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The scalar and vector meson exchange contributions to the doubly radiative decays ηð0Þ → π0γγ
and η0 → ηγγ are analyzed within the linear sigma model and vector meson dominance frameworks,
respectively. Predictions for the diphoton invariant mass spectra and the associated integrated branching
ratios are given and compared with current available experimental data. While a satisfactory description of
the shape of the η → π0γγ and η0 → π0γγ decay spectra is obtained, thus supporting the validity of the
approach, the corresponding branching ratios cannot be reproduced simultaneously. A first theoretical
prediction for the recently measured η0 → ηγγ by the BESIII Collaboration is also presented.
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I. INTRODUCTION

Measurements of η and η0 decays have reached unprec-
edented precision over the years placing new demands on
the accuracy of the corresponding theoretical descriptions
[1]. Among them, the doubly radiative decay η → π0γγ has
attracted much interest as this reaction is a perfect labo-
ratory for testing chiral perturbation theory and its natural
extensions, but also as a result of the decades-long tension
between the associated theoretical predictions and the
experimental measurements.
Likewise, the study of the η0 → π0γγ and η0 → ηγγ decay

processes are of interest for a number of reasons. First,
they complete existing calculations of the sister process
η → π0γγ, which has been studied in many different
frameworks, ranging from the seminal works based on
vector meson dominance (VMD) [2,3] and chiral pertur-
bation theory (ChPT) [4], to more modern treatments based

on the unitarization of the chiral amplitudes [5,6] or
dispersive formalisms [7]. At present, while there is only
a course estimation for the branching ratio of the η0 → π0γγ
decay [8,9], there is no calculation or theoretical predic-
tion for the η0 → ηγγ branching ratio. Second, the BESIII
Collaboration has recently reported the first measurements
for the decays η0 → π0γγ [10] and η0 → ηγγ [11], thus
making the topic of timely interest [12]. Third, the analysis
of these decays could help extract relevant information on
the properties of the lowest-lying scalar resonances, in
particular, the isovector a0ð980Þ from the two ηð0Þ → π0γγ
processes and the isoscalars σð500Þ and f0ð980Þ from the
η0 → ηγγ decay, thus complementing other investigations
such as the studies of V → P0P0γ decays (V ¼ ρ0;ω;ϕ and
P0 ¼ π0; ηÞ [13], D and J=ψ decays, central production,
etc. (see note on scalar mesons in Ref. [14]). For all these
reasons, the aim of the present work is to provide a first
detailed evaluation of the invariant mass spectrum and
integrated branching ratio for the three doubly radiative
decays ηð0Þ → π0γγ and η0 → ηγγ. Very preliminary results
were presented in Refs. [15,16].
On the experimental front, the branching ratio (BR) of

the η → π0γγ decay has been measured by GAMS-2000
[17], BR ¼ ð7.1� 1.4Þ × 10−4, CrystalBall@AGS in 2005
[18], BR¼ð3.5�0.7�0.6Þ×10−4, and 2008 [19], BR ¼
ð2.21� 0.24� 0.47Þ × 10−4, where the latter also included
an invariant mass spectrum for the two outgoing photons.

*rescriba@ifae.es
†sgonzal@iu.edu
‡rjora@theory.nipne.ro
§eroyo@ifae.es

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 102, 034026 (2020)

2470-0010=2020=102(3)=034026(12) 034026-1 Published by the American Physical Society

https://orcid.org/0000-0003-1947-5420
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.034026&domain=pdf&date_stamp=2020-08-25
https://doi.org/10.1103/PhysRevD.102.034026
https://doi.org/10.1103/PhysRevD.102.034026
https://doi.org/10.1103/PhysRevD.102.034026
https://doi.org/10.1103/PhysRevD.102.034026
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


An independent analysis of the last CrystalBall data resulted
in BR¼ð2.7�0.9�0.5Þ×10−4 [20]. Early results are
summarized in the review of Ref. [21]. Surprisingly
low in comparison with all previous measurements is the
2006 result reported by the KLOE Collaboration [22],
BR ¼ ð0.84� 0.27� 0.14Þ × 10−4, based on a sample of
68� 23 events. More recently, a new measurement of the
diphoton energy spectrum, as well as new and more precise
values for Γðη → π0γγÞ ¼ ð0.330� 0.030Þ eV and BR ¼
ð2.54� 0.27Þ × 10−4 have been released by the A2
Collaboration at the Mainz Microtron (MAMI), based on
the analysis of 1.2 × 103 η → π0γγ decay events [23]. The
latest PDG states a fit value of BR ¼ ð2.56� 0.22Þ × 10−4

[14]. For the η0 → π0γγ decay, the BESIII Collaboration has
recently reported for the first time the associated m2

γγ

invariant mass distribution [10]. The measured branching
fraction is BR ¼ ð3.20� 0.07� 0.23Þ × 10−3, superseding
the upper limit BR < 8 × 10−4 at 90%CLdetermined by the
GAMS-2000 experiment [24]. Finally, for the η0 → ηγγ
decay, a measurement of BR < 1.33 × 10−4 at 90% CL has
been provided, again for the first time, by the BESIII
Collaboration [11].
On the theoretical front, the η → π0γγ decay has been

a stringent test for the predictive power of ChPT. Within
this framework, the tree-level contributions at Oðp2Þ and
Oðp4Þ vanish because the pseudoscalar mesons involved
are neutral. The first nonvanishing contribution comes
at Oðp4Þ, either from kaon loops, largely suppressed by
their mass, or from pion loops, also suppressed since
they violate G-parity and, therefore, are proportional to
mu −md. Quantitatively, Ametller et al. found in Ref. [4]

that Γð4Þ
π ¼ 0.84 × 10−3 eV, Γð4Þ

K ¼ 2.45 × 10−3 eV, and

Γð4Þ
π;K ¼ 3.89 × 10−3 eV for the π, K, and π þ K loop

contributions to the decay width, which turns out to be
2 orders of magnitude smaller than the PDG fit value
Γexp
η→π0γγ

