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The presence of geometric scaling within the pT spectra of produced hadrons at high energy pp
collisions using small-x kT-factorization is investigated. It is proposed a phenomenological parameter-
ization for the unintegrated gluon distribution in the scaling range that reproduces the features of the
differential cross section both in the saturated and dilute perturbative QCD regimes. As the saturation scale
acts as an effective regulator of the infrared region, the extension of the model to quantities usually
associated to soft physics is studied. The approach is applied to compute the average pT and the rapidity
distribution of produced gluons at high energies.
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I. INTRODUCTION

The transverse momentum spectra of produced hadrons
in ppðp̄Þ collisions is an observable that has been analyzed
in different experiments, from fixed target ones at low
energies up to LHC energies. It is well known that the
features of this spectrum can be reproduced by a function
that has a powerlike falloff with a power index n at large
pT , while the semihard region of moderate or small pT
depends on a relative momentum scale p0. These character-
istics can be represented by the function of Hagedorn [1],
Ed3σ
d3p⃗ ¼ Cð1þ pT

p0
Þ−n, which may also be interpreted as a

Tsallis distribution [2]. Thus, the parameters have their
meaning in the context of nonextensive statistical mechan-
ics with n associated with entropy and p0 related to the
temperature. Phenomenological fits based on Tsallis dis-
tribution have shown great precision in describing data
from different colliders over a wide range of collision
energies

ffiffiffi
s

p
[3]. The hard-scattering of pointlike particles

predicts an index n ¼ 4, while perturbative corrections
generate a rise in this value. It is higher at lower

ffiffiffi
s

p
, i.e.,

n ≃ 8 and close to n ¼ 6 for collisions at TeV scale [4,5].
The collinear factorization framework in perturbative QCD
(pQCD) predicts an effective rise of this index due to the

resummation of terms containing powers of αs logQ2 in the
cross section associated with the emission of collinear
radiation. Therefore, the value of the parameter n is directly
connected to the dynamics of the partonic distributions and
the QCD factorization at hard momentum scales. The
presence of a typical momentum scale that determines the
growth of the cross section at high energies and at smallpT is
predicted within the saturation/Color Glass Condensate
(CGC) framework, i.e., the saturation scale QsðxÞ. This
quantity establishes the region in which the gluon distribu-
tion has its maximum value, resulting in a slower growth of
the cross section above that limit. This behavior emerges in
the data through the geometric scaling on the variable
τ ¼ Q2=Q2

sðxÞ, indicating that the cross section does not
depend separately on Q2 and x but rather on the ratio
between the momentum and saturation scales. This phe-
nomenon has been reported in different observables [6–10],
even in the regime of relative highmomentumQ2 ≫ Q2

sðxÞ,
which would imply that the parameter n related to the pT
spectra should be a function of the scaling variable within
this regime. It can be traced back to the geometric scaling
behavior of the unintegrated gluon distribution (UGD) in
both the target and projectile at sufficiently high energies.
This is themain guidance in phenomenological analysis that
we will perform in the present work.
While the collinear factorization framework is well

established to calculate observables at high Q2, the satu-
ration framework makes use of kT-factorization at small-x
regime and semihard momentum scales where the funda-
mental quantity is the UGD ϕðx; k2TÞ, which is transverse
momentum dependent and directly related to the QCD
color dipole cross section σqq̄ðx; rÞ. Distinct approaches
have been proposed to model the dipole cross section
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[11–17], and although they give close results in the
saturated regime at the limit of small dipole sizes r,
different behaviors for the large kT tail of the gluon
distribution [18] is predicted. This fact leads to large
differences in the pT spectra at pT > QsðxÞ. In this work
we investigate the presence of geometric scaling in inclu-
sive hadron production using the kT-factorization approach
where a parametrization for an UGD, which could be more
directly related to the p−n

T behavior at large pT , is proposed.
We also discuss the role played by the hadronization
process regarding the transition of produced gluons into
hadrons and how the scaling would be violated in this
situation. Within the saturated regime pT < QsðxÞ, the
saturation framework has the advantage that the saturation
scale regulates the typical divergent infrared (IR) behavior
of the cross sections, which gives us the possibility to
calculate observables usually associated with nonperturba-
tive physics like the total pp cross section [19–21].
Furthermore, we analyze the feasibility of our parametri-
zation in describing observables that involve the soft
region, such as the rapidity distribution and the average
pT of the produced gluons. This paper will be organized as
follows. In Sec. II, we present the model for the UGD based
on general aspects of hadron pT spectra. Predictions for the
invariant cross section and averaged pT are provided as
well as a new geometric scaling parametrization for Deep
Inelastic Scattering (DIS) cross section in the small-x
region. In Sec. III, the results are compared against
experimental data of DIS and pT hadron spectra of neutral
and charged particles. Predictions for the rapidity distri-
bution and mean transverse momentum of produced gluons
are also shown. Finally, in Sec. IV we summarize the main
points and results and expose our conclusions.

