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Light-front holographic radiative transition form factors for light mesons
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We predict the V — Py decay widths and the V — Py* transition form factors, where V = (p, w, K*, ¢)
and P = (=, K, n,n'), using spin-improved holographic light-front wave functions for the mesons. We find
excellent agreement with the available data for both the decay widths and the timelike transition form
factors extracted from the leptonic conversion decays V — PIT[".
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I. INTRODUCTION

The vector-to-pseudoscalar meson radiative transitions,
Y — Py, are important probes of quark confinement
dynamics, encoded in their transition form factors at zero or
low momentum transfer. These nonperturbative form fac-
tors are universal and appear in other physical processes
like the hadronic light-by-light contribution to the Standard
Model prediction of the muon anomalous magnetic
moment [1]. On the experimental side, there exists mea-
surements of the V — Py decay widths [2] and of the V —
‘Py* transition form factors for low-momentum timelike
photons. The latter are extracted from the leptonic con-
version decays V — PITI":@w — 2%~ in the Lepton-G
and NA60 experiments [3-5]; @ — 7’¢Te™ in the A2MM
experiment [6] and ¢ — nete™ in the SND and KLOE
experiments [7,8]. The discrepancy between the Lepton-G
and NAG60 data with the prediction of the vector meson
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dominance (VMD) model has triggered considerable theo-
retical attention [9—12], and prompted the measurement of
the ¢ — n’e* e~ decay by the KLOE experiment [13]. The
transition form factors have also been predicted using the
Dyson-Schwinger Equations [14], the pQCD factorization
approach [15], chiral perturbation theory [16,17], and,
more relevant to this paper, in the light-front formalism
[18-20], where they are expressed as overlap integrals of
the meson light-front wave functions.

Here, we compute the transition form factors using spin-
improved holographic light-front wave functions for the
mesons. These spin-improved wave functions were pro-
posed for the vector mesons V = (p, K*, ¢) in Refs. [21-23]
and for the pseudoscalar mesons P = (x,K,7n,%') in
Refs. [24,25]. The vector meson wave functions were used
to predict their decay constants, the cross-sections for
diffractive (p/¢)-electroproduction and several observables
for the semileptonic B,y — (p, K*, §) + Il decays [22,26—
29]. The pseudoscalar meson wave functions were used to
predict their decay constants, electromagnetic elastic form
factors and charge radii [24,25], as well as the (z°,7,%') —
yy* transition form factors and (z°, n,%') — yy decay widths
[25]. So far, the spin-improved holographic wave functions
have been used in processes involving only one light
(pseudoscalar or vector) meson. Our goal in this paper is
to use them simultaneously to predict the V — Py* tran-
sition form factors and the corresponding V — Py decay

Published by the American Physical Society
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widths. For completeness, we shall also predict the mea-
sured 7' — (p, w)y decay widths.

In our approach, the difference between pseudoscalar
and vector mesons lies in the quark-antiquark helicity wave
function that modifies their universal holographic wave
function. The dynamical part of the latter satisfies the
holographic Schrodinger equation

(-3 + U@ a0 = o). ()

where { = /x(1 — x)b,, with x = k* /P being the light-
front momentum fraction carried by the quark and b
the magnitude of the transverse separation, b = b ",
between the quark and antiquark. Equation (1) can be
derived in light-front QCD in a semiclassical approxima-
tion where quark masses and quantum loops are neglected
[30-33]. More interestingly, mapping ¢ onto the fifth
dimension, z, of anti—de Sitter spacetime, AdSs, Eq. (1)
becomes the wave equation for the amplitude of spin-J
string modes propagating in a modified AdSs spacetime,
where (2 —J)? = L? — (uR)? with u being the 5-d mass
of the string modes and R the radius of curvature of AdSs
[32]. The geometry of AdSs is distorted by a dilaton field
@(z) which drives the confining potential in physical
spacetime:

1 1

e @

4

with { <> z. While Eq. (2) is true for an arbitrary dilaton
field, only a quadratic confinement potential, U(¢) = x*¢?,
leaves the underlying action leading to Eq. (1) conformally
invariant [34], and this, in turn, requires the dilaton field to
be also quadratic, ¢ = x?z2. Then, Eq. (2) yields

UL, J) =k + 22 (0 = 1). (3)

The mass scale x which simultaneously sets the strength
of the dilaton field in AdSs and the hadron mass scale
in physical spacetime, is referred to as the AdS/QCD
mass scale.

