
 

Pion-photon transition form factor in light cone sum rules
and tests of asymptotics

N. G. Stefanis *

Ruhr-Universität Bochum, Fakultät für Physik and Astronomie,
Institut für Theoretische Physik II, D-44780 Bochum, Germany

(Received 24 June 2020; accepted 31 July 2020; published 21 August 2020)

We study the pion-photon transition form factor (TFF) Fγ�γπ0ðQ2Þ using a state-of-the art implementa-
tion of light cone sum rules (LCSRs) within fixed-order QCD perturbation theory. The spectral density in
the dispersion relation includes all currently known radiative corrections up to the next-to-next-to-leading-
order (NNLO) and all twist contributions up to order six. Predictions for the TFF are obtained for various
pion distribution amplitudes (DAs) of twist two, including two-loop evolution which accounts for heavy-
quark mass thresholds. The influence of the main theoretical uncertainties is quantified in order to enable a
more realistic comparison with the data. The characteristics of various pion DAs are analyzed in terms of
the conformal coefficients a2 and a4 in comparison with the 1σ and 2σ error regions of the data and the
most recent lattice constraints on a2 with NLO and NNLO accuracy. Our results provide more stringent
bounds on the variation of the pion DA and illuminate the corresponding asymptotic behavior of the
calculated TFF.
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I. INTRODUCTION

In this work we consider the pion-photon transition form
factorFγ�γ�π0ðq21; q22Þ for the process γ�ðq21Þγ�ðq22Þ → π0with
q21 ¼ −Q2 and q22 ¼ −q2 assumingQ2 ≫ q2 and adopting a
single-tagged experimental setup. In that case, one measures
the differential cross section dσðQ2; q2 ¼ 0Þ=dQ2 for the
above exclusive process and selects events in which the π0

and one final-state electron (or positron)—the “tag”—are
registered, while the other lepton remains undetected.
A self-consistent calculation of the TFF within QCD

encompasses various regimes of dynamics from low
Q2 ≲ 1 GeV2, where perturbation theory is unreliable
and nonperturbative effects are eventually more important
but poorly known, up to high Q2 values where one would
expect that the perturbative contributions in terms of a
power-series expansion in the strong coupling prevail and
provide an accurate dynamical picture within perturbative
QCD (see Fig. 1). There are mainly three different sources
of nonperturbative effects related to confinement that
pertain to the TFF: (i) mass generation due to dynamical
chiral symmetry breaking (DCSB), (ii) the bound-state
dynamics of the pion encoded in a light-cone parton

distribution amplitude (DA), and (iii) the hadronic content
of the quasireal photon that is emitted from the untagged
electron (or positron) at large distances and interacts
nonperturbatively with the pion. We do not address
DCSB in this work, but we refer to other approaches
which account for this and use their results in the analysis.
A reliable theoretical scheme able to include the other two
nonperturbative ingredients, together with perturbative
radiative corrections and nonperturbative higher-twist con-
tributions, is the method of light-cone sum rules (LCSRs)
[1,2] in combination with fixed-order perturbation theory
(FOPT) within QCD. This scheme provides computational
techniques which can be used in connection with various
pion DAs and is particularly useful for the analysis of the
experimental data [3,4] that are eventually indicating
discrepant observations applying to the same phenomenon;
see [5,6] for a detailed comparison of various theoretical
approaches and a classification scheme of the predictions.
In this work we present a LCSR-based calculation of the

π − γ TFF which contains several new elements relative to
previous approaches:

(i) The twist-two spectral density includes all presently
known radiative corrections up to the next-to-next-
to-leading order (NNLO), i.e., up to the order of
Oðα2sβ0Þ [7]. The LCSR also contains the twist-four
term and the twist-six contribution [8]. Recently, the
method of LCSRs was combined with the solution of
the renormalization-group (RG) equation [9] to
perform a summation over the radiative corrections
and extend its application tomomentaQ2 < 1 GeV2.

*stefanis@tp2.ruhr-uni-bochum.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 102, 034022 (2020)

2470-0010=2020=102(3)=034022(16) 034022-1 Published by the American Physical Society

https://orcid.org/0000-0003-2902-0972
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.034022&domain=pdf&date_stamp=2020-08-21
https://doi.org/10.1103/PhysRevD.102.034022
https://doi.org/10.1103/PhysRevD.102.034022
https://doi.org/10.1103/PhysRevD.102.034022
https://doi.org/10.1103/PhysRevD.102.034022
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


This momentum regime is outside the scope of the
present investigation.

(ii) The hadronic content of the quasireal photon γðq2Þ
is included in the LCSR by employing a physical
spectral density which models the vector-meson
properties of the quasireal photon in terms of ρ=ω
resonances by means of a Breit-Wigner form.

(iii) Several pion DAs are used as nonperturbative input
and their characteristics are investigated in the
ða2; a4Þ plane, where a2 and a4 are the first non-
trivial coefficients in the conformal expansion of the
twist-two pion DA. Comparison is given with the 1σ
and 2σ error regions created within the LCSR from
the combined sets of the CELLO [10], CLEO [11],
Belle [4], and BABAR(≤9 GeV2) [3] data. The
graphical representation of the TFF predictions also
includes the recently released preliminary BESIII
data [12,13], see also [14,15].

(iv) All pion DAs used in the TFF predictions are
evolved from their normalization scale to the mea-
sured momenta using a NLO (two-loop) evolution
scheme which takes into account heavy-quark mass
thresholds.

(v) A crucial attenuation effect in the conformal ex-
pansion of the TFF within the LCSR approach is
worked out, which marks a crucial difference to
perturbative QCD and is of particular importance
with respect to the behavior of the TFF at large Q2.

(vi) To facilitate the discussion of the asymptotic char-
acteristics of the TFF, a new quantity is introduced
which measures the scaling rate of the scaled TFF
with Q2.

The paper is organized as follows. In Sec. II we present the
theoretical formalism to carry out the TFF calculations. We
specify the applied LCSR and discuss the important
attenuation effect related to the hadronic structure of the
quasireal photon. Our results for the pion DAs and the TFF
predictions are presented in Sec. III. This section includes a
dedicated discussion of the TFF asymptotics. Our con-
clusions are summarized in Sec. IV. The involved evolution

scheme to handle the scale dependence of the pion DA at
the two-loop order by including heavy-quark thresholds is
explained in Appendix A. Appendix B completes the paper
by providing a compilation of the experimental data
together with the corresponding TFF values and uncertain-
ties for the BMS [16] DAs. For the first time, the analogous
values for the platykurtic (pk) DA [17] are also given.

II. FORMALISM

A. QCD factorization

The amplitude Tμν describing the process γ�ðq1Þγ�ðq2Þ →
π0ðPÞ can be defined by the correlation function

Z
d4z e−iq1·zhπ0ðPÞjTfjμðzÞjνð0Þgj0i

¼ iϵμναβqα1q
β
2F

γ�γ�π0ðQ2; q2Þ; ð1Þ

where jμ ¼ 2
3
ūγμu − 1

3
d̄γμd is the quark electromagnetic

current. Expanding the T-product of the composite (local)
current operators in terms ofQ2 and q2 (assuming that they
are both sufficiently large), one gets by virtue of the
factorization theorem, the LO term [18,19]

Fγ�γ�πðQ2; q2Þ ¼ NT

Z
1

0

dx
1

Q2x̄þ q2x
φðtw-2Þ
π ðxÞ ð2Þ

with NT ¼ ffiffiffi
2

p
fπ=3 and φðtw-2Þ

π denoting the pion DA of
twist two. For vanishing q2 this expression reduces to [20]

3ffiffiffi
2

p
fπ

Q2FðLOÞ
γ�γπ0ðQ2Þ ¼

Z
1

0

φðtw-2Þ
π ðxÞ=x ¼ h1=xiπ

¼ 3ð1þ a2 þ a4 þ a6 þ…Þ; ð3Þ

where we have recast the inverse moment h1=xiπ in terms
of the projection coefficients an on the set fψng of the
eigenfunctions of the one-loop Efremov-Radyushkin-
Brodsky-Lepage (ERBL) evolution equation [18,21]:

φðtw-2Þ
π ðx; μ2Þ ¼ ψ0ðxÞ þ

X∞
n¼2;4;…

anðμ2ÞψnðxÞ: ð4Þ

Here ψ0ðxÞ ¼ 6xð1 − xÞ≡ 6xx̄ is the asymptotic pion DA
φasy
π and the higher eigenfunctions are given in terms of the

Gegenbauer polynomials ψnðxÞ ¼ 6xx̄Cð3=2Þ
n ðx − x̄Þ.