¼ 0.334� 0.028 eV [14]. The first sizable contri-

bution comes at Oðp6Þ, but the associated low-energy
constants are not well defined and one must resort to
phenomenological models to fix them. To this end, for
instance, VMD has been used to determine these coeffi-
cients by expanding the vector meson propagators and
keeping the lowest term. Assuming equal contributions
from the ρ0 andωmesons, the authors of Ref. [4] found that

Γð6Þ
ρþω ¼ 0.18 eV, which was about 2 times smaller than

their “all-order” estimation with the full vector meson
propagator ΓVMD ¼ 0.31 eV, and in reasonable agreement
with older VMD estimates [2,3], as well as Refs. [25,26].
The contributions of the scalar a0ð980Þ and tensor
a2ð1320Þ resonances to the Oðp6Þ chiral coefficients were
also assessed in Ref. [4] following the same procedure but
no all-order estimates were provided. Contrary to the VMD
contribution where the coupling constants appear squared,
the signs of the a0 and a2 contributions are not unambig-
uously fixed [4]. At orderOðp8Þ, a new type of loop effects

taking two vertices from the anomalous chiral Lagrangian
appear. Pion loops are no longer suppressed since the
associated vertices do not violate G-parity and the kaon-
loop suppression does not necessarily occur. Numerically,

the contributions from these loops were [4] Γð8Þ
π ¼ 5.2×

10−5 eV, Γð8Þ
K ¼2.2×10−3 eV, and Γð8Þ

π;K ¼ 2.5 × 10−3 eV.
Summing up all the effects that were not negligible and
presented no sign ambiguities, i.e., the nonanomalous pion
and kaon loops atOðp4Þ, the corresponding loops atOðp8Þ
with two anomalous vertices, and the all-order VMD
estimate, resulted in ΓχþVMD

η→π0γγ
¼ 0.42 eV [4]. Including

the contributions from the a0 and a2 exchanges with sign
ambiguities, which did not represent an all-order estimate
of these effects, they conservatively concluded that
ΓχþVMDþa0þa2
η→π0γγ

¼ 0.42� 0.20 eV [4]. The further inclusion
of C-odd axial-vector resonances raised this value to
0.47� 0.20 eV [27] (see also Ref. [28]). Other determi-
nations of the Oðp6Þ low-energy constants in the early and
extended Nambu-Jona-Lasinio models led to 0.11–0.35 eV
[29], 0.58� 0.30 eV [30], and 0.27þ0.18

−0.07 eV [31]. A differ-
ent approach based on quark-box diagrams [32,33] yielded
values of 0.70 and 0.58–0.92 eV, respectively. In the most
recent analyses, the η → π0γγ process has been considered
within a chiral unitary approach for the meson-meson
interaction, thus generating the a0 resonance and fixing
the sign ambiguity of its contribution. Using this approach,
Oset et al. found a decay width of 0.47� 0.10 and 0.33�
0.08 eV in their 2003 [5] and 2008 [6] works, respectively,
and the discrepancy could be down to differences in the
radiative decay widths of the vector mesons used as
input in their calculations. In any case, both estimations
appear to be in good agreement with the empirical value
Γexp
η→π0γγ

¼ 0.334� 0.028 eV. On the other hand, there is

only a rough estimation for the η0 → π0γγ decay width [8,9]
and no theoretical analysis for the η0 → ηγγ process.
The methodology in the present work can be summa-

rized as follows. First, we begin calculating the dominant
chiral-loop contribution, that is, the Oðp4Þ diagrams con-
taining two vertices of the lowest order Lagrangian and one
loop of charged pions or kaons. We employ the large-Nc
limit of ChPT and regard the singlet state η0 as the ninth
pseudo-Goldstone boson of the theory. In addition, we
simplify the calculations by assuming the isospin limit,
which allows one to consider only the kaon loops for the
two ηð0Þ → π0γγ decays. The Oðp8Þ loop corrections from
diagrams with two anomalous vertices are very small [4]
and, therefore, not considered. The explicit contributions of
intermediate vector and scalar mesons are accounted for
by means of the VMD and linear sigma model (LσM)
frameworks. Accordingly, we compute the dominant con-
tribution, i.e., the exchange of intermediate vector mesons,
through the decay chain P0 → Vγ → P0γγ. Next, we con-
sider the scalar meson contributions, providing an all-order
estimate of the scalar effects, through a calculation
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performed within the LσM, which enables us to, first, fix
the sign ambiguity and, second, assess the relevance of the
full scalar meson propagators, as opposed to integrating
them out.
The structure of this work is as follows. In Sec. II, we

review the ChPT calculation for the η → π0γγ and provide
theoretical expressions for the η0 → π0γγ and η0 → ηγγ
decays. In Sec. III, we calculate the effects of intermediate
vector meson exchanges, which represent the dominant
contribution, using the VMD model. In Sec. IV, the chiral-
loop prediction is substituted by a LσM calculation where
the effects of scalar meson resonances are taken into
account explicitly. In Sec. V, theoretical results for the
decay widths and associated diphoton energy spectra are
presented for the three decay processes ηð0Þ → π0γγ
and η0 → ηγγ, and a detailed discussion of the results is
given. Some final remarks and conclusions are presented
in Sec. VI.

II. CHIRAL-LOOP CALCULATION

Let us focus our attention to the η → π0γγ process. At
order Oðp2Þ, there are no contributions to this process and,
at Oðp4Þ, the contributions come from diagrams with two
vertices from the lowest order chiral Lagrangian and a loop
of charged pions and kaons. However, as discussed in
Sec. I, the contribution from kaon loops is dominant and the

pion loops vanish in the isospin limit. The invariant
amplitude can, thus, be written as follows:

AχPT
η→π0γγ

¼ 2α

π

1

m2
Kþ

LðsKÞfag ×Aχ
KþK−→π0η

; ð1Þ

where α is the fine-structure constant, mKþ is the mass of
the charged kaon, LðŝÞ is the loop integral,

LðzÞ ¼ −
1

2z
−

2

z2
f

�
1

z

�
;

fðzÞ ¼
8<
:

1
4

�
log 1þ ffiffiffiffiffiffiffiffi

1−4z
p

1−
ffiffiffiffiffiffiffiffi
1−4z

p − iπ
�
2

for z < 1
4

−½arcsinð 1
2
ffiffi
z

p Þ�2 for z > 1
4

; ð2Þ

and sK ¼ s=m2
Kþ , with s ¼ ðq1 þ q2Þ2 ¼ 2q1 · q2 being the

invariant mass of the two outgoing photons. The Lorentz
structure fag in Eq. (1) is defined as

fag ¼ ðϵ1 · ϵ2Þðq1 · q2Þ − ðϵ1 · q2Þðϵ2 · q1Þ; ð3Þ

where ϵ1;2 and q1;2 are the polarization and four-momentum
vectors of the final photons and Aχ

KþK−→π0η
is the four-

pseudoscalar amplitude, which can be expressed as
follows1:

AχPT
KþK−→π0η

¼ 1

4f2π

��
s −

m2
η

3
−
8m2

K

9
−
m2

π

9

�
ðcosφP þ

ffiffiffi
2

p
sinφPÞ þ

4

9
ð2m2

K þm2
πÞ
�
cosφP −

sinφPffiffiffi
2

p
��

; ð4Þ

where fπ is the pion decay constant and φP is the η-η0
pseudoscalar mixing angle in the quark-flavor basis at
lowest order in ChPT defined as

jηi ¼ cosφPjηNSi − sinφPjηSi;
jη0i ¼ sinφPjηNSi þ cosφPjηSi; ð5Þ

with jηNSi ¼ 1ffiffi
2

p juūþ dd̄i and jηSi ¼ jss̄i [34].
It must be noted that, in the seminal work of Ref. [4], the

chiral-loop prediction was computed taking only into
account the η8 contribution and the mixing angle was
fixed to θP ¼ φP − arctan

ffiffiffi
2

p ¼ arcsinð−1=3Þ ≃ −19.5°.
As explained before, in this work, the singlet contribution

is also considered and the dependence on the mixing angle
is made explicit.
For the η0 → π0γγ process, the associated amplitude

is that of Eq. (1) with the replacements mη → mη0 ,

ðcosφPþ
ffiffiffi
2

p
sinφPÞ→ ðsinφP−

ffiffiffi
2

p
cosφPÞ, and ðcosφP−

sinφP=
ffiffiffi
2

p Þ → ðsinφP þ cosφP=
ffiffiffi
2

p Þ in Eq. (4). Finally,
for the η0 → ηγγ decay, two types of amplitudes contribute,
one associated to a loop of charged kaons, as in the former
two cases, and the other to a loop of charged pions, which
in this case is not suppressed by G-parity. Again, the
corresponding amplitudes have the same structure as
Eq. (1) but replacing sK → sπ and mKþ → mπþ for the
pion loop, and, instead of Eq. (4), one must make use of

AχPT
KþK−→ηη0 ¼ −

1

4f2π

��
s −

m2
η þm2

η0

3
−
8m2

K

9
−
2m2

π

9

�� ffiffiffi
2

p
cos 2φP þ sin 2φP

2

�

þ 4

9
ð2m2

K −m2
πÞ
�
2 sin 2φP −

cos 2φPffiffiffi
2

p
��

ð6Þ

1This amplitude should not be confused with the four-pseudoscalar scattering amplitude calculated in ChPT at lowest order.
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and

AχPT
πþπ−→ηη0 ¼

m2
π

2f2π
sin 2φP; ð7Þ

for the loop of kaons and pions, respectively.
To the best of our knowledge, the amplitudes for the

η0 → π0γγ and η0 → ηγγ constitute the first chiral-loop
predictions for these processes.

III. VMD CALCULATION

As discussed in Sec. I, VMD can be used to calculate an
all-order estimate for the contribution of intermediate
vector meson exchanges to the processes of interest in
this work. In Ref. [4], for example, it was found that the
VMD amplitude represents the dominant contribution to
the η → π0γγ decay, and, as it will be shown in Sec. V, this
is also the case for the η0 → π0γγ and η0 → ηγγ processes.
There is a total of six Feynman diagrams contributing to

each one of the three decay processes, corresponding to the
exchange of the three neutral vector mesons ρ0, ω, and ϕ.
After some algebra, one arrives at the following expression
for the invariant amplitude of the η → π0γγ decay:

AVMD
η→π0γγ

¼
X

V¼ρ0;ω;ϕ

gVηγgVπ0γ

�ðP · q2 −m2
ηÞfag − fbg

DVðtÞ

þ
	
q2 ↔ q1
t ↔ u


�
; ð8Þ

where t;u¼ðP−q2;1Þ2¼m2
η−2P ·q2;1 are the Mandelstam

variables, and the Lorentz structures fag and fbg are
defined as

fag ¼ ðϵ1 · ϵ2Þðq1 · q2Þ − ðϵ1 · q2Þðϵ2 · q1Þ;
fbg ¼ ðϵ1 · q2Þðϵ2 · PÞðP · q1Þ þ ðϵ2 · q1Þðϵ1 · PÞðP · q2Þ

− ðϵ1 · ϵ2ÞðP · q1ÞðP · q2Þ − ðϵ1 · PÞðϵ2 · PÞðq1 · q2Þ;
ð9Þ

where P is the four-momentum of the decaying particle,
and ϵ1;2 and q1;2 are the polarization and four-momentum
vectors of the final photons, respectively. The denominator
DVðtÞ ¼ m2

V − t − imVΓV is the vector meson propagator,
with V ¼ ω and ϕ; for the ρ0 propagator, we use, instead,
an energy-dependent decay width

Γρ0ðtÞ ¼ Γρ0 × ½ðt − 4m2
πÞ=ðm2

ρ0
− 4m2

πÞ�3=2 × θðt − 4m2
πÞ:
ð10Þ

The amplitudes for the η0 → π0γγ and η0 → ηγγ decays
have a similar structure to that of Eq. (8), with the replace-
ments m2

η → m2
η0 , and gVηγgVπ0γ → gVη0γgVπ0γ for the η0 →

π0γγ and gVηγgVπ0γ → gVη0γgVηγ for the η0 → ηγγ case.

