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Motivated by the desire to understand the nucleon mass structure in terms of light-cone distributions, we
introduce the twist-four parton distribution function FðxÞwhose first moment is the gluon condensate in the
nucleon. We present the equation of motion relations for FðxÞ and discuss the possible existence of the
delta function (“zero mode”) contribution at x ¼ 0. We also perform one-loop calculations for quark and
gluon targets.
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I. INTRODUCTION

The hadronic matrix element of the dimension-four
scalar gluonic operator, or the “gluon condensate”

hPjFμνFμνjPi ð1Þ

is fundamentally important in hadron physics and beyond.
This is primarily because the trace anomaly of QCD
imparts mass to the nucleons and nuclei, hence to the
visible universe, through the matrix element in Eq. (1) [1].
It thus plays a pivotal role in understanding the origin
of the nucleon mass, a problem recently proclaimed by
the National Academy of Science [2] as one of the main
scientific goals of the future Electron-Ion Collider (EIC)
[3]. However, the precise determination of Eq. (1) turns out
to be an extremely challenging task. A direct calculation
from lattice QCD is notoriously difficult due to the vacuum
quantum numbers of the operator involved (see a recent
attempt [4]). Another possibility is that the matrix element
can be probed experimentally in near-threshold quarko-
nium production [5–7].
In this paper, we propose to study the partonic structure

of the gluon condensate in Eq. (1) as a novel direction in the
research of nucleon mass structure. Since this is a rather
unusual proposal, to motivate the reader let us first draw an
analogy to the study of nucleon spin structure. The Jaffe-
Manohar sum rule [1]

1

2
¼ 1

2
ΔΣþ ΔGþ Lq þ Lg ð2Þ

tells how the total nucleon spin of 1=2 is distributed among
the helicity ΔΣ;ΔG and orbital angular momentum Lq;g of
quarks and gluons. Each of these components can be
expressed by the first moment of the corresponding parton
distribution ΔΣ ¼ R

dxΔqðxÞ, Lq ¼
R
dxLqðxÞ, etc., [8],

where x is the longitudinal momentum fraction. Such
distributions are not only useful for extracting the moments
from experiments, but also interesting in their own right, as
they provide a more detailed, higher-dimensional descrip-
tion on the spin structure.
Returning to the problem of mass, similarly to Eq. (2),

one can decompose the nucleon mass M as [9]

M ¼ Mq
kin þMg

kin þMm þMa; ð3Þ

where Mq;g
kin are the kinetic energies carried by quarks

and gluons, Mm ∼ hPjψ̄ψ jPi is the contribution from the
nucleon sigma term, and Ma is from the gluon condensate
Eq. (1). As in the case of spin decomposition, one naturally
asks how partons with a given momentum fraction x
contribute to the four components in Eq. (3). For kinetic
energy, this can be quantified by noticing that Mq;g

kin are
related to the second moment of the ordinary parton
distribution functions (PDFs). One then sees that Mq

kin is
dominated by valence quarks at large x. Gluons tend to
have smaller x values, but because there are so many
of them, Mg

kin can become sizable. On the other hand,
regarding the remaining two entriesMm;a, most of the work
done so far has been limited to “zero-dimensional” physics.
While the parton distribution function forMm does exist in
the literature, called eðxÞ, its connection to hadron masses
is not often emphasized. For Ma, the corresponding x
distribution was almost nonexistent until very recently
when related distributions were briefly mentioned in
[10]. In principle, it is a simple matter to write down the
twist- four distribution
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FðxÞ ∼
Z

dz−eixP
þz−hPjFμνð0ÞFμνðz−ÞjPi;

Z
dxFðxÞ ∼Ma: ð4Þ

Together with the twist-two PDFs and eðxÞ, this provides a
complete set of parton distributions for the nucleon mass
structure.
In this paper, we present the first analysis of FðxÞ.

We use the QCD equation of motion to reveal its multi-
partonic nature of the distribution. We then present one-
loop calculations of FðxÞ for quark and gluon targets.
Particular attention is given to the question of whether FðxÞ
contains the delta function δðxÞ. The (non)existence of δðxÞ
in eðxÞ has been a subject of debate in the literature. We
shall see that the discussion is entirely analogous for FðxÞ.
We shall present both model-independent and model-
dependent arguments in favor of the existence of the delta
function.