The pion DA parametrizes the matrix element

h0jd̄ðzÞγμγ5½z; 0�uð0ÞjπðPÞijz2¼0

¼ ifπPμ

Z
1

0

dxeixðz·PÞ φðtw-2Þ
π ðx; μ2Þ; ð5Þ

where the path-ordered exponential (the lightlike gauge
link) ½z; 0� ¼ P exp ½ig R z

0 taA
μ
aðyÞdyμ� ensures gauge

FIG. 1. Illustration of the single-tag π0 production in a two-
photon process with one highly virtual photon γ�ðQ2Þ and a
quasireal photon γðq2 ∼ 0Þ emitted from the untagged electron
(or positron). The TFF γ�γ → qq̄ → π0 is shown as the con-
volution of the hard quark-gluon subprocesses within fixed-order
perturbative QCD (see the text) with the pion light-cone dis-
tribution amplitude for the pion (shaded oval).
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invariance. It is set equal to unity by virtue of the light-
cone gauge z · A ¼ 0 adopted in this work. Higher-twist
DAs in the light cone operator product expansion of the
correlation function in (1) give contributions to the TFF
that are suppressed by inverse powers of Q2. Physically,

φðtw-2Þ
π ðx;Q2Þ describes the partition of the pion’s longi-

tudinal momentum between its two valence partons, i.e.,
the quark and the antiquark, with longitudinal-momentum
fractions xq ¼ x ¼ ðk0 þ k3Þ=ðP0 þ P3Þ ¼ kþ=Pþ and
xq̄ ¼ 1 − x≡ x̄, respectively. It is normalized to unity,R
1
0 dxφðtw-2Þ

π ðxÞ ¼ 1, so that a0 ¼ 1.
The expansion coefficients anðμ2Þ are hadronic param-

eters and have to be determined nonperturbatively at the
initial scale of evolution μ2, but have a logarithmic Q2

development via αsðQ2Þ governed by the ERBL evolution
equation, see, for instance, [22] for a technical review. The

one-loop anomalous dimensions γð0Þn are the eigenvalues of
ψnðxÞ and are known in closed form [18]. The ERBL
evolution of the pion DA at the two-loop order is more
complicated because the matrix of the anomalous dimen-
sions is triangular in the fψnðxÞg basis and contains off-
diagonal mixing coefficients [8,23–29]. To obtain the TFF
predictions in the present work, we employ a two-loop
evolution scheme (Appendix A), which updates the pro-
cedure given in Appendix D of [28] by including the effects
of crossing heavy-quark mass thresholds in the NLO

anomalous dimensions γð1Þn and also in the evolution of
the strong coupling, see, e.g., [30–32].
The TFF can be expressed in more general form to

read [18,21]

Fγ�γ�π0
QCD ðQ2; q2; μ2FÞ ¼ NT

Z
1

0

dx TðQ2; q2; μ2F; xÞ

× φðtw-2Þ
π ðx; μ2FÞ þ h:tw:; ð6Þ

where μF is the factorization scale between short-distance
and large-distance dynamics and h.tw. denotes higher-twist
contributions. The hard-scattering amplitude T has a
power-series expansion in terms of the strong coupling
as ≡ αsðμ2RÞ=4π, where μR is the renormalization scale. In
order to avoid scheme-dependent numerical coefficients,
we set μF ¼ μR ≡ μ (default choice) relegating the dis-
cussion of the scheme dependence and the factorization/
renormalization scale setting of the TFF to [33,34].
Then we have

TðQ2; q2; μ2; xÞ ¼ TLO þ asTNLO þ a2sTNNLO þ…; ð7Þ

where the short-distance coefficients on the right-hand
side can be computed within FOPT in terms of Feynman
diagrams as those depicted in Fig. 1. In our present
calculation we include the following contributions, cast
in convolution form via (6) with ⊗ ≡ R

1
0 dx,

TLO ¼ T0; ð8aÞ

TNLO ¼ CFT0 ⊗ ½T ð1Þ þ LVð0Þ
þ �; ð8bÞ

TNNLO ¼ CFT0 ⊗ ½β0Tβ þ TΔV þ TL þ T ð2Þ
c �; ð8cÞ

where the abbreviation L≡ ln ½ðQ2yþ q2ȳÞ=μ2� has been
used [7,35].
The dominant term is [35,36]

Tβ ¼
�
T ð2Þ

β þ LðVð1Þ
βþ − T ð1ÞÞ − L2

2
Vð0Þ
þ

�
; ð9Þ

where β0 ¼ 11
3
CA − 4

3
TRNf is the first coefficient of the

QCD β function with TR ¼ 1=2, CF ¼ 4=3, CA ¼ 3 for
SUð3Þc and Nf is the number of active flavors.
Recently, two more contributions to the NNLO radiative

corrections have been calculated in [7] to which we refer
for their explicit expressions and further explanations.
These are

TΔV ¼ LΔVð1Þ
þ ;

Vð1Þ

CF
¼ β0V

ð1Þ
β þ ΔVð1Þ ð10aÞ

TL ¼ CFL

�
L
2
Vð0Þ
þ ⊗ Vð0Þ

þ þ T ð1Þ ⊗ Vð0Þ
þ

�
; ð10bÞ

while the term T ð2Þ
c in (8c) has not been computed yet and

is considered in this work as the main source of theoretical

uncertainties. Finally, it suffices to say that Vð0Þ
þ and Vð1Þ

þ are
the one- and two-loop ERBL evolution kernels, whereas

Vð1Þ
βþ is the β0 part of the two-loop ERBL kernel, with T ð1Þ

and T ð2Þ
β denoting the one-loop and two-loop β0 parts of the

hard-scattering amplitude, respectively.

B. Light cone sum rules

Let us now turn to the description of the TFF using a
dispersion relation within the LCSR approach.
The TFF for one highly virtual photon with the hard

virtualityQ2 and one photonwith a small virtuality q2 ≪ Q2

can be expressed in the form of a dispersion integral in the
variable q2 → −s, while Q2 is kept fixed, to obtain

Fγ�γ�π0
LCSR ðQ2; q2Þ ¼ NT

Z
∞

0

ds
ρðQ2; sÞ
q2 þ s

; ð11Þ

where ρðQ2; sÞ is the spectral density

ρðQ2;sÞ¼ ρhðQ2;sÞθðs0− sÞþρpertðQ2;sÞθðs−s0Þ: ð12Þ

The first term ρhðQ2; sÞ models the hadronic (h) content of
the spectral density,
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ρhðQ2; sÞ ¼
ffiffiffi
2

p
fρFγ�ρπðQ2Þδðs −m2

ρÞ; ð13Þ

while ρpertðQ2; sÞ denotes the QCD part in terms of quarks
and gluons, calculable within perturbative QCD,

ρpertðQ2; sÞ ¼ 1

π
ImFγ�γ�π0

QCD ðQ2;−s;−iϵÞ
¼ ρtw-2 þ ρtw-4 þ ρtw-6 þ… : ð14Þ

Each of these terms can be computed from the convolution of
the associated hard part with the corresponding DA of the
same twist [2]. Below some effective hadronic threshold in
the vector-meson channel, the photon emitted at large
distances is replaced in Fγ�Vπ0 by a vector meson V ¼ ρ,
ω, etc., using for the corresponding spectral density a
phenomenological ansatz, for instance, a δ-function model.
Thus, after performing the Borel transformation

1=ðsþ q2Þ → exp ð−s=M2Þ, with M2 being the Borel
parameter, one obtains the following LCSR (see [7,8,35]
for more detailed expositions)

Q2Fγ�γ�π0
LCSR ðQ2; q2Þ

¼ NTfπ

�
Q2

m2
ρ þ q2

Z
1

x0

exp

�
m2

ρ −Q2x̄=x

M2

�
ρ̄ðQ2; xÞ dx

x

þ
Z

x0

0

ρ̄ðQ2; xÞ Q2dx
x̄Q2 þ xq2

�
; ð15Þ

where the spectral density is given by

ρ̄ðQ2; sÞ ¼ ðQ2 þ sÞρpertðQ2; sÞ: ð16Þ

For simplicity, we have shown above the LCSR expression
for the simple δ-function model to include the ρ-meson
resonance into the spectral density. However, the actual
calculation of the TFF predictions to be presented below,
employs a more realistic Breit-Wigner form, as suggested
in [2] and used in [35]. This reads

δðs −m2
VÞ → ΔVðsÞ≡ 1

π

mVΓV

ðm2
V − sÞ2 þm2

VΓ2
V
; ð17Þ

where the masses and widths of the ρ and ω vector mesons
are given by mρ ¼ 0.770 GeV, mω ¼ 0.7826 GeV,
Γρ ¼ 0.1502 GeV, and Γω ¼ 0.00844 GeV, respectively.
The other parameters entering (15) are s ¼ x̄Q2=x with
x̄≡ 1 − x, x0 ¼ Q2=ðQ2 þ s0Þ, and the effective threshold
in the vector channel is s0 ≃ 1.5 GeV2. The stability of the
LCSR is ensured for values of the Borel parameter M2

varying in the intervalM2 ∈ ½0.7 − 1.0� GeV2 [5–7,37]. By
allowing a stronger variation toward larger values M2 ∈
½0.7 − 1.5� GeV2 [8,38], the TFF prediction receives an
uncertainty of the order ½−1.6 − 7.2�% [7] that becomes
negligible at large Q2.

