in the same spot at a particular time, ¢ = #.
However, if the baryons are not at relatively rest, the centers
will be not coincident at ¢ # ¢ and the results of the
dynamical factors will no longer be the same. Clearly, the
baryon wave function in Eq. (14) is not the eigenstate of
the spacetime translation.

To construct the baryon wave function to be invariant
under the space translation, we have to modify the MIT bag
model. To do that, we first integrate Eq. (14) with different
center locations, leading to

’ xl]z’ xi]z)

— N / &7 T ¢y, - e Eatn,  (15)
i=1,2,3

where N is the normalization factor. We then consider the
space translation

¥Y(x, +d x, +dx, +d)
- N/d355 H bg,(Xy, + d- X)e Fala,  (16)

i=1.23

where d has only the spatial component. By changing the

integration variable X to X —d, we see that the wave
function is indeed invariant under the space translation.

The energy of the baryon at rest essentially corresponds
to the mass of the baryon, which can be read off from
Eq. (15)tobe M = E, + E,, + E,,. We note that the bag
energy has not been included in our study. In principle, one
can calculate the energy contribution from the complicated
gluon and gluon-quark interactions. However, we will not
include such effects. Instead, we will simply use M =
E, + E,, + E,, in the integral associated with the energy-
momentum conservation as an approximation.

The wave function for the baryon at rest is given in
Eq. (15). To obtain the function in a certain 4-momentum,
we boost it in the z direction, given by

\P” (qu ’ xl]z ’ xqs)
= SE\P(XZl ’ xzw xgz)

—N / &7 T Sig, G —DerFalu=ra) (17)
=1,2,3

i

Here, S f(q) is the pure Lorentz boost matrix for the baryon
(quark) 4 spinor in the z direction with S7 given by

$7 = <“+I ““’Z>, (18)

a_c, a,l

where [ is the 2 x 2 unity matrix, ay = y/5(y £1) and

y = +/1/(1 = v?). In addition, v in the superscript of S7
indicates the Lorentz transformation of the coordinate,
given explicitly as

(XZ,)O = V(Xq,-)o - 7”(%)37
(XZ,)l = (xq,v)l? (XZ,)z = (xq,)z?
(x4.)3 = r(xg,)3 = vv(xg,)os (19)

where (x,, ), is the time component of the coordinate.

To obtain the proper normalization factor, we calculate
the overlap between the two baryon wave functions with
different speeds at time ¢, given by
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/‘I‘T( X, qz’ q3,t)‘I’ (_'ql’"’qz’ » )d3—> dz—» dz_,

_ e—iM(y_;,/)th/dS)-c’d,%)-E/ H d3fqi¢T(fU_ _)-é/)
i=123

« SZ/S?Qﬁ(fz _ })eiEq,(Yv—y/y/)zq[, (20)

where $4" = §7 for the pure Lorentz boost and M =
E, +E, + E,, for the mass of the baryon. To simplify
the integral, we adopt the following variables:

2r v 1 b 7

Xg; = Xq _E(x+x/)v

Xa=x-X,

N 1

Xp = z(x-l-x) (21)

Now, the overlap integral is read as

H B3 —’r

¢ (5 30)
5XA

=123 2

x %y ( - %xQ B4 (=112, B (00 o

:NZY( 353 p P)/d3XA H d?"r

i=123
= 1o U N
X' Xy, —|—§xA A ~5%a ) (22)

where 1/y3 comes from the Jacobian in Eq. (21), and p and
p' are the 3-momenta of the baryons. Here, we have used
the fact that the integral does not vanish if and only if
v = v’ to reduce the complexity in ¢.

By normalizing the baryon wave
(p'|p) =y(27)38*(p — p'), we find that

1 N 1 . 1.
e fon T (0o -42)

i=123
which is clearly independent of the velocity by the
construction of the baryon wave functions.

