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We predict the V → Pγ decay widths and the V → Pγ� transition form factors, where V ¼ ðρ;ω; K�;ϕÞ
and P ¼ ðπ; K; η; η0Þ, using spin-improved holographic light-front wave functions for the mesons. We find
excellent agreement with the available data for both the decay widths and the timelike transition form
factors extracted from the leptonic conversion decays V → Plþl−.
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I. INTRODUCTION

The vector-to-pseudoscalar meson radiative transitions,
V → Pγð�Þ, are important probes of quark confinement
dynamics, encoded in their transition form factors at zero or
low momentum transfer. These nonperturbative form fac-
tors are universal and appear in other physical processes
like the hadronic light-by-light contribution to the Standard
Model prediction of the muon anomalous magnetic
moment [1]. On the experimental side, there exists mea-
surements of the V → Pγ decay widths [2] and of the V →
Pγ� transition form factors for low-momentum timelike
photons. The latter are extracted from the leptonic con-
version decays V → Plþl−∶ω → π0μþμ− in the Lepton-G
and NA60 experiments [3–5]; ω → π0eþe− in the A2MM
experiment [6] and ϕ → ηeþe− in the SND and KLOE
experiments [7,8]. The discrepancy between the Lepton-G
and NA60 data with the prediction of the vector meson

dominance (VMD) model has triggered considerable theo-
retical attention [9–12], and prompted the measurement of
the ϕ → π0eþe− decay by the KLOE experiment [13]. The
transition form factors have also been predicted using the
Dyson-Schwinger Equations [14], the pQCD factorization
approach [15], chiral perturbation theory [16,17], and,
more relevant to this paper, in the light-front formalism
[18–20], where they are expressed as overlap integrals of
the meson light-front wave functions.
Here, we compute the transition form factors using spin-

improved holographic light-front wave functions for the
mesons. These spin-improved wave functions were pro-
posed for the vector mesonsV ¼ ðρ; K�;ϕÞ in Refs. [21–23]
and for the pseudoscalar mesons P ¼ ðπ; K; η; η0Þ in
Refs. [24,25]. The vector meson wave functions were used
to predict their decay constants, the cross-sections for
diffractive ðρ=ϕÞ-electroproduction and several observables
for the semileptonic BðsÞ → ðρ; K�;ϕÞ þ ll̄ decays [22,26–
29]. The pseudoscalar meson wave functions were used to
predict their decay constants, electromagnetic elastic form
factors and charge radii [24,25], as well as the ðπ0; η; η0Þ →
γγ� transition form factors and ðπ0; η; η0Þ → γγ decaywidths
[25]. So far, the spin-improved holographic wave functions
have been used in processes involving only one light
(pseudoscalar or vector) meson. Our goal in this paper is
to use them simultaneously to predict the V → Pγ� tran-
sition form factors and the corresponding V → Pγ decay
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widths. For completeness, we shall also predict the mea-
sured η0 → ðρ;ωÞγ decay widths.
In our approach, the difference between pseudoscalar

and vector mesons lies in the quark-antiquark helicity wave
function that modifies their universal holographic wave
function. The dynamical part of the latter satisfies the
holographic Schrödinger equation

�
−

d2

dζ2
−
4L2 − 1

4ζ2
þ UðζÞ

�
ϕðζÞ ¼ M2ϕðζÞ; ð1Þ

where ζ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

b⊥, with x ¼ kþ=Pþ being the light-
front momentum fraction carried by the quark and b⊥
the magnitude of the transverse separation, b ¼ b⊥eiθ⊥ ,
between the quark and antiquark. Equation (1) can be
derived in light-front QCD in a semiclassical approxima-
tion where quark masses and quantum loops are neglected
[30–33]. More interestingly, mapping ζ onto the fifth
dimension, z, of anti–de Sitter spacetime, AdS5, Eq. (1)
becomes the wave equation for the amplitude of spin-J
string modes propagating in a modified AdS5 spacetime,
where ð2 − JÞ2 ¼ L2 − ðμRÞ2 with μ being the 5-d mass
of the string modes and R the radius of curvature of AdS5
[32]. The geometry of AdS5 is distorted by a dilaton field
φðzÞ which drives the confining potential in physical
spacetime:

Uðζ; JÞ ¼ 1

2
φ00ðzÞ þ 1

4
φ0ðzÞ2 þ

�
2J − 3

2z

�
φ0ðzÞ ð2Þ

with ζ ↔ z. While Eq. (2) is true for an arbitrary dilaton
field, only a quadratic confinement potential, UðζÞ ¼ κ4ζ2,
leaves the underlying action leading to Eq. (1) conformally
invariant [34], and this, in turn, requires the dilaton field to
be also quadratic, φ ¼ κ2z2. Then, Eq. (2) yields

Uðζ; JÞ ¼ κ4ζ2 þ 2κ2ðJ − 1Þ: ð3Þ
The mass scale κ which simultaneously sets the strength
of the dilaton field in AdS5 and the hadron mass scale
in physical spacetime, is referred to as the AdS/QCD
mass scale.
The supersymmetrization of Eq. (1) leads to the iden-

tification of mesons and baryons (considered as quark-
diquark systems) as supersymmetric partners, provided that
they differ by only one unit of orbital angular momentum
[35–37]. In other words, the meson and baryon mass
spectra are given by