Note at this point that the LCSR in (15) includes in an
effective way the nonperturbative long-distance properties
of the real photon in terms of the duality interval s0 and the
masses of the vector mesons that are absent in the pQCD
formulation of the TFF, but play an important role in the
kinematic region Q2 ≲ s0 and x0 ≲ 0.5 [cf. the first term in
Eq. (15)]. The real-photon limit q2 → 0 can be taken in (15)
by simple substitution because there are no massless
resonances in the vector-meson channel. Thus, this equa-
tion correctly reproduces the behavior of the TFF for a
highly virtual and a quasireal photon from the asymptotic
limit Q2 → ∞ down to the hadronic normalization scale of
Q2 ∼ 1 GeV2, as measured in single-tag experiments. For
still lower momenta, outside the validity range of the
standard LCSR scheme, other approaches may be more
preferable [9,39–44]. The pertinent role of subleading
power corrections to the TFF has been investigated
in [45,46].
Using the conformal expansion for ρtw-2, the spectral

density can be expressed in the form

ρ̄ðQ2; xÞ ¼
X

n¼0;2;4;…

anðQ2Þρ̄nðQ2; xÞ þ ρ̄tw-4ðQ2; xÞ

þ ρ̄tw-6ðQ2; xÞ þ…; ð18Þ

where

ρ̄nðQ2; xÞ ¼ ρ̄ð0Þn ðxÞþasρ̄
ð1Þ
n ðQ2;xÞþa2s ρ̄

ð2Þ
n ðQ2;xÞþ…;

ρ̄ð0Þn ðxÞ ¼ ψnðxÞ; as ¼ asðQ2Þ; ð19Þ

with the elements ρ̄ðiÞn being given in Appendix B
of Ref. [7].
The dispersive analysis here includes the twist-four and

twist-six spectral densities in explicit form. The ρ̄tw-4
spectral density is given by

ρ̄tw-4ðQ2; xÞ ¼ δ2tw-4ðQ2Þ
Q2

x
d
dx

φðtw-4ÞðxÞ
����
x¼Q2=ðQ2þsÞ

; ð20Þ

where the twist-four coupling parameter takes values in the
range δ2tw-4ðμ2¼1GeV2Þ≈λ2q=2¼0.19�0.04GeV2 and is
closely related to the average virtuality λ2q of vacuum
quarks [47–51], defined by λ2q≡hq̄ðigσμνGμνÞqi=ð2hq̄qiÞ¼
0.4�0.05GeV2. Details on its estimation and evolution can
be found in [28], whereas the sensitivity of the TFF to its
variation was examined in [52]. In the present analysis the
evolution of δ2tw-4 is also included. Expression (20) is
evaluated with the asymptotic form of the twist-four pion
DA [2]

φðtw-4Þ
π ðx; μ2Þ ¼ 80

3
δ2tw-4ðμ2Þx2ð1 − xÞ2; ð21Þ
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while more complicated renormalon-inspired forms were
considered in [53,54] confirming that at the 1σ error level
the data processing is virtually unchanged so that Eq. (21)
is sufficient. The twist-six part of the spectral density, i.e.,
ρ̄tw-6ðQ2; xÞ ¼ ðQ2 þ sÞρtw-6ðQ2; sÞ, was first derived in
[8]. An independent term-by-term calculation in [7] con-
firmed this result. We quote it here in the form

ρ̄tw-6ðQ2;xÞ ¼ 8π
CF

Nc

αshq̄qi2
f2π

x
Q4

�
−
�

1

1− x

�
þ

þ ð2δðx̄Þ− 4xÞþ ð3xþ 2x logxþ 2x log x̄Þ
�
;

ð22Þ

where the plus prescription ½fðx; yÞ�þ ¼ fðx; yÞ − δðx −
yÞ R 1

0 fðz; xÞdz is involved, while αs ¼ 0.5 and hq̄qi2 ¼
ð0.242� 0.01Þ6 GeV6 at the scale μ2 ¼ 1 GeV2 [55].
To obtain detailed numerical results for the TFF F ðQ2Þ

using (15), we employ several DAs from different
approaches with various shapes encoded in their conformal
coefficients an. The latter are determined at their native
normalization scale (as quoted in the referenced approaches)
by means of the moments of the pion DA

hξNiπ ≡
Z

1

0

φðtw-2Þ
π ðx; μ2Þðx − x̄ÞNdx; ð23Þ

where ξ ¼ x − x̄ and N ¼ 2; 4;…. The expansion coeffi-
cients an can be expressed in terms of the moments hξNiπ as
follows

a2n¼
2

3

4nþ3

ð2nþ1Þð2nþ2Þ22n

×
Xn
m¼0

ð−1Þðn−mÞ Γð2nþ2mþ2Þ
Γðnþmþ1ÞΓðn−mþ1ÞΓð2mþ1Þ

× hξ2miπ ðn¼ 0;1;2;3…Þ: ð24Þ

C. Attenuation effect

We now turn our attention to an effect that marks a
crucial difference between the perturbative approach and
the use of a dispersion relation and has important conse-
quences for the scaling behavior of the TFF.
As shown in [7] (see Fig. 1 and Eq. (20) there), and

discussed here further, the leading-twist expression for a
given harmonic n of the TFF within the LCSR scheme is
not the same as in pQCD. The TFF considered in this
work is

Q2Fγ�γπ0ðQ2Þ ¼
�
F0ðQ2Þ þ

X
n

anðQ2ÞFnðQ2Þ
�

þ Ftw-4ðQ2Þ þ Ftw-6ðQ2Þ; ð25Þ

where the terms in the square brackets represent the twist-
two contribution. While the result based on factorization is
given by the inverse moment of x̄ with respect to ψnðxÞ

Q2FpQCD
n ðQ2Þ ¼

Z
1

0

ψnðxÞ
dx
x̄

¼ 3; ð26Þ

the analogous LCSR expression deviates from that because
of the hadronic structure of the quasireal photon taken into
account via the vector meson dominance. At the leading
twist-two level, Eq. (18) reduces to the Born approximation

Q2FLCSR
n ðQ2Þ ¼ Q2

m2
ρ
e
m2
ρ

M2

Z
1

x0

e
−Q2 x̄

M2x ψnðxÞ
dx
x

þ
Z

x0

0

ψnðxÞ
dx
x̄
; ð27Þ

where the involved parameters are defined below Eq. (17)
and the spectral density is given by Eq. (18).
As long as Q2 ≫ s0 and x0 ¼ ð1þ s0=Q2Þ−1 → 1, the

hadronic part of the quasireal photon in the spectral density
ρ̄ðQ2; xÞ is suppressed at largeQ2. As a result, all harmonics
contribute at once like in perturbative QCD and

Q2FLCSR
n ðQ2Þ→3 on account of 6

R
1
0 dxxC

ð3=2Þ
n ðx− x̄Þ¼3.

However, for Q2 ∼Oðs0Þ, both terms in Eq. (27) contribute
with comparable magnitudes. Thus, nonperturbative higher-
twist contributions controlled by s0 in Eq. (27) are no more
suppressed. At the same time, the vector-meson generated
factor entails an attenuation effect of the conformal expan-
sion so that the ψn harmonics contribute successively in pace
with Q2, see Fig. 2. The upshot of this nonperturbative
attenuation effect is that the LCSR-based TFF predictions
can deviate significantly from those obtained in perturba-
tive QCD.
The core observations from the graphics in Fig. 2 are the

following: (i) The strongest contribution to the form factor
stems from the zeroth order term F0ðQ2Þ which grows
uniformly. (ii) The higher partial terms oscillate with zero
crossings clustering at Q2 ≲ 1 GeV2. These oscillations
cause an attenuation effect in the sense that harmonics of
higher order start to contribute at larger and larger Q2

values one following the other as n grows. For instance, ψ12

starts to grow uniformly only beyond the zero crossing
around 15 GeV2 (right panel). (iii) Therefore, the more
harmonics with positive coefficients are included in the
conformal expansion of the pion DA, the stronger the
attenuated enhancement of the form factor becomes as Q2

grows. (iv) The decrease of the conformal coefficients
due to ERBL evolution is only logarithmic and is thus
insufficient to compensate for this enhancement, though at
asymptotically large Q2 values it finally prevails. (v) These
considerations apply not only to DAs with a large number
of expansion coefficients, they are also valid to a less
degree for DAs with a few number of coefficients but
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having an inverse hierarchy [38]. (vi) On the other hand, at
Q2 < 1 GeV2 only the term F0ðQ2Þ contributes so that,
irrespective of how many conformal coefficients are
included in the pion DA representation, the total form
factor will be dominated by the ψ0 harmonic.

III. ANALYSIS OF THE RESULTS

In this section we present our results for the pion DA and
the TFF predictions calculated within the LCSR approach
described in the previous section.

A. Pion DAs

To obtain predictions for the TFF, we evaluate (18) in the
LCSR (15) using for the physical spectral density in (13)
the Breit-Wigner form (17) and employing various con-
formal coefficients an at their normalization scale. We
consider two such scales μ1 ¼ 1 GeV and μ2 ¼ 2 GeV,
depending on the particular pion DA. If μ2 is not the native
normalization scale, the ERBL evolution scheme discussed
in Appendix A is applied and numerical results for the TFF
predictions with the BMS and the pk DAs are given. This
scheme, presented here for the first time, works for any
polynomial order of the conformal expansion and accounts
for the crossing of heavy-quark flavors at the two-loop
level. Though numerically the impact on the TFF predic-
tions is relatively small, the increased accuracy suffices to
improve the scaling behavior of the TFF at largeQ2, as one
can see by comparing the BMS results with those in [37].
The coefficients a2, a4, a6 of various models for the pion

