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We discuss the deconfinement and the CP-breaking phase transitions at θ ¼ π in Yang-Mills theories.
The ’t Hooft anomaly matching prohibits the confined phase with CP symmetry and requires
Tdecðθ ¼ πÞ ≤ TCP, where Tdecðθ ¼ πÞ and TCP denote the deconfinement and the CP-restoration
temperatures, respectively, at θ ¼ π. We analytically study these two phase transitions in softly broken
N ¼ 1 supersymmetric Yang-Mills theories on small R3 × S1 with the periodic boundary condition for
gluinos. For most gauge groups except SU(2) in this model, we find that the inequality is saturated, so
deconfinement and CP restoration occur simultaneously. We demonstrate special features of the SU(2)
gauge theory: there is a finite window of two temperatures, TdecðπÞ < TCP, which indicates the existence of
a novel CP-broken deconfined phase. We also discuss an implication of the novel phase for domain walls
and their junctions.
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I. INTRODUCTION

Physics of the θ vacuum is traced back to instanton
studies in Yang-Mills (YM) theories and has become
common knowledge in the field of quantum chromody-
namics (QCD) [1–4]. Although the QCD θ angle itself is
consistent with zero in our Universe [5], it has been an
interesting problem to quantify the curvature of the
θ-dependent vacuum energy (i.e., the topological suscep-
tibility [6]), and even to reveal the whole phase structure as
a function of nonzero θ (see, e.g., Refs. [7–23]). Theoretical
interest in θ ≠ 0 physics is not limited to QCD but spreads
over various research areas such as axion dynamics,
topological phases of matters, chirally induced effects, etc.
A θ term explicitly breaks CP symmetry except for either

θ ¼ 0 or θ ¼ π. It is, however, known that a first-order
phase transition occurs at θ ¼ π because of the spontaneous
breakdown of CP, which is sometimes referred to as
Dashen’s phenomenon [24]. There must be a nontrivial
interplay between the realization of CP symmetry at θ ¼ π

and nonperturbative properties of theory, namely, confine-
ment and chiral symmetry breaking. In particular, one
interesting question is the fate of spontaneous CP breaking
at high temperature, where the deconfined phase is
achieved. If the CP-breaking mechanism is inherent to
confinement, as is intuitively anticipated, CP would be
restored in the deconfined phase. There are a number of
theoretical efforts but the problem is highly nonperturba-
tive, and to make matters worse, the Monte Carlo simu-
lation on the lattice does not work for nonsmall θ due to
the sign problem.
A breakthrough has recently been brought by modern

development in quantum field theory based on the ’t Hooft
anomaly matching [25,26]. The ’t Hooft anomaly charac-
terizes an obstruction to gauging a global symmetry.
Importantly, the ’t Hooft anomaly is renormalization-group
invariant, which is called the anomaly matching condition.
The applicability of anomaly matching has been limited to
continuous chiral symmetry until recently, but deeper
understandings on topological phases have elucidated that
it generalizes to any kind of symmetries in quantum field
theories [27–30]. As a consequence of anomaly matching,
symmetry breaking, massless excitations, and/or topologi-
cal orders must be realized, and this is a very strong
constraint on possible phase structures. Successful appli-
cations include one interesting example that has shed new
light on the mechanism of Dashen’s phenomenon [31],
which triggers many new applications of anomaly matching
to QCD and QCD-like theories [32–55].
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Pure SUðNÞ YM theory enjoys ZN center symmetry,
which characterizes confinement/deconfinement phases
and is recently formulated as the 1-form symmetry [56].
An important observation in Ref. [31] is that there exists a
mixed ’t Hooft anomaly between center symmetry and CP
symmetry at θ ¼ π. Under an assumption that the YMmass
gap does not vanish at any values of θ, anomaly matching
naturally requires the spontaneous CP breaking at θ ¼ π,
which is consistent with the large-N analysis [17].
Moreover, there is another interesting feature of this mixed
anomaly: it survives even at finite temperatures, which
means that the confined phase has to break the CP
symmetry spontaneously at θ ¼ π for any temperatures.
This gives an inequality to phase-transition temperatures,

Tdecðθ ¼ πÞ ≤ TCP; ð1Þ

where Tdecðθ ¼ πÞ is the deconfinement temperature at
θ ¼ π and TCP is the CP-restoration temperature.
The anomaly constraint is so powerful, and nevertheless,

we would emphasize that model analyses in a concrete
shape should be useful for us to gain an intuitive feeling and
look into microscopic details. This has motivated the
present work. Besides, the constraint is imposed as an
inequality, and an intriguing question is how the inequality
is derived and whether the inequality is saturated or not.
If the spontaneous breakdown of CP dynamically needs a
confining vacuum, the only possibility would be
TdecðπÞ ¼ TCP, and this is what we would naively expect.
However, if we find a theory with TdecðπÞ < TCP, this
signifies a novel phase of deconfined and yet CP-broken
matter. Moreover, as we will discuss later, if the latter is the
case, the phase structure itself is highly unique. In fact, we
will see that the SU(2) YM theory has an exotic phase
diagram with a first-order boundary and a second-order
boundary crossing each other.
We are ultimately interested in the pure YM theory and

QCD, but the analytical approach to these theories in the
confinement regime is still far from feasible. We will,
therefore, take an alternative strategy to deform QCD into
some relevant but accessible theories. One natural choice is
softly broken N ¼ 1 supersymmetric YM (SYM) theory.
This is just a pure YM theory coupled to single adjoint
Weyl fermion, called gluino, which enjoys supersymmetry
(SUSY) when the gluino is massless. This theory could turn
back into the usual YM theory when gluino mass is much
larger than the strong scale. The greatest advantage in this
extension is that N ¼ 1 SYM exhibits confinement in the
weak coupling region by putting the theory on R3 × S1

with the periodic boundary condition for gluinos, so that
we can reliably investigate the confinement-deconfinement
phase transition in a semiclassical manner [57–69]. This
implies that a small SUSY breaking controls the order
counting of the analytical calculations. We cannot directly
extrapolate our results toward the pure Yang-Mills theories,

but we can at least deduce general tendencies and gain a
hint to speculate a favorable scenario.
Here, we shall summarize what we find in the present

work. We will analytically evaluate the infrared effective
potential in the softly broken N ¼ 1 SYM theory and
quantify the critical points corresponding to TdecðθÞ and
TCP for various gauge groups.

1 In most cases, except SU(2),
we observe that deconfinement and CP restoration occur
simultaneously, i.e., Tdecðθ ¼ πÞ ¼ TCP. In the SU(2) case,
however, we have arrived at a conclusion that the phase
diagram has a window for a novel phase of the deconfined
and CP-broken matter, that is,

Tdecðθ ¼ πÞ < TCP for SUð2Þ: ð2Þ

Since the deconfinement phase transition is of the second
order for the SU(2) case, the phase diagram has an
intersection between the second-order curve and the
first-order line associated with the CP breaking at θ ¼ π.
As we mentioned above, to the best of our knowledge, our
work is the first concrete demonstration of such an exotic
phase structure.
Moreover, we will discuss the properties of domain walls

and domain-wall junctions for this novel deconfined,
CP-broken phase. In the confined phase, the CP domain
wall at θ ¼ π supports a topological field theory, and the
deconfinement takes place on the wall. In the novel phase,
however, Wilson lines are not deconfined on the CP
domain wall. We show that certain domain-wall junctions
must have a nonzero electric charge, so they can be present
only with the insertion of external Wilson lines.
This paper is organized as follows: new results of this

paper are presented in Secs. V–VII, and Secs. II–IV are
devoted to reviews of previous studies to make this paper
self-contained. In Sec. II, we will briefly explain the
discrete symmetries relevant to our later discussions,
namely, CP symmetry and center symmetries. In
Sec. III, we will make a concise review of the ’t Hooft
anomaly as well as its implication to constrain the phase
structure in the thermal pure YM theory. There, we will see
that an inequality should hold for deconfinement and CP
restoration. In Sec. IV, we will explain the softly broken
N ¼ 1 SYM theory and illustrate the symmetry and
anomaly features of this model. We also review the infrared
effective potential of the softly broken N ¼ 1 SYM theory
on small R3 × S1. In Sec. V, we numerically study the
phase transitions to show that the inequality is saturated
for most gauge groups except the SU(2) case. In Sec. VI,
we will proceed to the analytical evaluation of the phase
structure for the SU(2) case. We will uncover the existence
of a novel phase of deconfined and CP-broken matter.

1Here, we call the inverse size of S1 as the temperature for
simplicity, although we are taking the periodic boundary con-
dition for gluinos. Later, we discuss this point more carefully.
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In Sec. VII, we will illuminate a novelty of this deconfined
and CP-broken matter by focusing on 1-form center
symmetry and the domain-wall structures there. Finally,
Sec. VIII is devoted to the conclusions. In the Appendix A,
we extend our discussion for non-SUðNÞ gauge groups.
In Appendix B, we perform the analytic computation of
the deconfinement transition in the large-N limit for the
SUðNÞ gauge groups.