M2
M ¼ 4κ2ðnþ LÞ þ 2κ2S and

M2
B ¼ 4κ2ðnþ Lþ 1Þ þ 2κ2S ð4Þ

where S is the spin of the quark-antiquark in mesons and
the lowest possible value of the diquark spin in baryons.
The lightest hadron (with J ¼ L ¼ S ¼ 0) is massless, with
no supersymmetric partner, and is naturally identified with
the pion. At this point, the only free parameter is the mass

scale, κ, and it can be fixed by a simultaneous fit to the
Regge slopes of light mesons and baryons. This fit yields
κ ¼ 523� 24 MeV [38], which we refer to as the universal
AdS/QCD mass scale.
Solving Eq. (1) yields the dynamical part of the holo-

graphic meson wave function,

ϕnLðζÞ¼κ1þL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n!

ðnþLÞ!

s
ζ1=2þLexp

�
−κ2ζ2

2

�
LL
n ðκ2ζ2Þ ð5Þ

and the complete meson wave function is given by [32]

ΨnLðx; ζ;φÞ ¼
ϕnLðζÞffiffiffiffiffiffiffiffi

2πζ
p XðxÞeiLφ; ð6Þ

where XðxÞ is fixed by mapping the spacelike electromag-
netic form factor of the pion in AdS5 and in physical
spacetime [39]. In AdS5, the form factor is given by an
overlap integral of the ingoing and outgoing hadronic
modes convoluted with the bulk-to-boundary propagator
which maps onto the free electromagnetic current in
physical spacetime. In physical spacetime, the form factor
is given by an integral overlap of the meson light-front
wavefunctions, i.e., the Drell-Yan-West formula [40,41].
This procedure yields XðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞp
[32]. Matching

of the AdS5 and physical spacetime gravitational form
factors gives an identical result [39].
The normalized holographic light-front wave function

for mesons with n ¼ L ¼ 0 is given by

Ψðx; ζ2Þ ¼ κffiffiffi
π

p ffiffiffiffiffi
xx̄

p
exp

�
−
κ2ζ2

2

�
ð7Þ

or, in momentum space,

Ψðx; k2⊥Þ ∝
1ffiffiffiffiffi
xx̄

p exp

�
−
M2

2κ2

�
ð8Þ

where M2 ¼ k2⊥=xx̄ is the invariant mass of the quark-
antiquark pair. Here k⊥ is the magnitude of the two-
dimensional transverse momentum, k ¼ k⊥eiθk⊥ , which
is the Fourier conjugate of the transverse distance, b,
between the quark and the antiquark. For nonzero quark
masses, this invariant mass should be
M2

ff̄0 ¼ ðk2⊥ þ x̄m2
f þ xm2

f̄0 Þ=xx̄, where f and f̄0 denote

the flavors of the quark and antiquark respectively. This
motivates a prescription [42] to account for light quark
masses: replace M2 by M2

ff̄0 in Eq. (8). Then, the holo-

graphic wave function becomes

Ψðx;k2⊥Þ∝
1ffiffiffiffiffi
xx̄

p exp

�
−

k2⊥
2κ2xx̄

�
exp

�
−

1

2κ2

�
m2

f

x
þ
m2

f̄0

x̄

��
:

ð9Þ
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So far, the quark and antiquark helicity indices have been
suppressed [32]. Making them explicit, we have

ΨP;V
h;h̄

ðx;kÞ ¼ SP;V
h;h̄

Ψðx; k2⊥Þ; ð10Þ

where

SP
h;h̄

¼ 1ffiffiffi
2

p hδh;−h̄ ð11Þ

and

SVðLÞ
h;h̄

¼ 1ffiffiffi
2

p δh;−h̄; SVðTÞ
h;h̄

¼ 1ffiffiffi
2

p δh�;h̄�: ð12Þ

With a universal AdS/QCD scale, this would lead to
degenerate decay constants for the pseudoscalar and vector
mesons, as well as degenerate decay constants for the
longitudinally and transversely polarized vector mesons, in
contradiction with experiment [2] and lattice QCD [43,44].
Indeed, in light-front holography, there is no distinction
between the dynamical wave functions of ground state
(n ¼ L ¼ 0) light pseudoscalar and vector mesons since
Eq. (5) does not depend on S.