II. THEORETICAL FRAMEWORK
AND MAIN PREDICTIONS

In the color dipole approach applied to DIS, the virtual
photon is decomposed by its hadronic Fock states, which in
leading order (LO) are a quark-antiquark pair qq̄. The
interaction with the target is described in two stages:
the fluctuation of the virtual photon into the qq̄ pair and
its subsequent interaction with the hadronic target.
Concerning the first stage, the probability of the virtual
photon fluctuating into the qq̄ (with z and (1 − z) being the
longitudinal momentum fraction of the quark and the
antiquark, respectively) is given by the photon wave
function squared jΨðz; rÞj2, where r stands for the trans-
verse size of separation between the quark and the
antiquark. In the second stage, the interaction between
the dipole and the target is computed by the dipole cross
section σqq̄ðrÞ [22,23],

σγ
�p
ðL;TÞðx;Q2Þ ¼

Z
1

0

dz
Z

d2rjΨðL;TÞðr; zÞj2σqq̄ðx; rÞ; ð1Þ

jΨLðz; rÞj2 ¼
6αem
ð2πÞ2

X
nf

4e2fQ
2z2ð1 − zÞ2K2

0ðϵrÞ;

jΨTðz; rÞj2 ¼
6αem
ð2πÞ2

X
nf

e2ff½z2 þ ð1 − zÞ2�ϵ2K2
1ðϵrÞ

þm2
fK

2
0ðϵrÞg; ð2Þ

where ϵ2 ¼ zð1 − zÞQ2 þm2
f and Kν are the Modified

Bessel Functions of the second kind. The summation over
the quark flavors with masses mf and charges ef is
explicitly shown. Following the optical theorem, we can
determine the dipole cross section considering that the
impact parameter dependence is factorized, that is,

σqq̄ðx; rÞ ¼ 2

Z
d2b½1 − Sðx; r; bÞ� ¼ σ0½1 − Sðx; rÞ�: ð3Þ

In the expression above, Sðx; rÞ is the dipole scattering
matrix, and σ0 ¼ 2πR2

p is twice the proton transverse area.
It was assumed a Heaviside function for the impact
parameter dependence Sðx; r; bÞ ¼ Sðx; rÞΘðRp − bÞ. At
the limit of large dipoles, Sðx; rÞ → 0 and the dipole cross
section reach their maximum σ0. The unintegrated gluon
distribution function can be obtained from the Fourier
transform of the dipole cross section [24,25],

σqq̄ðx; rÞ ¼
4π

3
αs

Z
d2kT
k2T

ð1 − expðik⃗T · r⃗ÞÞϕðx; k2TÞ: ð4Þ

The cross section for inclusive gluon production with
transverse momentum pT and rapidity y shall be calculated
using the kT- factorization approach [26],

E
d3σ
dp3

ab→gþX

¼ 2αs
CF

1

p2
T

Z
d2kTϕðxa; k2TÞϕðxb; ðpT − kTÞ2Þ;

ð5Þ

where xa;b are the forward light cone variables of colliding
partons (gluons), respectively. That is,

xa ¼
pTffiffiffi
s

p ey; xb ¼
pTffiffiffi
s

p e−y: ð6Þ

In Eq. (1), the saturation effects on the gluon distribution
leads to the γ�p cross section remaining finite as Q2 → 0.
The saturation scale works as a regulator for the soft region
without the need of ad hoc cutoff. On the other hand, the
cross sections for jet production show a divergent behavior
in the IR region whenpT goes to zero, which is an important
feature of perturbative interactions. If we analyze Eq. (5), the
divergence inp−2

T whenpT → 0 can be clearly verified. This
divergence is smoother than the one from the parton model,
namely ∼p−4

T divergence. Nevertheless, a cutoff is still
needed. The authors in Refs. [27–29] raised the possibility
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of implementing the regularization through the mass of the
produced jet p2

T → p2
T þm2. Analogously to the case of

minijet models, this type of cutoff requires a mass scale that
increases with energy leading to the presence of two
dependent energy scales in the small pT region. Another
possibility has been addressed in [30,31], in which the
authors rewrite Eq. (5) separating it into two regions of
integration: kT ≪ pT and jp⃗T − k⃗T j ≪ pT . Thereby, as pT
goes to zero the integral also vanishes without any depend-
ence on a newmomentum scale. Thus, the expression for the
invariant cross section can be approximated as