II. CHIRAL-ODD TWIST-THREE
DISTRIBUTION eðxÞ

Before introducing the twist-four gluon distribution
FðxÞ, we first give a review of the twist-three, chiral-odd
quark distribution eðxÞ. Our purpose is mostly to empha-
size the similarity to FðxÞ studied in the next section, but
the present section also contains some original discussions.
eðxÞ is defined by

eqðxÞ¼
Pþ

2M

Z
dz−

2π
eixP

þz−hPjψ̄qð0ÞW½0;z�ψqðz−ÞjPi; ð5Þ

where M is the proton mass and W is the straight Wilson
line along the light cone which makes the nonlocal operator
gauge invariant. The distribution is defined for each quark
flavor q with mass m. The first and second moments are
proportional to the nucleon sigma term and the number of
valence quarks Nq, respectively

Z
dxeqðxÞ¼

hPjψ̄qψqjPi
2M

;
Z

dxxeqðxÞ¼
mq

M
Nq: ð6Þ

In what follows, we shall omit the subscript q for simplicity.
By using the equation of motion and Lorentz invariant
relation one can write [11–14]

eðxÞ ¼ esingðxÞ þ etw3ðxÞ þ emassðxÞ; ð7Þ

where esing is proportional to the delta function at x ¼ 0,

esingðxÞ ¼
δðxÞ
2M

hPjψ̄ψ jPi: ð8Þ

emassðxÞ is related to the twist-two quark distribution
qðxÞ as

emassðxÞ ¼
m
M

�
qðxÞ
x

− δðxÞ
Z

dx0
qðx0Þ
x0

�
: ð9Þ

Clearly,
R
dxemassðxÞ ¼ 0. The “genuine twist-three” distri-

bution etw3ðxÞ also has a delta function at x ¼ 0,

etw3ðxÞ¼
Z

dy
Φðx;yÞ
xðx−yÞ−δðxÞ

Z
dx0dy0

Φðx0;y0Þ
x0ðx0−y0Þ ; ð10Þ

where

Φðx; yÞ ¼ 1

2M

Z
dz−

2π

dw−

2π
eixP

þz−þiðy−xÞPþw−

× hPjψ̄ð0ÞW½0; w�σþμgFþ
μ ðw−ÞW½w; z�ψðz−ÞjPi

ð11Þ

is the quark-gluon-quark mixed distribution. (Our sign
convention for the QCD coupling is such that the covariant
derivative reads Dμ ¼ ∂μ þ igAμ.) It is easy to see that

Z
dx etw3ðxÞ ¼ 0;

Z
dx xetw3ðxÞ ¼ 0: ð12Þ

The latter relation follows from the property Φðx; x0Þ ¼
Φðx0; xÞ. On the other hand, the third moment of etw3ðxÞ is
nonvanishing

Z
dx x2etw3ðxÞ ¼

1

4MðPþÞ2 hPjψ̄σ
þμgFþ

μ ψ jPi: ð13Þ

This matrix element is related to the electric dipole moment
of the nucleon [15]. One thus arrives at the relation

eðxÞ ¼ m
M

qðxÞ
x

þ
Z

dy
Φðx; yÞ
xðx − yÞ

þ δðxÞ
�hPjψ̄ψ jPi

2M

−
Z

dx0

x0

�
m
M

qðx0Þ þ
Z

dy0
Φðx0; y0Þ
x0 − y0

��
: ð14Þ

There have been discussions about the nature of the delta
function terms, or “zero modes,” in Eq. (14). The authors of
Ref. [13] argue that the sum rule

R
dxeðxÞ ∝ hPjψ̄ψ jPi is

of “no practical use” because the only contribution comes
from the delta function at x ¼ 0 which experiments cannot
access. [Remember that

R
dx emassðxÞ ¼

R
dx etw3ðxÞ ¼ 0.]

The presence of zero modes signifies the nonperturbative
dynamics of QCD which leads to confinement and the
generation of hadron masses. On the other hand, one can
make an argument that the delta function may actually be
absent. This is indeed the case in the naive parton model
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owing to the Weisberger relation [16] which in the modern
notation reads [17]1

∂M
∂m ¼ hPjψ̄ψ jPi

2M
¼ m

M

Z
1

−1

dx
x
qðxÞ

¼ m
M

Z
1

0

dx
x
ðqðxÞ þ q̄ðxÞÞ: ð16Þ

Since the genuine twist-three physics is absent in the parton
model, the expression inside the square brackets in Eq. (14)
vanishes. However, Eq. (16) is obviously problematic
because the x integral does not converge in real QCD.
Going beyond the parton model, very recently the authors
of [18] claim to have shown that the coefficient of the delta
function vanishes exactly in full QCD. Their proof starts by
writing ψ̄ψ ¼ ψ̄þψ− þ ψ̄−ψþ where ψ� ¼ 1