II. DYNAMICAL SPIN EFFECTS

The above shortcomings can be addressed by taking
into account dynamical spin effects. The pseudoscalar
and vector meson wave functions are then given by
[21,22,24,25]

ΨP;V
h;h̄

ðx;kÞ ¼ SP;V
h;h̄

ðx;kÞΨðx; k2⊥Þ; ð13Þ

where Ψðx; k2⊥Þ is the holographic wave function given
by Eq. (9), and the Lorentz invariant spin structures are
given by

SP;V
h;h̄

ðx;kÞ ¼ ūhðxPþ;kÞffiffiffi
x

p ΓP;V
vh̄ðx̄Pþ;−kÞffiffiffī

x
p ð14Þ

with

ΓV ¼ ελV · γ ð15Þ

where

εLV ¼
�
Pþ

MV
;−

MV

Pþ ;0;0

�
; εTð�Þ

V ¼∓ 1ffiffiffi
2

p ð0;0;1;�iÞ ð16Þ

and

ΓP ¼ ðP · γÞγ5 þMPγ
5; ð17Þ

where

Pμ ¼
�
Pþ;

M2
P

Pþ ; 0; 0

�
: ð18Þ

Equation (15) is modeled upon the photon-quark-anti-
quark vertex and leads to a successful description of
diffractive ρ and ϕ electroproduction [21,23]. On the other
hand, Eq. (17) does not give a good description of the
pseudoscalar meson data. However, since the individual
terms of Eq. (17) are separately Lorentz invariant, we are
able to use the more flexible structure,

ΓP ¼ M2
P

2Pþ γþγ5 þ APþ

2
γ−γ5 þ BMPγ

5 ð19Þ

where A and B are dimensionless constants which quantify
the importance of dynamical spin effects. Indeed, setting
A ¼ B ¼ 0, we are left with the nondynamical γþγ5 spin
structure which yields Eq. (11). References [24,25] choose
A ¼ 0, as required by the data, while the situation is less
clear for B: the pion data favor B ≥ 1, the (charged) kaon
data prefer B ¼ 0. For the η=η0 system, the η=η0 → γγ�
transition form factor data prefer B ≫ 1 while the ηðη0Þ →
γγ decay widths data prefer B ¼ 0 ðB ¼ 1Þ. Consequently,
we are compelled to treat B as a free parameter here.
Explicitly, the spin-improved holographic wave func-

tions are given by [24,25]

ΨP
h;h̄
ðx;kÞ ¼ N

��
MP þ B

�
mf

x
þmf̄0

x̄

��
hδh;−h̄

− B

�
k⊥e−ihθk⊥

xx̄

�
δh;h̄

�
Ψðx; k2⊥Þ; ð20Þ

while [21,22]

ΨVðLÞ
h;h̄

ðx;kÞ ¼ N Lδh;−h̄

�
M2

V þ
�
mfmf̄0 þ k2⊥

xx̄

��
Ψðx; k2⊥Þ

ð21Þ

and

ΨVðT¼�Þ
h;h̄

ðx;kÞ ¼ N Tffiffiffi
2

p
�
�k⊥e�iθk⊥

�
δh;�δh̄;∓

x̄
−
δh;∓δh̄;�

x

�

þ
�
mf

x
þmf̄0

x̄

�
δh;�δh̄;�

�
Ψðx; k2⊥Þ: ð22Þ

The normalization constants N ðL;TÞ are fixed using

X
h;h̄

Z
d2k
16π3

dxjΨP;V
h;h̄

ðx;kÞj2 ¼ 1; ð23Þ

which embodies the assumption that the meson consists
only of a quark-antiquark pair. Alternative spin-improved
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holographic wave functions have been proposed in
Refs. [45,46].
We remark that our spin-improvedholographic light-front

wave functions are distinct from the so-called “boosted”
wave functions obtained by “boosting” the nonrelativistic
Schrödinger wave function in the meson’s rest frame to the
light-front. This is usually performed using the Brodsky-
Huang-Lepage prescription [47], together with the Melosh
rotation [48] for the spin structure: see, for example,
Ref. [49]. Our spin structures, Eq. (14), are fixed by the
rules of light-front field theory for coupling a quark and
an antiquark into a (point-like) mesonwhile nonperturbative
bound state effects are captured by the holographic
wave function given by Eq. (9). Our wave functions
are directly formulated on the light-front and are frame-
independent, avoiding the ambiguities associated with a
boosting prescription.
Having said that, it is worth noting that the boosting

of a harmonic oscillator rest frame Schrödinger wave-
function results in the boosted Gaussian wavefunction [50]
which is similar to the holographic Gaussian wave func-
tion given by Eq. (9). However, we must highlight three
essential differences between these two wave functions:
first, as we mentioned before, the harmonic potential in the
holographic Schrödinger equation, Eq. (1), is uniquely
fixed by a specific mechanism of conformal symmetry
breaking [34] in semiclassical light-front QCD unlike the
assumed harmonic potential in the ordinary Schrödinger
equation. Second the AdS/QCD mass scale, κ, is extracted
from spectroscopic data and it fixes the width of the
holographic Gaussian where as the width of the boosted
Gaussian is a free parameter which has to be fixed by some
constraint on the wave function [49,50]. Third, the two
wave functions differ by an overall factor of 1=

ffiffiffiffiffi
xx̄

p
which

makes their endpoint behaviors different. Interestingly, the
data on diffractive ρ meson electroproduction are able to
discriminate between the two wave functions and favor the
holographic Gaussian [21].