DA are given in Table I at both scales μ1 and μ2. Using
these values, one can readily compute the corresponding
moments (23) using Eq. (24). This table also includes the
values of the inverse moment at the scale μ2. Because
broad, concave distributions cannot be adequately repre-
sented in terms of only the lowest three coefficients, the
corresponding inverse moments of the DSE-DB, DSE-RL,
and the holographic AdS/QCD DAs are calculated within

the α− representation given by Eq. (38) [56,57]. Here the
abbreviation DSE means Dyson-Schwinger equations with
the label DB referring to the use of the most advanced
Bethe-Salpeter kernel while RL denotes the rainbow ladder
approximation.
The graphical representation of the pion DAs is dis-

played in Fig. 3 at the scale μ2 ¼ 2 GeV in terms of the DA
projections on the plane ða2; a4Þ using the symbols given in
Table I. The experimental constraints are expressed in the
form of 1σ (solid line) and 2σ (dashed line) error regions
generated from the combined analysis of the CELLO [10],
CLEO [11], Belle [4], and BABAR(≤9 GeV2) [3] data
within LCSRs, see [7,28,64] for further explanations. The
two slanted rectangles represent the constraints imposed
by the QCD sum rules with nonlocal condensates used
in [16] in connection with the determination of the
Bakulev-Mikhailov-Stefanis (BMS) DAs. The larger one
corresponds to the average vacuum quark virtuality
λ2qðμ2 ≈ 1 GeV2Þ ¼ 0.4 GeV2, whereas the smaller rectan-
gle was determined in [17,65] using the slightly larger but
still admissible value λ2qðμ2 ≈ 1 GeV2Þ ¼ 0.45 GeV2 (see
[66] and references cited therein). It contains pion DAs with
a characteristic platykurtic profile [17] (see Sec. III B).
This figure also contains the lattice constraints on a2 at

the scale μ2 from [60] (red vertical lines further to the left)
as well as those from [61] (blue vertical lines). The
presented intervals in both cases are calculated by combin-
ing errors in quadrature. The results at the scale μ2 are
a2 ¼ 0.101þ0.024

−0.024 (NNLO) and a2 ¼ 0.078þ0.031
−0.029 (NLO)

[60], whereas a2 ¼ 0.136� 0.021 [61]. A linear combi-
nation of errors would slightly overestimate the combined
uncertainties yielding somewhat larger intervals of a2
values. The results from [60], quoted in Table I, were
obtained from a combined chiral and continuum limit
extrapolation at the NNLO and NLO level. This treatment
differs from that applied in [61], where no extrapolation to
the continuum limit was carried out. This is indicated in
Table I by the question mark (?). The chiral extrapolation

FIG. 2. Attenuation effect of the TFF due to the variation of the partial terms of the scaled transition form factor Q2FLCSR
n ðQ2Þ with

Q2, cf. Eq. (27). The left panel shows the domain below 12 GeV2, while the right panel covers the large Q2 regime up to 50 GeV2,
where higher harmonics shown up to n ¼ 12 give sizeable contributions because they do not oscillate.
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was included in the first parenthesis together with the
statistical error, while the renormalization error is given in
the second parenthesis. The general tendency of the new
lattice estimates seems to favor DAs with a smaller value of
a2. Recall that the second moment hξ2iπ (or equivalently
a2) gives information only on the variance statistic σ2½φ� ¼
1
4
hξ2iπ of the pion DA and contains no information about its

shape in the central region. To this end, one needs the

kurtosis statistic β2½φ� ¼ hξ4iπ
ðhξ2iπÞ2 which measures the peak-

edness or flatness of a distribution in terms of the fourth
moment, see [65] for a quantitative discussion.

B. Platykurtic pion DA

The particularity of the platykurtic pion DA [17] derives
from the fact that it contextually and mathematically
encapsulates in its profile the two consequences of confine-
ment: (i) the appearance of nonlocal vacuum expectation
values whose expansion in terms of local operators involves
the virtuality λ2q of the vacuum quarks [47] and (ii) dynami-
cal chiral symmetry breaking (DCHB) and mass generation
[67]. The first feature entails quark correlations at a finite

distance 1=λq ∼ 0.3 fermi, while the second one entails the
mass dressing of the confined quark propagator, see, for
instance, [68]. As argued in [17,65], these effects induce
distinctive geometrical characteristics of the pion DA.
While the first one leads to the suppression of the endpoint
regions x ¼ 0, 1, the second one enhances the central
region around x ¼ 1=2.
The net result of this competition is a unimodal dis-

tribution with a unique short-tailed platykurtic profile.
Take away the quark correlations and the endpoints of
the DA get too strong resulting into a broad concave
distribution in the whole x range similar to that obtained
with DSE [57]. Leave aside the mass dressing and the
central region is more or less depleted giving rise to a
bimodal distribution whose bimodality strength is con-
trolled by the nonlocality parameter λ2q. When λ2q ¼ 0,
one gets an infinite correlation length corresponding to the
use of local condensates in the QCD sum rules. Such a
situation gives rise to the Chernyak-Zhitnitsky (CZ) pion
DA [58]. In contrast to bimodal DAs, like CZ and BMS, the

platykurtic DA yields in the middle point φðtw-2Þ
π=pk ðx ¼

1=2; μ1Þ ¼ 1.264 in agreement with the LCSR calculation

TABLE I. Conformal coefficients a2, a4, a6 for various pion DAs discussed in the text at two typical normalization momentum
scales μ1 ¼ 1 GeV and μ2 ¼ 2 GeV. If μ2 is not the initial scale, NLO ERBL evolution in the global scheme is employed, see
App. A. The range of the BMS and platykurtic DAs is related to the determination of a2 and a4 from QCD sum rules with
nonlocal condensates using λ2q ¼ 0.40 GeV2 and λ2q ¼ 0.45 GeV2, respectively. They cause the variation of the TFF predictions
shown in the form of a green shaded band in Fig. 4. The coefficient a2 of the CZ DA was originally given at the scale
μ ¼ 0.5 GeV: aCZ2 ¼ 2=3 [58]. For the extrapolation to higher scales see [28]. Higher conformal coefficients up to and including
a12 for the DSE-DB and DSE-RL DAs at the scale μ2 can be found in [57]. The coefficients up to and including a20 at the scale
μ1 of the holographic AdS/QCD DA φhol

π ðxÞ ¼ ð8=πÞ ffiffiffiffiffi
xx̄

p
are tabulated in [59]. They were calculated here by means of the

expression hξ2niAdS=QCDπ ¼ 1
4

Bð3=2;ð2nþ1Þ=2Þ
Bð3=2;3=2Þ [Bðx; yÞ being the Euler Beta function] in combination with Eq. (24). The lattice results

of [60] with NNLO (two loops) and NLO (one loop) matching to the MS scheme are quoted separately, where the subscript r
denotes the systematic uncertainty due to the nonperturbative renormalization. They were obtained from a combined
extrapolation to the chiral and continuum limit with associated uncertainties labeled by the subscripts m and a, respectively.
The statistical errors of the data after extrapolation are given in sub- and superscript form. The question mark (?) in the lattice
result of [61] indicates that it was not extrapolated to the continuum limit.

Pion DA a2ðμ1Þ a4ðμ1Þ a6ðμ1Þ a2ðμ2Þ a4ðμ2Þ a6ðμ2Þ h1=xiπðμ2Þ
BMS [7,16] × 0.203þ0.069

−0.057 −0.143þ0.094
−0.087 0 0.149þ0.052

−0.043 −0.096þ0.063
−0.058 0 3.16þ0.09

−0.09

BMS range [0.146, 0.272] ½−0.23;−0.049� 0 [0.11, 0.20] ½−0.15;−0.03� 0 � � �
Platykurtic [17] ✜ 0.0812þ0.0345

−0.025 −0.0191þ0.0337
−0.0287 0 0.057þ0.024

−0.019 −0.013þ0.022
−0.019 0 3.13þ0.14

−0.10

Platykurtic range [0.0562, 0.1156] ½−0.0478; 0.0147� 0 [0.04, 0.08] ½−0.03; 0.01� 0 � � �
DSE-DB [56,57] ▲ � � � � � � � � � 0.149 0.076 0.031 4.6
DSE-RL [56,57] ▿ � � � � � � � � � 0.233 0.112 0.066 5.5
AdS/QCD [59] △ 7=48 11=192 53=212 0.107 0.038 0.0183 4.0

Light-Front QM [62] ○ 0.0514 −0.0340 −0.0261 0.035 −0.0227 −0.0153 2.99
NLχ QM [63] □ 0.0534 −0.0609 −0.0260 0.037 −0.041 −0.015 3.18
CZ (this work) ■ 0.56 0 0 0.412 0 0 4.24
Lattice [61] � � � � � � � � � 0.1364(154)(145)(?) � � � � � � � � �
Lattice (NNLO) [60] � � � � � � � � � 0.101þ17

−17 ð12Þrð10Það5Þm � � � � � � � � �
Lattice (NLO) [60] � � � � � � � � � 0.078þ18

−19 ð16Þrð13Það5Þm � � � � � � � � �
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[20] φðtw-2Þ
π ðx ¼ 1=2; μ1Þ ¼ 1.2� 0.3. For the derivation of

the platykurtic DA and its range (Table I and small (green)
strip in Fig. 3), we refer to [17,65].
From this figure we make the following striking obser-

vations: (i) The platykurtic strip shows a positive correla-
tion between the coefficients a2 and a4, while the BMS-
type DAs (larger green rectangle) have coefficients with a
negative correlation between them. (ii) Also the arrange-
ment of the 1ð2Þσ error regions exhibits an anticorrelation
pattern between a2 and a4. (iii) Nevertheless, the platy-
kurtic strip overlaps with the data regions at its upper right
corner where the coefficients are given by

a2ðμ2Þ ≈ 0.08; a4ðμ2Þ ≈ −0.009 ð28Þ
corresponding to the moments

hξ2iπ ≈ 0.229; hξ4iπ ≈ 0.106: ð29Þ
(iv) Remarkably, just there it also enters the range of the
NNLO lattice constraints on a2 from [60], while it mostly

overlaps with the analogous NLO region. The observed
agreement extends to the values of the second moment
hξ2iπ. One has from [60]

hξ2iNNLOπ ðμ2Þ ¼ 0.234þ6
−6ð4Þrð4Það2Þm; ð30aÞ

hξ2iNLOπ ðμ2Þ ¼ 0.106þ6
−6ð5Þrð5Það2Þm ð30bÞ

which gives after adding the errors in quadrature the values
0.234� 0.0085 and 0.227� 0.0095, respectively. These
values conform with the platykurtic range for the second
moment [65]

hξ2ipkπ ðμ2Þ ¼ 0.220þ0.009
−0.006 ;

hξ4ipkπ ðμ2Þ ¼ 0.098þ0.008
−0.005 ; ð31Þ

while the fourth moment is also given for the sake of
comparison with other models. One observes that the
central point of the error contours is not favored by the
lattice simulations of [60]. (v) All positively correlated DAs
are unimodal but have enhanced tails, except the platykurtic
one which shares tail suppression with the anticorrelated
BMS-like DAs. (vi) Moreover, as we will see shortly, the
platykurtic DA yields a TFF in good agreement with all
data compatible with strict scaling at large Q2 without
crossing the pQCD asymptotic limit, cf. (33).
Recently, some pion DAs have been proposed [69,70]

which yield moments hξ2iπ , hξ4iπ with values close to those
of the platykurtic DA in (31) [65], but employing different
conceptions.