2
γ∓γ�ψ are

the so-called “good” and “bad” components of the quark
field, respectively. It is often stated in the literature that ψ−
is not an independent field. Using the equation of motion
one can write

2iD−ψ− ¼ ðiγiDi þmÞγþψþ; ð17Þ

where i ¼ 1, 2. The general solution to Eq. (17) is

ψ−ðz−Þ ¼
1

2i

Z
dz0−Kðz− − z0−ÞW½z−; z0−�ðiγiDi þmÞ

× γþψþðz0−Þ þ
Z

dz0−W½z−; z0−�ψ0
−ðz0−Þ

¼ 1

2

Z
dx
2π

KðxÞ
Z

dz0−e−ixPþðz−−z0−Þ

×W½z−; z0−�ðiγiDi þmÞγþψþðz0−Þ

þ
Z

dz0−W½z−; z0−�ψ0
−ðz0−Þ; ð18Þ

where Kðz−Þ is Green’s function subject to the boundary
condition. Common choices are Kðz−Þ ¼ θðz−Þ, −θð−z−Þ
and 1

2
εðz−Þ ¼ 1

2
ðθðz−Þ − θð−z−ÞÞ. In momentum space,

KðxÞ ¼ 1
xþiϵ,

1
x−iϵ and P 1

x, respectively. (P denotes the
principal value.)

R
ψ0
− is not constrained by the equation

of motion and should be treated as an independent field. It

is essentially the zero mode as it involves an unconstrained
integration over z0− (up to a gauge rotation). In the
literature, this term is routinely neglected when one works
in the light-cone gauge Aþ ¼ 0 and specifies the boundary
condition at z− ¼ �∞ in order to quantize the theory.
Often the antisymmetric boundary condition, correspond-
ing to P 1

x, is employed (see, e.g., [19]), but this implicitly
assumes the subtraction of the zero mode. While such a
procedure may be justified for most purposes, like doing
perturbation theory and computing the S-matrix, it may not
capture the long-distance physics responsible for the
generation of hadron mass.
Reference [18] only kept the first term of Eq. (18) with

the advanced boundary condition Kðz−Þ ¼ −θð−z−Þ and
showed that the coefficient of the delta function in Eq. (14)
vanishes exactly. Actually, it does not matter which
boundary condition is adopted, because in the end only
the combination KðxÞ þ K�ðxÞ ¼ 2P 1

x appears in the
sum hψ̄þψ−iþhψ̄−ψþi¼hψ̄þψ−iþðhψ̄þψ−iÞ�. However,
the ψ0

− term does not cancel and leads to a nonvanishing
coefficient

hPjψ̄ψ jPi
2M

−
Z

dx0

x0

�
m
M

qðx0Þ þ
Z

dy0
Φðx0; y0Þ
x0 − y0

�

¼ 1

2M

Z
dz−hPjψ̄þð0ÞW½0; z−�ψ0

−ðz−Þ

þ ψ̄0
−ðz−ÞW½z−; 0�ψþð0ÞjPi: ð19Þ

There is vast literature on the zero mode problem in
light-front quantization (see, e.g., [20] and reviews
[21,22]). One might argue that in continuum theory the
zero mode has no effect on physical observables because it
has measure zero in the path integral sense. On the other
hand, entirely neglecting the zero mode causes serious
inconsistencies such as the lack of Lorentz invariance [20].
This is still an open problem, and discussions of the quark
and gluon condensates cannot be complete without a full
consideration of the zero mode. For the moment, it seems to
us that the coefficient of the delta function is likely
nonvanishing, and can be determined only nonperturba-
tively possibly along the line recently suggested in [10].

