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We study the effects of heavy quarks on the equation of state for cold and dense quark matter obtained
from perturbative QCD, yielding observables parametrized only by the renormalization scale. We
investigate the thermodynamics of charm quark matter under the constraints of β equilibrium and electric
charge neutrality in a region of densities where perturbative QCD is, in principle, much more reliable.
We also analyze the stability of charm stars, which might be realized as a new branch of ultradense hybrid
compact stars, and find that such quark stars are unstable under radial oscillations.
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I. INTRODUCTION

Heavy quark matter, i.e., quark matter including heavy
flavors, could play a relevant role in extreme situations in
the primordial quark-hadron transition [1]. Experimentally,
it is expected that the Facility for Antiproton and Ion
Research (FAIR) with its compressed baryonic matter
(CBM) experiment will be able to produce charm quarks
immediately after heavy-ion collisions with energies close
to or above the charm threshold [2]. Cold quark matter also
brings about the possibility of charm stars. Since the critical
density required for their appearance is far above the limit
imposed from causality together with the existence of two-
solar mass neutron stars, as discussed in Refs. [3,4], such
stars might be realized in nature only as a new branch of
ultradense hybrid compact stars.
As we go to higher values of quark mass, asymptotic

freedom makes the perturbative quantum chromodynamics
(pQCD) formalism more reliable [5], so that this approach
could be useful for heavy-ion collisions at low temperatures
and high baryon chemical potentials as well as the physics
of compact stars at ultrahigh densities, cases where charm
quarks could play a role. One needs, then, to build the
equation of state (EoS) for charmmatter taking into account
the constraints the systemmust respect below and above the
charm threshold to generate matter configurations which
are stable under electroweak interactions.
At high temperatures and zero quark chemical potentials,

perturbative QCD was employed by Laine and Schröder [6]
to calculate the EoS including the charm quark

contribution. These results were later compared to the ones
provided by lattice QCD, including the charm and bottom
contributions [7], relevant for the study of the primordial
Universe and its cosmological transitions [8,9]. Considering
nonzero chemical potentials for light and heavy quarks
simultaneously implies some subtleties brought about by the
heavy quarks at their mass thresholds. There, matching
conditions should be imposed [10], having nontrivial effects
on the possible values assumed by the renormalization
scale Λ̄.
In this work, we investigate cold quark matter with heavy

quarks using in-medium pQCD.We build the framework for
the casewith twomassive flavors, strange and charmquarks,
and determine the equation of state. In practice, we extend
the formalism developed for Nf ¼ Nl þ 1 flavors in
Ref. [11], Nl being the number of massless quarks and
“1” the massive flavor, to the case with any number of
massive (heavy) flavors and explore their effects on the EoS
of quark matter.1 Given the equation of state, we discuss β
equilibrated and electrically neutral charm quarkmatter, and
revisit the possibility of charm (quark) stars under the pQCD
perspective. Charm stars were investigated in the past within
theMIT bagmodel, being ruled out due to instabilities under
radial pulsations [20–22] (see also Refs. [23,24]). Using our
results and the method of first-order coupled oscillation
equations of Gondek et al. [25], we also find that such quark
stars are unstable under radial oscillations.
This work is organized as follows. In Sec. II, we

summarize the main aspects of the perturbative QCD
formalism for Nf ¼ Nl þ 1 flavors and presents our sys-
tematic extension to include heavy quarks in the framework.
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1Quark mass effects on the equation of state for cold quark
matter were first considered several decades ago [12,13], but only
after two decades of being mostly ignored were computed within
the modern MS renormalization scheme [11,14–19].
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In Sec. III, we build the EoS for charm quark matter.
In Sec. IV, we solve the structure equations for charm stars
and study their stability under radial acoustic perturbations.
Section V presents our summary and outlook.