II. DISCRETE SYMMETRIES FOR
DECONFINEMENT AND CP BREAKING

We will consider pure gauge theories with a gauge
group G. Throughout this work, we concentrate on the
cases thatG is a simple, simply connected, and compact Lie
group. Since the most important result of this paper appears
for G ¼ SUð2Þ, the reader may safely regard it as
G ¼ SUðNÞ. The periodicity of the θ angle is 2π, and
no discrete θ angle appears since G is simply connected.
The theory has the center symmetry,ZðGÞ. For example,

ZðSUðNÞÞ ¼ ZN . Although this is not a symmetry acting
on a local operator, it acts on the fundamental Wilson loop
WðCÞ as

WðCÞ → z ·WðCÞ ð3Þ

for z ∈ ZðGÞ.2 Here, the Wilson loop is given by
WðCÞ ¼ tr½P exp ði HC aÞ�, where a is the dynamical G
gauge field, C is a closed loop, and the trace is taken over
the defining representation. In a recent terminology, this is
called the ZðGÞ 1-form symmetry, denoted as ZðGÞ½1�,
indicating that it does not act on any local operators but acts
only on line operators [56].
Let us add a technical comment on the fact that a typical

order operator for center symmetry breaking is the funda-
mental Wilson loop. The Wilson loop is a member of the
family of Wilson-’t Hooft loops [70,71]. Since we are
considering the pure YM theory, all the elementary
particles belong to the adjoint representation. Still, when
we declare that the gauge group isG, we sum upG-bundles
in the path integral, rather than G=ZðGÞ-bundles that
cannot be lifted to G-bundles. Correspondingly, the fun-
damental Wilson lines are well defined as genuine line
operators, but the fundamental ’t Hooft lines depend on the
topology of a surface attaching to them [70], so such
magnetic lines are not order parameters.
When we put our system on Euclidean R3 × S1 (like a

finite-T field theory where the inverse temperature 1=T is
the S1 period), we obtain an important local order param-
eter, the Polyakov loop. The Polyakov loop is the Wilson
loop wrapping on S1, and it is a pointlike object from the

point of view of the 3D theory. Correspondingly, the 1-from
center symmetry in four-dimensional (4D) splits into the
1-form and 0-form parts in 3D viewpoints,

ðZðGÞ½1�Þ4D → ðZðGÞ½1�Þ3D × ðZðGÞ½0�Þ3D: ð4Þ

The 1-form part acts on spatial Wilson loops, i.e., con-
tractible Wilson loops, while the 0-form center symmetry
acts on the Polyakov loops.
The 0-form piece of center symmetry, ðZðGÞ½0�Þ3D, is

important for the deconfinement phase transition at finite T.
In the low-T confined phase, the 0-form center symmetry is
unbroken and the expectation value of the Polyakov loop
vanishes. As T goes up, the deconfinement phase transition
would occur at T ¼ Tdec. In the high-T deconfined phase
the 0-form center symmetry is spontaneously broken and
the Polyakov loop acquires a nonzero expectation value. It
is known that the 1-form piece of center symmetry does not
break even at high T and the spatial Wilson loops show
area-law behavior throughout.
In contrast to center symmetry, the theory enjoys

(0-form) CP symmetry only at special values of the θ
angle. In fact, the CP operation reverses the sign of θ;
hence, CP symmetry only occurs at either θ ¼ 0 or θ ¼ π.
The former case is obvious, while the latter is based on the
2π periodicity of θ, namely, θ ¼ −π returns to π by the
identification θ ∼ θ þ 2π. It is known as Dashen’s phe-
nomenon that CP symmetry is spontaneously broken in the
confined phase at θ ¼ π, resulting in a first-order phase
transition with respect to θ [24] (see also [7–23]). The
interplay between confinement and Dashen’s phenomenon
has been a long-standing problem, and a modern theoretical
approach based on the ’t Hooft anomaly provides us with
an important clue to clarify it [31].

III. ’T HOOFT ANOMALY AT θ= π AND
PHASE STRUCTURES

We here give a brief summary of the mixed anomaly
of pure SUðNÞ YM theory at θ ¼ π [31]. We shall also
comment on the same anomaly for other simple, simply
connected, and compact gauge groups G in Appendix A.
Let us begin with a general remark on the modern

understanding of ’t Hooft anomaly matching. When we
have a d-dimensional quantum field theory with a global
symmetry, we can consider its partition function under the
presence of background gauge fields A for the global
symmetry, i.e., Z½A�. When we perform the background
gauge transformation, A → Aþ δξA, the partition function
is not necessarily gauge invariant. Indeed, we often
encounter such a situation that the partition function
acquires the anomalous phase,

Z½Aþ δξA� ¼ Z½A� exp
�
i
Z

αðξ; AÞ
�
: ð5Þ

2When G ¼ SpinðNÞ with N ¼ 4k, there are two inequivalent
spinor representations. Then we need to consider two different
“fundamental” Wilson loops. This corresponds to the fact that
ZðSpinð4kÞÞ ¼ Z2 × Z2.
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Here, αðξ; AÞ is a d-dimensional local functional of the
background gauge field A and its gauge parameter ξ. If this
anomalous phase cannot be eliminated by adding any
d-dimensional local counterterms, it is called an ’t Hooft
anomaly. An important theorem, called anomaly matching,
states that the ’t Hooft anomaly does not change under the
renormalization-group flow, or more strongly, under any
continuous deformations of the theory by local and
symmetric Hamiltonians. This theorem provides a useful
constraint to study strongly coupled systems nonperturba-
tively. In particular, ’t Hooft anomaly matching excludes a
trivially gapped nondegenerate vacuum. This is so because
such a vacuum, if manifested, would provide no infrared
degrees of freedom to match the anomaly in an infrared
effective theory.
If the system has an ’t Hooft anomaly for continuous

symmetry, we can prove that the mass gap has to vanish
[25,26]. When the continuous symmetry is unbroken,
the system needs to have color-singlet massless fermions,
or to show the conformal behavior at low energies. If the
continuous symmetry is spontaneously broken to its
anomaly-free subgroup, there are massless Nambu-
Goldstone bosons, and the Wess-Zumino-Witten term
can match the anomaly [72,73]. For discrete symmetries,
on the other hand, massless particles do not necessarily
appear in order to match the anomaly. If the discrete
symmetry is spontaneously broken, such a system is
typically gapped, but there are degenerate vacua. In this
case, there are gapless or topological excitations localized
on domain walls as in Jackiw-Rebbi mechanism [74], and
this is crucial to match the anomaly [34,35]. If the
symmetry is unbroken, the anomaly should be reproduced
either by a massless excitation or in a form of topological
field theory [27–30].
Let us now discuss how this technique can constrain the

phase diagram of the pure SUðNÞ YM theory. As we have
discussed in Sec. II, the theory has the center symmetry,

Z½1�
N , and the CP symmetry at θ ¼ 0 and θ ¼ π. We shall

argue that these two symmetries at θ ¼ π cannot be gauged
simultaneously, which shows the presence of the mixed
’t Hooft anomaly. For this purpose, following Ref. [31], we

introduce the background gauge field for Z½1�
N and then

observe the anomalous violation of CP.
Let us introduce a background gauge field for the center

symmetry Z½1�
N in the form of a 2-form gauge field B

[56,75]. When our spacetime is the hypertorusM ¼ T4, the
introduction of B is equivalent to take the ’t Hooft twisted
boundary condition given in Ref. [76], and it is math-
ematically characterized by an element of H2ðM;ZNÞ. An
important effect of B can be found for the instanton
number,

Q ¼ 1

8π2

Z
trðF ∧ FÞ; ð6Þ

where F ¼ daþ ia ∧ a is the SUðNÞ field strength. When
B is absent, the topological charge is quantized as Q ∈ Z,
and there exists a configuration withQ ¼ 1. This is why we
have the periodic θ angle, i.e., θ ∼ θ þ 2π. In the presence
of B, however, Q has to be redefined so that it becomes
invariant under the 1-form gauge transformations, and then
it is no longer quantized to integers. Indeed, the instanton
number Q acquires the 1=N fractional piece as [77]

Q½B� ¼ N
8π2

Z
B ∧ B mod 1: ð7Þ

The right-hand side of the above expression is quantized in
a unit of 1=N.
Because of the fractionalization of Q, we no longer have

the 2π periodic θ angle, and the partition functions at θ and
θ þ 2π differ as

Zθþ2π½B� ¼ exp
�
−i

N
4π

Z
B ∧ B

�
Zθ½B�: ð8Þ

An extra factor appears, which concludes the mixed
’t Hooft anomaly at θ ¼ π [31]. By CP transformation,
we see

Zπ½B� ↦ Z−π½B� ¼ exp
�
i
N
4π

Z
B ∧ B

�
Zπ½B�: ð9Þ

Strictly speaking, we need to examine all possible 4D
local counterterms to judge if this is a genuine anomaly. For
even N, on the one hand, there is no local counterterm that
cancels this anomaly, so we get the mixed anomaly between

Z½1�
N and CP at θ ¼ π. For odd N, on the other hand, a local

counterterm cancels the anomaly. Even in the latter case,
comparing local counterterms for θ ¼ 0 and θ ¼ π, we can
find that it is impossible to remove the mixed center-CP
anomalies simultaneously for different θ’s [31–33]. This
situation is sometimes referred to as a global inconsistency
[33,53], which can be also regarded as a mixed ’t Hooft
anomaly in a generalized sense [78,79]. For both even and
odd N, this anomaly can be matched by spontaneous
breaking of CP at θ ¼ π, and we assume this scenario
throughout this paper.
At finite temperatures, as we already mentioned, center

symmetry splits into 1-form and 0-form parts from the 3D
perspective, so that the mixed ’t Hooft anomaly above is
actually among 1-form center symmetry, 0-form center
symmetry, and CP symmetry. With this anomaly at hand,
we can put a strong constraint on the phase structures of
the gauge theories on the θ-T plane [31]. The most likely
scenario at θ ¼ π allowed by the ’t Hooft anomaly is
supposed to exclude simultaneous manifestation of CP and
0-form center symmetries as well as to keep the integrity of
1-form center symmetry. Thus, CP symmetry should be
broken in the 0-form center-symmetric phase. That is to
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say, the deconfinement transition temperature, Tdecðθ ¼ πÞ,
cannot be higher than the CP-restoration temperature, TCP,

Tdecðθ ¼ πÞ ≤ TCP: ð10Þ

We schematically illustrate this scenario in Fig. 1. Here, we
also note that one should keep in mind other possible but
less likely scenarios such as spontaneous 1-form center
symmetry breaking and unbroken symmetry with massless
excitations or with topological field theories. Hence, it
would be important to adopt a dynamical model and
investigate which scenario is favored and how it transpires,
which motivates us for this work.
Generally speaking, Tdec may have some θ dependence

with the 2π periodicity as shown by the blue curves in
Fig. 1. In the case of G ¼ SUð2Þ, the deconfinement
transition is suggested to be of the second order, while it
is observed to be a first-order transition for many other
gauge groups. The CP breaking is always accompanied by
a first-order phase transition, as shown by the brown
vertical line at θ ¼ π, which terminates at T ¼ TCP.
One particularly interesting question is whether the

inequality (10) is saturated, i.e., TdecðπÞ ¼ TCP, or not.
If the deconfinement phase transition is of the strong first
order, it would be naturally conceivable that the CP first-
order line is chopped off and TdecðπÞ ¼ TCP would be then
derived. If the deconfinement transition is of second order,
TdecðπÞ ¼ TCP would suggest that both symmetries are
manifested at the transition point, which is not the only
natural way now. A nontrivial temperature window,
TdecðπÞ < T < TCP, might exist. If such a temperature
window is found, a novel phase of deconfined and CP-
broken matter would realize there. This is an extremely
interesting possibility; such a crossing shape of two phase
boundaries as sketched in Fig. 1 is unique in this system
only and, to the best of our knowledge, no similar structure
can be found in any other systems. In the subsequent

sections, we will discuss such a possibility of the novel
phase within the concrete framework of softly broken
N ¼ 1 SYM theory.