To parametrize the VPγ coupling constants, gVPγ, one can
make use of a simple phenomenological quark-based model
first presented in Ref. [35], which was initially developed to
describe V → Pγ and P → Vγ radiative decays. The cou-
pling constants can, thus, be written as [35,36]

gρ0π0γ ¼
1

3
g;

gρ0ηγ ¼ gzNS cosφP;

gρ0η0γ ¼ gzNS sinφP;

gωπ0γ ¼ g cosφV;

gωηγ ¼
1

3
g

�
zNS cosφP cosφV − 2

m̄
ms

zS sinφP sinφV

�
;

gωη0γ ¼
1

3
g

�
zNS sinφP cosφV þ 2

m̄
ms

zS cosφP sinφV

�
;

gϕπ0γ ¼ g sinφV;

gϕηγ ¼
1

3
g

�
zNS cosφP sinφV þ 2

m̄
ms

zS sinφP cosφV

�
;

gϕη0γ ¼
1

3
g

�
zNS sinφP sinφV − 2

m̄
ms

zS cosφP cosφV

�
;

ð11Þ
where g is a generic electromagnetic constant, φP is, again,
the pseudoscalar η-η0 mixing angle in the quark-flavor basis,
φV is the vectorω-ϕmixing angle in the same basis, m̄=ms is
the quotient of constituent quark masses,2 and zNS and zS are
the nonstrange and strangemultiplicative factors accounting
for the relative meson wave function overlaps [35,36].
It is important to note that in Ref. [4], the VMD

prediction for the η → π0γγ process was calculated assum-
ing equal ρ0 and ω contributions and without including the
decay widths in the propagators. These approximations
were valid in this particular case, since the phase space
available prevents the vector mesons to resonate. However,
for the η0 → π0γγ case, the available phase space allows
these vectors to be on shell and the introduction of their
decay widths is mandatory. For consistency, we include the
decay widths in the vector meson propagators of the three
decays of interest in this work.

IV. LσM CALCULATION

An all-order estimate for the contribution of scalar
meson exchanges to the processes under study can be
obtained by means of the LσM, where the complementarity

2The flavor symmetry-breaking mechanism associated to
differences in the effective magnetic moments of light (i.e., up
and down) and strange quarks in magnetic dipolar transitions
is implemented via constituent quark mass differences. Specifi-
cally, one introduces a multiplicative SUð3Þ-breaking term,
i.e., 1 − se ≡ m̄=ms, in the s-quark entry of the quark-charge
matrix Q.
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between this model and ChPT can be used to include the
scalar meson poles at the same time as keeping the correct
low-energy behavior expected from chiral symmetry. This
procedure was applied with success to the related V →
P0P0γ decays [13].
Within this framework, the two ηð0Þ → π0γγ processes

proceed through kaon loops and by exchanging the
a0ð980Þ in the s-channel and the κ in the t- and u-channels.
The η0 → ηγγ decay is more complex, as it proceeds

through both kaon and pion loops; the σð600Þ and the
f0ð980Þ are exchanged in the s-channel for both types of
loops, while in the u- and t-channels, the κ is exchanged for
kaon loops and the a0ð980Þ for pion loops.
The loop contributions take place through combinations

of three diagrams for each one of the intermediate states,
which added together give finite results. The amplitudes for
the three ηð0Þ → π0γγ and η0 → ηγγ processes in the LσM
can, thus, be expressed as follows:

ALσM
η→π0γγ

¼ 2α

π

1

m2
Kþ

LðsKÞfag ×ALσM
KþK−→π0η

; ð12Þ

ALσM
η0→π0γγ

¼ 2α

π

1

m2
Kþ

LðsKÞfag ×ALσM
KþK−→π0η0 ; ð13Þ

ALσM
η0→ηγγ ¼

2α

π

1

m2
π
LðsπÞfag ×ALσM

πþπ−→ηη0 þ
2α

π

1

m2
Kþ

LðsKÞfag ×ALσM
KþK−→ηη0 ; ð14Þ

where LðzÞ, sπ;K , and fag are the same as in Sec. II. The four-pseudoscalar amplitudes ALσM
ηð0Þπ0→KþK− and ALσM

η0η→KþK−ðπþπ−Þ
in Eqs. (12)–(14) turn out to be s, t, and u dependent and can be expressed in terms of the pion and kaon decay constants, fπ
and fK , the masses of the scalar and pseudoscalar mesons involved in the processes, and the scalar and pseudoscalar mixing
angles in the quark-flavor basis, φS and φP, where φS is defined as

jσi ¼ cosφSjσNSi − sinφSjσSi;
jf0i ¼ sinφSjσNSi þ cosφSjσSi; ð15Þ

with jσNSi ¼ 1ffiffi
2

p juūþ dd̄i and jσSi ¼ jss̄i. For our analysis, the procedure outlined in Ref. [13] is applied in order to

obtain a consistent full s-dependent amplitude. In essence, this involves replacing the t- and u-channel contributions by
the result of subtracting from the chiral-loop amplitude, i.e., Eqs. (4)–(7), the infinite mass limit of the s-channel scalar
contribution.3 We refer the interested reader to Ref. [13] for further details. After performing these replacements, one
finally obtains the following scalar amplitudes:

ALσM
KþK−→π0η

¼ 1

2fπfK

	
ðs −m2

ηÞ
m2

K −m2
a0

Da0ðsÞ
cosφP þ 1

6
½ð5m2

η þm2
π − 3sÞ cosφP

−
ffiffiffi
2

p
ðm2

η þ 4m2
K þm2

π − 3sÞ sinφP�


; ð16Þ

ALσM
KþK−→π0η0 ¼

1

2fπfK

	
ðs −m2

η0 Þ
m2

K −m2
a0

Da0ðsÞ
sinφP þ 1

6
½ð5m2

η0 þm2
π − 3sÞ sinφP

þ
ffiffiffi
2

p
ðm2

η0 þ 4m2
K þm2

π − 3sÞ cosφP�


; ð17Þ

ALσM
KþK−→ηη0 ¼

s −m2
K

2fK

�
gσηη0

DσðsÞ
ðcosφS −

ffiffiffi
2

p
sinφSÞ þ

gf0ηη0

Df0ðsÞ
ðsinφS þ

ffiffiffi
2

p
cosφSÞ

�

−
s −m2

K

4fπfK

�
1 − 2

�
2fK
fπ

− 1

��
sinð2φPÞ −

1

4f2π

��
s −

m2
η þm2

η0

3
−
8m2

K

9
−
2m2

π

9

�

×

� ffiffiffi
2

p
cos 2φP þ sin 2φP

2

�
þ 4

9
ð2m2

K −m2
πÞ
�
2 sin 2φP −

cos 2φPffiffiffi
2

p
��

; ð18Þ

3It is important to note that this approximation is possible due to the fact that, in the t- and u-channels, the exchanged scalar mesons do
not resonate.
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ALσM
πþπ−→ηη0 ¼