II. FRAMEWORK

A. Cold Nf =Nl + 1 quark matter

The equation of state for quarkmatter at high densities and
zero temperature was first obtained in perturbative QCD by
Freedman and McLerran [12,26]; and Baluni [27] in a
modified momentum subtraction scheme over four decades
ago (cf. also Refs. [13,28]). Later, it was computed in the
modern MS renormalization scheme for massless quarks in
Refs. [29–33]. These results were then extended to include
the role of a massive quark2 at two loops by Fraga and
Romatschke [14] and three loops by Kurkela et al. [11].
The latter framework was designed to deal with Nf ¼

Nl þ 1 quark flavors, i.e., Nl massless quarks plus 1
massive quark. Originally, the massive flavor was chosen
to be the strange quark in order to study its influence on the
stellar structure of quark stars. The perturbative QCD
thermodynamic potential up to the next-to-next-to-
leading-order (NNLO) in the strong coupling αs, including
the massless contribution plus a massive term, together
with the mixed vacuum-matter (VM) diagrams and the
corresponding ring terms, can be written as [11]

Ω ¼ Ωm¼0ðμ⃗Þ þ Ωmðμ̃; mÞ þ Ωx
VMðμ⃗; mÞ þ Ωringðμ⃗; μ̃; mÞ;

ð1Þ

where μ̃ corresponds to the massive quark chemical
potential, μ⃗≡ ðμ1;…; μNl

Þ represents the vector chemical
potential for the massless quarks, and m is the physical
(renormalized up to the same order in the strong coupling)
mass3 associated to the massive quark flavor.
Although not explicit in Eq. (1), the thermodynamic

potential depends also on a renormalization scale parameter
Λ̄, which is an additional scale generated by the perturba-
tive expansion. Then, after solving the renormalization
group equations in the MS scheme for the strong coupling
at this order, one obtains [14]

αsðΛ̄Þ ¼
4π

β0L

�
1 −

2β1
β20

lnL
L

�
; ð2Þ

where β0 ¼ 11 − 2Nf=3, β1 ¼ 51 − 19Nf=3, and L ¼
2 ln ðΛ̄=ΛMSÞ with ΛMS being the MS point (scale).

Since αs depends on the number of quarks and loops
restricted by the active Nf, fixing the massive quark at
some energy scale also depends on the number of flavors.4

One defines the renormalization scale parameter Λ̄ in
terms of the natural scale at ultrahigh densities, where
quarks are massless, as being Λ̄ ¼ 2μs (with μs the strange
quark chemical potential) for any Nf, and considers an
uncertainty band defined by variations by a factor of 2.
Generically, it is convenient to write this parameter in the
form Λ̄ ¼ X

P
i μi=Nf, where the sum runs over all quark

flavors that are present in the system, and the dimensionless
parameter X sits between 1 and 4 [11].

B. Cold Nf =Nl +Nm quark matter

It is expected that at high densities not only the light
quarks will be present in a system of quark matter, but also
some heavy flavors. In QCD, heavy quarks are meant to be
the ones satisfying m ≫ ΛMS, i.e., quarks with masses that
are very large compared the QCD natural scale. Usually,
their influence is neglected [11] in most calculations by
invoking the heavy-quark decoupling theorem [36–38],
which states that these quarks do not affect sizeably the
observables calculated for light quarks, since their masses
are of the order of the QCD energy scale.
We start by writing conveniently the total number of

flavors in the form,

Nf ¼
XNm

i¼1

ðNl þ 1ÞðiÞ; ð3Þ

where Nm is the number of massive quarks present in the
system, and respecting the constraint Nl þ Nm ¼ Nf.
So, we add at least one massless quark for each massive
flavor included. For example, for charm quark matter,
it will be convenient to write this sum over flavors as

Nf ¼ ð1þ 1Þð1Þ þ ð1þ 1Þð2Þ ¼ 2þ 2, where NðiÞ
l ¼ 1 and

Nm ¼ 2. The usefulness of this way of writing Nf will
become clear after realizing the resemblance with the
summing of massless and massive contributions to the
total thermodynamic potential. Of course, this represents
only a convenient way of writing the degrees of freedom at
the level of the formalism. Additional physical conditions
are needed in order to control when a heavy partner appears
actively. Such conditions can be introduced by choosing
appropriate values of the renormalization scale Λ̄, depend-
ing on the chosen heavy flavor to be introduced in the
system.5

2Some years ago, numerical interpolation techniques were
used to match massless and massive dense pQCD equations of
state [34].

3One must be careful when defining these quark masses since
they only make sense in the UV regime, where asymptotic
freedom takes place.