IV. N = 1 SUPERSYMMETRIC YM THEORIES
AND THE CONTINUITY CONJECTURE

In this section, we explain the softly brokenN ¼ 1 SYM
theory on R3 × S1 and review the adiabatic continuity
conjecture between its quantum phase transitions and
thermal phase transitions of pure bosonic YM theory.
We then explain the low-energy effective action on
R3 × S1 for the SUðNÞ gauge group.

A. Supersymmetric YM theories

The SYM theory of our interest is the Yang-Mills theory
with single adjoint Weyl fermion, λ, which is called gluino,

S ¼ 1

g2

Z
trðF ∧ �FÞ − iθ

8π2

Z
trðF ∧ FÞ

þ 2i
g2

Z
d4x trðλ̄σ̄μDμλÞ; ð11Þ

where Dμλ ¼ ∂μλþ i½aμ; λ�. This theory enjoys N ¼ 1

SUSY. To persist SUSY, we impose the periodic boundary
condition for all the particles including the gluino along S1.
We note that the finite-T theory should be antiperiodic
for the gluino, and thus we will use L to denote the S1

periodicity instead of 1=T. This supersymmetric partition
function is called Witten index, and, importantly, this
theory shows confinement at any L because of the
topological property of the index [80,81]. Moreover, this
periodic theory has a close relationship with the thermal
pure Yang-Mills theory in a particular limit as explained
below [57–69].
Let us add a mass term to gluino, which breaks SUSY,

1

g2
ðmtrðλλÞ þ c:c:Þ: ð12Þ

Assume that the gluino mass is small, m ≪ Λ, to break
SUSY softly, where Λ is the dynamical scale of the SYM
theory and is defined through the perturbative running
coupling αsðμÞ ¼ gðμÞ2=4π with the renormalization
scale μ. The two-loop definition of the strong scale is

Λ3 ≡ μ3
4π

3c2αsðμÞ
exp

�
−

2π

c2αsðμÞ
�
: ð13Þ

Here c2 is the dual Coxeter number of LieðGÞ, which is N
for G ¼ SUðNÞ.

FIG. 1. Schematic illustration of a possible phase structure on
the θ-T plane. The blue curves represent the deconfinement
transition temperature, Tdec, as a function of θ, and the brown
vertical line represents the CP-breaking transition that terminates
at TCP.

DECONFINEMENT AND CP BREAKING AT … PHYS. REV. D 102, 034020 (2020)

034020-5



B. Adiabatic continuity conjecture

Now, we point out three immediate connections between
the present model and the thermal pure YM theory. Firstly,
in the m → ∞ limit, the gluino decouples and the model
reduces to the thermal pure YM theory. Second, the model
shares the fundamental symmetries that motivated this
work, namely, center symmetry and CP symmetry (at θ ¼
0 or π). The gluino belongs to the adjoint representation, so
that center symmetry survives even with matter fields.
Moreover, the gluino action directly manifests CP sym-
metry at θ ¼ 0 and θ ¼ π. Third, the mixed ’t Hooft
anomaly at θ ¼ π applies to the present model as well
since the gluino in the adjoint representation does not affect
the gauging procedure as described in Sec. III.
The present model has a theoretical advantage over

the thermal pure YM theory. This model is much more
tractable particularly about the confinement-deconfinement
phase transition, which usually occurs in the strongly
coupled regime. For the softly broken N ¼ 1 SYM, it is
found that the confinement-deconfinement transition
occurs in the weakly coupled region at L ≪ Λ−1

[62,63,68], not in the strong-coupling region. Because of
its weak-coupling nature, both perturbative and semiclass-
ical calculations are feasible and reliable. By the virtue of
SUSY, as we will discuss later, perturbative contributions
are more suppressed than semiclassical ones. We can hence
unravel the phase structure solely by semiclassical
computations.
Such semiclassical computations have shown that the

N ¼ 1 SYM theory at m ¼ 0 is a confining theory for any
L [57]. For m ≠ 0, a phase transition is located at a critical
L ∝ m

1
2 below which deconfinement occurs [62,63,68].

This suggests a natural choice of dimensionless variable,

γ ∝
m

L2Λ3
: ð14Þ

Then, γ plays the role of a dimensionless temperature in this
model and the deconfinement phase transition takes place
at γ ¼ γdec. We will give the precise definition of γ later in
Eq. (29). In consistency with the pure Yang-Mills theory,
the deconfinement transition in the present model is found
to be of the second order for G ¼ SUð2Þ [62] and of the
first order for other groups [63,68]. We also confirm
θ-dependent γdec, i.e., γdecðθÞ [67,68]. We will go into
more details on these behaviors in later discussions.
It is then a reasonable conjecture that this transition line

should continue from the small-m region and end at the
deconfinement point in the pure Yang-Mills theory at
m ¼ ∞, as indicated by the upper dashed curve in
Fig. 2. That is, the quantum phase transitions of softly
broken SYM on small R3 × S1 are smoothly connected to
the thermal phase transitions of pure YM theory. This is the
adiabatic continuity conjecture, and a lot of circumstantial

evidences have been obtained so far [58–69,82–90],
although we do not have a direct proof yet.
In this work, we shall pay special attention to the phase

structure at θ ¼ π in this softly broken SYM theory. Since
this model has a confinement-deconfinement phase tran-
sition at γ ¼ γdec, the mixed ’t Hooft anomaly constrains
the possible realization of center and CP symmetries in a
way as discussed in Sec. III. That is to say, CP symmetry is
supposed to be broken in the confined phase where center
symmetry is manifested. Therefore, the critical dimension-
less “temperature,” γCP, for CP restoration should be not
smaller than the deconfinement temperature. Namely, the
following inequality must be satisfied:

γdecðθ ¼ πÞ ≤ γCP ð15Þ

in this model. In the thermal pure Yang-Mills theory, this
inequality corresponds to Eq. (10).
Figure 2 depicts a scenario with a finite window between

deconfinement and CP restoration, for which the critical L
for CP restoration should be smaller than that for decon-
finement. In what follows below, we will clarify the
possibility of this scenario by calculating the infrared
effective potential. We will see that for G ¼ SUð2Þ the
model turns out to have such a window of γdecðπÞ< γ< γCP,
and a novel phase of deconfined and CP-broken matter
emerges.

C. Infrared effective potential

Let us now review the low-energy effective action
[57–69] of the N ¼ 1 SYM theory on small R3 × S1.
For simplicity of notation, we only consider G ¼ SUðNÞ in
this section. The effective potential for all the simply
connected gauge groups is described in Ref. [68].

FIG. 2. Schematic illustration of a possible phase structure on
the m-L plane at θ ¼ π. The upper blue line represents the
deconfinement transition, and the lower brown line represents the
CP-restoration transition. This work covers a small-m region,
which is the left corner as indicated by the light-blue shadow.
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We first discuss the bosonic low-energy degrees of
freedom, which are massless at the classical level. To find
them out, we take the Polyakov gauge, in which a0 is
diagonal and independent of τ ∈ S1. We thus obtain
(N − 1)-component scalar fields, denoted by ϕ. Under
gauge transformations to the Polyakov gauge, we occa-
sionally encounter the monopole singularities, which will
be taken into account soon later and play a very impor-
tant role.
For the pure SUðNÞ YM theory, ϕ is classically mass-

less, but acquires the mass of order g=L at the one-loop
level [91], and its potential is commonly called the Gross-
Pisarski-Yaffe (GPY) potential. For the SYM theory,
however, SUSY protection is strong enough to prohibit
the mass generation of ϕ at any order of perturbation
theory. Therefore, as long as the gluino mass m is small
enough, we can regard ϕ as massless quanta at the
perturbative level. We shall revisit the SUSY-breaking
effect on the GPY potential in the last part of this section.
Next, let us consider the 3D vector bosons, a, which are

the spatial components of the SUðNÞ gauge field. For
generic values of ϕ, the 4DYang-Mills action produces the
mass term, trðF2

0iÞ ¼ trð½ϕ; ai�2Þ, and the off-diagonal
gluons acquire a mass typically of the order of 1=ðNLÞ.
The remnant massless degrees of freedom are the 3D
Uð1ÞN−1 gauge field, which are the diagonal components
of a. By taking the 3DAbelian duality, they can be mapped
to (N − 1)-component scalars denoted as σ.
Because of Abelianization, we can study the confine-

ment of the N ¼ 1 SYM theory on small R3 × S1 by the
weak-coupling semiclassical analysis [57,58]. As ϕ and σ
come out of gauge fields, they are periodic scalar fields,
with the kinetic term,