E
d3σ
dp3

ab→gþX

¼ αs
CF

1

p2
T

�
ϕðxa; p2

TÞ
Z

p2
T
d2kTϕðxb; k2TÞ

þ ϕðxb; p2
TÞ

Z
p2
T
d2kTϕðxa; k2TÞ

�
: ð7Þ

Now, we will introduce the main point in the present
work. A simple way to incorporate this behavior within
gluon distributions in IR regions is to consider an effective
regulator of the gluon propagator compatible with
a Yukawa potential ϕðk2TÞ ∼ αsk2T=ð1þ k2T=μ

2Þ. Such an
approach is utilized in [32] in order to model the soft-hard
interface of the gluon distribution. Here, we will assume
that the role of this regulator is played by the saturation
scale μ ¼ QsðxÞ. Hence, it produces a cross section that
behaves as E d3σ

d3p ∼ p−4
T in the regime of high pT , whereas

corrections due to collinear radiation emission should
conduct to p−n

T behavior, which will be embedded into
the gluon distribution through the parameter δn. Such a
quantity should grow in the hard region of the spectra. In
the scaling region, one has ϕðx; k2TÞ ¼ ϕðτÞ where
τ ¼ k2T=Q

2
sðxÞ. The unitarity of S matrix, Eq. (3), will

constrain the UGD normalization due to the fact that one
should have

R
dτ
τ ϕðτÞ ¼ 3σ0

4π2αs
. Given these considerations,

our ansatz for the gluon distribution is the following:

ϕðx; k2TÞ ¼
3σ0
4π2αs

ð1þ δnÞ
Q2

s

k2T

ð1þ k2T
Q2

s
Þð2þδnÞ ; ð8Þ

where Qs and δn dependencies on the energy have to be
related to the growth of the total cross section as the collision
energy increases. Using the parametrization above for
ϕðx; kTÞ and considering central rapidity, thepT distribution
of the produced gluons in Eq. (5) is computed as

E
d3σ
d3p

¼ N0

ξ

ξ − 1

�
1 −

1þ ξτ

ð1þ τÞξ
�

1

ð1þ τÞ1þξ ; ð9Þ

N0 ¼
9σ20

8CFπ
3αs

; ξ ¼ 1þ δn: ð10Þ

The rapidity distribution of the produced gluons and
their mean momentum may be calculated by integrating

Eq. (5) over pT and ywithout the necessity of a cutoff in the
IR region,

dσ
dy

¼
Z

d2pT
d3σ

d2pTdy
; ð11Þ

hpTi ¼
R
d2pT

d3σ
d2pTdy

pTR
d2pT

d3σ
d2pTdy

: ð12Þ

The total cross section σpptot ð
ffiffiffi
s

p Þ calculation using the
saturation formalism has been performed in [21], where the
authors split this quantity into two parts: σT ¼ σsatþ
σpQCD, which corresponds to the contributions from the
regions τ < 1 and τ > 1, respectively. The latter has been
calculated using the QCD collinear factorization model. In
this sense, the integral over p2

T in Eq. (9) produces the
behaviors Q2

sð1þ δnÞ2 for τ ≪ 1 and Q2
s=δn for τ ≫ 1,

which indicates that for small values of δn most part of the
total cross section is due to the hard contribution towards
the spectrum.
The inclusion of the hadronization process shall

be performed analogously to the collinear factorization
approach taking into account a hadron that carries a fraction
z of the gluon momentum,

d3σ
d2pThdy

ðpp→ hÞ ¼
Z

dz
z2

Dg=hðz;Q2Þ d3σ
d2pTdy

ðpp→ gÞ;

ð13Þ

where z is the hadron momentum fraction, pTh ¼ pT
z is the

gluon momentum, and Dg=hðz;Q2Þ is the gluon fragmen-
tation function. The hadronization process might lead to the
violation of the scaling once the fragmentation functions
(FFs) depend on both z and Q2. In addition, the collinear
FFs usually employed are valid from Q2 > 1. As in
Ref. [27], we considered that the hadronization process
can be approximated performing the substitution pT → pTh

hzi .
Also, it was supposed that hzi does not vary within the
scaling range. Thus, in this case one has

d3σpp→h

d2pThdy
¼ K

hzi2
d3σpp→g

d2pThdy

�
pT ¼ pTh

hzi
�
; ð14Þ

where in Eq. (14) we used the constants K and hzi to
parametrize the hadronization process. It is important to
mention that for pT < QsðxÞ the gluon spectrum
approaches zero as τ2. However, the inclusion of fragmen-
tation functions leads to an integration over z, Eq. (13),
which continues to enhance towards the region of small
pTh. In Sec. III, both approaches are compared, and we also
investigate the influence of FFs on hadron spectra.
Having introduced the analytical expressions for the

UGD and gluon/hadron invariant cross sections using
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Eqs. (8), (9), and (14), in the next section we determine the
dependence on τ of the function δn by an adjustment of the
small-x hadron-electron ring accelerator (HERA) data and
then apply it to perform predictions for the charged and
neutral hadron production cross sections.