The supersymmetrization of Eq. (1) leads to the iden-
tification of mesons and baryons (considered as quark-
diquark systems) as supersymmetric partners, provided that
they differ by only one unit of orbital angular momentum
[35-37]. In other words, the meson and baryon mass
spectra are given by

M3, =4k*(n+ L) +2c%S  and

M3 =4k*(n+ L+ 1) + 2«*S (4)
where § is the spin of the quark-antiquark in mesons and
the lowest possible value of the diquark spin in baryons.
The lightest hadron (with J/ = L = § = 0) is massless, with

no supersymmetric partner, and is naturally identified with
the pion. At this point, the only free parameter is the mass

scale, k, and it can be fixed by a simultaneous fit to the
Regge slopes of light mesons and baryons. This fit yields
k = 523 £+ 24 MeV [38], which we refer to as the universal
AdS/QCD mass scale.

Solving Eq. (1) yields the dynamical part of the holo-
graphic meson wave function,

2
b= [ 2 renp (55 k) (9

(n+1L)
and the complete meson wave function is given by [32]

¢11L (C
V27l

~—

W (x.8.0) = X(x)e'™, (6)

where X (x) is fixed by mapping the spacelike electromag-
netic form factor of the pion in AdSs and in physical
spacetime [39]. In AdSs, the form factor is given by an
overlap integral of the ingoing and outgoing hadronic
modes convoluted with the bulk-to-boundary propagator
which maps onto the free electromagnetic current in
physical spacetime. In physical spacetime, the form factor
is given by an integral overlap of the meson light-front
wavefunctions, i.e., the Drell-Yan-West formula [40,41].
This procedure yields X(x) = y/x(1 — x) [32]. Matching
of the AdSs and physical spacetime gravitational form
factors gives an identical result [39].

The normalized holographic light-front wave function
for mesons with n = L = 0 is given by

5 K _ K2§2
‘P(X,C):\/—E\/Eexp - (7)
or, in momentum space,
1 M?
‘“P(.X', kzl) X \/—x_)_cexp (— 2_](‘2> (8)

where M? = k% /xx is the invariant mass of the quark-
antiquark pair. Here k, is the magnitude of the two-
dimensional transverse momentum, k = k LeiekL, which
is the Fourier conjugate of the transverse distance, b,
between the quark and the antiquark. For nonzero quark
masses, this invariant mass should be
M%C, = (ki +xmj + xm%,) /xx, where f and f' denote
the flavors of the quark and antiquark respectively. This
motivates a prescription [42] to account for light quark
masses: replace M? by M/%j;., in Eq. (8). Then, the holo-

graphic wave function becomes

1 K2 1 (m} ms,
2y o b _ K b pmy e T
W(x, k7)) oc\/x_)_cexp< 21<2x)"c> exp( e ( P + B ))
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So far, the quark and antiquark helicity indices have been
suppressed [32]. Making them explicit, we have

PPV (x k) = STV (x. kY, (10)
where
P 1
Shjl == ﬁhéh’_ﬁ (11)
and
gw_Lls g1, 12
h.h 7\/5 h,—h> h.h *\/z ht.hE- ( )

With a universal AdS/QCD scale, this would lead to
degenerate decay constants for the pseudoscalar and vector
mesons, as well as degenerate decay constants for the
longitudinally and transversely polarized vector mesons, in
contradiction with experiment [2] and lattice QCD [43,44].
Indeed, in light-front holography, there is no distinction
between the dynamical wave functions of ground state
(n = L = 0) light pseudoscalar and vector mesons since
Eq. (5) does not depend on S.