C. TFF predictions

We now outline the calculational procedure to obtain
predictions for the scaled TFF Q2FγπðQ2Þ using the pion
DAs given in Table I. This discussion relies upon Table II in
correspondence with the formalism exposed in Sec. II. An
extended discussion can be found in [71]. The results are
shown in Fig. 4 in comparison with all existing data
collected in Appendix B. The recently released preliminary
data of the BESIII Collaboration [12,13] (see also [14]) are
also included, keeping in mind that the probed momentum
range extends below 1 GeV2, where our predictions are
expected to be less reliable.
The calculated twist-two form factor is given in explicit

form by

Fγ�γ�π0
tw-2 ðQ2; q2Þ ¼ NT

�
TLO|{z}
ðþÞ

þ asðμ2ÞTNLO|ffl{zffl}
ð−Þ

þ a2sðμ2ÞðTNNLOβ0|fflfflfflffl{zfflfflfflffl}
ð−Þ

þ TNNLOΔV|fflfflfflffl{zfflfflfflffl}
ð−Þ

þ TNNLOL|fflfflffl{zfflfflffl}
ð0Þ

þ TNNLOc|fflfflffl{zfflfflffl}
ð?Þ

Þ þ…

�
⊗ φð2Þ

π ðx; μ2Þ

þO
�
δ2

Q4

�
ð32Þ

FIG. 3. Various pion DAs in terms of their conformal coef-
ficients ða2; a4Þ at the scale μ2 ¼ 2 GeV (Table I) shown in
comparison with the 1σ (solid line) and 2σ (dashed line) error
regions created from the combined analysis of the CELLO [10],
CLEO [11], Belle [4], and BABAR(≤9 GeV2) [3] data within
LCSRs with the central point of the nonlinear fit marked by the
symbol ●. The larger rectangle shows the range of values for
BMS-like DAs from [16] and the smaller one the analogous
region for the platykurtic DAs derived in [17,65]. The vertical
lines mark the constraints on a2 from two lattice determinations:
[60] NLO (dashed red lines) and NNLO (solid red lines); [61]
(solid blue lines). The asymptotic DA is denoted by ♦. The other
designations are given in Table I with further explanations in
the text.

N. G. STEFANIS PHYS. REV. D 102, 034022 (2020)

034022-8



with indications showing the sign of these contributions.
The label (?) marks the only uncalculated NNLO term.
To facilitate the use of Table II, we briefly describe the

TFF calculation using as a reference model the set of the
BMS DAs determined in [16]. These DAs are sufficiently
well parametrized by means of the two lowest coefficients
a2 and a4, whereas higher coefficients an>4, (n ¼ 6, 8, 10)
can be ignored because they were found to be negligible
albeit bearing large uncertainties [16]: a6 ≈ a2=3;
a8 ≈ a2=4; a10 ≈ a2=5. The variation of a2, a4 allowed
by the employed QCD sum rules gives rise to the narrower
(green) strip of predictions in Fig. 4. It includes at the twist-
two level the LO, NLO, and NNLO-Tβ0 contributions to the
short-distance coefficients, cf. (8), (9), and involves the
eigenfunctions fψ0;ψ2;ψ4g. The ψ0 eigenfunction yields

the largest (negative) NNLO-Tβ0 contribution as we have
seen in Fig. 2. Therefore, also the term TΔV ≪ Tβ0 ,
cf. (10a), is taken into account only via the zero harmonic
ψ0, whereas the term NNLO-TL vanishes for ψ0, cf. (10b)
[7]. The remaining NNLO term Tc is unknown and this
unknownness induces the dominant theoretical uncertainty
in the TFF prediction, shown in terms of the broader (blue)
band enveloping the narrower (green) one. To gauge it, we
assume that this term may be comparable in magnitude to
the leading NNLO term Tβ0 (likely overestimating its
significance), and obtain the uncertainties shown in the
last column of Table III. Table III with some explanations
on the data evaluation is given in Appendix B. Estimates of
further theoretical errors—not considered here—can be
found in [6,7].

TABLE II. Theoretical ingredients entering the TFF calculation within the applied LCSR scheme using various pion DAs with
conformal coefficients an (a0 ¼ 1) at the normalization scales μ1 ¼ 1 GeV and μ2 ¼ 2 GeV given in Table I. The question mark
indicates that T c is unknown. It is included as the main theoretical uncertainty in the TFF predictions obtained with the BMS/platykurtic
DAs within FOPT, see Appendix B. The other NNLO terms and the NLO contribution are explained in Sec. (II A). F∞ denotes the
asymptotic limit given by Eq. (33).

LCSR ½ρ2; ρ4; ρ6� LOþ NLO NNLO ðα2sÞ Error ERBL F∞
π DAs TLO þ αsTNLO Tβ; TΔV; TL; T c Range App. A Fig. 4 (Left)

BMS [16] / pk [17] fa2; a4gμ1 fa2; a4gμ1 , a0, 0, ? T c ∼ Tβ YES below
DSE [56,57]fDBRL fa2; a4;…; a12gμ2 fa2; a4; a6gμ2 , a0, 0, ? NO YES above
AdS/QCD [59] fa2; a4;…; a12gμ1 fa2; a4; a6gμ1 , a0, 0, ? NO YES below
Light-Front QM [62] fa2; a4; a6gμ1 fa2; a4; a6gμ1 , a0, 0, ? NO YES below
NLχ QM [63] fa2; a4; a6gμ1 fa2; a4; a6gμ1 , a0, 0, ? NO YES below

FIG. 4. Left: measurements of the scaled pion-photon transition form factor Q2FγπðQ2Þ from different experiments in comparison
with theoretical predictions obtained from (32) according to Table II and using various pion DAs defined in Table I. The innermost
(green) shaded strip shows the range of predictions obtained with the bimodal BMS DAs from [16]. The thick black line inside it denotes
the result for the platykurtic DA [17]. The wider band (in blue color) around the green strip encapsulates the principal theoretical
uncertainty owing to the unknown NNLO term Tc, see Eq. (8c). The upper two (red) lines illustrate the predictions from the DSE
approach: DSE-DB [56] (solid line) and DSE-RL [56] (dashed line). The dashed-dotted-dotted (red) line denotes the prediction obtained
for the DSE-DB DA using a lower conformal resolution (only fa2; a4g). The dashed blue line below it represents the result derived from
AdS/QCD [59], whereas the solid (pink) line and the dashed-dotted (red) line below the lower boundary of the total BMS band show the
predictions calculated with a light-front quark model [62] and an instanton-based chiral quark model [63], respectively. The horizontal
solid line marks the asymptotic limit F∞ ¼ ffiffiffi

2
p

fπ ≈ 0.187 GeV. Right: plot of the scaling-rate quantity ΩðQ2Þ, cf. Eq. (37), in the Q2

range ½0; 40� GeV2 for various theoretical TFF predictions in comparison with the data.
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The total TFF also comprises in the spectral density (18)
the contributions (20) (twist four) and (22) (twist six) and
includes NLO evolution with heavy-quark crossings, see
Appendix A. The calculation of the TFF with the platy-
kurtic DA is similar (black solid line in Fig. 4). The
analogous computations with the other considered pion
DAs include more conformal coefficients as indicated in
Table II. The last row in this table provides information on
the consistency of each TFF prediction with the asymptotic
limit from pQCD [18,19],

lim
Q2→∞

F ðQ2Þ ¼
ffiffiffi
2

p
fπ ≈ 0.187 GeV; ð33Þ

where we used the convenient notation

Q2Fγ�γπ0ðQ2Þ ≡ F ðQ2Þ: ð34Þ
The calculated TFF predictions are collected in Fig. 4

(left panel) and are shown in comparison with all data
currently available: CELLO [10], CLEO [11], BABAR [3],
Belle [4] (see Table III in Appendix B). The BESIII data are
given in [12,13]. Apart from the results obtained with the
BMS/pk DAs, already mentioned, this figure contains the
following curves. The dashed red line farthest to the top
shows F ðQ2Þ for the DSE-RL DA [56], whereas the solid
red line below it gives the result for the DSE-DB DA [56]
using fa2; a4;…; a12g. To exhibit the influence of the
attenuation effect on the TFF, we also show the DSE-DB
DA-based prediction using only a2 and a4 (long-dashed-
dotted-dotted red line). Obviously, this prediction agrees
better with the asymptotic limit (horizontal black line). The
reason is that it does not receive uninhibited contributions
from the higher harmonics with an>4 at higher Q2, see
Fig. 2. The computation of the TFF for the holographic DA
[59] yields the prediction represented by the dashed blue
line running close to the asymptotic limit. Figure 4 also
includes the form-factor predictions derived with the DA
from the light-front quark model [62] (solid pink line) and
the nonlocal chiral quark (NLχQM) (model 3 in Table II
[63])—dashed-dotted red line. Both lines run below all data
above 8 GeV2.