III. RESULTS AND DISCUSSIONS

Our procedure consists of fitting δn from a total cross
section of DIS within the scaling domain and then looking
into how compatible it will be with the pT spectra of
hadrons. The HERA data for x < 0.01 supports geometric
scaling whether they are plotted in terms of the ratio
Q2=Q2

sðxÞ with QsðxÞ2 ∼ x−λ where λ ∼ 0.3. We assume
that the same behavior is compatible with data of inclusive
particle production in ppðp̄Þ collisions at high energies.
This is clearly demonstrated in the studies of Refs. [33–36],
where geometric scaling is shown to be present in pp, pA
and AA collisions. In the present analysis, we have fixed
λ ¼ 0.33 fitting Q2

sðxÞ and δn from experimental data.
Then, we have verified that data can be well described by
supposing that δn varies slowly within the whole scaling
interval, being close to zero as τ → 0 and 0.3 for high τ.
Accordingly, this behavior has been modeled considering a
powerlike form, which results in the following expressions:

δnðτÞ ¼ aτb; ð15Þ

Q2
sðxÞ ¼

�
x0
x

�
0.33

: ð16Þ

Moreover, the QCD dipole cross section can be analyti-
cally computed using the Fourier transform of the gluon
distribution (3), which gives

σqq̄ðτrÞ ¼ σ0

�
1 −

2ðτr
2
ÞξKξðτrÞ
ΓðξÞ

�
; ð17Þ

where τr ¼ rQsðxÞ is the scaling variable in the position
space ξ ¼ 1þ δn, and σ0 is a free parameter related to the
proton transverse area. We are left with four parameters to
be fitted: σ0, a, b, and x0. In what follows, we present and
discuss the results obtained by comparing the proposed
parametrization with the total cross section data of DIS in

Eq. (1). Afterwards, the scaling property applied to the
invariant cross section for neutral pion and charged hadron
production at different center-of-mass energies is looked
into. In addition, there is also a discussion concerning the
impact of saturation effects on inclusive gluon production
and how it affects the hadron production at high energies.
Moreover, the role played by the parameter δn on observ-
ables regarding the IR domain is investigated. Specifically,
we analyze the rapidity distribution of the produced gluons,
which is relevant for the inclusive total cross section
determination within the saturation domain.
In Table I, the fit results concerning HERA data

[37–39] for x ≤ 0.045 (FIT A) using the parametrization
(15) are presented. Figure 1 shows δnðτÞ (left) in terms of
the scaling variable τQ ¼ Q2=Q2

s and QsðxÞ (right) as a
function of x (considering x and τQ ranges of experimental
data). Regarding Fig. 2, it displays the γ�p cross section as
a function of the scaling variable τQ. This quantity is
determined using Eq. (1) along with the dipole cross
section parametrization in Eq. (17). We can clearly see
that QsðxÞ ¼ 1 GeV at x0 ¼ 0.5 × 10−4. These results are
near to those encountered in analyses performed by [12].
The δn parameter controls the cross section behavior for
inclusive gluon production at pT > QsðxÞ and varies from
δn ∼ 0.05 at τ ¼ 0.01 up to δn ¼ 0.3 at τ ¼ 103. Such a
fact implies that the cross section should depend on p−4.6

T at
the edge of the region where scaling is broken, which is in
agreement with the exponent n extracted from the cross
section for jet production at high energies. In Fig. 3, we
compare the UGD obtained in this work with Golec
Biernat-Wüsthoff (GBW) parametrization [12] and
Kutat-Sapeta (KS) [40], which reproduces Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi behavior at kT > QsðxÞ.
We can see that at low kT our parametrization behaves
like GBW. However, at kT > Qs the suppression presented
by the Gaussian shape of the GBW distribution is too large
to describe the hadronic spectra, where our parametrization
gives close results to the KS distribution that includes
collinear resummation effects.
Here, some comments are in order. The main reason for

including so high virtualitiesQ2 ∼ 104 GeV2 is to cover the
kinematic window ð ffiffiffi

s
p

; pTÞ of the measured hadron
spectra. We are aware that this degradates the quality of
fit. Therefore, a feasible reproduction of the measured data

TABLE I. Parameters of the model for the QCD dipole cross section, determined from fits to data in the range x ≤ 0.08 and
Q2 ¼ ½0.045; 104� GeV2 [37] (FIT A) and in the reduced range Q2 ¼ ½0.01; 150� GeV2 (FIT B). Parameters for inclusive hadron
production are also presented (see the text for details).