It is worthwhile to take a look at the physical inter-
pretation of the baryon wave function in Eq. (15). In
contrast to the original wave function in Eq. (14) with the
quarks confined in a static bag located at X = 0, those
quarks for Eq. (15) distribute all over the space to fulfill the
translation-invariant requirement. Note that the distance
between two arbitrary quarks is limited within 2R in the
bag model. For the case in Eq. (15), it is due to the fact that
if |X, —X,,| > 2R, then either |X, —X| or |X,, —X| will
exceed R, resulting in the vanishing integral. So, the quarks

NZ

—IM}’ v') Ad3

function as

(23)

are entangling to each other in the spatial part of the wave
function, which is not the case in Eq. (14).
The average distance between the quarks is given by

\/<(3_€ql -

In the original MIT bag model, as the quark positions
are independent to each other, we have that (X, - X, ) =
(X,,) - (X;,) = 0. However, they do not vanish in our
modified MIT bag model. For the proton with three
massless light quarks, the average distance in our modified
model is roughly 20% shorter than the original one with the
same bag radius.

T8 = @)+ @) -2G, 5. (24)

IV. BARYON FORM FACTORS

To calculate the Ag decays, we use the factorization
approach. In this approach, the amplitudes for A) — AfM
can be written as

G _
Agrcan = S anViy Vo Mlar#(1 = 15)ql0)

x (Af|ey, (1 —=ys)b|AY)

G _
l—FaIVihququﬂ<A2r|cyﬂ(1 - }/S)b|A2>

2
.Gp . _
= l%alvcbvuqu[(mh mc)<Ac+|Cb|A2>
+ (my, + me) (NE[eysblAD)], (25)

where G is the Fermi constant, a; = ¢ + ¢,/3 = 1.02 [8]
with ¢; , the Wilson coefficients, V;; represent the CKM
elements with ¢ = d(s) correspondingto M = 7~ (K~), fi
is the meson decay constant, and the quarks operators are
evaluated at x = 0. For the decay of Ag — pM, the
amplitude is given by [10]

A(A) = pM)
G

= ljgmbe[aM@Wb‘A% + Bulplaysb|AD)],  (26)

where a,; (f3,) and ay in Eq. (29) are defined by

o * *
ay =V Vigar = Vi Vig(as + ryag),

Pu = VupVigar =V Vig(as — ryae), (27)

with ry, =2m3,/[my,(m,+m,)] and a; = " + c?ifl/N (eff)
for i =odd (even), composed of the effective Wilson
coefficients ¢¢ defined in Ref. [27].

Now, we are left with the matrix elements of the scalar
and pseudoscalar operators in Egs. (25) and (26), which can
be parametrized as
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_ B,
(B,|gb(0)[AD) = f¥iug, 1y

_ B, _
(B,|grsb(0)|A}) = fp @i, ysuno. (28)

where B, represents Al (p) with g being ¢(i).

We evaluate the form factors of f _?‘1 and f E" in the Briet
frame, in which the initial and final baryons have opposite
velocities, i.e., U , = —7, v. In the derivations of the matrix
elements, one actually deals with the quark operators in the
x dependence, given by

/ (B, [(r5)b(x)eiP¥|AY) d'x

= (B,|a(rs)b(0)|A}) (27)*6(pi — Py — Pu). (29)

for the scalar (pseudoscalar) matrix element with p,, being
the 4-momentum of the M meson. Here, we have used that
the initial and final baryons are in the momentum eigen-
states to reduce the integral with the Dirac é function of
(2rm)*8(p; — Py — Pu)- Clearly, one can evaluate the form
factors with either the quark operators located at x = 0 in
Eq. (28) or the x-dependent ones in the left-hand side of
Eq. (29). We start with the baryon wave functions in
Eq. (17), given by

/ (B, [gb(x,, )P [Ay)d'x,,

_ 32 327 g4 1 (2v 2/
—/\/'AbJ\/'Bq/d XX d*xy, g (X5, — X')
X 5221/¢b<3—5;f — j)ei[J’(Eq—Eb)+P0]fe—i[7”(5q+5b)+173]13