III. RADIATIVE TRANSITION FORM FACTORS

The transition form factors, FVPðQ2Þ, are defined
by [18]

iFVPðq2ÞϵμνρσελνP0
ρPσ ¼ hPðP0ÞjJμemð0ÞjVðP; λÞi; ð24Þ

where PðP0Þ is the 4-momentum of the vector
(pseudoscalar) meson, q2 ¼ ðP0 − PÞ2 is the spacelike 4-
momentum transfer, and Jμemð0Þ is the quark electromag-
netic current. To leading order in αem, there are two
contributions to the radiative transition matrix element,
with the photon being either radiated by the quark or the
antiquark, as shown in Fig. 1. Focusing on states with a
specified flavor content, we can write:

hP; ff̄0jJμemð0ÞjV; ff̄0i
¼ hP; ff̄0jJμfð0ÞjV; ff̄0i þ hP; ff̄0jJμ

f̄0 ð0ÞjV; ff̄0i ð25Þ
with

Jμfð0Þ ¼ ef

Z
dkþd2k
16π3kþ

dk0þd2k0

16π3k0þ
b̂†fðkþ;kÞb̂fðk0þ;k0Þ

× ūfðkþ;kÞγμufðk0þ;k0Þ ð26Þ

and

Jμ
f̄0 ð0Þ ¼ ef̄0

Z
dkþd2k
16π3kþ

dk0þd2k0

16π3k0þ
d̂†
f̄0 ðkþ;kÞd̂f̄0 ðk0þ;k0Þ

× v̄f̄0 ðkþ;kÞγμvf̄0 ðk0þ;k0Þ ð27Þ

where, for notational simplicity, we have suppressed
the helicity and color indices. For the nonstrange mesons,
P ¼ ðπ; η; η0Þ and V ¼ ðρ;ω;ϕÞ, Eq. (26) and Eq. (27) map
onto each other under a G-parity transformation, i.e.,
Jμfð0Þ ¼ ĜJμ

f̄0 ð0ÞĜ†, so that

hP; ff̄0jJμfð0ÞjV; ff̄0i
¼ GPGVð−1ÞIP ð−1ÞIV hP; ff̄0jJμf̄0 ð0ÞjV; ff̄0i; ð28Þ

where GP;V and IP;V are the G-parity and isospin quantum
numbers. For the nonstrange mesons, the IG assignments
are: π0;�ð1−Þ, ρ0;�ð1þÞ, η=η0ð0þÞ, and ϕ=ωð0−Þ, implying
that

hP; ff̄0jJμfð0ÞjV; ff̄0i ¼ −hP; ff̄0jJμ
f̄0 ð0ÞjV; ff̄0i; ð29Þ

i.e., the two Feynman graphs of Fig. 1 differ only by a
minus sign. This is not the case for transitions involving the
strange mesons.

FIG. 1. The active quark contribution (a) and the active antiquark contribution (b) to the V → Pγ� transition.

AHMADY, KAUR, MONDAL, and SANDAPEN PHYS. REV. D 102, 034021 (2020)

034021-4



To proceed, we choose the “good” current, Jþemð0Þ, in the
Drell-Yan-West frame [40,41] where

Pμ ¼
�
Pþ;

M2
V

Pþ ;0

�
; Pμ0 ¼

�
Pþ;

M2
P þq2⊥
Pþ ;q

�
ð30Þ

i.e., with qþ ¼ 0 and q2 ¼ −q2⊥ < 0. This choice avoids
the zero-mode contributions [51] but, at the same time,
restricts the computation of the transition form factor to the
spacelike region where Q2 ≡ −q2 > 0. However, it is
possible to analytically continue the spacelike form factor
to the timelike region using the prescription q⊥ → iq⊥
[20,52,53]. Note that the “good” current matrix element
vanishes for λ ¼ L, and therefore we must take λ ¼ T (here
we choose T ¼ þ) in order to extract FVPðQ2Þ. Fock
expanding the meson states and using Eqs. (26) and (27),
we find that

hPðP0ÞjJþemð0ÞjVðP;þÞi

¼ 2PþXZ dxd2k
16π3

½efΨP�
hh̄
ðx;kþ x̄qÞþef̄0ΨP�

hh̄
ðx;k−xqÞ�

×ΨVðþÞ
hh̄

ðx;kÞ ð31Þ

where we have used the shorthand notation,
PR ≡P

h;h̄

R
.

Our derivation of Eq. (31) is standard and model-indepen-
dent. We now use our spin-improved holographic wave
functions, given by Eqs. (20) and (22), we obtain

XZ d2k
16π3

ΨP�
hh̄
ðx;kþ x̄qÞΨVðþÞ

hh̄
ðx;kÞ

¼−Ñ x̄q exp
�
−
ðq⊥x̄Þ2þ4ðx̄m2

fþxm2
f̄0 Þ

4κ2xx̄

�
MðxÞ ð32Þ

and

XZ d2k
16π3

ΨP�
hh̄
ðx;k−xqÞΨVðþÞ

hh̄
ðx;kÞ

¼ Ñ xq exp

�
−
ðq⊥xÞ2þ4ðx̄m2

fþxm2
f̄0 Þ

4κ2xx̄

�
MðxÞ; ð33Þ

where Ñ ≡NN Tκ
2=ð8π2Þ and

MðxÞ ¼ 1

xx̄

�
MP

2
þ B

�
x̄mf þ xmf̄0

xx̄

��
: ð34Þ

Inserting Eqs. (32) and (33) in Eq. (31), Eq. (24) leads to

FVPðQ2Þ¼ efIðq2⊥;MP;mf;mf̄0 Þ−ef̄0Iðq2⊥;MP;mf̄0 ;mfÞ;
ð35Þ

where

Iðq2⊥;MP;mf;mf̄0 Þ ¼ Ñ
Z

dx
x

�
MP

2
þB

�
x̄mfþxmf̄0

xx̄

��

×exp

�
−
ðq⊥x̄Þ2þ4ðx̄m2

fþxm2
f̄0 Þ

4κ2xx̄

�
:

ð36Þ

For the nonstrange mesons, mf ¼ mf̄0 , the two integrals
in Eq. (35) are identical, i.e.,

FVPðQ2Þ ¼ ðef − ef̄0 ÞIðq2⊥;MP; mfÞ; ð37Þ

where

Iðq2⊥;MP ; mfÞ ¼ Ñ
Z

dx
x

�
MP

2
þ B

�
mf

xx̄

��

× exp

�
−
ðq⊥x̄Þ2 þ 4m2

f

4κ2xx̄

�
: ð38Þ

Eq. (37) is consistent with the model-independent expect-
ation expressed by Eq. (29) and it implies that Fρ�π�ðQ2Þ ¼
Fρ0π0ðQ2Þ and Fω0π0ðQ2Þ ¼ 3Fρ0π0ðQ2Þ. For the strange
mesons, we must instead use Eq. (35), leading to the
interesting possibility of destructive interference between
the two Feynman diagrams of Fig. 1 for the K�� → K�γ�
transition. We shall discuss this further in Sec. IV.
For the neutral mesons, ðη; η0Þ and ðϕ;ωÞ, we need to

account for mixing. Although the ϕ − ω mixing is small, it
is essential to account for the ϕ → π0γ� transition. We use
the SU(3) octet-singlet mixing scheme where

� jηi
jη0i

�
¼

�
cos θP − sin θP
sin θP cos θP

�� jη8i
jη1i

�
; ð39Þ

� jϕi
jωi

�
¼

�
cos θV − sin θV
sin θV cos θV

�� jω8i
jω1i

�
; ð40Þ

with jη8i; jω8i ¼ 1ffiffi
6

p ðuūþ dd̄ − 2ss̄Þ and jη1i; jω1i ¼
1ffiffi
3

p ðuūþ dd̄þ ss̄Þ. It then follows that [54]

�Fρ0ηðQ2Þ
Fη0ρ0ðQ2Þ

�
¼
�
cosθP −sinθP
sinθP cosθP

��Fρ0η8
ðQ2Þ

Fρ0η1
ðQ2Þ

�
; ð41Þ

�
Fϕπ0ðQ2Þ
Fωπ0ðQ2Þ

�
¼
�
cosθV −sinθV
sinθV cosθV

��Fω8π
0ðQ2Þ

Fω1π
0ðQ2Þ

�
; ð42Þ

and
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0
BBBBB@

FϕηðQ2Þ
Fϕη0ðQ2Þ
FωηðQ2Þ
Fη0ωðQ2Þ

1
CCCCCA

¼

0
BBBBB@

cos θV cos θP − cos θV sin θP − sin θV cos θP sin θV sin θP
cos θV sin θP cos θV cos θP − sin θV sin θP − sin θV cos θP
sin θV cos θP − sin θV sin θP cos θV cos θP − cos θV sin θP
sin θV sin θP sin θV cos θP cos θV sin θP cos θV cos θP

1
CCCCCA

0
BBBBB@

Fω8η8ðQ2Þ
Fω8η1ðQ2Þ
Fω1η8ðQ2Þ
Fω1η1ðQ2Þ

1
CCCCCA
;

where, using Eq. (37),

Fρ0η8
ðQ2Þ ¼ 1ffiffiffi

3
p Iðq2⊥;Mη8 ; mqÞ; ð43Þ

Fρ0η1
ðQ2Þ ¼

ffiffiffi
2

3

r
Iðq2⊥;Mη1 ; mqÞ; ð44Þ

Fω8π
0ðQ2Þ ¼ 1ffiffiffi

3
p Iðq2⊥;Mπ; mqÞ; ð45Þ

Fω1π
0ðQ2Þ ¼

ffiffiffi
2

3

r
Iðq2⊥;Mπ; mqÞ; ð46Þ

Fω8η8ðQ2Þ ¼ 1

9
Iðq2⊥;Mη8 ; mqÞ −

4

9
Iðq2⊥;Mη8 ; msÞ; ð47Þ

Fω8η1ðQ2Þ ¼
ffiffiffi
2

p

9
Iðq2⊥;Mη1 ; mqÞ þ

2
ffiffiffi
2

p

9
Iðq2⊥;Mη1 ; msÞ

;ð48Þ

Fω1η8ðQ2Þ ¼
ffiffiffi
2

p

9
Iðq2⊥;Mη8 ; mqÞ þ

2
ffiffiffi
2

p

9
Iðq2⊥;Mη8 ; msÞ;

ð49Þ

Fω1η1ðQ2Þ ¼ 2

9
Iðq2⊥;Mη1 ; mqÞ −

2

9
Iðq2⊥;Mη1 ; msÞ; ð50Þ

with [25]