4For the massive quark running mðΛ̄Þ, see Ref. [35].
5Additional matching conditions on the renormalized QCD

parameters should be imposed at the quark thresholds, i.e., on
αsðΛ̄thrÞ and mðΛ̄thrÞ, in order to account for their behavior at
different values of Nf, depending on the energy scale of the
problem [10].
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With these points in mind, we write the thermodynamic
potential (up to NNLO) for Nl massless and Nm massive
quarks as

Ω̄½Nf� ¼
XNm

i¼1

n
Ω½NðiÞ

l � þ Ω½1ðiÞ�
o
; ð4Þ

where one must choose the number of massless flavors first
when adding a massive one, so that

Ω½NðiÞ
l �≡ ðΩm¼0ðμ⃗ÞÞðiÞ ð5Þ

is the massless contribution and

Ω½1ðiÞ�≡ ðΩm þ Ωx
VM þΩringÞðiÞ ð6Þ

the mixed massive contribution, where μ⃗ðiÞ ¼ ðμ1;…; μiÞ
is the massless vector chemical potential, μ̃ðiÞ the massive
(heavy) quark chemical potentials, and mðiÞ their corre-
sponding masses. Here, Ω½…� indicates just the implicit
parameter dependence (e.g., on Nf), whereas Ωð…Þ
represents an explicit function dependence.
In the next section, we apply these results to the case of

charm quark matter, and show that including heavy quarks
makes the QCD thermodynamic potential less sensitive to
the renormalization scale Λ̄. In practice, its range of values
is reduced in order to obtain a consistent thermodynamic
transition between quark flavors, similar to results obtained
in hot QCD [6,39].

III. CHARM MATTER

In this section, we consider the simplest case of heavy
quark matter, charm quark matter, which is composed of
light quark matter plus charm quarks. Of course, it can only
be realized above a given critical charm chemical potential.
As mentioned before, going to higher values of quark mass
makes the perturbative QCD formalism more reliable. To
build the EoS for charm matter, we first need to establish
the constraints this system must respect below and above
the charm threshold, in order to generate matter configu-
rations stable under electroweak interactions.

A. Below the charm threshold: Nf = 2 + 1

The condition of electric charge neutrality for a system
with Nf ¼ 2þ 1 quarks (plus electrons) is given by

2

3
nu −

1

3
nd −

1

3
ns − ne ¼ 0; ð7Þ

where niðμiÞ are the associated particle number densities
for quarks and electrons in the system. The electron number
density is well approximated, as usual, by that of a free
Fermi gas, i.e., ne ¼ μ3e=ð3π2Þ.

Weak reactions among light quark flavors are given by

d → uþ e− þ ν̄e− ; s → uþ e− þ ν̄e− ; ð8Þ

sþ u ↔ dþ u; ð9Þ

and yield the following relations between chemical
potentials:

μd ¼ μs; μu ¼ μs − μe: ð10Þ

We neglect the neutrino chemical potential since their
mean free path are large compared to the size of a typical
compact star.
Solving simultaneously Eqs. (7) and (10), one is able to

write all the quark and electron chemical potentials in terms
of only the strange chemical potential, μs.

B. Above the charm threshold: Nf = 2 + 1 + 1

When μs crosses the charm quark threshold, the follow-
ing weak equilibrium reaction is allowed to take place:

uþ d ↔ cþ d; ð11Þ

yielding the condition,6

μc ¼ μu: ð12Þ

The electric charge neutrality condition turns into

2

3
nu þ

2

3
nc −

1

3
nd −

1

3
ns − ne − nμ ¼ 0; ð13Þ

wherewe have included free muons, with nμ¼ðμ2μ−m2
μÞ3=2=

ð3π2Þ, which appear when μμ > mμ ¼ 105.7 MeV, where
lepton number conservation allows us to write μμ ¼ μe.
Again, by solving simultaneously Eqs. (10), (12),

and (13), we can express the quark and lepton chemical
potentials only in terms of μs. In the notation of Sec. II, the
charm matter thermodynamic potential corresponds to the
case Nf ¼ ð1þ 1Þð1Þ þ ð1þ 1Þð2Þ ¼ ðuþ cÞð1Þ þ ðdþ sÞð2Þ
in Eq. (4).
Now we need to fix the parameters entering the thermo-

dynamic potential, i.e., running quark masses and strong
coupling at some specific energy scale. Solving the
renormalization group equations for the quark mass param-
eters up to second order in the strong coupling αs, one
obtains the following results for the strange and charm
quarks [35]:

6This is in contrast to the high temperature case of heavy ion
collisions, where only thermal equilibrium of charm quarks is
reached with the surrounding medium [40].
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msðΛ̄Þ ¼ m̂s