1

g2L
jdϕj2 þ g2

16π2L

����dσ þ θ

2π
dϕ

����
2

: ð16Þ

To see the periodicity, it is convenient to express ϕ and σ as

ϕ ¼
XN−1

n¼1

ϕnαn; σ ¼
XN−1

n¼1

σnμn; ð17Þ

so that ϕn, σn are 2π-periodic scalars, where αn denote the
positive simple roots, and μn denote the fundamental
weights. In addition, the remnant of non-Abelian gauge
invariance exists, and we have to perform the gauge
identification by the Weyl group,WSUðNÞ ¼ SN , which gives
the permutations of the vector components. Therefore,
ðϕ; σÞ takes values in the following space [65]:

RN−1=2πΛr ×RN−1=2πΛw

SN
: ð18Þ

Here Λr ¼
P

n 2πZαn and Λw ¼ P
n 2πZμn are the root

and weight lattices, respectively.
It turns out to be useful to fix the gauge for the Weyl

permutation, SN , using ϕ. Indeed, we can characterize
the physically inequivalent classical vacua of ϕ by the
conditions

αn · ϕ > 0 ðn ¼ 1;…; N − 1Þ; −α0 · ϕ < 2π; ð19Þ

which is called the fundamental Weyl chamber. Here,
α0 ¼ −ðα1 þ � � � þ αN−1Þ is the Affine simple root. In
components, these conditions can be written as

ϕnþ1 þ ϕn−1 < 2ϕn ðn ¼ 1;…; N − 1Þ;
ϕ1 þ ϕN−1 < 2π; ð20Þ

in which we regard ϕ0 ¼ ϕN ¼ 0 and 0 ≤ ϕn < 2π. The
Weyl chamber for all the simply connected and simple
gauge groups can be found in Appendix B of Ref. [65].
Next, let us explain how the 0-form symmetries dis-

cussed in Sec. II act on these fields ðϕ; σÞ. The center and
CP-symmetry transformations are generated by

Center ð“naive”Þ∶ ðϕ; σÞ → ðϕþ 2πμ1; σÞ;

CP∶
�
θ ¼ 0∶ ðϕ; σÞ → ðϕ;−σÞ;
θ ¼ π∶ ðϕ; σÞ → ðϕ;−σ − ϕÞ:

ð21Þ

Here, we note that the above definition of the center
transformation is naive, as it does not respect the gauge
fixing condition (19). In order to make the center trans-
formation being closed inside the Weyl chamber, we
combine it with the cyclic Weyl permutation, PW ∈ SN [65],

Center∶ ðϕ; σÞ → ðPWϕþ 2πμ1;PWσÞ;

CP∶
�
θ ¼ 0∶ ðϕ; σÞ → ðϕ;−σÞ;
θ ¼ π∶ ðϕ; σÞ → ðϕ;−σ − ϕÞ: ð22Þ

The action of PW is given by PWαn ¼ αnþ1, where
the label is understood in mod N, and PWμn ¼
μn − ðα1 þ � � � þ αnÞ. Using the Weyl vector, ρ ¼ P

n μn,
the center-symmetric configuration for ϕ is given by

ϕc ¼
2π

N
ρ; ð23Þ

as we can check that PWρ ¼ ρ − Nμ1. Indeed, Eq. (23) is
realized as the vacuum configuration for the SUSY case
with m ¼ 0.
Let us now consider the nonperturbative effect for the

bosonic effective potential. If it is convenient to introduce
complex scalar fields,
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z≡ i

��
θ

2π
þ i
αs

�
ðϕ − ϕcÞ þ σ

�
; ð24Þ

then the kinetic term (16) can be compactly expressed as
αs
4πL jdzj2. The 4D YM instanton splits into N monopole-
instantons in this setup [92–96], and those monopole-
instantons consist of (N − 1) Bogomol’nyi-Prasad-
Sommerfield (BPS) monopoles with the magnetic charge,
αn (n ¼ 1;…; N − 1), and a Kaluza-Klein (KK) monopole
with the magnetic charge, α0. The existence of KK
monopole-instanton is crucial for the mass-gap generation
[57–60] by the Polyakov-type mechanism [97], which does
not occur for the genuine 3D SYM theory [98]. Let us
introduce the monopole-instanton operators as

MiðxÞ ¼ exp

�
αi · zðxÞ þ i

θ

N

�
: ð25Þ

At the SUSY point, m ¼ 0, the monopole-instantons
cannot contribute to the effective potential by themselves
as they carry two fermionic zero modes by the index
theorem [99]. Therefore, the BPS and KK monopole-
instanton vertices are given by

exp
�
−

2π

Nαs

�
MiðxÞ½αi · λðxÞ�2; ð26Þ

where λ denotes the diagonal components of gluinos.
Let us now write down the bosonic effective potential for

the softly brokenN ¼ 1 SYM theory on smallR3 × S1. As
we noted, the monopolesMi cannot contribute at the SUSY
point, m ¼ 0, and thus the leading contribution comes out
of “bions” [58–60], which are composites of Mi. They
should not carry the topological charge, so the candidates
are M�

i Mj. When i ¼ j, they do not have the magnetic
charge either, so they are called neutral bions. When i ≠ j,
they have the magnetic charge αj − αi, so they are called
magnetic bions. Away from the SUSY point, the monop-
oles Mi can also contribute to the bosonic potential of the
order of m. These contributions make up the following
effective potential [57–60,68]:

V
V0

¼
XN−1

i;j¼0

ðαi · αjÞM�
i Mj

−
γ

2

XN−1

i¼0

�
1 −

Nαs
4π

lnðM�
i MiÞ

�
ðMi þM�

i Þ; ð27Þ

where the first term comes out of bions, and the second
term is the monopole contribution. It is interesting to
notice that, since αi · αj ¼ 2δi;j − δi;jþ1 − δi;j−1, the mag-
netic bions M�

i Mj contribute if and only if j ¼ i� 1. We
have normalized the potential using the bion amplitude,

V0 ≡ 9N2

64π3
L3Λ6

αs
; ð28Þ

which characterizes the superpotential scale at m ¼ 0. As
we discussed around Eq. (14), γ in Eq. (27) is a proxy of the
temperature T or the inverse system size L−1 as a control
parameter to probe the phase structure, which is defined as3

γ ≡ 32π2

3N2

m
L2Λ3

: ð29Þ

In addition to the semiclassical potential (27), there is
another contribution from perturbative loops, i.e., a GPY-
like potential [91]. The perturbative contribution is, how-
ever, suppressed by SUSY, which can be seen from

VGPY

V0

¼ −γ2
αsN2

4π

X
α∈Φþ

B2

�
α · ϕ
2π

�
; ð30Þ

where the α summation runs over positive roots Φþ, and
B2ðxÞ ¼ x2 − xþ 1=6 is the second Bernoulli polynomial.
We are interested in the Oð1Þ fluctuation of Mi to analyze
the effective potential (27), and this means that the ϕ
fluctuation should be ϕ − ϕc ∼OðαsÞ according to
Eq. (24). As a consequence, we find

VGPYðϕÞ − VGPYðϕcÞ
V0

∼Oðα2sN2Þ: ð31Þ

For SUðNÞ, we can confirm that the perturbative potential is
actually more suppressed as Oðα3sN2Þ [62,63]. Therefore,
we neglect the perturbative contribution in the following,
and use Eq. (27) for the computations.

V. SIMULTANEOUS DECONFINEMENT AND CP
RESTORATION FOR G=SUðN ≥ 3Þ

In this section, we discuss the general phase structure of
the effective theory we introduced in Sec. IV C. Although
we mainly work on the SUðNÞ gauge groups for N ≥ 3
in this section, the generalization to other gauge groups
is straightforward [68], which will be discussed in
Appendix A. Especially, we shall see that the simultaneous
deconfinement and CP restoration occurs for all the gauge
groups except SU(2). We will discuss the SU(2) case in the
next section.
Instead of keeping the original variables, ðϕ; σÞ, for

computation, it turns out to be useful to work with
N-complex scalars Mi, which are the monopole-instanton
operators introduced in Eq. (25). These N fields, Mi, are
not all independent of each other but there is a constraint,

3Here, we note that our definition of V0 is a half of V0
bion used

in Ref. [63]. As a result, the dimensionless temperature γ is
related to their parameter, cm, in Ref. [63] by γ ¼ 2cm.
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YN−1

i¼0

Mi ¼ expðiθÞ: ð32Þ

Under the constraint (32), the N-complex fields Mi have
the one-to-one correspondence to ðϕ; σÞ.
Since we perform our computation with Mi, center

and CP symmetries (22) should also be translated in the
language of Mi. The result is surprisingly simple,

Center∶ Mi → Miþ1;

CP∶ Mi → M�
i : ð33Þ

In terms of the monopole variables, the appearance of CP
only at θ ¼ 0 or θ ¼ π can be understood as follows: only
when θ ¼ 0 or θ ¼ π, the constraint (32) is real, and then
the CP transformation, Mi → M�

i , is consistent with the
constraint.
Let us point out that this theory correctly reproduces the

’t Hooft anomaly of YM theory [90]. Even without any
knowledge about the effective potential, the target space of
these infrared degrees of freedom, Mi ⇔ ðϕ; σÞ, already
knows about the ’t Hooft anomaly at θ ¼ π to some extent.
To see it, let us try to find out the center and CP-symmetric
points. The requirement of center symmetry is that

M0 ¼ M1 ¼ � � � ¼ MN−1 ≡M: ð34Þ

Therefore, the constraint (32) is solved under the center-
symmetric condition as Mi ¼ M for all i ¼ 0; 1;…; N − 1
with