�
M2

η8

M2
η1

�
¼

�
cos2θP sin2θP
sin2θP cos2θP

��
M2

η

M2
η0

�
: ð51Þ

For a detailed analysis of mixing in the pseudoscalar sector,
we refer to [55].
Evaluating the transition form factors at Q2 ¼ 0 allows

us to predict the radiative decay widths:

ΓV→Pγ ¼
αem
3

jFVPð0Þj2
�
M2

V −M2
P

2MV

�
3

; ð52Þ

and, as mentioned before, to predict the timelike transition
form factor, we use the prescription q⊥ → iq⊥ in Eq. (36)
which then reads:

Iðq2⊥;MP; mf;mf̄0 Þ ¼
Z

dx
x

�
MP

2
þ B

�
x̄mf þ xmf̄

xx̄

��

× exp

�ðq⊥x̄Þ2 − 4ðx̄m2
f þ xm2

f̄
Þ

4κ2xx̄

�
:

ð53Þ

As expected, Eq. (53) diverges for q2⊥ ≥ 4m2
u=d, corre-

sponding to the kinematic threshold for quark-antiquark
production. Since we do not account for the latter here, we
shall restrict our predictions in the timelike region below
this threshold.
In order to reproduce the nonperturbative pole structure

of the form factor in the timelike region, above the quark-
antiquark production threshold, one must use the confined
bulk-to-boundary propagator, i.e., one which propagates in
the dilation-modified AdS5 spacetime and maps onto a
“dressed” (i.e., incorporating higher Fock states) electro-
magnetic current in physical spacetime [32]. The resulting
form factor also reproduces the VMD behavior in the low
momentum region, as well as the hard scattering power
scaling behavior at large Q2. This technique has been used
to predict the pion electromagnetic form factor [32,56], the
ðπ0; η; η0Þ → γ�γ transition form factors [57,58] as well as
the nucleon electromagnetic form factors in the spacelike
region [59,60].

IV. COMPARING TO DATA

For our numerical predictions, we use mu=d¼330�
30MeV, ms ¼ 500� 30 MeV and the universal AdS/
QCD scale, κ ¼ 523� 24 MeV, as in Ref. [25]. For the
mixing angles, we use θP ¼ −ð14.1� 2.8Þ° [61] and θV ¼
ð38.7� 0.2Þ° [62]. Our theory uncertainties follow from
these quoted uncertainties.
The various experimental collaborations fit the timelike

transition form factor data using

jFexpðQ2Þj2 ¼ 1

ð1þ Q2

Λ2Þ2
ð54Þ

where Λ is the parameter to be fitted. Reported values are:
ΛNA60¼ 0.670�0.006GeV, ΛA2MM ¼ 0.709�0.037GeV
and ΛLepton-G ¼ 0.65� 0.037 GeV for the ω → π0γ�

transition, ΛKLOE ¼ 0.704� 0.019 for the ϕ → π0γ�
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transition, and ΛPDG ¼ 0.88� 0.04 GeV for the ϕ → ηγ�
transition. Note that, with Λ ¼ Mρ, Eq. (54) is the VMD
prediction.
Our predictions for the ðρ;ω;ϕÞ → πγ radiative decay

widths are shown in Table I. As can be seen, B ≥ 1 is
favored by the data, corroborating the findings of
Ref. [25] that B ≥ 1 is favored for the pion. This is
further supported by our predictions for the ω → π0γ�
timelike transition form factor, as shown in Fig. 2. The
empirical pole fit (dotted-green curve) is generated using
Eq. (54) with Λ ¼ 0.676 GeV, the average of the Lepton-
G, A2MM and NA60 values, and it agrees very well with
our B ≥ 1 predictions (solid-black and dot-dashed red
curves). Our predictions for the ϕ → π0γ� timelike
transition form factor are shown in Fig. 3. In this case,
although there is a preference for the B ≥ 1 predictions
(solid-black and dot-dashed red curves), the larger error
bars of the data do not completely exclude the B ¼ 0

(dashed-blue) prediction. Indeed, the empirical pole
fit (dotted-green curve) now lies between the B ≥ 1
(solid-black and dot-dashed-red) and B ¼ 0 (dashed-
blue) curves. The predictions with B ≥ 1 are particularly
impressive since they can be viewed as parameter-
free: once B ≥ 1 is fixed, as in Ref. [25], all other
predictions are obtained without any further adjustment
of parameters.
For the K�0 → K0γ and K�� → K�γ decay widths,

Table II shows that B ¼ 1 accommodates the data for
both the neutral and charged decay modes. Note that the
theory uncertainty is amplified for the latter because of the
destructive interference between the two Feynman graphs
of Fig. 1. At first glance, the preference for B ¼ 1 for the
charged decay mode may seem in disagreement with
the findings of Ref. [25], where B ¼ 0 is reported to be
preferred by decay constant, electromagnetic elastic form
factor and radius data for charged kaons. However, we must

TABLE I. Our predictions for the ðρ;ω;ϕÞ → πγ decay widths, compared to the PDG averages [2].