D. TFF asymptotics

The behavior of the form factor is known theoretically in
two limits. At Q2 → 0 and in the chiral limit of quark
masses, one obtains from the axial anomaly [72,73]

lim
Q2→0

Fγ�γπ0ðQ2Þ ¼ 1

2
ffiffiffi
2

p
π2fπ

; ð35Þ

where fπ ¼ 132 MeV is the leptonic decay constant of the
pion. On the other hand, the asymptotic behavior of the form
factor is given by Eq. (33) which is an exact expression from
pQCD. The TFF in the Q2 range between the aforemen-
tioned limits can be phenomenologically described by the
interpolation formula of Brodsky and Lepage [19],

Fγ�γπðQ2Þ ¼
ffiffiffi
2

p
fπ

4π2f2π þQ2
: ð36Þ

In order to study the scaling behavior of the calculated
TFF at large Q2 more quantitatively, it is convenient to
define the quantity

ΩðQ2Þ≡ jF ðQ2Þ − F∞j
F∞

; ð37Þ

which provides a normalized measure of the deviation of
the scaled form factor from the asymptotic value—the
“baseline.” The graphical representation of the theoretical
results for this quantity versus Q2 is shown in comparison
with the data in the right panel of Fig. 4.
Inspection of the graphics in Fig. 4 leads to the following

observations:
(1) Most of theBelle data—except atQ2¼27.33GeV2—

come within errors close to the baseline clearly
indicating that the TFF approaches an asymptotic
value. Indeed, using the dipole formula F ðQ2Þ ¼
BQ2=ðCþQ2Þ the Belle Collaboration determined
B ¼ 0.209� 0.016 GeV, which is slightly larger
than the exact result

ffiffiffi
2

p
fπ , but still compatible.

(2) Several BABAR data points above 10 GeV2 do not
indicate TFF saturation as they move away from
F∞. Because also their error bars do not reach the
F∞ baseline, one may think that this data deviation
is systematic and self-generated. It was shown in [6]
that a dipole best-fit to the BABAR data yields B ¼
0.23 GeV and C ¼ 2.6 GeV2 with χ2 ¼ 1.7, being
unable to reproduce the Belle data with acceptable
accuracy. The origin of these discrepancies is the
subject of several theoretical investigations (see [5]
for a detailed discussion and references).

(3) TheQ2 intervals above 20 GeV2, probed by BABAR
and Belle, are only scarcely populated and have a
rather poor statistics.

(4) The recently released preliminaryBESIII data [12,13]
cover the momentum range ½0.3 − 3.1� GeV2 and
exceed the statistical accuracy of the CELLO data
atQ2 ≲ 1 GeV2 considerably, though their error bars
become larger in the range 1.5 ≤ 3.1 GeV2. These
results are important for the hadronic light-by-light
scattering calculations [39,40,43,74,75]. As regards
the TFF below 1 GeV2, other dispersion approaches
may be more adequate [9,76–78] than the LCSR
scheme applied in this work.

(5) The broader (blue) band of predictions obtained with
the BMS DAs (including their main uncertainties)
approaches F∞ gradually from lower values without
reaching it (similarly also the platykurtic prediction). In
the momentum interval ½10–11� GeV2, the BMS TFF
takes the valueFBMSðQ2Þ¼0.1604−0.124þ0.0128GeV, while
the pkTFF reaches this value at ½13.5–15.0� GeV2 (see
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Table III in Appendix B). Both TFFs grow very slowly
toward higher Q2 values indicating that they have
already entered the preasymptotic regime due to
saturation.

(6) The TFF predictions associated with the LFQM-
based DA [62] (solid line) and the NLχ QMDA [63]
(dashed-dotted red line), respectively, follow the
trend of the platykurtic-generated prediction but
have smaller magnitudes so that the onset of
preasymptotic behavior in the TFF is shifted to
much higher momenta. This is because both models
have a negative a6 coefficient (see Table I) that slows
the TFF saturation.

(7) The prediction based on the holographic AdS/QCD
DA [59] provides a rather good agreement with the
Belle data, while it disagrees with the BABAR data
above 10 GeV2, where these start to grow. However,
it crosses the baseline at still higher Q2 around
57 GeV2. Variants of the holographic DA in [79]
either yield similar results or tend to cross the
baseline quite fast.

(8) Still broader concave pion DAs, like DSE-DB and
DSE-RL, lead to predictions that reach the prea-
symptotic regime in a way sensitive to the power α−
in the “Gegenbauer-α” representation. This employs
Gegenbauer polynomials of variable dimensionality
α ¼ α− þ 1=2 [56,80]

φðαÞ
π ðx; μ2Þ ¼ Nαðxx̄Þα− ½1þ aα2C

ðαÞ
2 ðx − x̄Þ� ð38Þ

and gives TFF predictions with magnitudes growing
in inverse proportion to α−. Employing the set
fa2; a4;…; a12g, both TFF predictions cross the
F∞ line already at Q2 ≈ 4 GeV2 (DSE-RL) and
Q2 ≈ 10 GeV2 (DSE-DB) and continue to grow. The
reduced DSE-DB, which uses only a2, a4, leads to a
TFF with a better asymptotic behavior (dashed-
dotted-dotted red line) entering the preasymptotic
regime around 10 GeV2 and remaining then close to
F∞ but above it.

(9) The theoretical predictions depend crucially on the
DA models involved in the calculation. An attempt
to extract the asymptotic behavior of the TFF
directly from the data was given in [71].

IV. SUMMARY AND OUTLOOK

In this work we carried out a comprehensive analysis of
the pion-photon transition form factor in QCD using the
method of LCSRs within FOPT to NNLO and twist-six
accuracy. The presented predictions for this exclusive
observable are of considerable interest for two different
reasons: (i) they provide a handle on the involved pion
distribution amplitude and (ii) they represent a powerful

tool to study the onset of scaling at high Q2 in present-days
experiments.
To analyze in detail the Q2 behavior of the TFF within

the LCSR approach in comparison to pQCD, we studied
the attenuation effect of the partial components of the TFF
related to the conformal expansion of the pion DA and
worked out how they contribute as Q2 grows. We showed
that broad, concave DAs relying on many positive con-
formal coefficients will tend to exceed the asymptotic limit
F∞ because higher components FnðQ2Þ will start to
contribute far beyond 10 GeV2.
A good agreement with F∞ presumes saturation of the

scaled TFF at large Q2 and entails the onset of scaling. The
big unknown is at which momentum scale this becomes
obvious [81,82]. The overall agreement of the TFF predic-
tions, obtained in this workwith the set of the BMSDAs [16]
(including the platykurtic one [17]), with the CLEO [11],
BABAR(<9 GeV2) [3], and Belle [4] data is good and any
discrepancies are within the corresponding experimental
errors, see Fig. 4. However, they disagree with the BABAR
data above 10 GeV2. These predictions are shown as shaded
bands and include the principal theoretical uncertainties of
the conformal coefficients (narrower band) and the incom-
plete knowledge of the NNLO radiative corrections (wider
band) in these figures. Saturation is observed in the interval
½10–14� GeV2, where theTFF reaches thevalue≳0.16 GeV,
indicating the onset of the preasymptotic regime.
More ambitiously, the combination of the 1σ and 2σ

error regions of all data compatible with asymptotic scaling
with the most recent lattice constraints from [60] at the
NNLO and NLO level supports a platykurtic pion DAwith
a2 ≈ 0.08, a4 ≈ −0.009 [17,65], though the sign and
magnitude of a4 require further consideration in the lattice
context or otherwise. From the experimental side, it would
be very helpful to have more data in regular steps of
1 GeV2 above 10 GeV2. This would enable a reliable data-
driven analysis based on the state-space reconstruction
method, proposed in [71], and we hope that the Belle-II
Collaboration will perform such measurements.
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APPENDIX A: NLO EVOLUTION OF THE PION
DA INCLUDING HEAVY-QUARK THRESHOLDS

In this appendix (done partly in collaboration with S. V.
Mikhailov and A. V. Pimikov) we discuss the NLO (i.e., the
two-loop) ERBL evolution of the pion DAwith an arbitrary
number of Gegenbauer coefficients taking into account
heavy-quark flavors (also knownas globalQCDscheme, see,
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e.g., [31] and references therein). This scheme employs the
global coupling αglobs ðQ2;Λ2

Nf
Þ that depends on the number

of flavors Nf through the QCD scale parameter ΛNf
.