M ¼ exp

�
i
θ þ 2πk

N

�
: ð35Þ

Here, k ¼ 0; 1;…; N − 1, so there are N isolated center-
symmetric points. This is a manifestation of N-branch
structure of confining vacua, expected in the large-N
counting [7,17]. We can readily check that none of them
is CP symmetric when N is even, so there cannot exist a
unique gapped vacuum in the weakly coupled regime.
When N is odd, there is a center and CP-symmetric point
for each of θ ¼ 0 and θ ¼ π, but their labels k do not
coincide for different θ’s, which is a manifestation of global
inconsistency.
When m ¼ 0, all of the N configurations in Eq. (35) are

realized as actual vacua. This N degeneracy for the SUSY
point is indeed understood as a consequence of sponta-
neously broken discrete chiral symmetry, often called
R-symmetry, and they are characterized by the gluino
condensate,

htrðλ2Þi ¼ 3NΛ3 exp

�
i
θ þ 2πk

N

�
; ð36Þ

with k ¼ 0; 1;…; N − 1. The existence of N vacua is
ordered by a similar mixed ’t Hooft anomaly as Eq. (8).
The symmetry transformation is generated by Mi →
Mi exp ð2πi=NÞ. When m ≠ 0, the second term in the
potential (27) destroys R-symmetry and lifts the degen-
eracy. For 0 ≤ θ < π, the k ¼ 0 branch survives while for
π < θ ≤ 2π the k ¼ N − 1 branch survives. At θ ¼ π, these
two branches are degenerate, which gives the anticipated
first-order phase transition of CP breaking.
We have discussed properties for the center-symmetric,

or confining, vacua, and let us next describe the deconfined
phase. To get an insight, we set ϕ ¼ σ ¼ 0, which is a
typical center-broken configuration in the perturbative
analysis, even though we lose the validity of Abelinized
description at that point. The monopole-instanton operators
(25) become

M0 ¼ exp

�
−

2π

Nαs
ðN − 1Þ þ iθ

�
; Mi≠0 ¼ exp

�
2π

Nαs

�
:

ð37Þ

In this case, we see jM0j ≪ jMi≠0j. As we set θ ¼ π, we
find M0 < 0 while Mi > 0 for all i ≠ 0. We can guess that
these qualitative behaviors ofMi are also true for the actual
deconfined vacua, at least for deeply deconfined vacua.
That is, in such a deconfined vacuum, one monopole is
suppressed compared with others, and at θ ¼ π, the sup-
pressed one has a negative amplitude, while others take
positive values. Since all the amplitudes are real, CP
symmetry would be manifested.
Now, let us think about the phase transition between the

confined and deconfined phases. We note that the decon-
finement transition is of the first order for SUðNÞ gauge
groups with N ≥ 3 [63]. Hence, the simplest scenario for
the deconfinement transition is just to exchange the con-
fined vacua by the deconfined vacua with the qualitative
features we have guessed above. If this is the case, then
the deconfined vacua are CP symmetric at θ ¼ π, so we
should get

γdecðθ ¼ πÞ ¼ γCP: ð38Þ

That is, the deconfinement and CP restoration occur
simultaneously at θ ¼ π.
Although this is just a naive guess, we can confirm

expected features by solving Eq. (27). Since all the
equations we need to solve are too intricate to treat
analytically, we evaluate them numerically setting αs ¼ 0
in the potential (27). Neglecting OðαsÞ terms does not
affect the qualitative behaviors due to the first-order
nature of the deconfinement transition. We list the numeri-
cal results of the deconfinement phase transition for
SUðN ≥ 3Þ up to N ¼ 10 in Table I. The table exhibits
γdecðπÞ as well as the expectation values ofMi in one of the
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deconfined vacua at γdecðπÞ. Other deconfined vacua can be
obtained by the broken center transformation (33).
We performed the numerical calculations with

accuracy to the ninth decimal place. We exhibit in the
table at most four significant digits for ReðMiÞ, while
ImðMiÞ is indeed identically zero up to 10−10. The
features from our naive guess turn out to be correct even
near the phase transition point: one monopole is sup-
pressed and has a negative amplitude, while others are
positive and unsuppressed. Another feature is that many
numbers appear in pairs, which suggests an unbroken
Z2 symmetry. It is indeed the charge conjugation sym-
metry, C∶ Mi ↦ MN−i.
Recalling CP symmetry is given by complex conju-

gation of Mi, we infer that the deconfined vacua at
γdecðπÞ are CP symmetric, from the vanishing imaginary
parts of Mi in Table I. That is to say, CP symmetry is
restored simultaneously when center symmetry starts to
be broken, i.e., γdecðπÞ ¼ γCP is observed for SUðNÞ
with N ≥ 3.
In Appendix A, we also study the deconfinement

transition at θ ¼ π for the non-SUðNÞ gauge groups, G.
The deconfinement transition turns out to be always of
the first order when G ≠ SUð2Þ [63,68], and we confirm
that γdecðπÞ ¼ γCP also for the non-SUðNÞ gauge groups
up to the rank-9 groups, including SpinðN ≤ 19Þ,
SpðN ≤ 9Þ, E6;7;8, F4, and G2. In Appendix B, we solve
the deconfined phase of (27) analytically in the large-N
limit of SUðNÞ groups, and we again confirm the correct-
ness of above discussions. We thus conclude that decon-
finement and CP restoration occur simultaneously at
θ ¼ π for all the gauge groups G ≠ SUð2Þ. We also
anticipate optimistically that this equality might be
extrapolated to the pure thermal Yang-Mills theory,
namely, TdecðπÞ ¼ TCP for all G ≠ SUð2Þ, which awaits
further numerical studies.

VI. THE DECONFINED AND CP-BROKEN
PHASE IN THE SU(2) CASE

In this section, we will evaluate the phase diagram on the
θ-γ plane in the case of G ¼ SUð2Þ. Now the deconfine-
ment transition is of second order [62]. According to the
discussion around Eq. (35), no point is simultaneously
center and CP symmetric. Since we are studying the weak-
coupling regime, this immediately implies the existence of
a finite window γdecðπÞ < γCP as well as a novel phase of
deconfinement and CP breaking. It is so because a second-
order transition requires a continuous motion of the vacua.
As a result, we must have a phase with neither center nor
CP symmetry between two vacua with one and the other
symmetries. We will justify this argument by a quantitative
evaluation of γdecðθÞ and γCP.
From now on, we will work with the original variables,

ðϕ; σÞ. The expectation value of ϕ in the center-symmetric
vacua now reads ϕc ¼ πμ1. We then express ðϕ; σÞ in
components

ϕ≡ ϕc þ αsφμ1; σ ≡ σμ1: ð39Þ

The components φ and σ are real variables and have the
following relation to z:

φ ¼ −α1 · Rez; σ ¼ α1 · Imz −
θαs
2π

φ: ð40Þ

Their target spaces can be regarded as φ ∈ R and
σ ∈ R=2πZ.
The symmetry transformations (22) now read

Center trans:∶ ðφ; σÞ → ð−φ;−σÞ;

CP trans:∶
�
θ ¼ 0∶ ðφ; σÞ → ðφ;−σÞ;
θ ¼ π∶ ðφ; σÞ → ðφ;−σ − π − αsφÞ:

ð41Þ

These symmetries are both Z2 here. It is clearly seen that
no ðφ; σÞ stays invariant under two Z2’s simultaneously
at θ ¼ π, which is consistent with the mixed ’t Hooft
anomaly. The SU(2) potential (27) as a function of φ and σ
for a given θ reads

Vbosðφ; σ; θÞ
V0

¼ 4 coshð2φÞ − 4 cos

�
2σ þ θαs

π
φ

�

− γ

��
1þ αs

π
φ

�
e−φ cos

�
σ þ θ

2
þ θαs

2π
φ

�

þ
�
1 −

αs
π
φ

�
eφ cos

�
σ −

θ

2
þ θαs

2π
φ

��
:

ð42Þ

TABLE I. Numerically evaluated γdecðπÞ for the gauge groups
SUðNÞwithN ≥ 3. The expectation values ofMi are given in one
of the deconfined vacua at γ ¼ γdecðπÞ.
G ZðGÞ Mi γdecðπÞ
SU(3) Z3 −0.167, 2.451, 2.451 4.235
SU(4) Z4 −0.077, 2.130, 2.849, 2.130 2.564
SU(5) Z5 −0.039, 1.835, 2.756, 2.756, 1.835 1.711
SU(6) Z6 −0.021, 1.600, 2.560, 2.879, 2.560,

1.600
1.220

SU(7) Z7 −0.011, 1.414, 2.357, 2.827, 2.827,
2.357, 1.414

0.914

SU(8) Z8 −0.006, 1.267, 2.171, 2.713, 2.893,
2.713, 2.171, 1.267

0.709

SU(9) Z9 −0.003, 1.147, 2.007, 2.580, 2.866,
2.866, 2.580, 2.007, 1.147

0.566

SU(10) Z10 −0.002, 1.049, 1.864, 2.446, 2.795,
2.911, 2.795, 2.446, 1.864, 1.049

0.462
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Center and CP symmetries are evident from the above
potential.
We determine φ and σ from a condition to minimize

Eq. (42). As long as γ is sufficiently small (we will soon
evaluate the threshold), the system stays in the confined
phase and the center symmetry is unbroken. Then, accord-
ing to Eq. (35), φ ¼ 0 and σ ¼ 0; π should be energetically
favored, which simplifies the analysis. The energy in the
confined phase with φ ¼ 0 is then

Vbosðφ¼0;σ;θÞ
V0

¼8−8cos2σ−2γcos

�
θ

2

�
cosσ: ð43Þ

From this expression, it is clear that cos σ ¼ þ1 lowers
the energy as long as cosðθ=2Þ > 0, while cos σ ¼ −1 is
energetically favored for cosðθ=2Þ < 0. That is, we find an
anticipated two-branch structure,

σðθÞ ¼
�
0 ð0 ≤ θ < πÞ;
π ðπ < θ ≤ 2πÞ: ð44Þ

This certainly gives the branch structure we discussed in
Eq. (35) and indicates a first-order phase transition with
spontaneous CP breaking at θ ¼ π in the confined phase.
We note that the nature of the phase transition is insensitive
to γ if we work in the confined phase.
Let us now consider a critical γdec, above which

center symmetry is broken. For the SU(2) case, the
deconfinement phase transition is of second order, so that
the potential at γ ¼ γdec must become flat around φ ¼ 0.
If we approach the phase boundary from γ < γdec,
we can keep using σðθÞ in Eq. (44). We can impose
the flatness condition on the potential in a form that the
Hessian of the potential should vanish, i.e.,
ð∂2Vbos=∂φ2Þð∂2Vbos=∂σ2Þ − ð∂2Vbos=∂φ∂σÞ2 ¼ 0. This
leads to the following solution:

γdecðθÞ ¼
8<
:

8
1−αs

π ½1þcosðθ=2Þ� ð0 ≤ θ < πÞ;
8

1−αs
π ½1−cosðθ=2Þ� ðπ < θ < 2πÞ; ð45Þ

which draws the phase boundary of deconfinement (see
dashed lines in Fig. 3).
We notice that γdecðθÞ decreases as θ approaches π

from 0. This phenomenon can be qualitatively understood
as follows: the bions tend to confine the theory, while the
monopole-instantons tend to deconfine the theory. SUSY
helps us to induce bion contributions, so the chiral anomaly
by the gluino destroys the influence of θ. However, θ gives
a phase to the KK monopole-instanton amplitude and
would bring significant constructive interference among
monopole-instantons. Therefore, θ would increase the
deconfining force in the system, which results in the
decreasing behavior of γdecðθÞ.