Spin-improved LFH [keV]

Decay widths B ¼ 0 B ¼ 1 B ≫ 1 PDG (2018) [keV]

Γðρ� → π�γÞ 23.46� 3.12 64.52� 6.94 66.37� 7.00 67.10� 7.82
Γðρ0 → π0γÞ 23.46� 3.12 64.52� 6.94 66.37� 7.00 70.08� 9.32
Γðω → π0γÞ 221.03� 29.90 607.96� 65.44 625.38� 66.03 713.16� 25.40
Γðϕ → π0γÞ 1.84� 0.33 5.06� 0.80 5.21� 0.82 5.52� 0.22

FIG. 2. Our predictions for the ω → π0γ� timelike transition form factor with B ¼ 0 (dashed-blue curve), B ¼ 1 (solid-black curve)
and B ≫ 1 (dot-dashed red curve), compared to the data from Refs. [3–6]. The dashed-cyan curve is the VMD prediction and the
empirical pole fit (dotted-green curve) is generated by Eq. (54), with Λ being the averages the fitted values reported by Lepton-G,
A2MM and NA60 experiments.
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FIG. 3. Our predictions for the ϕ → π0γ� timelike transition form factor, with B ¼ 0 (dashed-blue curve), B ¼ 1 (solid-black curve)
and B ≫ 1 (dot-dashed-red curve), compared to the data from Ref. [13]. The dashed-cyan curve is the VMD prediction and the empirical
pole fit (dotted-green curve) is generated by Eq. (54) with Λ ¼ ΛKLOE.

TABLE II. Our predictions for the K� → Kγ decay widths, compared to the PDG averages [2].

Spin-improved LFH [keV]

Decay widths B ¼ 0 B ¼ 1 B ≫ 1 PDG (2018) [keV]

ΓðK�0 → K0γÞ 39.38� 3.74 108.67� 9.34 122.02� 10.49 116.36� 11.17
ΓðK�� → K�γÞ 23.85� 5.74 71.64� 18.17 81.20� 20.66 50.29� 5.47

FIG. 4. Our predictions for the K�� → K�γ� (solid-black curve) and K�0 → K0γ� (dashed-brown curve) transition form factors, with
B ¼ 1, compared to the VMD prediction (dotted-cyan curve).
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emphasize that taking 0 < B ≪ 1, say B ¼ 0.2, still fits the
radiative width data in Table II, as well as all data in
Ref. [25]. On the other hand, as can be seen in Table II,
B < 1 is excluded for the neutral decay mode. As we
mentioned before, destructive interference occurs only in
the charged decay mode, leading to a zero (at leading order)
in the transition form factor in the spacelike region. This
is shown in Fig. 4. We note that the location of the zero
is sensitive to the strength of SU(3) flavor symmetry
breaking, shifting to lower Q2 as the difference between
ms and mq increases, as was pointed out previously in
Refs. [19,63], although the precise location of the zero is
very much model-dependent.
In Table III, we show our predictions for the radiative

decays to η and η0 where an additional theory uncertainty
results from the η=η0 mixing angle. Clearly, B ≥ 1 is
preferred by the data. This is consistent with the findings
of Ref. [25] where it is reported that B ≥ 1 is also preferred
by the η=η0 → γ�γ transition form factor data. In Fig. 5, we

compare our predictions for the ϕ → ηγ� transition to
KLOE and SND data. In this case, the data cannot
discriminate between the B ¼ 0 (dashed-blue curve) and
B ≥ 1 (solid-black and dot-dashed-red curves) predictions
which start to differ only at large momentum transfer where
the experimental error bars are much larger. Both the
B ¼ 0 and B ≥ 1 curves agree with the empirical pole
fit (dotted-green curve) which is now generated with
ΛPDG ¼ 0.88� 0.04 GeV. Finally, we also predict the
η0 → ðρ;ωÞγ decay widths given by

Γη0→ðρ;ωÞγ ¼ αemjFη0ðρ;ωÞð0Þj2
�M2

η0 −M2
ðρ;ωÞ

2Mη0

�3

: ð55Þ

Our results are shown in Table IV where we find that B ≥ 1
is again favored by the data.

FIG. 5. Our predictions for the ϕ → ηγ� timelike transition form factor with B ¼ 0 (dashed-blue curve), B ¼ 1 (solid-black curve) and
B ≫ 1 (dot-dashed-red curve), compared to the data from Refs. [7,8]. The dashed-cyan curve is the VMD prediction and the empirical
pole fit (dotted-green curve) is generated by Eq. (54), with Λ ¼ ΛPDG.

TABLE III. Our predictions for the ðρ;ω;ϕÞ → ðη; η0Þγ decay widths, compared to the PDG averages [2].