�
αs
π

�
4=9

×

�
1þ 0.895062

�
αs
π

�
þ 1.37143

�
αs
π

�
2
�
;

ð14Þ

mcðΛ̄Þ ¼ m̂c

�
αs
π

�
12=25

×
�
1þ 1.01413

�
αs
π

�
þ 1.38921

�
αs
π

�
2
�
;

ð15Þ

with fm̂qg being the renormalization group invariant quark
masses, i.e., Λ̄ independent.7

Since Eq. (2) for αs tells us that different values
of Nf give different values of ΛMS, by choosing αsðΛ̄ ¼
1.5 GeV; Nf ¼ 3; 4Þ ¼ 0.336þ0.012

−0.008 [41], we obtainΛ
2þ1

MS
¼

343þ18
−12 MeV and Λ2þ1þ1

MS
¼ 290þ18

−12 MeV, thus defining

α2þ1
s ðΛ̄Þ and α2þ1þ1

s ðΛ̄Þ, respectively. Notice that the MS
renormalization scheme would require matching conditions
for αs as each quark threshold is crossed [10]. However,
since the corrections are very small, being a NNLO
calculation, we have neglected them and only required
flavor continuity of αs. Fixing the strange quark mass at
msð2 GeV; Nf ¼ 3; 4Þ ¼ 92.4ð1.5Þ MeV [42] give m̂2þ1

s ≈
246.2 MeV when using α2þ1

s in Eq. (14), and m̂2þ1þ1
s ≈

243.7 MeV with α2þ1þ1
s also in Eq. (14). Additionally,

fixing the charm quark mass at mcð3 GeV; Nf ¼ 4Þ ¼
0.9851ð63Þ GeV≡m0

c [42], gives m̂2þ1þ1
c ≈ 3.0895 GeV

when using α2þ1þ1
s in Eq. (15). We definem0

c as the vacuum
charm mass for convenience later.
We assume that charm quarks are allowed in the

system when

μc ¼ μs − μe > mmedium
c > m0

c; ð16Þ

where mmedium
c is the (unknown) in-medium charm mass.8

Then, the renormalization scale parameter below and above
the charm threshold is given by9

Λ̄ ¼ X
ðμu þ μd þ μs þ 0Þ

3
; μs ≲m0

c ð17aÞ

Λ̄ ¼ X� ðμu þ μd þ μs þ μcÞ
3

; μs ≳m0
c; ð17bÞ

where the approximations in the inequalities of Eqs. (17a)
and (17b) represent that fact that just before the threshold
point the electron chemical potential takes its lowest value
compared to the strange one, thus allowing us to make the
approximation μc ≈ μs.
The only way to go from Eq. (17a) to Eq. (17b)

continuously through the Nf transition is by requiring
the factors X� and X to have the same range of possible
values. To have them greater than 1, one needs values
greater than 4=3 ¼ 1.3333… for both, which implies a
reduction in the renormalization scale band of the EoS
when heavy quarks are included, something already found
in thermal perturbative QCD with charm quarks even at
unusual low temperatures [6].

C. Thermodynamics for Nf = 2 + 1 + 1

Using Eq. (4) with Nð1Þ
l ¼ 1 for the up, Nð2Þ

l ¼ 1 for the
down, and Nm ¼ 2 for the strange and charm quarks, we
have the following thermodynamic potential:

Ω̄½Nf ¼ 2þ 1þ 1� ¼ fΩ½Nð1Þ
l ¼ 1� þ Ω½1ð1Þ�g

þ fΩ½Nð2Þ
l ¼ 1� þ Ω½1ð2Þ�g;

so that the flavors are counted as Nf ¼ ð1þ 1Þð1Þþ
ð1þ 1Þð2Þ ¼ ðuþ cÞð1Þ þ ðdþ sÞð2Þ. From this, one can
identify the pressure as P ¼ −Ω̃½Nf ¼ 2þ 1þ 1� and
compute quark number densities using the standard
thermodynamic relation10 nf ¼ ðdP=dμfÞ. We define
the total quark number density for charm matter, for a
given X, as

nqðfμfg; XÞ≡ nu þ nd þ ns þ nc; ð18Þ

and the total particle density as n ¼ nq þ nL, where
nL ¼ ne þ nμ.
In Fig. 1, we show the behavior of the relative particle

populations for our β equilibrated and electrically neutral
charm quark matter system in the case of X ¼ 3. Only
above the charm threshold, charm quarks begin to con-
tribute to the total number density, n. The location of the
threshold depends on the value we choose for X and is
within μs ≈ 1.2–1.4 GeV for the band we consider.
To build the total pressure, one should be careful with the

fact that the derivatives of the thermodynamic potential

7Expressing the quark masses in this way, one can see that their
invariant masses can be fixed at independent energy scales, which
is not obvious when using the quark mass function as in Ref. [11].