A. eðxÞ to one loop

In Ref. [23], the authors have shown in the massive quark
model to one loop that eðxÞ indeed contains the delta
function δðxÞ. This is consistent with the above observation
that the delta function is nonvanishing in general. In the
massive quark model where jpi is a single quark state, it is
appropriate to employ the scale invariant mass for the
“hadron” mass M in Eq. (5),

M ¼ mðμÞ
�
1þ 3αsCF

4π
ln

μ2

m2

�
; ð20Þ

1Here is a quick derivation of the Weisberger relation in the
parton model,

hPjψ̄ψ jPiproton ¼
Z

1

0

dx
x
ðqðxÞ þ q̄ðxÞÞhxPjψ̄ψ jxPiquark

¼
Z

1

0

dx
x
ðqðxÞ þ q̄ðxÞÞūðxPÞuðxPÞ

¼ 2m
Z

1

0

dx
x
ðqðxÞ þ q̄ðxÞÞ: ð15Þ

The factor 1=x comes from the relativistic normalization of states.
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where CF ¼ ðN2
c − 1Þ=2Nc. The result at one loop is

eðx; μÞ ¼ δð1 − xÞ

þ αs
2π

CF ln
μ2

m2

�
2

½1 − x�þ
þ δðxÞ þ 1

2
δð1 − xÞ

�
;

ð21Þ

where μ is the renormalization scale. As observed in [23],
without the delta function the sum rule

Z
dx eðxÞ ¼ hpjψ̄ψ jpi

2M
¼ ∂M

∂m ð22Þ

cannot be satisfied. Equation (21) is derived from the
following one-loop integral in the light-cone gauge n · A ¼
Aþ ¼ 0 in d ¼ 4 − 2ϵ dimensions

eðxÞ ∼ −2iCFg2pþ

×
Z

dk−dd−2k⊥
ð2πÞd

ð1 − ϵÞðp − kÞ2 þ 2 k2−m2x
1−x

ðk2 −m2 þ iϵÞ2ððp − kÞ2 þ iϵÞ ;

ð23Þ

where x ¼ kþ=pþ. (We use the same letter ϵ for the small
dimension in dimensional regularization and in the iϵ
prescription of the propagator, but the distinction should
be obvious.) The first term in the numerator is proportional toZ

dk−
1

ðk2 −m2 þ iϵÞ2 ¼
iπδðkþÞ
k2⊥ þm2

; ð24Þ

which is the origin of the delta function δðxÞ in Eq. (21).
Let us consider the same matrix element but now jpi is

an on-shell gluon p2 ¼ 0 with transverse polarization ε ·
p ¼ ε · n ¼ 0 and ε · ε� ¼ −ε⊥ · ε�⊥ ¼ −1. The one-loop
diagrams give (see Fig. 1, left)

−
ipþg2TF

2m

Z
dk−dd−2k⊥

ð2πÞd Tr

� ð=kþmÞγμð=k − pþmÞγνð=kþmÞ
ðk2 −m2 þ iϵÞ2ððk − pÞ2 −m2 þ iϵÞ þ

ð=kþmÞγνðpþ =kþmÞγμð=kþmÞ
ðk2 −m2 þ iϵÞ2ððpþ kÞ2 −m2 þ iϵÞ

�
εμε

�
ν

¼ −2ipþg2TF

Z
dk−dd−2k⊥

ð2πÞd
� 2

1−ϵ k
2⊥ þ ðp − kÞ2 −m2

ðk2 −m2 þ iϵÞ2ððp − kÞ2 −m2 þ iϵÞ þ
2

1−ϵ k
2⊥ þ ðpþ kÞ2 −m2

ðk2 −m2 þ iϵÞ2ððpþ kÞ2 −m2 þ iϵÞ
�

¼ αsTF

π
ΓðϵÞ

�
μ2

m2

�
ϵ

ðδðxÞ − ð1 − xÞΘð1 > x > 0Þ − ð1þ xÞΘð0 > x > −1ÞÞ; ð25Þ

where TF ¼ 1=2 and Θð1 > x > 0Þ denotes a step function
which has support on 1 > x > 0. The delta function δðxÞ
arises from the same integral in Eq. (24). Integrating over x,
we get zero. This is consistent with the fact that the local
operator ψ̄ψ does not mix with gluonic operators, and the
delta function δðxÞ is crucial to ensure this property. We
also see that the mixing does occur at the level of the x
distributions.