s −m2
π

fπ

�
gσηη0

DσðsÞ
cosφS þ

gf0ηη0

Df0ðsÞ
sinφS

�
þ 2m2

π − s
2f2π

sin 2φP; ð19Þ

where DSðsÞ are the S ¼ σ; f0, and a0 propagators defined in Appendix. Note that they are complete one-loop
propagators, as the usual Breit-Wigner description is not adequate in this case due to either the presence of thresholds
or a very wide decay width. The required couplings in Eqs. (18) and (19) are given by

gσηη0 ¼
sin 2φP

2fπ

	
ðm2

ηcos2φP þm2
η0sin

2φP −m2
a0Þ

�
cosφS þ

ffiffiffi
2

p
sinφS

�
2
fK
fπ

− 1

��

− ðm2
η0 −m2

ηÞ
�
cosφS cos 2φP −

1

2
sinφS sin 2φP

�

; ð20Þ

gf0ηη0 ¼
sin 2φP

2fπ

	
ðm2

ηcos2φP þm2
η0sin

2φP −m2
a0Þ

�
sinφS −

ffiffiffi
2

p
cosφS

�
2
fK
fπ

− 1

��

− ðm2
η0 −m2

ηÞ
�
sinφS cos 2φP þ 1

2
cosφS sin 2φP

�

: ð21Þ

These couplings can be written in different equivalent
forms; here, the ones involving the a0 mass and the pion
decay constant have been chosen for the sake of clarity. We
can anticipate that taking into account the effects of scalar
meson exchanges in an explicit way does not provide a
noticeable improvement with respect to the chiral-loop
prediction, except for the η0 → ηγγ case, where the σ
contribution turns out to be significant (cf. Sec. V).

V. RESULTS AND DISCUSSION

In this section, use of the theoretical expressions devel-
oped thus far is made to present quantitative results. The
decay widths for the processes of interest are calculated
using the standard formula for the three-body decay [14],
with the squared amplitude given by

jAj2 ¼ jAVMDj2 þ jALσMj2 þ 2ReA�VMDALσM; ð22Þ
where the vector (AVMD) and scalar (ALσM) exchange
contributions have been presented in Secs. III and IV,
respectively. The last term in Eq. (22) represents the
interference between the scalar and vector effects.

For the numerical values of the masses and decay widths
of the participating resonances, we use the most up-to-date
experimental data from the PDG [14], while for the pion
and kaon decay constants we employ fπ ¼ 92.07 MeV and
fK ¼ 110.10 MeV, respectively. For the VMD couplings4

[cf. Eq. (8)], we follow two different approaches: (i) the
gVPγ are obtained directly from the experimental decay
widths of the V → Pγ and P → Vγ (P ¼ π0; η; η0 and
V ¼ ρ0;ω;ϕ) radiative transitions [14] by making use of

ΓV→Pγ ¼
1

3

g2VPγ
32π

�
m2

V −m2
P

mV

�
3

;

ΓP→Vγ ¼
g2VPγ
32π

�
m2

P −m2
V

mP

�
3

ð23Þ

and are summarized in Table I; (ii) the phenomenological
model from Ref. [35] is employed to parametrize the VMD
couplings [cf. Eq. (11)], and, by performing an optimiza-
tion fit to the most up-to-date VPγ experimental data [14],
one can find preferred values for the following parameters5:

TABLE I. PDG values for the branching ratios of the VðPÞ →
PðVÞγ transitions and the calculated gVPγ couplings directly from
experiment (cf. Eq. (23)).

Decay BR [14] jgVPγ j GeV−1

ρ0 → π0γ ð4.7� 0.6Þ × 10−4 0.22(1)
ρ0 → ηγ ð3.00� 0.21Þ × 10−4 0.48(2)
η0 → ρ0γ ð28.9� 0.5Þ% 0.40(1)
ω → π0γ ð8.40� 0.22Þ% 0.70(1)
ω → ηγ ð4.5� 0.4Þ × 10−4 0.135(6)
η0 → ωγ ð2.62� 0.13Þ% 0.127(4)
ϕ → π0γ ð1.30� 0.05Þ × 10−3 0.041(1)
ϕ → ηγ ð1.303� 0.025Þ% 0.2093(20)
ϕ → η0γ ð6.22� 0.21Þ × 10−5 0.216(4)

4Note that, for the LσM couplings, i.e., gσηη0 and gf0ηη0 , the
current experimental state-of-the-art does not allow obtaining the
associated numerical values directly from the empirical data.
Therefore, one must resort to theoretical or phenomenological
models to estimate them [cf. Eqs. (20) and (21)]. Likewise, the
mixing angle in the scalar sector is fixed in our calculations to
φS ¼ −8° following Ref. [13].

5Note that this phenomenological model, contrary to the one
presented in Ref. [36], does not take into account isospin-
violating effects and this is reflected in the quality of the fit,
which is far from ideal, χ2=d:o:f ¼ 5.3. However, in this study,
we are working in the isospin limit and, therefore, this simplified
version of the model suffices for our purposes. Should one have
used more simplified models by setting, for example, zNS ¼ 1
and zS ¼ 1, or zNS ¼ 1 and zSm̄=ms ¼ 1, would lead to qualities
of fits of χ2=d:o:f ¼ 18.3 and χ2=d:o:f ¼ 110.4, respectively,
which are clearly not acceptable.
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g ¼ 0.70� 0.01 GeV−1; zSm̄=ms ¼ 0.65� 0.01;