% H ¢2/ GC)Z, _ 37)47%- ()—C;jp _ —>>e—2iva,1‘/.uz,,j’ (30)

j=12

with $77y, = 705%, for the Lorentz boost and (g;.¢,) =
(u, d). Similar to the case in Eq. (20), we adopt the variable
transformations with some modifications, given by

(¥g,)3 = r(%g)3 =5 (¥ + X)3.
I
Xq = E(X +X),

(Fa)y = (F=¥); - 2y01, (31)

where i = 1,2, 3 and j = 1, 2. Subsequently, we have that

I o I
z / RN A ) <x33 + ExA> STy <x23 - zxA>

iv(Mg,+My, —E,—E},)z), -
f b a3 Hqu(xA)’
j=1.2

NaNg
Z= (277)454(171‘ — Py~ qum) #,

X e

(32)

Alternatively, one can evaluate the integral with b and ¢
quarks located at x = 0 in Eq. (28), given as

2 / PRPR P, (~7)SP by (—5)

x [ ¢4 G5 =3 (g = R)e "™ (33)

j=12

After changing the integral variables by

Xp=X-X, (34)
where k, j = 1, 2, one obtains the identical equation as the

one in Eq. (32) with M = E, +E, +E,..
Similarly, the pseudoscalar part can be given as

[ ®alarsp@eniagas

S T U
= Z/ d3xAd3x23¢q <X;3 +§XA>]/5SZZL¢[) (.ng —EXA>

MBq+MAb—Eq—Eb)Z,;3 H qu ()—C'A) (35)
Jj=12

x ew(

With the normalization in Eq. (23), we derive that

! B |(ab)(x)ePu*| AN d*x
! q x)ePuX| A0\ g4y
Ty y(2n)*s*(pi—py p)/<Bq|(‘]75b)( ) |A))dx,

(36)

where 7 is the overlap factor of the spin-flavor configura-
tion. For A, = Al (p), we have n = 1(1/3/2) [17].
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V. NUMERICAL RESULTS AND DISCUSSIONS

We use the bag radius of the Al baryon as R(A}) =
4.8 GeV~! from Ref. [14]. In the limit of the heavy quark
symmetry, the baryon wave functions for A) and A can be
taken to be the same. As a result, the bag radius for the Ag
should be also around 4.8 GeV. For the proton, it is usually
chosen to be 5 GeV~!. However, to simplify our numerical
calculations, we choose the same bag radiuses for A), Af
and p, ie., R=R(A))=R(A[)=R(p)=4.8+£02GeV~!,
where the uncertainty is to account for the dependence of
the bag radius. In general, an increase of the bag radius
would reduce the form factors. In addition, we take that
m, = my =5 MeV. Note that the variation of the light
quark masses from 0 to 10 MeV does not make much of a
difference for the numerical values of the form factors. To
determine the heavy quark masses, we assume that the
baryon mass differences are related to the corresponding
quark energies, i.e.,

Eh:MAg_Mp+Eu’
Ec :IWA(Jr _Mp+Ew (37)

where E;, E,, and E, are the energies of b, ¢, and u quarks
in the bag, and M A M+, and M, are the corresponding

baryons masses, respectively. With R = 4.8 GeV~!,
we find (my,m.) = (5.1,1.8) GeV, which satisfy the
relation of the heavy quark symmetry, given by m;, — m, =
Mpo—My;.

The form factors associated with the vector and axial-
vector currents are defined by

<Bq ’q}’ﬂb|/\g> = ﬁf(fl}/ﬂ _fZiG/w(pM)y +f3(pM>;4)uA2’
(B, |ar,7sbIA)) =i (917, — 9200, (Pu )" + 93 (Pm),)7s UNQ-
(38)
By using the equations of motion and comparing Eqs. (28)
and (38), we obtain the form factors associated with the

vector and axial currents from the scalar and pseudoscalar
ones, given by

fr=(my - mq)/(MAg —Mg,)fs.
9 = (mb =+ mq)/(MAg =+ MB[,)fp’ (39)

TABLE I.  Form factors for A — Af/p.

respectively. Here, we have neglected the contributions
from f3 and g3, which are suppressed based on the heavy
baryon mass of A,. Because of the relation of m;, —m, =
M A0~ M+, we find that fé\f+ = fjl\i, whereas f, is larger
than g, in all cases.