II. DYNAMICAL SPIN EFFECTS

The above shortcomings can be addressed by taking
into account dynamical spin effects. The pseudoscalar
and vector meson wave functions are then given by
[21,22,24,25]

PV _ PV
Y (e k) =S

(x, K)¥(x, k%), (13)
where W(x, k3 ) is the holographic wave function given
by Eq. (9), and the Lorentz invariant spin structures are
given by

STV (k) = ”_‘h(x\}; LI ”h(’_“;’ LI
with
Ty=¢)r (15)
where
el = (P+ My, 0) eh®) = L (0.0.1,40) (16)
My~ P+ VG
and
Tp=(P-7)r’ +Mpy’, (17)
where

MZ
pHo— <P+ Pf,o o) (18)

Equation (15) is modeled upon the photon-quark-anti-
quark vertex and leads to a successful description of
diffractive p and ¢ electroproduction [21,23]. On the other
hand, Eq. (17) does not give a good description of the
pseudoscalar meson data. However, since the individual
terms of Eq. (17) are separately Lorentz invariant, we are
able to use the more flexible structure,

M3 AP*
Ip = 2P+7 P 4+——17r +BMpy  (19)
where A and B are dimensionless constants which quantify
the importance of dynamical spin effects. Indeed, setting
A = B =0, we are left with the nondynamical y*y> spin
structure which yields Eq. (11). References [24,25] choose
A =0, as required by the data, while the situation is less
clear for B: the pion data favor B > 1, the (charged) kaon
data prefer B = 0. For the 5/#' system, the 5/ — yr*
transition form factor data prefer B > 1 while the 5(') —
yy decay widths data prefer B = 0 (B = 1). Consequently,
we are compelled to treat B as a free parameter here.
Explicitly, the spin-improved holographic wave func-

tions are given by [24,25]
m mz
PP (e k) = N [(Mp +B <7f + )_j > > héy_i

k e tthL
-B(M v, o)

while [21,22]

memiz + k2
lPZ,(BL)(% k) =N.5,_; (M%; + (#))‘I’(x k%)

XX
(21)
and
\PV(j:i)(x k) = Nr +ke +i0, On+0n5 _5h,2|26l_1,i
h,h ’ \/i X X

m mz
(%4 st Wi R2). (22
The normalization constants A/ (L,r) are fixed using

Z/ 167° dx]lP

which embodies the assumption that the meson consists
only of a quark-antiquark pair. Alternative spin-improved

)P =1, (23)
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(a)

FIG. 1.

holographic wave functions have been proposed in
Refs. [45,46].

We remark that our spin-improved holographic light-front
wave functions are distinct from the so-called “boosted”
wave functions obtained by “boosting” the nonrelativistic
Schrodinger wave function in the meson’s rest frame to the
light-front. This is usually performed using the Brodsky-
Huang-Lepage prescription [47], together with the Melosh
rotation [48] for the spin structure: see, for example,
Ref. [49]. Our spin structures, Eq. (14), are fixed by the
rules of light-front field theory for coupling a quark and
an antiquark into a (point-like) meson while nonperturbative
bound state effects are captured by the holographic
wave function given by Eq. (9). Our wave functions
are directly formulated on the light-front and are frame-
independent, avoiding the ambiguities associated with a
boosting prescription.