σ0ðmbÞ x0 × 10−5 a b K hzi χ2

dof

σγ�pðFITAÞ 19.75� 0.09 5.05� 0.10 0.075� 0.002 0.188� 0.003 2.48
σγ�pðFITBÞ 20.47� 0.61 3.52� 0.20 0.055� 0.039 0.204� 0.073 1.74
pp → π0 þ X 1.361� 0.081 0.345� 0.006 1.50
pp → h� þ X 2.226� 0.065 0.418� 0.004 1.77
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points at high Q2 with a statistically acceptable confidence
level was a needed condition for interpreting the results.
In addition, a fixed coupling constant has been considered,
αs ¼ 0.2. This can be justified as most saturation ap-
proaches consider the average gluon (hadron) transverse
momenta being of the order of the saturation scale in such
way that αs ¼ αsðhpTi ¼ Q2

sÞ, and eventually the logarith-
mic dependence on running coupling can be absorbed in
the shape of the heuristic UGD. Indeed, this is the case by
looking at Fig. 3 it becomes clear that the heuristic UGD
reproduces the behavior of a Ciafaloni-Catani-Fiorani-
Marchesini evolution equation (the linear contribution to
the Kutak–Sapeta UGD) at large kT .
From a theoretical point of view, we have no strong

justification to extend the scaling fit to so high virtualities.
In Ref. [41], it has been shown a long time ago that
geometric scaling can be extended up to Q2 ∼Q4

s=Λ2
QCD.

This gives Q2 around 100 GeV2 for Q2
s ¼ 2 GeV2.

Moreover, in Ref. [42] it was demonstrated that geometric
scaling is completely preserved by LO Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi evolution in the fixed coupling case
(scaling violation by the contribution of the branch point

singularity is a marginal effect at small-x). In the case of
running coupling the scaling behavior gets violated, but it is
possible to factor out the effect of such violation. Namely,
the violation is proportional to the value of the αsðQ2 ¼
Q2

sÞ evaluated at the saturation scale, and the scaling is
restored in the very same region proposed by [41]. We
reinforce that we are not pursuing an adjustment quality
factor (QF). We have tested the fit in the range x < 0.01 and
Q2 < 150 GeV2, which produces a χ2=dof ∼ 1.7 (FIT B
shown in Table I). Despite having improved the QF, the
corresponding range of validity in transverse momentum is
substantially narrowed. Some concern about large-x effects
comes up and the role played by the quark-initiated
processes should be addressed. Within the kT-formalism
in Ref. [43], the leading-order diagrams involving quark
degrees of freedom, which are important in the fragmenta-
tion region, were included. Indeed, the contribution at large
pTh is sizable at low-energies (intersecting storage rings)
and at the Relativistic Heavy Ion Collider kinematic range
(for pTh ≳ 3 GeV). At the LHC those contributions are
strongly suppressed and the dominant subprocess is gg →
gg (gg → g) in collinear factorization (kT-factorization).
Specifically, within the collinear factorization formalism at
next-to-leading order accuracy it was demonstrated in
Ref. [44] (see Fig. 6 in that work) that gluon fusion
subprocess dominates up to pTh ≃ 40 GeV in pp collisions
at the LHC for

ffiffiffi
s

p ¼ 7 TeV.
The scaling in inclusive hadron production in pp and pp̄

collisions becomes more evident whether we combine
data from different colliders covering a large range of
the scaling variable τh and xh. In such a case, we define
τh ¼ p2