III. GLUON CONDENSATE DISTRIBUTION

Let us now come to the main object of interest. With the
motivation stated in the Introduction, we consider the twist-
four distribution

FðxÞ ¼ Pþ

2M2

Z
dz−

2π
eixP

þz−hPjFμνð0ÞW½0; z�Fμνðz−ÞjPi:

ð26Þ

Related distributions have been recently introduced in [10],
but their properties have not been investigated. In this and
the next sections, we provide the first analysis of Eq. (26)
based on the equation of motion and one-loop calculations.
The first moment of FðxÞ is the gluon condensate in the

proton

Z
dxFðxÞ ¼ 1

2M2
hPjFμνFμνjPi: ð27Þ

FIG. 1. Left: diagrams for Eq. (25). Right: diagrams for Eq. (39).
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The second moment vanishes
R
dxxFðxÞ ¼ 0 because

FðxÞ is an even function in x. Similarly to eðxÞ, and as
conjectured in [10], we expect that FðxÞ also has a delta
function piece

FðxÞ ¼ FregðxÞ þ δðxÞC: ð28Þ

To obtain insights into the structure of FðxÞ, consider the
following operator relation:

∂
∂z− Fμνð0ÞW½0; z�Fμνðz−Þ ¼ Fμνð0ÞW½0; z�DþFμνðz−Þ

¼ −2Fμνð0ÞW½0; z�DμFνþðz−Þ

¼ 2FμνD⃖
μWFνþ − 2DμðFμνWFνþÞ − 2i

Z
z−

0

dω−Fμνð0ÞWgFþμðω−ÞWFνþðz−Þ; ð29Þ

where we used the Bianchi identity and Dμ represents the translation operator: DμOð0;z−Þ≡ lima→0
1
aμðOða;zþaÞ−

Oð0;zÞÞ. Further using the equation of motion, we immediately obtain

xFðxÞ ¼ i
M2

Z
dz−

2π
eixP

þz−hPjgψ̄ð0ÞWγνFνþðz−ÞWψð0ÞjPi

−
1

M2

Z
dz−

2π
eixP

þz−
Z

z−

0

dω−hPjFμνð0ÞWgFþμðω−ÞWFþνðz−ÞjPi:

⇒ FregðxÞ ¼
i

xM2

Z
dz−

2π
eixP

þz−hPjgψ̄ð0ÞWγνFνþðz−ÞWψð0ÞjPi

−
1

xM2

Z
dz−

2π
eixP

þz−
Z

z−

0

dω−hPjFμνð0ÞWgFþμðω−ÞWFþνðz−ÞjPi: ð30Þ

We shall interpret 1
x as the principal value P 1

x to be consistent with the property FðxÞ ¼ Fð−xÞ. Notice that

Z
dx xFðxÞ ∝ hPjgψ̄γνFνþψ jPi ¼ 0; ð31Þ

because gψ̄γνFνþψ ¼ −∂νTνþ
q is a total derivative. (Tμν

q is the quark part of the energy-momentum tensor.) Thus the
coefficient of the delta function is

C ¼ 1

2M2
hPjFμνFμνjPi þ

1

2M2

Z
dz−εðz−ÞhPjgψ̄ð0ÞWγνFνþðz−ÞWψð0ÞjPi

þ i
2M2

Z
dz−εðz−Þ

Z
z−

0

dω−hPjFμνð0ÞWgFþμðω−ÞWFþνðz−ÞjPi: ð32Þ

However, the recent work [18] suggests that C may
actually be zero, or at least there is a significant cancellation
among the three terms in C. From the equation of motion

DþFþ− þDiFi− ¼ gJ−;

DþFþi þDjFji þD−F−i ¼ gJi; ð33Þ

one can formally write

Fþ− ¼ 1

Dþ ðgJ− −DiFi−Þ;

Fþi ¼
1

Dþ ðgJi −DjFji −D−F−iÞ: ð34Þ

Therefore,

FμνFμν ¼ 2Fþ−Fþ− þ 2FþiFþi þ 2F−iF−i þ FijFij

¼ 2Fþν 1

Dþ gJν − 2Fþ− 1

DþDiFi−

− 2Fþi 1

Dþ DjFji − 2Fþi 1

DþD−F−i

þ 2F−iF−i þ FijFij: ð35Þ

The first term on the right-hand side can be written as, after
taking the forward matrix element hPj…jPi and using
translational symmetry,
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− Fþνð0Þ
Z

dz−εðz−ÞgJνðz−Þ

→ −
Z

dz−εðz−ÞFνþðz−ÞgJνð0Þ: ð36Þ

This exactly cancels the second term of Eq. (32). In the
Appendix A we show that the remaining terms in Eq. (35)
exactly cancel the third term of Eq. (32). Naively, it thus
seems that the coefficient of the delta function in Eq. (32)
vanishes identically. However, again this is inconclusive.
As in Eq. (18), one can add an “integration constant” in
Eq. (34)

Fþ−¼
1

Dþ ðgJ− −DiFi−Þþ
Z

dz0−W½z;z0�F0þ−ðz0Þ; ð37Þ

and similarly for Fþi. The zero modes
R
F0þ−;

R
F0
þi are not

constrained by the equation of motion and should be
regarded as independent degrees of freedom. We thus

expect that, in general, the cancellation is incomplete
and there exists a delta function δðxÞ in FðxÞ.