This procedure was used in this work to derive the results
given in Tables I–III and obtain the predictions shown in all
figures. It takes into account the heavy-quark mass thresh-
olds and thus requires thematching of the strong coupling in
the Euclidean region of Q2 at the corresponding heavy-
quark masses when one goes from Nf → Nf þ 1. Note that
the dependence on Nf in Appendix D of [28], which
provided the basis for the NLO evolution of the pion DA
in our earlier works, was ignored assuming a fixed number
of flavors. The new scheme has already been used in our
more recent investigations [5–7,83], but without exposing
the underlying formalism in final form. This task will be
accomplished here including further refinements. The NLO
evolution of the pion DAs with two conformal coefficients
a2 and a4 at the initial scale μ2 ≃ 1 GeV2 and a varying
number of heavy flavors has also been applied in [84] (see
Appendix D there). Our technical exposition below extends
this treatment to any number of conformal coefficients and
more heavy-flavor thresholds. For some specific details and
references, we refer to [31,85].
Let us start with a fixed number of flavors and supply

some basic formulas from [28]. The ERBL evolution
equation for the pion DA is given by

dφπðx; μ2Þ
d ln μ2

¼ Vðx; u; asðμ2ÞÞ⊗
u
φπðu; μ2Þ ðA1Þ

and is driven by the kernel

Vðx; y; asÞ ¼ asV0ðx; yÞ þ a2sV1ðx; yÞ þ… ðA2Þ

with as ¼ αs=ð4πÞ.
The eigenvalues γnðasÞ and the one-loop eigenfunctions

ψnðuÞ are related to the kernel V through

ψ̃nðxÞ⊗
x
Vðx; u; asÞ⊗

u
ψnðuÞ ¼ −γnðasÞ; ðA3Þ

where ψ̃nðxÞ ¼ 2ð2nþ 3Þ=½3ðnþ 1Þðnþ 2Þ�C3=2
n ðx − x̄Þ.

The explicit expressions for the anomalous dimensions
γn at one loop, γ0ðnÞ, and at two-loops, γ1ðnÞ, in the
expansion γnðasÞ ¼ 1

2
½asγ0ðnÞ þ a2sγ1ðnÞ þ…� can be

found in Appendix D in [28].
To perform the pion DA evolution, while ignoring quark-

mass thresholds, we make use of the evolution matrix E
with the components Enk. Expanded over the basis fψng of
the Gegenbauer harmonics, this matrix assumes the follow-
ing triangular form [86]

EnkðNf;Q2; μ2Þ ¼ Pðn;Q2; μ2Þ½δnk þ asðQ2ÞΘðk − n > 0ÞdnkðQ2; μ2Þ�; ðA4Þ

dnkðμ2; μ2Þ ¼ 0; ðA5Þ

where the coefficients dnkðQ2; μ2Þ will be defined shortly, and where μ2 and Q2 refer to the initial and observation scale,
respectively. The factor Pðn;Q2; μ2Þ in Eq. (A4) denotes the diagonal part of the evolution matrix that dominates the
renormalization-group (RG) controlled evolution of the ψn-harmonics in the conformal expansion

φRG
π ðx;Q2Þ ¼

X
n

anðμ2Þ
	
Pðn;Q2; μ2Þ

�
ψnðxÞ þ asðQ2Þ

X
k>n

dnkðQ2; μ2ÞψkðxÞ
�


: ðA6Þ

Then, the diagonal part of the evolution exponential at the two-loop level can be given explicitly,

Pðn;Q2; μ2Þ ¼ exp
�Z

asðQ2Þ

asðμ2Þ

γnðaÞ
βðaÞ da

�
⟶

2−loops
�
asðQ2Þ
asðμ2Þ

�γ0ðnÞ
2b0

�
1þ c1asðQ2Þ
1þ c1asðμ2Þ

�
ωðnÞ

; ðA7Þ

where asðμ2Þ ¼ αglob;ð2Þs ðμ2;Λ2
3Þ=ð4πÞ and c1 ¼ b1=b0, with bi being the expansion coefficients of the QCD β-function.

The evolution exponent of the coupling is defined by ωðnÞ ¼ ½γ1ðnÞb0 − γ0ðnÞb1�=½2b0b1�. The second term in the brackets
in Eq. (A4) represents the nondiagonal part of the evolution equation to the order Oða2sÞ induced by renormalization and
encodes the mixing of the higher Gegenbauer harmonics for indices k > n related to the conformal-symmetry breaking at
NLO [27]. Notice that all components on the right-hand side of Eqs. (A4) and (A7) depend on Nf, which changes to
Nf þ 1, when the next quark-mass threshold is crossed. The explicit form of the mixing coefficients is given by [28]

dnkðQ2; μ2Þ ¼ Mnk

γ0ðkÞ − γ0ðnÞ − 2b0

	
1 −

�
asðQ2Þ
asðμ2Þ

�½γ0ðkÞ−γ0ðnÞ�=ð2b0Þ−1

; ðA8Þ

where the values of the first few elements of the matrix Mnk (k ¼ 2; 4 ≥ n ¼ 0, 2) read
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M02 ¼ −11.2þ 1.73Nf; M04 ¼ −1.41þ 0.565Nf;

M24 ¼ −22.0þ 1.65Nf: ðA9Þ

Analytic expressions forMnk have been obtained in [26].
The values in Eq. (A9) reproduce the exact results with a
deviation less than about 1%.
To make our further exposition more compact, we make

use of the parameter vectors Aðμ2Þ andΨðxÞ defined at the
reference momentum scale μ2 as follows

A ¼ ð1; a2; a4;…; a2ðN−1ÞÞ; ðA10aÞ

Ψ ¼ðψ0;ψ2;…;ψ2ðN−1ÞÞ; ðA10bÞ

φπðx; μ2Þ ¼
XN−1

n¼0

a2nðμ2Þψ2nðxÞ

¼ Aðμ2ÞΨðxÞ; ðA10cÞ

where their dimension and the dimension of the matrix E
depends on the parameter N. Then, the evolution of the
pion DA can be carried out in terms of the Gegenbauer
coefficients ai with i ¼ 2; 4;…; 2ðN − 1Þ. For a fixed
number of flavors, one gets

Ψðx; μ2Þ ¼ EðNf; μ2; μ20ÞΨðxÞ; ðA11aÞ

Aðμ2Þ ¼ ETðNf; μ2; μ20ÞAðμ20Þ; ðA11bÞ

where ET is the transposed matrix of E, while Aðμ20Þ is the
vector of the Gegenbauer coefficients defined at some
initial scale μ20.
In the global QCD scheme, the evolution of the pion DA

defined at the initial scale μ20, is implemented by means of
the threshold interval factors Ei in the following step-by-
step procedure,

Eglobðμ2; μ20Þ ¼ E3ðμ2Þθðμ2 < M2
4Þ

þ E4ðμ2ÞθðM2
4 ≤ μ2 < M2

5ÞE3

þ E5ðμ2ÞθðM2
5 ≤ μ2 < M2

6ÞE4E3

þ E6ðμ2ÞθðM2
6 ≤ μ2ÞE5E4E3; ðA12Þ

where the matrices Ei and Eiðμ2Þ are given by

Eiðμ2Þ≡ Eði; μ2;M2
i Þ; Ei ≡ Eði;M2

iþ1;M
2
i Þ ðA13Þ

and the thresholds are defined [31] by the heavy-quark
masses mc ∼M4 ¼ 1.65 GeV, mb ∼M5 ¼ 4.75 GeV, and
mt ∼M6 ¼ 172.5 GeV, whileM2

3 ≡ μ20 sets the initial scale
taken to be either μ0 ¼ μ1 ¼ 1 GeV or μ0 ¼ μ2 ¼ 2 GeV,
see Table I. Note that the global evolution matrix,
Eq. (A12), is presented for μ0 < M4 and μ > μ0. No
matching at the mass thresholds is needed in the

case of equal initial and final momentum scales, i.e.,
EðNf;Q2; Q2Þ ¼ 1 because of the independence of the
evolution matrix on the number of flavors. For example, at
the threshold M4, we have E4ðM2

4Þ ¼ 1 ensuring the
continuity of the global evolution matrix Eglob. It is worth
noting that our NLO evolution scheme in terms of
Eq. (A12), has the following improvements relative to that
used in [84] (see Appendix D there): (a) It is applicable to
DAs with any number of Gegenbauer harmonics. (b) The
number of heavy-quark thresholds is extended to four
flavors. (c) When the interval of evolution contains two
or more mass thresholds, our method can still incorporate
contributions from the nondiagonal part of the evolution
matrix, removing the restriction of using only the first two
Gegenbauer coefficients a2 and a4 as in [84].
We reiterate that the matching of the coupling constants at

the quark-mass thresholds requires the readjustment of the
value of the QCD scale parameter Λ to ΛðNfÞ. A detailed
description of the matching procedure of the running
coupling in the global scheme can be found, for instance,

in [31]. For definiteness, we quote here the two-loop Λð2Þ
ðNfÞ

values used in our code: Λð2Þ
ð3Þ ¼369MeV, Λð2Þ

ð4Þ ¼ 305 MeV,

Λð2Þ
ð5Þ ¼ 211 MeV,Λð2Þ

ð6Þ ¼ 88 MeV.Thesevalues are defined

by fixing the strong coupling

αSðM2
ZÞ ¼ 0.118 ðA14Þ

at the scale of the Z boson mass MZ ¼ 91 GeV.
We emphasize that for self-consistency reasons, the

global two-loop coupling αglob;ð2Þs ðμ2;Λ3Þ=ð4πÞ should be
used in all functions entering Eq. (A4) that depend on the
coupling with a variable flavor number Nf. Finally, the
global evolution of the Gegenbauer coefficients is given by

Aglobðμ2Þ ¼ ET
globðμ2; μ20ÞAðμ20Þ; ðA15Þ

whereas the global evolution of the pion DA assumes the
form

φglob
π ðx; μ2Þ ¼ Aglobðμ2ÞΨðxÞ ¼ Aðμ20ÞΨðx; μ2Þ

¼
XN−1

n¼0

aglob2n ðμ2Þψ2nðxÞ: ðA16Þ

APPENDIX B: EXPERIMENTAL DATA
AND NUMERICAL PREDICTIONS

In this appendix, we address the experimental data on the
pion-photon TFF together with our main theoretical pre-
dictions shown in Table III. The preliminary BESIII data
[12,13] are included in the graphics shown in Fig. 4. The
results obtained with the BMS pion DA [16] in the last
column of Table III differ from those we reported before
in [37] because here we used the updated theoretical
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TABLE III. Compilation of the existing data on Q̃2Fγ�γπ0ðQ̃2Þ≡ F γπðQ̃2Þ from single-tag experiments: CELLO [10], CLEO [11],
BABAR [3], and Belle [4]. The TFF is measured at Q̃2 where the differential cross sections assume their mean values computed by
numerical integration. The last column shows theoretical predictions and uncertainties for the BMS and pk DAs.