ϕP ¼ ð41.4� 0.5Þ°; ϕV ¼ ð3.3� 0.1Þ°;
zNS ¼ 0.83� 0.02: ð24Þ

Hereafter, we refer to the former couplings as empirical and
the later as model-based couplings.
The numerical results obtained using both the empirical

and model-based VMD couplings are summarized in
Table II. There, we show the contributions from ChPT,
the LσM, which replaces ChPT when scalar meson poles
are incorporated explicitly, and VMD. In addition, the
theoretical decay widths and corresponding branching
ratios are presented, together with the associated exper-
imental values. Note that the quoted errors come from the
uncertainties associated to the VMD couplings. Using the
empirical VMD couplings, one finds that, while our pre-
diction for the η → π0γγ process, BR ¼ 1.35ð8Þ × 10−4, is
approximately a factor of 2 smaller than the PDG reported
value6 [14] BR ¼ 2.56ð22Þ × 10−4, our theoretical predic-
tions for the η0 → π0γγ and η0 → ηγγ, BR¼2.91ð21Þ×10−3

and BR ¼ 1.17ð8Þ × 10−4, are consistent with the BESIII
experimental measurements [10,11] BR ¼ 3.20ð7Þð23Þ ×
10−3 and BR ¼ 8.25ð3.41Þð72Þ × 10−5, respectively.
Employing, instead, the model-based VMD couplings from
Eq. (11) and making use of the fit values for the model
parameters shown in Eq. (24), we find that the branching
ratio for the η → π0γγ decay, BR ¼ 1.30ð8Þ × 10−4, is very
much in line with that obtained using the empirical cou-
plings, and approximately half the corresponding experi-
mental value.7 Thus, our theoretical results for this reaction
appear to be robust against small variations of the VMD
couplings. For the η0 → π0γγ and η0 → ηγγ processes, we

obtain BR ¼ 3.57ð25Þ × 10−3 and BR ¼ 1.07ð8Þ × 10−4,
which, once again, are in agreement with the values reported
by BESIII [10,11]. The branching ratio for the later process
turns out to be BR ¼ 1.11ð8Þ × 10−4 and BR ¼ 1.00ð7Þ ×
10−4 for the empirical and model-based couplings using a
Breit-Wigner propagator for the σ meson, where the pole
parameters quoted in Ref. [14] have been utilized, instead of
the complete one-loop propagator. As can be seen, the use of
either propagator provides very approximate results; any
differences surface in the associated energy spectra.
Our predictions for the diphoton energy spectra are

compared with the corresponding experimental data in
Fig. 1. One can see from both plots that the shape of the
spectra is captured well by our theoretical predictions. The
spectrum of the η → π0γγ decay [Fig. 1(a)] appears to
present a normalization offset.8 Notwithstanding this, the
exact same theoretical treatment shows very good agree-
ment between our predictions for the η0 → π0γγ spectrum,
using either set of VMD couplings, and experiment. In
addition, the use of one set of couplings or the other makes
little difference for the η → π0γγ, though it appears that the
model-based couplings capture slightly better the exper-
imental data for the η0 → π0γγ. For this reason, as well as
due to its increased aesthetic appeal and the fact that it
better underpins the power of the theoretical description,
from this point onward we will stick to using the model-
based VMD couplings for any subsequent calculation.
The different contributions to the diphoton energy

spectrum for the η → π0γγ decay are shown in Fig. 2.
As it can be seen, the spectrum is dominated by the
exchange of vector mesons, accounting for 93%, out of
which, the weights for the ρ0, ω, and ϕ are 27%, 21%, and
0%, respectively; the remaining 52% comes from the
interference between the three participating vector mesons.
The contribution of the scalar exchanges accounts for less
than 1%, making it very difficult to isolate the effect of
individual scalar mesons, even with the advent of more
precise experimental data. The interference between the

TABLE II. Chiral-loop, LσM, and VMD predictions for the η → π0γγ, η0 → π0γγ, and η0 → ηγγ decays with empirical and model-
based VMD couplings. The total decay widths are calculated from the coherent sum of the LσM and VMD contributions.

Decay Couplings Chiral loop LσM VMD Γ BRth BRexp [14]

η → π0γγ (eV)
Empirical 1.87 × 10−3 5.0 × 10−4 0.16(1) 0.18(1) 1.35ð8Þ × 10−4

2.56ð22Þ × 10−4Model-based 1.87 × 10−3 5.0 × 10−4 0.16(1) 0.17(1) 1.30ð1Þ × 10−4

η0 → π0γγ (keV)
Empirical 1.1 × 10−4 1.3 × 10−4 0.57(3) 0.57(3) 2.91ð21Þ × 10−3

3.20ð7Þð23Þ × 10−3Model-based 1.1 × 10−4 1.3 × 10−4 0.70(4) 0.70(4) 3.57ð25Þ × 10−3

η0 → ηγγ (eV)
Empirical 1.4 × 10−2 3.29 21.2(1.2) 23.0(1.2) 1.17ð8Þ × 10−4

8.25ð3.41Þð0.72Þ × 10−5Model-based 1.4 × 10−2 3.29 19.1(1.0) 20.9(1.0) 1.07ð7Þ × 10−4

6Note that it is still compatible at the ∼5σ level with the
experimental value though.

7Oset et al. considered additional contributions in Ref. [6],
such as axial exchanges in the chiral loops and VMD loop
contributions, where the associated amplitudes had been unita-
rized by making use of the Bethe-Salpenter equation for the
resummation of the meson-meson scattering amplitudes, as
well as contributions from the three-meson axial anomaly;
all this allowed them to raise their prediction up to Γη→π0γγ ¼
0.33� 0.08 eV.