Our numerical results of the form factors with different
values of p§4 are listed in Table I, where we only consider
the uncertainties from the bag radius. For Ag — A}, with
the heavy quark symmetry limit we have that

AS A
1 (p3) =g (P3)-
A2 2 A2 2\
fi (pM_(MAg_MAC*) ) =4 (PM—(MAg—MAj) )=1
(40)

which are well consistent with our numerical values. The
results with the heavy quark symmetry indicate that our
constructions for baryon wave functions are reasonable,

while the form factors of fg\ * and gg\ © can be safely

+ +
neglected. It is interesting to note that fi\” and g’l\f
correspond to the Isgur Wise function in the context of

the heavy quark symmetry The first derivatives of f fj and

gf: are found to be

d
2 = =1.96 £ 0.04,
Py ==-hl)
d
2 _ _ —
PA= "0 (w) o 2.07 £0.04 (41)

where the slight difference between p? and p} can be
viewed as the (1/m,,) correction. Our results in Eq. (41) are
consistent with p? = p = p4 = 1.3-3.7 in the literature
based on the heavy quark symmetry [18,28-30]. On the
other hand, the experimental measurement on Ag -
A7 D, gives [31]

p? = 2.04 £ 0.46(stat) {2 (syst), (42)

in which the central value is very close to our values
in Eq. (41).

The decay widths and asymmetries are shown in Table II.
As f| = g, from the heavy quark symmetry and m?, ~ 0
due to the soft meson limit, we expect that A = kB, leading
to ap(A) > Afn=,AfK~) =1, as given in the table.

Py £ i 1 " b f5 b g

(MA(Z - M/\j)2 1.024+0.00 1.20+0.00 1.02+£0.00 1.044+0.01 132+000 2.10+£0.04 1.444+0.00 1.64+0.03
M,zr 0.504+0.00 0.58+0.01 050+0.00 0504+£0.00 0.14+0.01 0.18+0.01 0.164+0.01 0.14+0.01
M%( 0.514+£0.01 0.594+0.01 0.51+001 0514000 0.144+0.01 0.18+£0.01 0.164+0.01 0.14+0.00
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TABLE II. Decay widths and symmetries.

Channel r(s™) ap (%) ap (%) ACP (%) Acp (%)
A) > Afn (3.03 £0.07) x 10° 100.0 0.0 —100.0 £ 0.0 0 0

A) > AFK™ (2.33 £0.06) x 108 100.0 0.0 —100.0 £ 0.0 0 0

A) - pr~ (3.41 £0.38) x 10° 85.6 £0.0 -83.2£0.1 1.4£0.0 —-4.4+0.1
A) - pK- (4.11 £0.49) x 10° -29.7+0.3 444 +04 —-19.6 £0.2 6.7+£0.0
TABLE III. Decay branching ratios and direct CP asymmetries.

Our results [10] [11] [9] [32] PDG [7]
10°B(A) - Afn7) 45402 4161733 49+04
10*B(A) - AFK™) 34+£0.1 3118 36£03
10°B(A) - pn~) 50£05 42407 4.30 52473 45+0.8
10°B(A) - pK~) 6.0 £0.7 4.8+0.7 2.17 2019 54+£1.0
10 Acp(A) = pr7) —44+0.1 -3.9+0.2 33703 -315P —2.5+29
102 Acp(A) > pK™) 6.7 £0.0 58+£02 10.155 —5126 -25+£22
TABLE IV. Values (1072) of R = B(A) - AfK™)/B(A) — Afz~) in various approaches.