Q2 bin range Q̃2 F γ�γπ0
CELLOðQ̃2Þ F γ�γπ0

CLEOðQ̃2Þ F γ�γπ0
BABARðQ̃2Þ F γ�γπ0

Belle ðQ̃2Þ F γ�γπ0
BMSðpkÞðQ̃2Þ

[GeV2] [GeV2] [0.01 × GeV] [0.01 × GeV] [0.01 × GeV] [0.01 × GeV] [0.01 × GeV]

0.5–0.8 0.68 8.37þ0.67
−0.73 � � � � � � � � � 5.39þ3.46

−3.37 ð5.98Þ
0.8–1.1 0.94 9.58þ0.78

−0.84 � � � � � � � � � 7.70þ2.90
−2.80 ð7.95Þ

1.1–1.5 1.26 9.54þ1.00
−1.12 � � � � � � � � � 9.94þ2.62

−2.50 ð9.65Þ
1.5–1.8 1.64 � � � 12.1� 0.8� 0.3 � � � � � � 11.78þ2.6

−2.46ð11.05Þ
1.5–2.1 1.70 12.08þ1.43

−1.62 � � � � � � � � � 12.00þ2.59
−2.45 ð11.23Þ

1.8–2.0 1.90 � � � 11.7� 0.7� 0.3 � � � � � � 12.66þ2.55
−2.39 ð11.75Þ

2.0–2.2 2.10 � � � 13.8� 0.8� 0.3 � � � � � � 13.18þ2.49
−2.32 ð12.19Þ

2.1–2.7 2.17 16.43þ2.94
−3.60 � � � � � � � � � 13.33þ2.46

−2.29 ð12.33Þ
2.2–2.4 2.30 � � � 12.7� 0.9� 0.3 � � � � � � 13.59þ2.42

−2.24 ð12.56Þ
2.4–2.6 2.50 � � � 13.5� 1.0� 0.3 � � � � � � 13.93þ2.34

−2.16 ð12.88Þ
2.6–2.8 2.70 � � � 15.1� 1.1� 0.4 � � � � � � 14.20þ2.25

−2.07 ð13.16Þ
2.8–3.1 2.94 � � � 13.7� 1.2� 0.3 � � � � � � 14.46þ2.18

−2.01 ð13.43Þ
3.1–3.5 3.29 � � � 14.5� 1.2� 0.4 � � � � � � 14.75þ2.09

−1.93 ð13.76Þ
3.5–4.0 3.74 � � � 13.2� 1.4� 0.3 � � � � � � 15.01þ1.99

−1.84 ð14.10Þ
4.0–4.5 4.24 � � � 13.4� 1.5� 0.3 15.04� 0.39 � � � 15.21þ1.88

−1.76 ð14.39Þ
4.0–5.0 4.46 � � � � � � � � � 12.9� 2.0� 0.6 15.28þ1.84

−1.72 ð14.50Þ
4.5–5.0 4.74 � � � 15.4� 1.7� 0.4 14.91� 0.41 � � � 15.36þ1.79

−1.68 ð14.62Þ
5.0–5.5 5.24 � � � 14.5� 1.8� 0.4 15.74� 0.39 � � � 15.48þ1.71

−1.61 ð14.81Þ
5.0–6.0 5.47 � � � � � � � � � 14.0� 1.6� 0.7 15.52þ1.68

−1.58 ð14.89Þ
5.5–6.0 5.74 � � � 15.5� 2.2� 0.4 15.60� 0.45 � � � 15.57þ1.64

−1.55 ð14.97Þ
6.0–7.0 6.47 � � � 14.8� 2.0� 0.4 16.35� 0.36 16.1� 0.7� 0.8 15.68þ1.56

−1.48 ð15.15Þ
7.0–8.0 7.47 � � � � � � 16.06� 0.47 15.8� 0.6� 0.7 15.80þ1.47

−1.40 ð15.35Þ
7.0–9.0 7.90 � � � 16.7� 2.5� 0.4 � � � � � � 15.84þ1.44

−1.37 ð15.42Þ
8.0–9.0 8.48 � � � � � � 16.73� 0.60 17.5� 0.5� 0.7 15.89þ1.39

−1.34 ð15.51Þ
9.0–10.0 9.48 � � � � � � 18.53� 0.55 16.9� 0.5� 0.7 15.97þ1.33

−1.28 ð15.63Þ
10.0–11.0 10.48 � � � � � � 18.66� 0.76 16.5� 0.6� 0.7 16.04þ1.28

−1.24 ð15.73Þ
11.0–12.0 11.48 � � � � � � � � � 17.3� 0.8� 0.7 16.10þ1.24

−1.20 ð15.82Þ
11.0–12.0 11.49 � � � � � � 19.16� 0.78 � � � 16.10þ1.24

−1.20 ð15.82Þ
12.0–13.5 12.71 � � � � � � 17.50� 1.10 � � � 16.16þ1.19

−1.16 ð15.91Þ
12.0–14.0 12.94 � � � � � � � � � 16.8� 0.7� 1.0 16.18þ1.18

−1.15 ð15.93Þ
13.5–15.0 14.22 � � � � � � 19.80� 1.20 � � � 16.23þ1.14

−1.12 ð16.00Þ
14.0–16.0 14.95 � � � � � � � � � 17.9� 1.2� 1.3 16.26þ1.12

−1.10 ð16.04Þ
15.0–17.0 15.95 � � � � � � 20.80� 1.20 � � � 16.30þ1.10

−1.08 ð16.09Þ
16.0–18.0 16.96 � � � � � � � � � 18.3� 1.7� 1.2 16.33þ1.08

−1.06 ð16.13Þ
17.0–20.0 18.40 � � � � � � 22.00� 1.30 � � � 16.38þ1.05

−1.03 ð16.18Þ
18.0–20.0 18.96 � � � � � � � � � 19.8� 1.9� 1.3 16.39þ1.04

−1.02 ð16.20Þ
20.0–25.0 22.28 � � � � � � 24.50� 1.80 � � � 16.47þ0.98

−0.97 ð16.30Þ
20.0–25.0 22.29 � � � � � � � � � 19.5� 1.7� 1.3 16.47þ0.98

−0.97 ð16.30Þ
25.0–30.0 27.31 � � � � � � 18.10þ3.3

−4.0 � � � 16.56þ0.93
−0.92 ð16.40Þ

25.0–30.0 27.33 � � � � � � � � � 23.6þ2.6
−2.9 � 1.6 16.56þ0.93

−0.92 ð16.40Þ
30.0–40.0 34.36 � � � � � � 28.50þ3.9

−4.5 � � � 16.64þ0.87
−0.87 ð16.49Þ

30.0–40.0 34.46 � � � � � � � � � 18.8þ3.5
−4.3 � 1.3 16.64þ0.87

−0.87 ð16.50Þ
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framework discussed in Sec. II and Appendix A. The
numbers given in parentheses are new predictions calcu-
lated with the platykurtic pion DA [17]. Their theoretical
uncertainties are covered by those for the BMS DAs.
It is instructive to make some important remarks con-

cerning the CELLO data reported in [10]. These data were
presented for the quantity F2M3

64π eV≡ a, evaluated at the
reference momentum scale hQ2i≡ Q̃2. They have been
converted here to the quantity Q2FðQ2Þ using the relation

Q2jFγ�γπ0ðQ̃2Þj¼ 1
4πα

ffiffiffiffiffiffiffi
64πa
M3

q
jQ2jGeV, whereM ≃ 135 MeV

and α ¼ 1=137.

It is worth noting that the CELLO data are usually
shown for the quantity Q2Fγ�γπ0ðQ2Þ not at the scale Q̃2

but rather at the symmetric point of each Q2 interval,

i.e., at the scale Q2 ¼ ðQ2
max þQ2

minÞ=2. The resulting
deviations of the scaled TFF Q̃2Fγ�γπ0ðQ̄2Þ from
Q̃2Fγ�γπ0ðQ̃2Þ are very small at lower Q2 but they
increase with Q2, becoming strongest at the highest
scale probed, viz., Q̄2 ¼ 2.40 GeV2 for which one
has Q2Fγ�γπ0ðQ̄2Þ½0.01 × GeV� ¼ 18.17þ3.25

−3.98 instead of
Q2Fγ�γπ0ðQ̃2Þ½0.01 × GeV� ¼ 16.43þ2.94

−3.60 , see Table III.
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