8An exact value for the in-medium charm mass at finite density
is still not known, whereas its vacuum mass at some fixed energy
scale, m0

c, can be extracted from lattice calculations.
9Alternatively, one could choose independent values of Λ̄ when

going from Nf ¼ 3 to 4, the “transition” point being found by a
matching between strong couplings with different Nf [10,43].

10These derivatives are taken after fixing X (see Ref. [44] for a
discussion in the case of high temperature QCD).
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give rise to terms which have the form of ∂αsðΛ̄Þ=∂μf since
Λ̄ ∝ μf, as can be seen in Eqs. (17a)–(17b) (see also
Ref. [11]). To keep thermodynamic consistency, one can
take the quark and lepton number densities as the funda-
mental ingredients and build the other thermodynamic
observables (e.g., pressure and energy density), imposing
consistency on the number densities.
Thus, we define the total pressure of the system as

Pðμs; XÞ ¼
X
f¼u;c

Pð1Þ
f þ

X
f¼d;s

Pð2Þ
f þ

X
L¼e;μ

PL; ð19Þ

where we have separated the contributions coming from
Nf ¼ ðuþ cÞð1Þ þ ðdþ sÞð2Þ, defining each term as

Pð1Þ
f ðμs; XÞ ¼

Z
μs

μ0ðXÞ
dμ̄s

�
nf

�
1 −

dμf
dμ̄s

��
; ð20Þ

Pð2Þ
f ðμs; XÞ ¼

Z
μs

μ0ðXÞ
dμ̄snf; ð21Þ

and the lepton contribution as

PLðμs; XÞ ¼
Z

μs

μ0ðXÞ
dμ̄snL

dμL
dμ̄s

; ð22Þ

including strange quarks even at zero pressure, from which
we start the integration of the particle densities, and adding
the charm and leptons when crossing their respective
thresholds.
We define the energy density as

ϵðμs; XÞ ¼ −Pþ
X
f¼u;c

ϵð1Þf þ
X
f¼d;s

ϵð2Þf þ
X
L¼e;μ

ϵL; ð23Þ

where the quark and lepton contributions are

ϵð1Þf ðμs; XÞ ¼ ½μs − μeðμsÞ�nfðμsÞ; ð24Þ

ϵð2Þf ðμs; XÞ ¼ μsnfðμsÞ; ð25Þ

ϵLðμs; XÞ ¼ μLðμsÞnLðμsÞ: ð26Þ

Following this recipe we can build (numerically) the EoS,
P ¼ PðϵÞ, by combining Eqs. (19) and (23) for a given X.
In Fig. 2, we plot the total pressure for charm matter

normalized by a Stefan-Boltzmann gas of quarks with
Nf ¼ 4 as a function of the strange quark chemical
potential. From this plot, it is easy to infer the contribution
of each degree of freedom, at their thresholds, to the EoS
for cold quark matter, and one can see the usual behavior
of the pressure for Nf ¼ 2þ 1 at intermediate densities,
followed by a kink representing the charm threshold which
softens the total (normalized) pressure. The charm quark
contribution reduces the renormalization-scale uncertainty
band for X at high densities, which also affects the behavior
of the EoS a lower densities, a feature which would be
difficult extract from the pressure-density plane. An addi-
tional kink appears due to the muons. So, the charm EoS is
largely softened, generating an apparent instability which
could have astrophysical effects. In particular, it suggests
the possibility of another kind of ultradense compact star:
charm stars.

IV. ARE CHARM STARS STABLE?

Although charm stars are excluded as two-solar mass
neutron stars [3] given the high critical density required for
their appearance, they might be present as a new branch of
hybrid compact stars. The first quantitative study of the
possibility of the existence of charm stars, i.e., strange stars
satisfying the Bodmer-Witten hypothesis and having finite

FIG. 1. Relative particle fractions for quarks and leptons,
ni=n, present in charm quark matter for X ¼ 3, where
i ¼ u; d; s; c; e; μ. Above the charm quark threshold, the lepton
fractions increase to ensure electric charge neutrality at high
densities.