IV. ONE-LOOP COMPUTATION OF FðxÞ
In order to gain insight into the x dependence of FðxÞ, in

this section we perform one-loop calculations for quark and
gluon targets. We shall be particularly interested in whether
FðxÞ contains the delta function δðxÞ or not.

A. Quark target

We use the light-cone gauge n · A ¼ Aþ ¼ 0 to eliminate
the Wilson line. The gluon propagator is proportional to the
tensor

gμν −
kμnν þ kνnμ

k · n
: ð38Þ

We specify the prescription for the pole 1=k · n when the
need arises. For an on-shell quark external state p2 ¼ m2,
we find (see Fig. 1, right)

Z
dk−dd−2k⊥

ð2πÞd ig2ūðpÞ
�

γαðp − =kþmÞγβ
ðk2 þ iϵÞððp − kÞ2 −m2 þ iϵÞ þ

γαðpþ =kþmÞγβ
ðk2 þ iϵÞððpþ kÞ2 −m2 þ iϵÞ

�
uðpÞ2

�
gαβ −

nαkβ þ nβkα
n · k

�

¼ 4ig2CF

Z
dk−dd−2k⊥

ð2πÞd
�

2m2

ðk2 þ iϵÞððp − kÞ2 −m2 þ iϵÞ þ
1 − ϵ

ðp − kÞ2 −m2 þ iϵ
−

1 − ϵ

k2 þ iϵ
þ ðk ↔ −kÞ

�
; ð39Þ

where kþ ¼ xpþ. Note that the pole 1=n · k has cancelled
between the two diagrams. The first term on the last line of
Eq. (39) is nonvanishing when 1 > x > 0 and can be
evaluated in a standard manner. The second term is
proportional to the delta function at x ¼ 1,

4ig2CF

Z
dk−dd−2k⊥

ð2πÞd
1 − ϵ

−2ð1 − xÞpþk− − k2⊥ − xm2 þ iϵ

¼ −
αsCFm2

πpþ ΓðϵÞ
�
μ2

m2

�
ϵ

δð1 − xÞ: ð40Þ

The third term vanishes. We thus find, for 1 ≥ x ≥ −1,

FðxÞ¼−
αsCF

π

�
1þ1

2
δð1−xÞþ1

2
δð1þxÞ

��
1

ϵ
þ ln

μ2

x2m2

�
;

ð41Þ

and consequently,

Z
1

−1
dxFðxÞ ¼ −

3αsCF

π

�
1

ϵ
þ ln

μ2

m2
þ 4

3

�
: ð42Þ

Equation (42) is the expected result consistent with the
known operator relation

ðF2Þ0 ¼
�
1þ β0

αs
4πϵ

�
F2 −

2γm0αs
ϵ

mψ̄ψ ; ð43Þ

where the left-hand side is the bare operator. β0 ¼ 11Nc
3

−
4nfTF

3
and γm0 ¼ 3CF

2π is the first coefficient of the mass
anomalous dimension γm ¼ γm0αs þ � � �. Our result gives
an interesting new perspective on this well-known result in
Eq. (43). The one-loop anomalous dimension γm0 origi-
nates from the delta function spikes at x ¼ �1 (meaning
that the gluon carries away all the quark’s energy) and an
almost flat distribution for 1 > x > −1. Curiously, the delta
function δðxÞ is absent, in contrast to eðxÞ in the same
model. In the next subsection we perform the same analysis
for the coefficient of F2 in Eq. (43).