Having said that, it is worth noting that the boosting
of a harmonic oscillator rest frame Schrodinger wave-
function results in the boosted Gaussian wavefunction [50]
which is similar to the holographic Gaussian wave func-
tion given by Eq. (9). However, we must highlight three
essential differences between these two wave functions:
first, as we mentioned before, the harmonic potential in the
holographic Schrodinger equation, Eq. (1), is uniquely
fixed by a specific mechanism of conformal symmetry
breaking [34] in semiclassical light-front QCD unlike the
assumed harmonic potential in the ordinary Schrodinger
equation. Second the AdS/QCD mass scale, «, is extracted
from spectroscopic data and it fixes the width of the
holographic Gaussian where as the width of the boosted
Gaussian is a free parameter which has to be fixed by some
constraint on the wave function [49,50]. Third, the two
wave functions differ by an overall factor of 1/+/xx which
makes their endpoint behaviors different. Interestingly, the
data on diffractive p meson electroproduction are able to
discriminate between the two wave functions and favor the
holographic Gaussian [21].

III. RADIATIVE TRANSITION FORM FACTORS

The transition form factors, Fyp(Q?), are defined
by [18]

iFyp(q)e" e, P\,P, = (P(P')[Jen(0)|V(P.2)).  (24)

V(P,N)

P(P")

1-x,-k, +q,

(b)

The active quark contribution (a) and the active antiquark contribution (b) to the V — Py* transition.

where P(P’) is the 4-momentum of the vector
(pseudoscalar) meson, g> = (P’ — P)? is the spacelike 4-
momentum transfer, and Je,(0) is the quark electromag-
netic current. To leading order in «,, there are two
contributions to the radiative transition matrix element,
with the photon being either radiated by the quark or the
antiquark, as shown in Fig. 1. Focusing on states with a
specified flavor content, we can write:

(P fF | Tem(0)| Vs £F)
= (PifFHO)V:LF) + (P fFIT50)V£F) - (25)

with

dktd?k dk'Td?k’ . o
J4(0) = ef/ Bk k)b (K K

1673k 1623K+ 7
X ip(k* K) up(k, k') (26)
and
dk*d’k dk'+ &K’ ., .
510 = e [ T om0 K (1K)
x 03 (k*, K)y vy (K k') (27)

where, for notational simplicity, we have suppressed
the helicity and color indices. For the nonstrange mesons,
P = (m,n,n')and V = (p, w, ¢), Eq. (26) and Eq. (27) map
onto each other under a G-parity transformation, i.e.,
J50) = GJ’;,(O)GT, so that

(P FFITEO)V: £
= GpGy(=1)'P(=1)(P: £ |75, (0) Vi ff).  (28)

where Gpy, and Ip, are the G-parity and isospin quantum
numbers. For the nonstrange mesons, the /¢ assignments
are: 1(17), p=(17), n/n'(0%), and ¢p/w(07), implying
that

(PifFIHOVif ) = =(Pof POV £, (29)

i.e., the two Feynman graphs of Fig. 1 differ only by a
minus sign. This is not the case for transitions involving the
strange mesons.
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To proceed, we choose the “good” current, /£, (0), in the
Drell-Yan-West frame [40,41] where

M2 M2 2
Pﬂ:<P+,P—f,0>; Pﬂ’=<P+,%,q) (30)

i.e., with ¢* =0 and ¢*> = —¢% < 0. This choice avoids
the zero-mode contributions [51] but, at the same time,
restricts the computation of the transition form factor to the
spacelike region where Q= —¢g> > 0. However, it is
possible to analytically continue the spacelike form factor
to the timelike region using the prescription ¢, — iq
[20,52,53]. Note that the “good” current matrix element
vanishes for A = L, and therefore we must take A = T (here
we choose T = +) in order to extract Fyp(Q?). Fock
expanding the meson states and using Eqgs. (26) and (27),
we find that

(P(P)Jém(0)[V(P.+))

dxd’k - «
:2P+I s e/ Y7 (x. Kk +Xq) +ep ¥ (x. k —xq)]

x ¥ (x, k) (31)

where we have used the shorthand notation, Y’ =", ; /.
Our derivation of Eq. (31) is standard and model-indepen-
dent. We now use our spin-improved holographic wave
functions, given by Egs. (20) and (22), we obtain