Our result U-spin Factorization LFQM [32] LHCb [33] PDG [7]
7.6 £0.1 53 7.7 7.5 7.214+0.22 7.35 +£0.86

In Table III, we compared our results with those of
Refs. [9-11,32] in the literature as well as the experimental
data [7]. In the literature, the form factors are evaluated by
fitting the experimental data in the generalized factorization
approach [10], considering the LFQM for the baryon wave
functions [11,32], and using the perturbative QCD method
with the hybird scheme [9]. As shown in Table III, the
decay branching ratios for A) - Af (7=, K~) from the
modified bag model are close to those in LFQM [32] as
well as the experimental data. We also find that our
predicted branching ratio for Ag — pK~ is about 1.2 times
larger than that for Ag — pz~, which agrees with the data
and that in the generalized factorization approach [10],
but is different from the results of perturbative QCD [9]
and LFQM [11]. On the other hand, our results for the
direct CP-violating rate asymmetries of A) — p(z~, K™)
are sizable, which are consistent with all other theo-
retical predictions, and the experimental data except
Acp(A) - pK™)ppg. As the experimental value of
Acp(A) = pK™)ppg in Eq. (1) is consistent with zero
with a negative central value, whereas our prediction of
+6.7% along with the others in Refs. [10,11] is positive, it
is very interesting to see if such CP asymmetry can be
measured precisely by the ongoing experiment at LHCb. In
addition, we see that .,é_lcp(Ag — pK™) is predicted to be
(=19.6 £ 0.2)%, which is very large.

In Table IV, we illustrate the ratio of R = B(A) —
AfK™)/B(AY - Afz™) in various approaches. In the
table, the result of the U-spin symmetry is based on the
SU(2) symmetry between d and s quarks, which leads to
the naive relation for R, given by

2

Vs ~5.3%.

Rucoi :‘—
-spin %
ud

(43)

In the factorization approach, R receives an extra factor due
to the meson decay constants, read as

2

V.
uf K ~7.7%,

Reqcrorization = ' v f
ud) «

(44)

which is consistent with our result and that in LFQM [32]
as well as the data [7,33]. Clearly, it shows the evidence that
the decays of A) — Af(z~,K~) are factorizable.

VI. CONCLUSIONS

We have studied the decays of A) - Al (7=, K~) and
A) - p(z=, K~) in the modified MIT bag model. We have
provided a new way to construct the baryon momentum
eigenstates in the bag model without introducing new
parameters. In particular, we have summed over the
localized baryon wave function in Eq. (14) with different
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centers to fulfill the requirement of the invariant for the
space translation.

For A) - A} (z=,K~), we have found that the decay
branching ratios are (4.54+0.2)x 107% and (3.44-0.1)x 10~*
with the uncertainties only from the bag radius, which agree
well with the experimental data of (4.9 +0.4) x 10~ and
(3.6 2 0.3) x 1074, respectively. We have also shown that
our results of the first derivatives for the form factors f (@)
and g (w) in Eq. (41) match with the data as well as those in
the literature, indicating the validation of the heavy quark
symmetry in the decay processes.

For A) - p(z=,K~), our predicted decay branching
ratios of (5.0 +£0.5) x 107 and (6.0 £0.7) x 107® are
consistent with the current data of (4.5 4 0.8) x 1076 and
(54+1.0) x 1070 [7], respectively. In addition, we have

explored the CP-violating asymmetries for the decays.
Particularly, we have obtained that ACP(A,(: — pr~) and
Acp(A) - pK~) are (—4.4 £0.1)% and (6.7 £ 0.0)%, in
comparison with (—=2.5 +2.9)% and (—2.5 £+ 2.2)% from
the Particle Data Group in 2020, respectively. It is also
interesting to note that Acp(A) — pK~) is predicted to be
(—=19.6 £0.2)%, which is very large. It is clear that
more precise future experimental measurements on these
CP-violating asymmetries are needed.
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