Spin-improved LFH [keV]

Decay widths B ¼ 0 B ¼ 1 B ≫ 1 PDG (2018) [keV]

Γðρ → ηγÞ 16.18� 2.57 40.00� 5.50 45.73� 6.16 44.70� 3.37
Γðω → ηγÞ 1.76� 0.31 4.31� 0.67 4.93� 0.75 3.82� 0.38
Γðϕ → ηγÞ 20.80� 3.01 59.64� 8.07 67.63� 9.21 55.36� 1.23
Γðϕ → η0γÞ 0.11� 0.02 0.29� 0.04 0.36� 0.05 0.26� 0.01
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V. CONCLUSIONS

We have used the spin-improved holographic light-
front wave functions for the light vector mesons
ðρ;ω; K�;ϕÞ and pseudoscalar mesons ðπ; K; η; η0Þ to
predict the radiative transition form factors and decay
widths. We find excellent agreement with the available
data for the decay widths as well as the timelike
transition form factors in the low-momentum region.
Our findings support the idea that light pseudoscalar and
vector mesons share a universal holographic light-front
wave function which is modified differently by dynami-
cal spin effects.

ACKNOWLEDGMENTS

M.A and R. S are supported by Individual Discovery
Grants from the Natural Science and Engineering Research
Council of Canada (NSERC): SAPIN-2017-00033 and
SAPIN-2020-00051 respectively. C.M is supported by the
Natural Science Foundation of China (NSFC) under the
Grants No. 11850410436 and 11950410753. C.M is also
supported by new faculty startup funding by the Institute of
Modern Physics, Chinese Academy of Sciences and the
Strategic Priority Research Program of Chinese Academy of
Sciences, Grant No. XDB34000000. S. K is supported by an
Institute Fellowship from the Ministry of Human Resource
Development (MHRD), Government of India.

[1] F. Jegerlehner and A. Nyffeler, Phys. Rep. 477, 1 (2009).
[2] M. Tanabashi, K. Hagiwara, K. Hikasa, K. Nakamura,

Y. Sumino, F. Takahashi, J. Tanaka, K. Agashe, G. Aielli,
C. Amsler et al. (Particle Data Group), Phys. Rev. D 98,
030001 (2018).

[3] R. Dzhelyadin et al., Phys. Lett. 102B, 296 (1981); JETP
Lett. 33, 228 (1981).

[4] R. Arnaldi et al. (NA60 Collaboration), Phys. Lett. B 677,
260 (2009).

[5] R. Arnaldi et al. (NA60 Collaboration), Phys. Lett. B 757,
437 (2016).

[6] P. Adlarson et al., Phys. Rev. C 95, 035208 (2017).
[7] M. N. Achasov et al., Phys. Lett. B 504, 275 (2001).
[8] D. Babusci et al. (KLOE-2 Collaboration), Phys. Lett. B

742, 1 (2015).
[9] C. Terschlüsen and S. Leupold, Phys. Lett. B 691, 191

(2010).
[10] S. P. Schneider, B. Kubis, and F. Niecknig, Phys. Rev. D 86,

054013 (2012).
[11] S. Ivashyn, Probl. At. Sci. Technol. 2012N1, 179 (2012),

https://vant.kipt.kharkov.ua/TABFRAME2.html.
[12] I. V. Danilkin, C. Fernández-Ramírez, P. Guo, V. Mathieu,

D. Schott, M. Shi, and A. P. Szczepaniak, Phys. Rev. D 91,
094029 (2015).

[13] A. Anastasi et al. (KLOE-2 Collaboration), Phys. Lett. B
757, 362 (2016).

[14] P. Maris and P. C. Tandy, Phys. Rev. C 65, 045211 (2002).
[15] Y.-L. Zhang, S. Cheng, J. Hua, and Z.-J. Xiao, Phys. Rev. D

92, 094031 (2015); 93, 099901(A) (2016).

[16] D. Kimura, T. Morozumi, and H. Umeeda, Prog. Theor.
Exp. Phys. 2018, 123B02 (2018).

[17] T. Feldmann, Int. J. Mod. Phys. A 15, 159 (2000).
[18] H. Choi and C.-R. Ji, Nucl. Phys. A618, 291 (1997).
[19] H.-M. Choi, Phys. Rev. D 77, 097301 (2008).
[20] J. Yu, B.-W. Xiao, and B.-Q. Ma, J. Phys. G 34, 1845

(2007).
[21] J. R. Forshaw and R. Sandapen, Phys. Rev. Lett. 109,

081601 (2012).
[22] M. Ahmady and R. Sandapen, Phys. Rev. D 88, 014042

(2013).
[23] M. Ahmady, R. Sandapen, and N. Sharma, Phys. Rev. D 94,

074018 (2016).
[24] M. Ahmady, F. Chishtie, and R. Sandapen, Phys. Rev. D 95,

074008 (2017).
[25] M. Ahmady, C. Mondal, and R. Sandapen, Phys. Rev. D 98,

034010 (2018).
[26] M. R. Ahmady, S. Lord, and R. Sandapen, Phys. Rev. D 90,

074010 (2014).
[27] M. Ahmady, D. Hatfield, S. Lord, and R. Sandapen, Phys.

Rev. D 92, 114028 (2015).
[28] M. Ahmady, A. Leger, Z. Mcintyre, A. Morrison, and R.

Sandapen, Phys. Rev. D 98, 053002 (2018).
[29] M. Ahmady, S. Keller, M. Thibodeau, and R. Sandapen,

Phys. Rev. D 100, 113005 (2019).
[30] S. J. Brodsky and G. F. de Téramond, Phys. Rev. Lett. 96,
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