The results up to now in this section are consistent with
Ref. [63]. To complete the phase diagram, the last piece we
need is the determination of γCP, where the CP-breaking
first-order phase transition is terminated. This needs to be
done together with finding the vacua there. Since γCP is
located at an end point of a first-order phase boundary, this
is a critical point of second order. Therefore, we can find
this phase transition similarly by requiring a vanishing
gradient and a vanishing Hessian. Now, CP can simplify
our tasks. First, because CP is restored at γCP, we directly
know σ ¼ π

2
− αs

2
φ or 3π

2
− αs

2
φmod2π there. Second, among

the vanishing gradient equations, i.e., ∂Vbos=∂φ ¼ 0 and
∂Vbos=∂σ ¼ 0, the latter is automatically satisfied due to
the CP symmetry. Last, CP symmetry also tells us that the
flat direction must be along σ, which reduces a vanishing
Hessian condition to just ∂2Vbos=∂σ2 ¼ 0.
We start from solving ∂Vbos=∂φ ¼ 0 at θ ¼ π and

σ ¼ π
2
− αs

2
φ, which results in a function φðγÞ. We cannot

find an analytical expression of φðγÞ, so we have expanded
it with respect to αs=π ≪ 1. The solution up to Oðαs=πÞ is

φðγÞ ≃ arcsinhðγ=8Þ

−
αs=πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 64=γ2
p

�
1þ arcsinhðγ=8Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 64=γ2
p

�
: ð46Þ

With this solution, we can approximately solve
∂2Vbos=∂σ2 ¼ 0, up to Oðαs=πÞ to find

γCP ≃ 8

�
1þ 1

2

�
1þ 3ffiffiffi

2
p arcsinhð1Þ

�
αs
π

�

≃ 8

�
1þ 1.43

αs
π

�
; ð47Þ

FIG. 3. SU(2) phase structure on the θ − γ plane for
αs=π ¼ 0.1. The dashed lines represent the deconfinement
boundary given by γdecðθÞ in Eq. (45) with the metastable branch
drawn by the dotted lines. The first-order phase boundary
associated with the CP breaking at θ ¼ π is shown by the solid
(red) line which terminates at ðθ; γÞ ¼ ðπ; γCPÞ.

DECONFINEMENT AND CP BREAKING AT … PHYS. REV. D 102, 034020 (2020)

034020-11



which is surely larger than the deconfinement critical value

γdecðθ ¼ πÞ ≃ 8

�
1þ αs

π

�
: ð48Þ

Hence, as we promised, a finite window γdecðπÞ < γ < γCP
appears, with the window size of OðαsÞ (see the brown
solid line in Fig. 3).
We have now completed the phase diagram for

G ¼ SUð2Þ and found that there is a novel phase of
deconfinement with CP breaking in a finite window
γdecðπÞ < γ < γCP. This novel phase has four degenerate
vacua, while any other place in the phase diagram has at
most two degenerate vacua. These vacua will be carefully
considered in the next section.
From Fig. 3, we see that the phase structure has an

unusual feature, namely, the first-order transition line
intersects with the second-order transition line. This pecu-
liar behavior is rarely seen in literature, as far as we know.
From now on, it should be incorporated as a recognized
member in a zoo of various phases.
We could optimistically expect that these interesting

behaviors may be extrapolated to the thermal pure SU(2)-
gauge theory, with a replacement of γ by T. However, one
should be careful of the peculiarity of SU(2) and we would
like to reserve other possibilities. For example, both the
deconfinement and CP-restoration phase transitions might
terminate at zero temperature in pure SU(2) gauge theory,
and the theory might become massless around θ ¼ π [31].
Another interesting scenario would be the ’t Hooft’s
oblique confinement scenario [8,10], which concludes
the deconfinement for the SU(2) YM theory at θ ¼ π.
We cannot make any decisive statement about a favored
scenario for pure YM theory just from the symmetry
constraint and from our present analysis in the weak-
coupling regime. Nevertheless, because the pure YM
theory is still far from unraveled, it would be an important
step to make exhaustive studies of possible scenarios and
our present calculations illuminate a novel scenario that has
not been known before.

VII. 1-FORM CENTER SYMMETRY AND DOMAIN
WALLS IN THE NOVEL PHASE

In the novel deconfined and CP-broken phase, there are
four discrete vacua related by the broken center and broken
CP symmetries. Therefore, we can consider more varia-
tions of domain-wall excitations and domain-wall junctions
than in other phases. In this section, we consider the 1-form
center symmetry on the domain wall and the junction in this
novel phase.
We should start with reviewing the spatial Wilson loop in

the effective description. In the infrared effective theory, we
have a 1-form Uð1ÞN−1 topological symmetry ordered by
σ ∼ σ þ 2πΛw (recall that ϕ cannot deviate far from the
center-symmetric point ϕc). An order operator is a loop

defect, around which σ has a 2πμ monodromy with a
μ ∈ Λw. The 1-form Uð1ÞN−1 symmetry acts as the phase
rotations of such a line defect. Recall that σ is the
Abelianized dual 3D gauge field, so the loop defect is
nothing but a spatial Wilson loop with an electric charge μ,
and the subgroup ZN ⊂ Uð1ÞN−1 of this 1-form symmetry
matches the 1-form center symmetry of SUðNÞ YM theory.
The infrared enhancement of 1-form symmetry from ZN to
Uð1ÞN−1 indicates the Abelianization.
We can find the area law of spatial Wilson loops by

seeing that they create the confining-string excitations. A
Wilson loop imposes the boundary condition of σ, so that it
should have a nontrivial winding around the loop. By
solving the infrared equation of motion under that boun-
dary condition, we can explicitly see the configuration of
the wall bounded by a Wilson loop [97,100], which is
nothing but a sheet of confining strings. As a result, the
Wilson loop shows the area law, and its string tension is
proportional to the wall tension, which also justifies the
integrity of the 1-form center symmetry.
Now, we review previous studies on the domain walls for

the N ¼ 1 SUðNÞ SYM theory on small R3 × S1, tempo-
rarily setting m ¼ 0. It has been found that the spatial
Wilson loop shows the very peculiar behavior on the
domain wall in confined vacua [100–102]. As we explained
in Sec. V, there are N degenerate confined vacua due to
R-symmetry breaking. Setting θ ¼ 0 (θ is unphysical here),
we see these vacua given byMi ¼ M ¼ exp ð2πik=NÞ with
k ¼ 0; 1;…; N − 1 [see Eq. (35)]. A BPS domain wall
between any two neighboring vacua, say k ¼ 0 and k ¼ 1,
hasZN distinct types, as such a domain wall should connect
Mi ¼ 1 and Mi ¼ expð2πi=NÞ continuously while satisfy-
ing

Q
i Mi ¼ 1, and those different types are related by

0-form center symmetry. Now, let us put a fundamental
Wilson loop on the domain wall which connects k ¼ 0 and
k ¼ 1 vacua. Due to the presence of the Wilson loop on the
domain wall, the BPS configurations inside and outside
the Wilson loop should be different types because of the
boundary condition. For example, whenN ¼ 2, the domain
walls inside and outside a Wilson loop, WðCÞ, along a
contour C, should connect two vacua, σ ¼ 0 and σ ¼ π
(which can be ∼ − π due to σ ∼ σ þ 2π), as