Z: TP (x, k—l—)‘cq)‘I’V-(H (x,Kk)
- (g1 X)*+4(xm%+xm2)
=-NXxqexp (— - 5 i ! )/\/l(x) (32)
4x“xx

and

d’k
I S (. k —xq) ) (x.k)

(q.x)* +4(xm3 +xm3,)

4K xx

= N'xqexp (- )/\/l(x), (33)

where N = N'N7x?/(87%) and

Mx) =~ (%Ha(m)) (34)

XX XX

Inserting Eqs. (32) and (33) in Eq. (31), Eq. (24) leads to

Fyp(Q*) =e/l(q1:Mp.ms,myp) —epl (g7 Mp,mp,my),
(35)

PHYS. REV. D 102, 034021 (2020)
where

~ dx (Mp )'cmf—l—xmv
Hatsbtpm.mp) =K [ S5 (%57 m(M ) )

( (q.%)* +4(xm} +xmj%,)>
Xexp | — .

4K xx
For the nonstrange mesons, m; = my, the two integrals
in Eq. (35) are identical, i.e.,

(36)

Fyp(Q?) = (ef — ep)I(q7: Mp.my), (37)
where
~ dx /M
(g7 Mp,my) = N/; <Tp + B(%))
)2 4 2
X exp <— w> (38)
dxxXx

Eq. (37) is consistent with the model-independent expect-
ation expressed by Eq. (29) and it implies that F - ,+ (Q*) =
Fo0(Q%) and F,0(0%) = 3F ,0(Q?). For the strange
mesons, we must instead use Eq. (35), leading to the
interesting possibility of destructive interference between
the two Feynman diagrams of Fig. 1 for the K** — K*y*
transition. We shall discuss this further in Sec. IV.

For the neutral mesons, (1,7') and (¢, w), we need to
account for mixing. Although the ¢ — » mixing is small, it
is essential to account for the ¢p — 7% transition. We use
the SU(3) octet-singlet mixing scheme where

()= (50 (), o
()= (0 ) (). o

with  |ng), |wg) = ﬁ (uit + dd — 2s5) and
uit + dd + s5). It then follows that [54]

(cos¢9p —Sin9P> (FPO”S(Q )) (41)

), o) =
ot

(i)

sinfp cosOp Fp, (0%

o) cosfy, —sinf F, »(0?
( b )_( 1% V>< 3 ( )>’ (42)

sinf), cosfy / \F, (0%

and
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F¢:7(Q2) cos By cosOp —cos By sinbfp
F (0% cos @y sinfp  cos by, cosOp
F,,(0%) ~ | sin Oy cosfp —sinfysinbp
Fpu(0?) sinfy,sinfp  sinby, cosOp

where, using Eq. (37),

1
png(Qz) \/g (qJ_’Mng’m ) (43)
2
/) m(QZ) 3 (CIJ_’Mm’mq)’ (44)
1
2
mg;z (Q ) \/§ (qJ_’M m ) (45)
2
w]n' (Qz) = \/; (('IL’M m ) (46)
1
Fop (@) = g 1(q8: My my) = ST(q%: My m,), (47)
2 242
Fo (Q%) = - 1(q7: M, ,my) + \9/_I<QL’M1717m )
(48)
2 242
wmg(Qz) (qJ_’Mi’]g’m )"‘%_I(‘M’Mwm )
(49)
2
Fo (Q%) = S1(q2: My my) = 2125 My m,), (50)
with [25]

<M$3> B <(:05297> sin’0p ) <M§> (51)
M; ~ \sin20p  cos?Op M%)

For a detailed analysis of mixing in the pseudoscalar sector,
we refer to [55].