Th=Q
2
sðxhÞ and xh ¼ pThffiffi

s
p . Figure 4 presents data from

ALICE and CDF collaborations [45–47] for charged
hadron production (left) and data from ALICE, UA2 and
PHENIX [48–52] for neutral pion production (right)
compared to our prediction. The values of hzi and K were
fitted within the range 1 < τh < 100 considering Eq. (14)
since for τh > 100 the scaling should be less accurate. It
can be checked that the region τh < 1 of small pT is
strongly sensitive to the hadronization process. This fact
diminishes the accuracy of the gluon distribution scaling in
this region of the hadronic spectra. The fitted values are
presented in Table I, which considers data from pp
collisions since we observed that in pp̄ collision we have
a significant amount of scaling violation. In this case, the
predictions to pp̄ are obtained by extrapolation. The mean
values of the momentum fraction z carried by the hadron
are fairly distinct in both cases, though they are close to
those obtained from models that use collinear factorization
[44]. The data displayed in Fig. 4 covers the region 0.01 <
τh < 1000 and may be related to τ whether it is taken into
account that if x ¼ pTffiffi

s
p and pT ¼ pTh

hzi , one gets τh ¼ τhzi2.33.
The scaling domain extends up to τ ¼ 103 for HERA data,
which corresponds to τπ0 ¼ 84 and τh� ¼ 131. Besides, the

FIG. 1. QsðxÞ and δnðτÞ obtained from parametrization of
Eq. (15) with parameters determined from HERA data.

FIG. 2. Total cross section γ�p obtained from the dipole
parametrization of Eq. (17) compared to data as a function of
the scaling variable for the intervals τQ < 103 and x ≤ 0.08.
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scaling extension for higher values of τh observed in
charged hadron spectra with relation to neutral pion can
be understood by the difference in hzi. In Fig. 5, it shows
the ratio theory/data as a function of the scaling variable τh,
for the sake of clarification, about the effective quality of
the fit. Figure 6 presents our results compared to data as a
function of pTh within the scaling region for distinct values
of

ffiffiffi
s

p
. It can be noticed that the saturation effect leads to

correct growth of the spectra in terms of the enhancement
of

ffiffiffi
s

p
. It is important to realize that collinear factorization

formalism requires some additional mechanism to repro-
duce the growth of cross sections as a function of

ffiffiffi
s

p
through the factor Kð ffiffiffi

s
p Þ or by including the intrinsic

transverse momentum.
The region of small pTh should be sensitive to the

specific form of fragmentation functions and the hadron

FIG. 3. Comparison of UGD obtained in this work with GBW [12] and KS [40] at different values of x.

FIG. 4. Invariant cross section in terms of the scaling variable τh for charged hadron and neutral pion production at different values of
centre-of-mass energies

ffiffiffi
s

p
. Extrapolation of fitting results (i.e., the range 1 < τh < 100) up to τh ¼ 103 is presented for sake of

illustration.
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mass. Furthermore, there is a deviation of cross section
scaling in this region. To measure the impact of FF on our
results we calculated the cross section using Kniehl-
Kramer-Pötter (KKP) [53] and Hirai-Kumano-Nagai-
Sudoh (HKNS) [54] fragmentation functions in LO by
integrating Eq. (13) and compared the result with the one
where a constant value for z is considered. The momentum
scale Q2 utilized in the analysis is the hadron transverse
momentum pTh. In the region where Q2 < Q2

0, the scale is
fixed at this value. The result is presented in Fig. 7 for π0

production, and it can verified that for τh < 1 there is a
decrease in the growth of the spectra due to saturation of
gluon distribution. On the other hand, the growth caused in
this region is still higher than the one shown by data. The
gluon FF is parametrized as zαð1 − zÞβ, and the enhance-
ment related to the cross section within the region τh < 1

may be assigned to the parameter α, which is considerably
different in the case of KKP and HKNS fragmentation
functions.
We address the low-pT behavior in an exploratory study.

We follow Ref. [27] closely where the gluon transverse
momentum pT is replaced by p2

T → p2
T þm2

jet with mjet

being an effective minijet mass. This procedure naturally
regulates the denominator in Eq. (5) due to the presence of a
nonzero jet mass. The value of minijet mass is considered to
be proportional to the saturation scalem2

jet ∼ 2μnpQs, where
μnp is the scale of the soft interactions. For instance, the
typical value of the saturation scale at central rapidities for
13 TeV and pT ≈ 1 GeV is Qsð

ffiffiffi
s

p
; pTÞ ≃ 0.93 GeV.

Moreover, we can consider the soft scale being of order
μnp ∼ ΛQCD ≃ 0.3 GeV. This will give for low pTh charged
hadrons at the LHC mjet ≈ 2ΛQCDQsðη ¼ 0Þ ≃ 0.56 GeV.

FIG. 5. The ratio data/theory as a function of the scaling
variable τh for charged hadron and neutral pion production in
high energy colliders.

FIG. 6. Transverse momentum spectra within the scaling region τ < 103 as a function of pTh. The data are multiplied by a factor 10i at
each energy for better visualization.