σ∶
�
0 → þπ ðoutside of CÞ;
0 → −π ðinside of CÞ: ð49Þ

Still, these domain walls have the same wall tension,
so the size of the Wilson loop does not affect its expectation
value and we get the perimeter law [100–102]. This leads
to the 1-form deconfinement on domain walls [100]. A
recent study in Ref. [102] extended the analysis to non-
neighboring vacua and explicitly confirmed the conjectured
behavior of the domain wall given in Ref. [103]. We note
that the deconfinement on the wall also occurs for the CP
domain walls for the softly brokenN ¼ 1 SYM theory, and
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even for pure YM theories, at θ ¼ π. Indeed, this turns out
to be a part of the requirement to match the ’t Hooft
anomaly by spontaneous CP breaking [31].
We have found that the SU(2) SYM theory has a novel

deconfined and CP-broken phase, so it is interesting to look
at the domain walls in this phase. The story about the
Wilson line and domain walls turns out to be more
interesting here. We number the vacua from 1 to 4 as σ
increases from 0 to 2π, as shown in Fig. 4. The 0-form
center symmetry relates 4 ↔ 1 and 2 ↔ 3 while CP
symmetry relates 1 ↔ 2 and 3 ↔ 4. We only have four
kinds of domain walls between each pair of vacua with
adjacent numbers (1 is next to 4). Other domain walls such
as 1 ↔ 3 and 2 ↔ 4 could exist only if φ becomes infinite
on the wall, which invalidates the infrared effective theory
here. We refer to the domain wall between i and j vacua as
DWij. Figure 4 also illustrates these domain walls.
From Fig. 4, it is easy to see that DW12 and DW34 are CP

symmetric and related by 0-form center symmetry. If we
change γ and a phase transition to the confined phase
occurs, these two walls become the two vacua of the CP
domain wall there. If γ gets large enough to realize the CP-
symmetric deconfined phase, these walls disappear. Hence
the tensions of these walls decrease as γ increases. The
discussion about DW41 and DW23 is just the reverse and
thus the tension increases as γ increases. Note that the
tension of every domain wall is ofOðαsÞ here (compared to
the domain-wall tension in the confined phase).
Now, we try to put a spatial Wilson loop on a domain

wall. For example, let us put a fundamental Wilson loop on
DW12. Because of the nontrivial monodromy of σ, inside
the loop C, DW12 is replaced by a sequence of DW23,
DW34, and DW41. This configuration is schematically
illustrated in Fig. 5. Since DW34 has the same tension

as DW12, the interior tension is larger than the exterior
tension, namely,

T inside > Toutside: ð50Þ

Indeed, we can approximately think of the interior
tension as the sum of that of each individual wall,4 i.e.,
T inside ≃ TðDW23 þ DW34 þ DW41Þ. It is surely larger
than Toutside ≡ TðDW12Þ ¼ TðDW34Þ. Consequently, this
Wilson loop on the wall, DW12, has an area law. Similar
arguments work for other domain walls. As a conclusion,
the 1-form deconfinement on domain walls does not take
place in the novel phase.
According to the above discussion, the domain-wall

junction must be accompanied by a nontrivial electric
charge. With the list of domain walls at hand, the only
possible junction is the one surrounded by DW12, DW23,
DW34, and DW41 sequentially. This configuration is
illustrated in Fig. 6. In other words, σ has a 2π monodromy
around this junction. Thus, this junction is nothing but a
fundamental Wilson line. That is to say, the domain-wall
junction can be present only when we introduce a nontrivial
electric charge by the external Wilson line.5

The story becomes more interesting when we consider
the SU(2) YM theory with the heavy but dynamical

FIG. 4. The vacua and domain walls in the novel phase. The
blue circle represents the value of σ ∼ σ þ 2π. The red dots
denote the vacua from 1 to 4, and the red dashed arrows indicate
the moving direction of these vacua as γ goes larger. Between
the neighboring vacua, the yellow two-sided arrows indicate the
domain walls. The (0-form) center symmetry corresponds to
the horizontal reflection, while CP symmetry corresponds to the
vertical reflection (within the 0th order of αs).

FIG. 5. A transverse slice of a fundamental Wilson loop on the
domain wall DW12. The z direction is perpendicular to the page,
and we only show the x-y plane at z ¼ 0. DW12 is located at
y ¼ 0. In the y > 0 region, the vacuum is 1 and in the y < 0
region, the vacuum is 2. The black dots denote the z ¼ 0 section
of a fundamental Wilson loop C on DW12. Due to the 2π
monodromy of σ indicated by the dashed circle arrows, inside the
loop a sequence of DW23, DW34, and DW41 appears. As a
consequence, the wall tensions inside and outside the Wilson loop
are different, and the Wilson loop on the wall obeys the are law.

4We note that this is a good approximation to describe the
confining string of this model, at least in the confinement phase
[100]. In order to get an intuitive understanding, we here assume
that its validity extends to the novel phase, but this is not an
essential part of our discussion.

5We note that, although a similar gauge theory with four vacua
has been considered in Ref. [104] by replacing the θ parameter to
the dynamical axion field with massless fermions, the anomaly
still requires the deconfinement on the wall. The nondeconfine-
ment on the wall and the special nature of junctions are very
unique to the novel phase of SU(2) gauge theory.
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fundamental quarks, and we assume that their mass is
much larger than the strong scale, mfnd ≫ Λ. Most of our
discussions are unaffected as the dynamical quarks are
sufficiently heavy. Now, however, the domain-wall junction
is allowed as the dynamical object, and then the funda-
mental quarks should be pinned to the location of the
junction.
All the phenomena above should be consistent with the

’t Hooft anomaly and play some roles in the anomaly
matching. First, from Fig. 4, we see that either 0-form
center symmetry or CP symmetry is not manifested on a
domain wall. Hence, the manifestation of the 1-form center
symmetry on domain walls is not contradictory to the
’t Hooft anomaly. Second, because the junction is simulta-
neously 0-form center symmetric and CP symmetric, as
shown in Fig. 6, to match the anomaly, the junction must be
the charged object under the 1-form center symmetry. Other
scenarios are rejected by the dimension; the junction is only
one-dimensional and not capable to support other scenar-
ios. In other words, the nontrivial electric charge of the
junction is protected by the ’t Hooft anomaly of the bulk
theory. As a conclusion, we have demonstrated that the
’t Hooft anomaly requires novel properties on the domain
walls and the junction in the phase we discovered.

VIII. SUMMARY

In this work, we studied the realization of the phase
structure constrained by the ’t Hooft anomaly between
center and CP symmetries in the thermal YM theory and
the softly broken N ¼ 1 SYM theory. We quantitatively
evaluated the phase diagram from the infrared effective
potential in the latter theory on small R3 × S1, with the
hope of optimistic extrapolation of the qualitative behavior
to the former theory.
This work exemplified the ’t Hooft anomaly matching

argument in a concrete model and also went further
favoring a particular scenario among many possibilities.
For all the gauge groups G but SU(2), we confirmed that
the deconfinement transition is of the first order. Also,

at θ ¼ π, the deconfinement and the CP restoration occur at
the same temperatures, and we expect that this is most
likely true also for the thermal YM theories.
Interestingly, SU(2) gauge group turns out to be very

special. At θ ¼ π, a novel deconfined phase with a broken
0-form center symmetry as well as a broken CP symmetry
was unraveled for G ¼ SUð2Þ, which has a sharp contrast
with other gauge groups for which the phase transition
of simultaneous deconfinement and CP restoration is
observed. The SU(2) phase diagram is accompanied by
a rare intersection between a first- and a second-order phase
transitions. We also illustrated 1-form center symmetry in
this novel phase, especially showing that the domain-wall
junction must be a charged object of the 1-form symmetry.
All of these features find their ways to match the ’t Hooft
anomaly.
Although our discoveries are conclusive within the

softly broken N ¼ 1 SYM theory on small R3 × S1, the
extrapolation to the thermal YM theory should be more
circumspect. Under the assumption of the adiabatic
continuity conjecture, our analyses imply that the pure
SU(2) thermal YM theory can have an exotic deconfined
phase with CP breaking at θ ¼ π. It is still possible that
the phase structure around θ ¼ π of the pure SU(2) gauge
theory might be even more exotic than our results. This
question in the thermal YM theory deserves further
investigations.
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APPENDIX A: SIMULTANEOUS
DECONFINEMENT AND CP RESTORATION

FOR NON-SUðNÞ GAUGE GROUPS

In this Appendix, we extend our discussion to non-
SUðNÞ gauge groups and confirm that deconfinement and
CP restoration happen at the same temperature γ. We note
that the effective potential (27) should be replaced by a
more complicated form, which can be found in Ref. [68].
And also the center symmetry ceases to be generated by
(33), but is still a subgroup of the symmetric group of
fMig. Fortunately, CP symmetry remains the same as (33).
We would like to briefly comment on the anomaly in

Sec. III for non-SUðNÞ gauge groups. In the presence of
this CP-center mixed anomaly, Q has to be fractionalized
by the background 2-form gauge field B. Let us give a list
of the simply connected gauge groups, with its center and

FIG. 6. A transverse slice of a domain-wall junction. The z
direction is perpendicular to the page and we only show the x-y
plane at z ¼ 0. The junction is located at x ¼ y ¼ 0, namely,
along the z-axis. The dashed circle arrow indicates the 2π
monodromy of σ around the junction.
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the minimal fractionalized value of Q [70,105] which is as
follows:

G ZðGÞ Q½B� mod 1

SUðNÞ ZN 1=N
Spinð2kþ 1Þ Z2 0

Spinð4kÞ Z2 × Z2 1=2
Spinð4kþ 2Þ Z4 1=4

Spð2kÞ Z2 0

Spð2kþ 1Þ Z2 1=2
E6 Z3 2=3
E7 Z2 1=2

E8; F4; G2 1 0

ðA1Þ

In this table, SpinðNÞ is always understood to be N ≥ 5.
For gauge groups with Q mod 1 being 0, the mixed
anomaly is not present even in the generalized sense of
Refs. [33,53]. Thus, the constraint discussed above does
not exist for those gauge groups, Spinð2kþ 1Þ, Spð2kÞ, and
exceptional groups E8, F4, G2 without center.
In Table II, we list the numerical computation for gauge

groups with a mixed ’t Hooft anomaly between center
and CP symmetries. The qualitative features discussed in

SUðNÞ turn out to be correct also for these gauge groups.
Namely, one negative suppressed amplitude is followed by
positive magnified ones. The Z2 C symmetry is also
unbroken for Spinð2kÞ with k > 4 as well as E6, so some
of their Mi appear in pairs. Since the C symmetry of
Spinð8Þ is S3, we see three identical amplitudes. Other
groups in Table II have no charge conjugation. Most
importantly, the imaginary parts of Mi in Table II are also
zero up to 10−10, which implies that γdecðπÞ ¼ γCP holds for
these groups as well.
We list in Table III the numerical results for gauge groups

without a mixed ’t Hooft anomaly between center and CP
symmetries. All the features look familiar as previous
tables. This time none in Table III has a charge conjugation.
The imaginary parts of Mi again vanish up to 10−10. In
these cases, the phase structure is not ordered by the
’t Hooft anomaly. Nevertheless, the confining vacuum still
has a multibranch structure characterized by the dual
Coxeter number c2, and the theories show the spontaneous
CP breaking at θ ¼ π in the confined phase. It is quite
interesting to see that γdecðπÞ ¼ γCP still holds even when
’t Hooft anomaly does not require it.
More explanations are needed for E8, F4, and G2 in the

table, whose centers are trivial. Generally speaking, the
generalization of the potential (27) leads to a deconfine-
mentlike phase transition for them [63,68]. However, this
phase transition cannot be characterized by the LandauTABLE II. Numerically evaluated γdecðπÞ ¼ γCP for the gauge

groups with a mixed ’t Hooft anomaly, including Spinð2kÞ,
Spð2kþ 1Þ, E6, and E7.