Evaluating the transition form factors at Q% =
us to predict the radiative decay widths:

0 allows

Ao M3
ey =2 FunlO)F

_ M2 3
v TP , (52)
2My,
and, as mentioned before, to predict the timelike transition

form factor, we use the prescription ¢, — ig,; in Eq. (36)
which then reads:

—sinfycosfp  sinb,, sinOp Foens (0%)
—sinfysinfp —sin 6y, cosOp F oy (0%)
cos@ycosfp  —cos by, sinbp F oy (0%) ’
cosbysinfp  cos 6y, cosOp Fpp (0%)

[
dx (Mp Xmyp + xmy
tatstpmgomy) = [ 5 (F 8 )

(g %)% - 4(5cm§ + xm}%)
( 4’ xx ) '
(53)

X exp

As expected, Eq. (53) diverges for g7 >4m,, . corre-
sponding to the kinematic threshold for quark-antiquark
production. Since we do not account for the latter here, we
shall restrict our predictions in the timelike region below
this threshold.

In order to reproduce the nonperturbative pole structure
of the form factor in the timelike region, above the quark-
antiquark production threshold, one must use the confined
bulk-to-boundary propagator, i.e., one which propagates in
the dilation-modified AdSs spacetime and maps onto a
“dressed” (i.e., incorporating higher Fock states) electro-
magnetic current in physical spacetime [32]. The resulting
form factor also reproduces the VMD behavior in the low
momentum region, as well as the hard scattering power
scaling behavior at large Q. This technique has been used
to predict the pion electromagnetic form factor [32,56], the
(7%, n,n') = y*y transition form factors [57,58] as well as
the nucleon electromagnetic form factors in the spacelike
region [59,60].

IV. COMPARING TO DATA

For our numerical predictions, we use m, ;=330 +
30MeV, m; =500+ 30 MeV and the universal AdS/
QCD scale, k = 523 =24 MeV, as in Ref. [25]. For the
mixing angles, we use 0p = —(14.1 £ 2.8)° [61] and ), =
(38.7 £ 0.2)° [62]. Our theory uncertainties follow from
these quoted uncertainties.

The various experimental collaborations fit the timelike
transition form factor data using

1
|Fexp(Q2)|2 = 02

(1+2) 34)

where A is the parameter to be fitted. Reported values are:
Anago =0.670 £0.006 GeV, Aponim =0.709+£0.037 GeV
and  Apepong = 0.65 £0.037 GeV  for the o — 7"

transition, Agpop = 0.704+0.019 for the ¢ — 2%*

034021-6
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TABLE 1.

Our predictions for the (p, , ¢p) — =y decay widths, compared to the PDG averages [2].

Spin-improved LFH [keV]

Decay widths B=0 B=1 B>1 PDG (2018) [keV]
['(p* - zty) 2346 +3.12 64.52 +£6.94 66.37 +=7.00 67.10 +7.82
r'(p° - 2%) 2346 +3.12 64.52 £6.94 66.37 +7.00 70.08 £9.32
' — 7°%) 221.03 £29.90 607.96 + 65.44 625.38 £ 66.03 713.16 £25.40
(¢ — %) 1.84 +£0.33 5.06 £ 0.80 521+0.82 5.52+£0.22

transition, and Appg = 0.88 £ 0.04 GeV for the ¢ — 5y*
transition. Note that, with A = M ,, Eq. (54) is the VMD
prediction.

Our predictions for the (p, w, ¢) — ry radiative decay
widths are shown in Table I. As can be seen, B > 1 is
favored by the data, corroborating the findings of
Ref. [25] that B > 1 is favored for the pion. This is
further supported by our predictions for the w — z%*
timelike transition form factor, as shown in Fig. 2. The
empirical pole fit (dotted-green curve) is generated using
Eq. (54) with A = 0.676 GeV, the average of the Lepton-
G, A2MM and NAG60 values, and it agrees very well with
our B > 1 predictions (solid-black and dot-dashed red
curves). Our predictions for the ¢ — 7’y* timelike
transition form factor are shown in Fig. 3. In this case,
although there is a preference for the B > 1 predictions
(solid-black and dot-dashed red curves), the larger error
bars of the data do not completely exclude the B =0

(dashed-blue) prediction. Indeed, the empirical pole
fit (dotted-green curve) now lies between the B > 1
(solid-black and dot-dashed-red) and B =0 (dashed-
blue) curves. The predictions with B > 1 are particularly
impressive since they can be viewed as parameter-
free: once B >1 is fixed, as in Ref. [25], all other
predictions are obtained without any further adjustment
of parameters.