FIG. 7. Comparison between the results using hzi and the
fragmentation functions KKP and HKNS.
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We now make the hypothesis that the new scaling variable

is τmT
¼ m2

T=Q
2
s with mT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
Th þm2

jethzi2
q

. In Fig. 8,

we compare the invariant cross section for charged hadrons
as a function of τmT

for two fixed values of minijet mass
mjet ¼ 0.5 (solid line) and 0.6 GeV (dashed line) in order to
estimate the effect of the effective jetmass.We used the same
parameters for the charged hadrons’ fit with hzi ¼ 0.418.
For better visualization, the results formjet ¼ 0.6 GeVwere
multiplied by a factor of 10. Thequality of data description at
low pT is somewhat reasonable. Interestingly enough,
recently the low-pT region is assumed to be dominated
by a thermal contribution, and the hard scattering

contribution does not play a significant role there. This
has been investigated, for instance, in Refs. [55–57].
Finally, we have estimated the rapidity distribution of

the produced gluons by integrating Eq. (11) over pT forffiffiffi
s

p ¼ 13 TeV at the LHC considering different values of
δn, which are shown in Fig. 9. We observe that even a small
increase of δn implies a significant reduction of the cross
section. In particular, the variation of δn from 0 up to 0.3
leads to a decreasing of the distribution in the central region
by a factor 2=3. Figure 9 shows the mean values of gluon
pT as a function of

ffiffiffi
s

p
for the same values of δn. Clearly,

the highest values of δn leads to higher mean momentum
of the produced gluon. In the case of the hadronic spectra,
the calculation of hpThi and dσ=dy depends basically on
the behavior of the fragmentation functions within the
region pTh < 1. The data from the CMS collaboration [58]
shows that hpTh�i ¼ 0.5 at

ffiffiffi
s

p ¼ 2.76 TeV. This is com-
patible with our results using z ≃ 0.3. There are different
approaches for the calculation of rapidity distribution and
mean transverse momentum of the produced hadrons that
are strongly dependent on the region pT < 1, such as the
inclusion of intrinsic momentum in Ref. [27] or the
extension of FFs for this region [28].
The analysis presented here is very close to the ones

discussed in Refs. [33–36]. There, the invariant cross
section is written in terms of a universal function FðτhÞ,
which is modeled phenomenologically making use of the
Tsallis parametrization [2],

dσðpp → hÞ
dyd2pT

¼ S⊥
2π

FhðτhÞ; ð18Þ

FIG. 8. The invariant cross section for charged hadrons as a
function of the scaling variable τmT

¼ m2
T=Q

2
s in high energy

colliders (see discussion in text).

FIG. 9. Rapidity distribution at
ffiffiffi
s

p ¼ 13 TeV and mean transverse momentum of the produced gluons for distinct values of δn.
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FhðτhÞ ≈ Nh

�
1þ τ1=ð2þλÞ

h

nhκh

�−nh
; ð19Þ

where the Tsallis temperature of the hadron of specie
h is given by Th ≈ κhhQsðxÞi [35]. As the temperature is
driven by the average saturation scale hQsi, it is energy
dependent. The constant κh ∼ 0.1 is fitted from thermal
distributions of hadrons. The overall normalization Nh ¼
γhbh=ð2κ2hÞ depends on the constants γh and bh, which can
be calculated analytically in terms of κh and the energy
independent constant nh [35]. Comparing our expression in
Eq. (9), we identify nh ∼ ð3þ 2δnÞ. However, the func-
tional form of FðτhÞ in the present work is quite distinct of
that in [35].
The very same Tsallis-like parametrization described

above is investigated in Ref. [59], where the scaling
function is given by

FhðτhÞ ¼
�
1þ ðq − 1Þ τ

1=ð2þλÞ
h

κ

�−1=ðq−1Þ
; ð20Þ

where the nonextensive parameter q ¼ 1.134 and
κ ¼ 0.1293 have been determined recently [60] using the
available data on inclusive hadron production. The descrip-
tion of geometric scaling in the semi-inclusive transverse
momentum spectra in pp collisions, taking into account the
same formalism, has been done in Ref. [61]. In [61], the
inclusive distribution with fixed multiplicity or limited
multiplicity class is considered, and it is assumed to obey
the same relations (18) and (20) as for inclusive case. In
addition, the replacements S⊥ → S�⊥ and

ffiffiffi
s

p
→

ffiffiffi
s

p � are
performed, where the latter is the effective energy replacing
the actual colliding energy.
Still along the Tsallis-like distribution in Refs. [62,63],

scaling is also observed for the variable z ¼ pT=K with K
being a scaling parameter energy dependent. The scaling
function is related to the pT-spectra in the form ΦhðzÞ ¼
AE d3σ

d3p⃗ ðpT ¼ KzÞ, where the parameters K and A depend

on the collision energy. The scaling for identified hadrons
Φh (with h ¼ π, K, p) has the following form:

ΦhðzÞ ¼
�
1 − ð1 − qÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

h þ z2
p

−mh

z0

�1=ð1−qÞ
; ð21Þ

where Cq, q, and z0 are free parameters, mh is the mass of
the particle species, and (1 − q) is a measure of the
nonextensivity [62]. The formalism has been extended in
[63] in order to include the scaling behavior in the pT

spectra of strange particles (K0
S, Λ, Ξ, ϕ) at pp high energy

collisions.
In a related study in Ref. [64], the average transverse

momentum hpTi dependence of identified light flavor

charged hadrons on the quantity τn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdNdyÞ=S⊥

q
has

been investigated. Local parton-hadron duality and

dimensionality arguments foresee the depletion of
the ratio between the mean transverse momentum and
the square root of the hadron multiplicity per unit of
rapidity and unit of the colliding hadrons transverse
overlapping area towards central collisions. Namely,

Rh ¼ hpTi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdNdyÞ=S⊥

q
is proportional to 1=ðn ffiffiffi

n
p Þ, where

n is the number of charged hadrons produced via gluon
fragmentation. In that work, the scaling variable is the
quantity τn, and it is expected that the global properties of
the hadron production are determined by the properties of
flux tubes of size ∼1=τn and are weakly influenced by the
size of the colliding system. The slopes of the average pT ,
hpTi, particle mass dependence, and the hβTi parameter
from Boltzmann–Gibbs Blast Wave fits the scale nicely
with τn. The successfulness of the scaling parametrizations
above for the single-particle distribution from the statistical
mechanics point of view is based on a data description
using only 3 degrees of freedom. Namely, in the lowest-
order approximation the production process is character-
ized by a power index n, which can be represented by a
nonextensivity parameter q ¼ ðnþ 1Þ=n, the average
transverse mass hmTi, and the overall normalization A
that is related to the multiplicity per unit rapidity hen
integrated over transverse momentum. In particular, the
average transverse mass can be represented by an effective
temperature T ¼ hmTi=n. For instance, in Fig. 8 of
Ref. [65] both the low and large pT single hadron spectra
is adequately described (compared to data from UA1,
ALICE, ATLAS and CMS) by using the simple nonex-
tensive statistics parametrization,

E
d3σðpp → hÞ

d3p⃗

				
y¼0

¼ Ae−mT=T
q ;

e−mT=T
q ¼

�
1þmT

nT

�
−n
; n ¼ 1

ðq − 1Þ ; ð22Þ

where mT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ p2
T

p
. The quality of the data descrip-

tion was subsequently corroborated by a series of similar
works [66–69].
It was argued in [65] that the simplification of all

complicated stochastic dynamics in hard scattering can
be considered as a “no hair” reduction from the micro-
scopic description to nonextensive statistical mechanics
[70]. Therefore, the inherent complexities at a microscopic
level disappear and are subsumed behind the stochastic
processes and integrations. Interestingly, it has been
recently proposed [71,72] that fractal structures cause
the emergence of nonextensivity in the system described
by Tsallis statistics. The thermodynamical aspects of such a
system are connected to the microscopic interaction of its
pieces through the S-matrix.
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IV. SUMMARY AND CONCLUSIONS

In this work we have investigated the role played by the
geometric scaling for inclusive hadron production at high
energies taking into account a phenomenological para-
metrization for unintegrated gluon distribution functions.
Also, we have proven that scaling is a good approximation
within a large interval ofpTh and

ffiffiffi
s

p
. The decreasing related

to the growth of total cross sections at small pT may be
viewed as an effect due to the saturation of gluon production
in that region.Moreover, we have showed that the saturation
formalism applied to a dipole cross section produces the
correct growth of the spectra concerning the produced
hadrons in pp collisions as the energy increases. In this
case, we have evidenced that the enhancement of the spectra
in terms of

ffiffiffi
s

p
and the power index pn

T that describes the
behavior of this observable in the region of high pT are

related through the saturation scale. In the region where
τh < 1, it can be seen that there is a huge influence of the
hadronization process from the produced gluons. In this
context, some mechanism for the soft hadronization is
somewhat necessary. Furthermore, we have verified that
the behavior of gluon distribution in the region of high pT
has a strong impact on the determination of the rapidity
distribution and inelastic total cross section, once within the
saturation formalism the soft region is regulated by the scale
QsðxÞ. Such a fact implies that these quantities receive an
important contribution from this region.
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