G ZðGÞ Mi γdecðπÞ
Spinð8Þ Z2 × Z2 −0.019, 2.383, 1.984, 2.383,

2.383
1.521

Spinð10Þ Z4 −0.005, 2.015, 1.762, 2.266,
2.518, 2.518

0.991

Spinð12Þ Z2 × Z2 −0.001, 1.742, 1.567, 2.090,
2.438, 2.612, 2.612

0.693

Spinð14Þ Z4 −4 × 10−4, 1.532, 1.404, 1.915,
2.298, 2.553, 2.681, 2.681

0.509

Spinð16Þ Z2 × Z2 −1 × 10−4, 1.366, 1.268, 1.756,
2.146, 2.439, 2.634, 2.732,
2.732

0.390

Spinð18Þ Z4 −3 × 10−5, 1.231, 1.154, 1.616,
2.001, 2.308, 2.539, 2.693,
2.770, 2.770

0.308

Sp(3) Z2 −0.082, 1.535, 2.579, 3.095 1.847
Sp(5) Z2 −0.024, 1.028, 1.856, 2.473,

2.883, 3.088
0.780

Sp(7) Z2 −0.008, 0.766, 1.423, 1.970,
2.406, 2.733, 2.951, 3.060

0.426

Sp(9) Z2 −0.003, 0.610, 1.152, 1.626,
2.032, 2.370, 2.640, 2.843,
2.978, 3.045

0.268

E6 Z3 −3 × 10−4, 2.382, 2.233, 2.084,
2.233, 2.382, 1.638

0.595

E7 Z2 −4 × 10−6, 1.511, 1.955, 2.133,
2.221, 2.310, 2.399, 2.177

0.355

TABLE III. Numerically evaluated γdecðπÞ ¼ γCP for the gauge
groups without a mixed ’t Hooft anomaly, including
Spinð2kþ 1Þ, Spð2kÞ, E8, F4, and G2.

G ZðGÞ Mi γdecðπÞ
Spinð5Þ Z2 −0.170, 1.966, 2.990 3.416
Spinð7Þ Z2 −0.037, 2.610, 2.085, 2.350 1.950
Spinð9Þ Z2 −0.010, 2.185, 1.871, 2.340, 2.496 1.215
Spinð11Þ Z2 −0.003, 1.869, 1.661, 2.180, 2.491,

2.594
0.822

Spinð13Þ Z2 −7 × 10−4, 1.631, 1.482, 2.001,
2.371, 2.593, 2.668

0.591

Spinð15Þ Z2 −2 × 10−4, 1.445, 1.333, 1.833,
2.222, 2.500, 2.667, 2.722

0.444

Spinð17Þ Z2 −6 × 10−5, 1.295, 1.209, 1.684,
2.072, 2.374, 2.590, 2.720, 2.763

0.345

Spinð19Þ Z2 −2 × 10−5, 1.173, 1.104, 1.552,
1.932, 2.242, 2.484, 2.656, 2.760,
2.794

0.276

Sp(4) Z2 −0.043, 1.236, 2.174, 2.793, 3.102 1.148
Sp(6) Z2 −0.014, 0.878, 1.613, 2.198, 2.635,

2.927, 3.072
0.564

Sp(8) Z2 −0.005, 0.679, 1.273, 1.782, 2.205,
2.544, 2.797, 2.966, 3.051

0.333

E8 1 −1 × 10−9, 2.214, 2.190, 2.165,
2.117, 2.021, 1.829, 1.396, 2.182

0.192

F4 1 −0.002, 1.755, 2.194, 2.304, 2.413 0.870
G2 1 −0.076, 2.275, 2.534 2.742
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criterion using the center symmetry. It is merely a ϕ jump
instead, which would be caused by the huge difference
between the numbers of confined degrees of freedom and of
deconfined gluons. The dimensions of the Lie groups with
trivial center, E8, F4, and G2, are 248, 52, and 14, which
roughly correspond to N ≃ 50, 7, and 4 for SUðNÞ gauge
group, respectively. These numbers of gluons may be large
enough to compare the confinement-deconfinement tran-
sition with the large-N Hagedorn-type first-order transition.
Now, we complete all the numerical results for gauge

groups whose rank is less than 10. Although we have not
checked the whole gauge groups, we are tempted to
conclude that we always have γdecðπÞ ¼ γCP for all
G ≠ SUð2Þ. As we have discussed in the main part of this
paper, we expect that this equality might be extrapolated to
the pure thermal Yang-Mills theory, i.e., TdecðπÞ ¼ TCP for
all G ≠ SUð2Þ.

APPENDIX B: DECONFINEMENT TRANSITION
IN LARGE N

In this section, we discuss the confinement-deconfinement
transition of the effective potential (27) in the large-N limit.
We shall find the analytic expression for the deconfinement
temperatures γdecðθÞ and also the expectation values of Mi.
As we have done in our numerical analysis in Sec. V,
we neglect the OðαsÞ correction, and then the effective
potential (27) can be written as

V
V0

¼
X
i

jMi −Mi−1j2 −
γ

2

X
i

ðMi þM�
i Þ: ðB1Þ

Since we already know about the confinement
phase (35), our interest is to obtain the deconfined vacua.
For this purpose, let us introduce

XðtiÞ ¼ MN=2þNti ; ðB2Þ

with

ti ¼ −
1

2
þ i
N

ði ¼ 0; 1;…; N − 1Þ: ðB3Þ

This implies the usefulness of the continuum approxima-
tion, such as Mi −Mi−1 ≃ 1

N ∂tXðtÞ. We obtain that

V
V0

¼ 1

N

Z
1=2

−1=2
dt

�
j∂tXj2 −

N2γ

2
ðX þ X�Þ

�
: ðB4Þ

So far, we have neglected the constraints (32). In order to
take it into account, we put an extra insight suggested by
the numerical analysis in Sec. V: in the deconfined vacua,
most of the monopole operators get expectation values of
Oð1Þ, and the one monopole has quite small expectation
value. Indeed, when Mi≠0 ∼ 1, then

Q
i≠0Mi typically

becomes an exponentially large or small number unless

fine-tuned. Assuming that
Q

i≠0 Mi turns out to be expo-
nentially large, then M0 has to be exponentially small in N
in order to satisfy the constraint (32). Therefore, we can
approximately set M0 ¼ 0 in the large-N limit when
analyzing the effective potential. This means that we
have to treat jM1 −M0j2 and jM0 −MN−1j2 in (B1)
separately, which gives additional terms to the continuum
expression (B4). We obtain

V
V0

¼ 1

N

Z
1=2

−1=2
dt

�
j∂tXj2 −

N2γ

2
ðX þ X�Þ

�

þ jXð−1=2Þj2 þ jXð1=2Þj2: ðB5Þ

The equation of motion is given by

∂2
t X ¼ −

N2γ

2
: ðB6Þ

Since the boundary term gives the Oð1Þ contribution while
the others are only of Oð1=NÞ, we obtain the Dirichlet
boundary condition,

Xð−1=2Þ ¼ Xð1=2Þ ¼ 0: ðB7Þ

The solution is

XðtÞ ¼ N2γ

16
ð1 − 4t2Þ: ðB8Þ

Substituting this expression into (B5), we obtain the free
energy for the deconfined phase,

Vdec

V0

¼ −
ðN2γÞ2
48N

: ðB9Þ

Especially, since the continuum approximation of the
potential (B5) does not have the θ dependence, the free
energy of the deconfined phase is independent of θ. The
whole θ dependence is carried byM0, but it is exponentially
small in N. The rough estimate indeed shows that

M0 ≃
1

N

�
4e2

N2γ

�
N−1

exp ðiθÞ; ðB10Þ

and thus our ansatz turns out to be self-consistent as long as
N2γ > 4e2 ≃ 30 (here e is the base of natural logarithm).
In order to evaluate the deconfinement temperature

γdecðθÞ, we compare the free energy Vdec with that of
the confined phase,

Vconf

V0

¼ −Nγ cos

�
θ

N

�
: ðB11Þ

We therefore obtain that
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γdecðθÞ ¼
48

N2

�
1 −

θ2

2N2

�
ðB12Þ

for −π < θ < π. Since N2γ ≃ 48 > 4e2, this is in the valid
range of our ansatz. Moreover, if we take N ¼ 10 at θ ¼ π
as an example, then this formula predicts γdecðπÞ ≃ 0.456.
This shows a good agreement with Table I.
We can also evaluate the expectation values of the

monopole operators just above the deconfinement temper-
ature. For BPS monopoles, they are given by

Mi ¼ XðtiÞ ¼ 3

�
1 −

θ2

2N2

�
ð1 − 4t2i Þ ðB13Þ

for ti ¼ −1=2þ i=N with i ≠ 0. For KK monopole,

M0 ¼
1

N

�
e2

12

�
N−1�

1þ θ2

2N

�
exp ðiθÞ: ðB14Þ

These values also roughly agree with those of Table I.
Especially, this result shows that CP restoration occurs at
γdecðπÞ in the large-N limit.
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