For the K** - K% and K** — K*y decay widths,
Table II shows that B =1 accommodates the data for
both the neutral and charged decay modes. Note that the
theory uncertainty is amplified for the latter because of the
destructive interference between the two Feynman graphs
of Fig. 1. At first glance, the preference for B = 1 for the
charged decay mode may seem in disagreement with
the findings of Ref. [25], where B = 0 is reported to be
preferred by decay constant, electromagnetic elastic form
factor and radius data for charged kaons. However, we must

100:* _____ B=0 f
B=1 ;
‘j_\ S0F s - B>>1 '
% ----- VMD prediction !
> B
S L e Pole fit '
LLg ¢ Lepton—G (81)
~ 10b NAG60 (09)
NS}) r v NAG60 (16)
sl = A2MM (17)
Ol: |
: A
~ B e T
I - L=
1r E E E | }—*—1 } L i
0.0 0.1 0.2 0.3 0.4 0.5 0.6
-0* [GeV]

FIG. 2. Our predictions for the @ — 7%* timelike transition form factor with B = 0 (dashed-blue curve), B = 1 (solid-black curve)
and B > 1 (dot-dashed red curve), compared to the data from Refs. [3—6]. The dashed-cyan curve is the VMD prediction and the
empirical pole fit (dotted-green curve) is generated by Eq. (54), with A being the averages the fitted values reported by Lepton-G,

A2MM and NA60 experiments.
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100
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B=1 ]
----- = B>>1 ]
5 ————— VMD prediction 3 ]
;;\ -------- Pole fit 1
3 « KLOE (16)
=S 10F
< : |
S
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? i
h?
1+ ] E { - ]
0.0 0.1 0.2 03 0.4 0.5 0.6

-0 [GeV]
FIG. 3. Our predictions for the ¢ — #°* timelike transition form factor, with B = 0 (dashed-blue curve), B = 1 (solid-black curve)

and B > 1 (dot-dashed-red curve), compared to the data from Ref. [13]. The dashed-cyan curve is the VMD prediction and the empirical
pole fit (dotted-green curve) is generated by Eq. (54) with A = Ak oE-

TABLE II. Our predictions for the K* — Ky decay widths, compared to the PDG averages [2].

Spin-improved LFH [keV]

Decay widths B=0 B=1 B> 1 PDG (2018) [keV]
(K - K%) 39.38 +3.74 108.67 +9.34 122.02 + 10.49 116.36 &+ 11.17
[(K** - K*y) 23.85+5.74 71.64 +18.17 81.20 + 20.66 50.29 + 5.47
100F] :
—— |Fge g2 (O
N o e IF o, g0 (@)
RN VMD prediction
> 1 .
(o]
S o i
> e P
&
T
< 1072 ]
1073 E
-4 I I 1 L L
10 0 1 2 3 4 5

0 [GeV’]

FIG. 4. Our predictions for the K** — K*y* (solid-black curve) and K*° — K%* (dashed-brown curve) transition form factors, with
B =1, compared to the VMD prediction (dotted-cyan curve).
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TABLE IIL

Our predictions for the (p, w, ) — (n,1')y decay widths, compared to the PDG averages [2].