8One could argue, though, that the experimental central values
seem to lie further apart from our predictions for decreasing m2

γγ ,
but this effect may be linked to the larger uncertainties associated
to the measurements at low m2

γγ.
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intermediate scalar and vector exchanges is constructive
and accounts for about 7%. The contributions to the energy
spectrum of the η0 → π0γγ process are displayed in Fig. 3.
Once again, the exchange of vector mesons completely
dominates the spectrum contributing approximately with
100.4% to the total signal, while the effects of scalar meson
exchanges and their interference with the formers are
negligible with 0% and −0.4% (destructive interference),
respectively. As well as this, the ω contribution prevails
with the 78% of the total VMD signal, while the ρ0 and ϕ
account for the 5% and 0%, respectively; the remaining
17% comes from the interference between the vector
resonances. Finally, the different contributions to the η0 →
ηγγ energy spectrum are presented in Fig. 4. As expected,
the contribution to the total signal from the exchange of
vector mesons predominates again with about the 91%,

with the ρ0, ω, and ϕ accounting for 59%, 15%, and 1% of
the VMD signal, respectively, and the remaining 25% being
the result of their interference; interestingly, the scalar
meson effects turn out to be sizable in this process,
weighing approximately 16%, with the exchange of σ
mesons dominating the scalar signal.9 The interference
between the scalar and vector mesons is destructive and
accounts for around 7% and significantly influences the
shape of the spectrum. It is worth noting the effect of using
the complete one-loop propagator for the σ exchange which

FIG. 1. Comparison between the experimental diphoton energy spectra for the η → π0γγ and η0 → π0γγ and our theoretical predictions
using the empirical and model-based VMD couplings. The experimental data are taken from Ref. [23] (A2), Ref. [19] (Crystal Ball), and
Ref. [10] (BESIII).

FIG. 2. Contributions to the η → π0γγ diphoton energy spec-
trum (solid black), using the model-based VMD couplings, from
intermediate vector (dashed red) and scalar (dotted blue) meson
exchanges, and their interference (dot-dashed green).

FIG. 3. Contributions to the η0 → π0γγ diphoton energy spec-
trum (solid black), using the model-based VMD couplings, from
intermediate vector (dashed red) and scalar (dotted blue) meson
exchanges, and their interference (dot-dashed green).

9A possible improvement to our prediction for the scalar
meson contribution may be possible by considering a more
sophisticated scalar scattering amplitude Aπþπ−→η0η [cf. Eq. (19)]
as has successfully been done for the associated η0 → ηππ
decay process in Ref. [37].
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manifests at them2
γγ ¼ 0.078 GeV peak and is associated to

the πþπ− threshold. This peak is absent should the Breit-
Wigner propagator for the σ exchange have been used.
Our inability to describe the total decay widths for the

three ηð0Þ → π0γγ and η0 → ηγγ decay processes simulta-
neously within the same theoretical framework and values
for the VMD couplings is somewhat bothersome. The
offset that appears to be affecting the diphoton energy
spectrum of the first process, η → π0γγ [cf. Fig. 1(a)], and
consequently its integrated decay width might be linked to
a normalization problem associated to the parameter g in
Eqs. (11) and (24). One could argue, though, that this
parameter is fixed by the VPγ experimental data, which is
measured nowadays to a high degree of accuracy and leads
to satisfactory predictions for the other two processes, i.e.,
η0 → π0γγ and η0 → ηγγ, and, therefore, should not be
changed. Despite this, an attempt has been made to assess
the preferred value for the parameter g by the experimental
data available from Ref. [23] (A2), Ref. [19] (Crystal Ball),
and Ref. [10] (BESIII) for the two ηð0Þ → π0γγ processes
by performing a combined fit where g is left as a free
parameter. The resulting g turns out to be roughly con-
sistent with the one provided in Eq. (24) and used in all our
calculations, which is explained by the fact that the data
from BESIII contain significantly smaller uncertainties and,
therefore, its statistical weight in the fit is greater. Hence,
we are led to consider whether this puzzle might be
somehow highlighting the need for a more sophisticated
theoretical treatment; however, given the complexity asso-
ciated to performing these experimental measurements and
the recent history of the η → π0γγ empirical data,10 one
cannot rule out the possibility that this decreasing trend

seen over time in the measured values of the BR might
persist should new and more precise measurements were
available and eventually converge with our theoretical
prediction, especially in light of our successful description
of the data from BESIII for the other two sister processes.

VI. CONCLUSIONS

In this work, we have presented a thorough theoretical
analysis of the doubly radiative decays ηð0Þ → π0γγ and
η → ηγγ, and provided theoretical results for their associ-
ated decay widths and diphoton energy spectra in terms of
intermediate scalar and vector meson exchange contribu-
tions using the LσM and VMD frameworks, respectively.
A complete set of theoretical expressions for the tran-

sition amplitudes from chiral perturbation theory, vector
meson dominance, and the linear sigma model have
been given for the three decay processes. Some of these
expressions constitute, to the best of our knowledge, the
first predictions of this kind. In addition, we have provided
quantitative results by making use of numerical input from
the PDG [14]. In particular, for the estimation of the VMD
coupling constants, gVPγ , two different paths have been
followed whereby they have been either extracted directly
from the experimental VðPÞ → PðVÞγ decay widths or
from a phenomenological quark-based model and a fit to
experimental data. A summary of the predicted decay
widths, theoretical branching ratios, and contributions to
the total signals for the three doubly radiative decays
η → π0γγ and η0 → π0ðηÞγγ is shown in Table II, and a
discussion of the results obtained and how they compare to
available experimental data has been carried out. As well as
this, the invariant mass spectra associated to these processes
are shown in Figs. 2–4, respectively, using the model-based
VMD couplings. It is worth highlighting that, while vector
meson exchanges vastly dominate over the scalar contri-
butions for the ηð0Þ → π0γγ decays, we find that, for the
η0 → ηγγ, the scalar meson effects turn out to be substantial,
specially that of the σ meson, and this represents an
opportunity for learning details about this still poorly
understood scalar state. In particular, we look forward to
the release of the energy spectrum data for the η0 → ηγγ
process by the BESIII Collaboration to assess the robust-
ness of our theoretical approach.
Interestingly, our predictions for the η → π0γγ are found

to be approximately a factor of 2 smaller than the experi-
mental measurements, whereas our theoretical predictions
for the η0 → π0γγ and η0 → ηγγ are in good agreement with
recent measurements performed by BESIII. It appears that
it is not possible to reconcile our predictions for the three
processes with their corresponding experimental counter-
parts simultaneously using the same underlying theoretical
framework and values for the coupling constants. This
puzzle might be pointing toward potential limitations of our
theoretical treatment or, perhaps, the need for more precise

FIG. 4. Contributions to the η0 → ηγγ diphoton energy spec-
trum (solid black), using the model-based VMD couplings, from
intermediate vector (dashed red) and scalar (dotted blue) meson
exchanges, and their interference (dot-dashed green).