FIG. 2. Total pressure for a system of Nf ¼ 2þ 1þ 1 quarks
plus leptons in β equilibrium and electrically charge neutral
normalized by the Stefan-Boltzmann massless free gas with
Nf ¼ 4. We include the X ¼ 5 only to verify how the EoS
depends on X when including one additional massive flavor.
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charm quark fractions at their cores, was carried out more
than two decades ago; see Ref. [20] (see also Ref. [23]).
The star bulk was described using the simplest version
of the MIT bag model. After performing the stability
analysis, the conclusion was that charm stars would be
unstable (see Fig. 3 for an illustration of standard
quark stars).
We revisit this question using our first-principle pertur-

bative QCD description for the EoS for charm quark matter
and also restrict our analysis to the simple case with no
hadronic mantle. So, we choose the parameter space to be
in the range X ≥ 3, which satisfies the Bodmer-Witten
hypothesis, as shown in Ref. [11], and perform the stability
analysis as follows.
The Tolman-Oppenheimer-Volkov (TOV) equations

ensure the relativistic hydrostatic equilibrium of stellar
configurations [21]. However, these configurations must
also satisfy the thermodynamic condition ∂M=∂ϵc ≥ 0
[21]. The maximum mass configuration for a given stellar

family is identified with the point where ∂M=∂ϵc ¼ 0. In
Fig. 4, we show our results for the mass as a function of
the central energy density. It can be seen that the necessary
condition for thermodynamic stability is satisfied in the
two branches, one at relative low and another at much
higher energy densities. However, we note that for the
case X ¼ 2, this condition is not satisfied when charm
quarks appear, which is indicated by the black dots in
Fig. 4. This is somewhat expected since it is difficult to
have heavy quarks present in low-mass strange stars.
In Table I, we show the values of these observables at
the charm threshold. On the other hand, for X > 3, the
thermodynamic condition is satisfied when charm quarks
are present, which would correspond to charm stars. In
Fig. 5, we show the mass-radius diagram for quark stars
made of Nf ¼ 2þ 1þ 1 quarks plus electrons and muons
for different values of X.
The previous analysis provides a necessary but insuffi-

cient condition for stability of star configurations. One must
still test for dynamical stability under radial pulsations.
For that, we use the method of Gondek et al. [25], solving a
pair of first-order differential equations, one for the relative-
displacement variable, ξ≡ Δr=r, and another for the

FIG. 3. Cartoon of mass-radius diagram for quark star families
in hydrostatic equilibrium. The only stable branch seems to be the
strange (continuous-arrowed line), whereas ultrahigh density
stars are usually considered unstable against radial pulsations
(dashed-arrowed line).

FIG. 4. Total gravitational mass vs central energy density for a
system with Nf ¼ 2þ 1þ 1 quarks plus leptons. The black dots
indicate the appearance of the charm quarks in the system.

FIG. 5. Mass-radius diagram for quark stars made of Nf ¼
2þ 1þ 1 quarks plus electrons and muons. The black dots signal
the appearance of charm quarks in the system indicating possible
charm star configurations. Stars not satisfying the general-
relativistic (GR, magenta region), causality (green region), and
finite pressure (P < ∞, light blue region) limits are excluded
from this diagram [45]. Notice that this exclusion is less
restrictive than the one presented in Ref. [3], based on maximal
star masses.

TABLE I. Different values for threshold μs, ϵc, gravitational
mass M and its associated radii for different values of X.

X μths [GeV] ϵthc ½GeV=fm3� Mth½M⊙� Rth [km]

2 1.377 85.702 0.625 4.282
3 1.340 77.988 0.999 7.310
4 1.290 74.189 1.531 11.72
5 1.295 69.199 1.745 12.87
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Lagrangian perturbation, ΔP, with appropriate boundary
conditions (see the Appendix). In the first-order radial
pulsation formalism, amplitudes oscillate harmonically
when the frequencies are such that ReðωnÞ > 0 and
ImðωnÞ¼0 or increase exponentially if11 ReðωnÞ≥0 and
ImðωnÞ > 0. Since the radial oscillation equations re-
present a Sturm-Liouville problem [25], their eigenvalues
(the eigenfrequencies) satisfy the ordering ω2