Spin-improved LFH [keV]

Decay widths B=0 B=1 B>1 PDG (2018) [keV]
T(p - ny) 16.18 +2.57 40.00 £ 5.50 4573 £6.16 44.70 £ 3.37
Tw - ny) 1.76 £ 0.31 4.31 +£0.67 4.93 +£0.75 3.82£0.38
T(¢p - ny) 20.80 +£3.01 59.64 + 8.07 67.63 £9.21 55.36 +£1.23
(¢ — nry) 0.11 £0.02 0.29 £ 0.04 0.36 £ 0.05 0.26 £ 0.01

emphasize that taking 0 < B <« 1, say B = 0.2, still fits the
radiative width data in Table II, as well as all data in
Ref. [25]. On the other hand, as can be seen in Table II,
B <1 is excluded for the neutral decay mode. As we
mentioned before, destructive interference occurs only in
the charged decay mode, leading to a zero (at leading order)
in the transition form factor in the spacelike region. This
is shown in Fig. 4. We note that the location of the zero
is sensitive to the strength of SU(3) flavor symmetry
breaking, shifting to lower Q? as the difference between
my and m, increases, as was pointed out previously in
Refs. [19,63], although the precise location of the zero is
very much model-dependent.

In Table III, we show our predictions for the radiative
decays to n and 5’ where an additional theory uncertainty
results from the 7n/n mixing angle. Clearly, B > 1 is
preferred by the data. This is consistent with the findings
of Ref. [25] where it is reported that B > 1 is also preferred
by the /5 — y*y transition form factor data. In Fig. 5, we

compare our predictions for the ¢ — ny* transition to
KLOE and SND data. In this case, the data cannot
discriminate between the B = 0 (dashed-blue curve) and
B > 1 (solid-black and dot-dashed-red curves) predictions
which start to differ only at large momentum transfer where
the experimental error bars are much larger. Both the
B =0 and B >1 curves agree with the empirical pole
fit (dotted-green curve) which is now generated with
Appg = 0.88 £0.04 GeV. Finally, we also predict the
' = (p, w)y decay widths given by

My - M, )\’
U P
Fq’—»(p.w)y = aeman’(p,w) (0)|2< M > . (55)

/

n

Our results are shown in Table IV where we find that B > 1
is again favored by the data.

————— B=0
- L
10 B=1 ;
II
----- - B>>1 ’
(o] ll
= | "7 VMD prediction /
S /
L Pole fit , p
T A SND (01) / J
.g S 4 ’/’ / 7
k. 1 KLOE (15) e g
~— e Doad
(8 r ””’ _,-r“‘;_’-;b’
~ T
= " .
3 ol T £ |
<
=
-5 \ \ + \ \
0.0 0.1 0.2 0.4 0.5 0.6

V-0 [GeV]

FIG.5.

Our predictions for the ¢ — ny* timelike transition form factor with B = 0 (dashed-blue curve), B = 1 (solid-black curve) and

B > 1 (dot-dashed-red curve), compared to the data from Refs. [7,8]. The dashed-cyan curve is the VMD prediction and the empirical
pole fit (dotted-green curve) is generated by Eq. (54), with A = Appg.
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TABLE IV. Our predictions for the ' — (p, )y decay widths, compared to the PDG averages [2].

Spin-improved LFH [keV]

Decay widths B=0 B=1 B>1 PDG (2018) [keV]

L(nr — py) 25.38 +4.48 58.80 +9.54 71.68 £11.13 56.64 + 3.58

T(n - wy) 2.85+045 6.70 £ 0.95 8.16 £ 1.11 5.14 +£0.49
V. CONCLUSIONS ACKNOWLEDGMENTS

We have used the spin-improved holographic light-
front wave functions for the light vector mesons
(p,w,K*,¢) and pseudoscalar mesons (z,K,n,7') to
predict the radiative transition form factors and decay
widths. We find excellent agreement with the available
data for the decay widths as well as the timelike
transition form factors in the low-momentum region.
Our findings support the idea that light pseudoscalar and
vector mesons share a universal holographic light-front
wave function which is modified differently by dynami-
cal spin effects.
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