10For instance, in 1984 Alde et al. found BR ¼ 7.2ð1.4Þ ×
10−4 [17], while more recent measurements appear to indicate
BR¼ 2.52ð23Þ×10−4 [23] and BR ¼ 2.21ð24Þð47Þ × 10−4 [19].
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measurements for the η → π0γγ decay, as our approach
seems to be capable of successfully predicting the exper-
imental data for the other two processes without the need
for manual adjustment of the numerical input.
As a final remark, we would very much like to encourage

experimental groups to measure these decays once again to
confirm whether our predictions are correct or a more
refined theoretical description is required.
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APPENDIX: COMPLETE ONE-LOOP
PROPAGATORS

The complete one-loop propagators for the σ, f0, and a0
scalar resonances are defined as follows:

DðsÞ ¼ s −m2
R þ ReΠðsÞ − ReΠðm2

RÞ þ iImΠðsÞ; ðA1Þ

wheremR is the renormalized mass of the scalar meson and
ΠðsÞ is the one-particle irreducible two-point function.
ReΠðm2

RÞ is introduced to regularize the divergent behavior
of ΠðsÞ. The propagator so defined is well behaved when a
threshold is approached from below, thus improving the
usual Breit-Wigner prescription, which is not particularly
suited for spinless resonances (see Ref. [38] for details).
The real and imaginary parts of ΠðsÞ for σ in the first

Riemann sheet11 can be written as ðRðsÞ≡ ReΠðsÞ;
IðsÞ≡ ImΠðsÞÞ,

RðsÞ ¼ g2σππ
16π2

�
2 − βπ log

�
1þ βπ
1 − βπ

�
θπ − 2β̄π arctan

�
1

β̄π

�
θ̄π

�

þ g2
σKK̄

16π2

�
2 − βK log

�
1þ βK
1 − βK

�
θK − 2β̄K arctan

�
1

β̄K

�
θ̄K

�
; ðA2Þ

IðsÞ ¼ −
g2σππ
16π

βπθπ −
g2
σKK̄

16π
βKθK; ðA3Þ

where βi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

i =s
p

for i ¼ ðπ; KÞ, β̄i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

i =s − 1
p

, θi ¼ θðs − 4m2
i Þ, and θ̄i ¼ θð4m2

i − sÞ. The couplings of σ to

pions and kaons are written in the isospin limit12; thus, g2σππ ¼ 3
2
g2σπþπ− ¼ 3

2
ðm2

π−m2
σ

fπ
cosφSÞ2 and g2

σKK̄ ¼ 2g2σKþK− ¼
1
2
½m2

K−m
2
σ

fK
ðcosφS −

ffiffiffi
2

p
sinφSÞ�2. The renormalized mass of the σ meson for the calculations is fixed to mσ ¼ 498 MeV.13

For the f0 exchange, the real and imaginary parts of the two-point function in the first Riemann sheet are

RðsÞ ¼ g2f0ππ
16π2

�
2 − βπ log

�
1þ βπ
1 − βπ

�
θπ − 2β̄π arctan

�
1

β̄π

�
θ̄π

�

þ
g2f0KK̄
16π2

�
2 − βK log

�
1þ βK
1 − βK

�
θK − 2β̄K arctan

�
1

β̄K

�
θ̄K

�
; ðA4Þ

11We follow the convention from Ref. [39] for the definition of the first Riemann sheet of the complex square root and complex
logarithm functions.

12In our analysis, we work in the isospin limit and, therefore, the mass difference between K0 and Kþ is not taken into account for the
KK̄ threshold.

13This value is obtained by solving the corresponding pole equationDðsPÞ ¼ 0, with sP ¼ m2
P − imPΓP, in the second Riemann sheet

and ensuring that the pole mass and width are in accordance with the experimental data.
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IðsÞ ¼ −
g2f0ππ
16π

βπθπ −
g2f0KK̄
16π

βKθK; ðA5Þ

where βi, β̄i, θi, and θ̄i are defined as before. Once again, the couplings of f0 to pions and kaons are written in the isospin

limit; accordingly, g2f0ππ ¼ 3
2
g2f0πþπ− ¼ 3

2
ðm

2
π−m2

f0
fπ

sinφSÞ2 and g2f0KK̄ ¼ 2g2f0KþK− ¼ 1
2
½m

2
K−m

2
f0

fK
ðsinφS þ

ffiffiffi
2

p
cosφSÞ�2. The

renormalized mass of the f0 meson for the calculations is fixed to mf0 ¼ 990 MeV. Finally, the real and imaginary parts of
ΠðsÞ for a0 in the first Riemann sheet are

RðsÞ ¼
g2a0KK̄
16π2

�
2 − βK log

�
1þ βK
1 − βK

�
θK − 2β̄K arctan

�
1

β̄K

�
θ̄K

�

þ g2a0πη
16π2

�
2 −

m2
η −m2

π

s
log

�
mη

mπ

�
− βþπηβ−πη log

�
β−πη þ βþπη
β−πη − βþπη

�
θπη

− 2β̄þπηβ−πη arctan
�
β−πη
β̄þπη

�
θ̄πη þ β̄þπηβ̄−πη log

�
β̄þπη þ β̄−πη
β̄þπη − β̄−πη

�
¯̄θπη

�
; ðA6Þ

IðsÞ ¼ −
g2a0KK̄
16π

βKθK −
g2a0πη
16π

βþπηβ−πηθπη; ðA7Þ

where β�πη ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðmπ �mηÞ2=s

q
, β̄�πη ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmπ �mηÞ2=s − 1

q
, θπη ¼ θ½s − ðmπ þmηÞ2�, θ̄πη ¼ θ½s − ðmπ −mηÞ2�×

θ½ðmπ þmηÞ2 − s�, and ¯̄θπη ¼ θ½ðmπ −mηÞ2 − s�. The couplings of a0 to kaons are also written in the isospin limit;

hence, g2a0KK̄ ¼ 2g2a0KþK− ¼ 1
2
ðm2

K−m
2
a0

fK
Þ2 and g2a0πη ¼ ðm2

η−m2
a0

fπ
cosφPÞ2. For calculations, the renormalized mass of the a0

meson is fixed to ma0 ¼ 980 MeV.
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