0 < ω2
1 <

ω2
2 < · · · < ω2

n. So, if Imðω0Þ > 0 [and Reðω0Þ ¼ 0] from
some value of central energy density ϵc, then all the higher
modes will become complex too, representing the onset of
the instability. For convenience, we express our results in
the terms of the linear frequency defined by fn ≡ ωn=ð2πÞ,
So, if Imðf0Þ > 0 continues finite and increasing for higher
densities, all the bare charm quark star configurations
become unstable.
In Fig. 6, we show that for densities above the

maximum-mass strange star configuration (for X ¼ 3),
the stellar configurations increase their amplitudes even in
the region where charm stars are expected, thus making
them dynamically unstable. Since the same behavior was
obtained for larger values of X, one can conclude from a
perturbative QCD analysis that charm stars are unstable.
One could ask if higher-order perturbative terms could
in some way stabilize charm stars. However, a recent
N3LO weak coupling expansion, which also includes
nonperturbative terms, yielded minor modifications to
the EoS [19].

V. SUMMARY AND OUTLOOK

In this paper, we have extended the perturbative QCD
Nf ¼ Nl þ 1 formalism in order to allow for the inclusion
of heavy quark flavors in the EoS for cold and dense quark
matter and study their effects at low densities by means of

the renormalization scale parameter Λ̄. In particular, we
have investigated the effects of charm quarks in the
equation of state in the case of β equilibrium and electric
charge neutrality, where a non-negligible range of the
parameter space was discarded in order to go through
the charm threshold in agreement with the EoS for light
quarks. Then, we have explored the possibility of charm
(quark) stars, spanning a range in quark chemical potentials
where pQCD is in principle much more reliable. After
performing a radial stability analysis, it was concluded
these stars would be unstable.
Although charm stars are excluded by our analysis, and

also due to causality limits posed by maximum mass
constraints from neutron star observations [3,4], it is
possible to have small amounts of charm quark matter in
the core of the heaviest observed neutron stars (or, rather,
hybrid stars), where a matching between a nuclear and a
quark phase could be possible via the Glendenning con-
struction for first-order phase transitions [46]. Recently, a
related possibility was investigated under the consideration
of strange quark matter contaminated by charm quark
impurities (in the sense of condensed matter physics),
producing a QCD Kondo effect [47,48]. Moreover, a non-
negligible amount of charm quarks could contribute to the
EoS at the early stage of neutron star mergers, when very
high densities are reached [49,50].
Our extended framework is appropriate to study the

heavy sector of the QCD phase diagram (see Ref. [51] for
related studies) which could exhibit new features, although
it was shown in Refs. [52,53] that heavy quarks affect
negligibly the chiral and deconfinement transitions at finite
temperature.
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APPENDIX: RADIAL PULSATION EQUATIONS

Assuming static and spherically symmetric charm stars,
it is natural to use a Schwarzschild-like line element,
having as nontrivial metric functions eνðrÞ and eλðrÞ for
the temporal and radial parts, respectively. After introduc-
ing this line element into Einstein’s equations and by
modeling the star’s interior as a perfect fluid, we obtain
stellar configurations in hydrostatic equilibrium for a given
EoS, governed by the Tolman-Oppenheimer-Volkov (TOV)
equations [21].
For the radial pulsation stability analysis, we use the

two first-order differential equations of Gondek et al. [25]
for the relative radial displacement ξ≡ Δr=r and the
Lagrangian perturbation of the pressure ΔP, considered
independent variables.

FIG. 6. Imaginary part of the fundamental mode frequency, f0,
as a function of the central energy densities obtained after solving
the radial pulsation equations for X ¼ 3.

11In this formalism, the maximum mass stellar configuration is
characterized by having ω0 ¼ 0 [21].
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Physical smoothness at the star’s center requires that
the coefficient of the 1=r term vanishes for r → 0. So,
we impose that ðΔPÞcenter ¼ −3ðξΓPÞcenter and normalize
the eigenfunctions at the origin to be ξð0Þ ¼ 1. Since

Pðr → RÞ → 0, the Lagrangian perturbation of the pressure
at the surface vanishes, i.e., ðΔPÞsurface ¼ 0. Our code to
study stellar charm stars reproduces the pulsation frequen-
cies for the EoSs listed in Ref. [54].
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