B. Gluon target

Next we consider the case where the target jpi is a single
gluon with transverse polarization. To regularize the infra-
red divergence, the gluon is assumed to be off-shell with
spacelike momentum p2 ¼ 2pþp− < 0. Accordingly, we
take M2 ¼ −p2. To zeroth order

FðxÞ ¼ δð1 − xÞ þ δð1þ xÞ: ð44Þ
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To one loop, the diagrams which give nonvanishing contributions are listed in Fig. 2. There are also the self-energy
diagrams to be considered later. After straightforward calculations we find, for 1 > x ¼ kþ=pþ > 0, Figs. 2(a)+2(b):

pþ

−2p2
ig2Nc

Z
dk−dd−2k⊥

ð2πÞd
− 4xk2⊥

1−ϵ − 2ðx2 þ 5x − 4Þðp − kÞ2 − 8ð1 − xÞ2p2 − 2xð1 − xÞk2
xð1 − xÞðk2 þ iϵÞððp − kÞ2 þ iϵÞ : ð45Þ

Figure 2(c) shows

pþ

−2p2
ig2Ncδð1 − xÞ

Z
dx0dk−dd−2k⊥

ð2πÞd
2k2⊥
1−ϵ þ 2ð3x0 − 2Þðp − kÞ2 − 2ð3x0 − 1Þk2 þ 4ð1 − 2x0ð1 − x0ÞÞp2

x0ð1 − x0Þðk2 þ iϵÞððp − kÞ2 þ iϵÞ : ð46Þ

where x0 ¼ kþ=pþ. The result for x < 0 is simply obtained
by x → −x, kμ → −kμ.
At this point we must specify the prescription for the

spurious poles 1=kþ ∼ 1=x and 1=ðpþ − kþÞ ∼ 1=ð1 − xÞ.
If one uses the principal value (pv) prescription

1

½kþ�pv
¼ lim

δ→0

kþ

ðkþÞ2 þ δ2
;

1

½pþ − kþ�pv
¼ lim

δ→0

pþ − kþ

ðpþ − kþÞ2 þ δ2
; ð47Þ

the k− integral does not interfere with the poles. Then the
terms proportional to ðp − kÞ2 and k2 in the numerator can
be dropped. However, the remaining integrals contain
frame-dependent divergences ∼ lnpþ=δ whose cancella-
tion is nontrivial. This is a well-known symptom of the

principal value prescription. Here we instead adopt the
Mandelstam-Leibbrandt (ML) prescription [24],

1

½kþ�ML
¼ 1

kþ þ iϵk−
;

1

½pþ − kþ�ML
¼ 1

pþ − kþ þ iϵðp− − k−Þ : ð48Þ

With this choice, one can write

1

½kþ�ML½pþ−kþ�ML
¼ 1

pþ

�
1

½kþ�ML
þ 1

½pþ−kþ�ML

�
; ð49Þ

and use the master integrals collected in Appendix B. The
result for the total contribution from the three diagrams is

(a) (b)

(c)

FIG. 2. Feyman diagrams that contribute to FðxÞ in the light-cone gauge. The dashed line denotes the Wilson line which is set to unity
in this gauge. The self-energy diagrams are omitted.
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ðaÞ þ ðbÞ þ ðcÞ ¼ αsNc

2π

��
1

ϵ
þ ln

μ2

−p2

��
2 − x −

2

½x�þ
−
3

2
δð1 − xÞ

�

− xþ ðx − 2Þ ln xð1 − xÞ þ 2 lnð1 − xÞ
x

þ
�
π2

3
−
5

2

�
δð1 − xÞ

�
; ð50Þ

where the plus-prescription 1=½x�þ is defined as

1

½x�þ
≡ 1

x1þϵ − δðxÞ
Z

1

0

dx0

x01þϵ : ð51Þ

We thus see that, similarly to eðxÞ, FðxÞ also contains the
delta function at x ¼ 0. However, the way it appears is
somewhat unexpected. The coefficient of δðxÞ is divergent,
and its only role is to cancel the familiar soft gluon
singularity 1=x in the first moment. This is a potentially
important observation that may find other applications.
Notice that the x integral of Eq. (50) vanishes exactly

including the finite terms
R
1
0 dxððaÞ þ ðbÞ þ ðcÞÞ ¼ 0. This

is a special feature of the ML prescription which is not
shared by the principal value prescription. It actually agrees
with the result obtained in the background field gauge [25]
(for the divergent part), namely, the renormalization of the

local operator FμνFμν solely comes from the self-energy
insertion into the external legs. However, in the x space we
find an interesting redistribution of partons. The finite
part (obtained after removing the 1=ϵ pole and setting
μ2 ¼ −p2) is plotted in Fig. 3. The density of F2 is negative
in the large-x region 1 > x > 0.3, and this depletion is
exactly compensated by the positive region at small-x and
the delta functions at x ¼ 1.
The self-energy diagrams modify the leading term as,

again in the ML prescription [26],

δð1−xÞ→ δð1−xÞ
�
1þαsNc

2π

�
β0

2Ncϵ
−
π2

3
þ67

18
−
5nf
9Nc

��
:

ð52Þ

Adding all contributions, we arrive at, for 1 > x > 0,

FðxÞ ¼ δð1 − xÞ þ αsNc

2π

�
2 − x −

2

½x�þ
þ
�
−
3

2
þ β0
2Nc

�
δð1 − xÞ

��
1

ϵ
þ ln

μ2

−p2

�

þ αsNc

2π

�
−xþ ðx − 2Þ ln xð1 − xÞ þ 2 lnð1 − xÞ

x
þ
�
11

9
−
5nf
9Nc

�
δð1 − xÞ

�
: ð53Þ

The result for 0 > x > −1 is simply given by FðxÞ ¼
Fð−xÞ. The first moment reads

1

2

Z
1

−1
dxFðxÞ ¼ 1þ β0

αs
4π

�
1

ϵ
þ ln

μ2

−p2

�

þ αsNc

2π

�
−
π2

3
þ 67

18
−
5nf
9Nc

�
; ð54Þ

in agreement with Eq. (43). Incidentally, the nth moment is
given by, for even n ≥ 2,

1

2

Z
1

−1
dxxnFðxÞ¼1þαsNc

2π

�
−

n2þ3nþ4

nðnþ1Þðnþ2Þ−
3

2
þ β0
2Nc

�
1

ϵ

þ���: ð55Þ

It is tempting to relate this result to the anomalous
dimension of the operator FμνðDþÞnFμν. However, this
is nontrivial because for high-dimension operators one has
to compute multipoint Green’s functions, not just the two-
point function, in order to disentangle the mixing with other
operators. A proper treatment in the case of eðxÞ has been
given in [23]. Yet, very little is known about the anomalous
dimension of high-dimensional, higher-twist gluonic oper-
ators [27,28]. We leave this to future work.

V. CONCLUSIONS

In this paper we have introduced the twist-four parton
distribution function FðxÞ which integrates to the gluon
condensate hPjF2jPi and studied its properties based on the

0.2 0.4 0.6 0.8 1.0

−8

−6

−4

−2

2

4

6

FIG. 3. Plot of the function −xþ ðx − 2Þ ln xð1 − xÞ þ 2 lnð1−xÞ
x ,

see Eq. (50), for 1 > x > 0.
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equation of motion relations and one-loop calculations.
Our work literally adds a new dimension—momentum
fraction x—to the study of nucleon mass structure. In the
future, it would be interesting to further include the
dependence on the transverse momentum Fðx; k⊥Þ as
was done for the quark distribution eðx; k⊥Þ (see e.g.,
Ref. [14]). However, at the moment, all this is highly formal
and mostly of conceptual interest. The first moment
hPjF2jPi can be probed in near-threshold quarkonium
production [5–7], but extracting the x dependence, sim-
ilarly to the case of eðxÞ [29,30], will be more challenging.
Presumably FðxÞ enters the Deep Inelastic Scattering (DIS)
structure functions as a part of the twist-four corrections,
but this has to be worked out in details.
Both the operator analysis and one-loop calculations

suggest that FðxÞ contains the delta function δðxÞ. After all,
this is physically reasonable and could have been antici-
pated since the zero mode x ¼ 0 is the genuine non-
perturbative sector of light-front quantization [20–22], and
therefore it has to do with the generation of hadron masses.
In perturbation theory, there is of course no issue of mass
generation. Still, the delta function is necessary for the
consistency of the calculation, like reproducing the correct
anomalous dimension as we have seen and restoring
Lorentz invariance as emphasized elsewhere (see, e.g.,
[31] for a recent discussion). Finally, we emphasize that the
structure at finite 1 > x > 0 is equally interesting and has a

better chance to be explored either experimentally or in
lattice QCD, although the latter will involve difficulties
similar to those encountered in the calculation of F2. In
particular, we predict an enhancement at small-x due to the
familiar soft gluon divergence in QCD. It would be
interesting to study higher order corrections to this behavior
(for example along the line of [32,33]) and also the possible
impact of the gluon saturation.
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APPENDIX A: EVALUATION
OF EQ. (35), CONTINUED

The last four terms in Eq. (35) can be written as, again
assuming translational symmetry,

Fþ−ð0Þ
Z

dz−εðz−ÞDiFi−ðz−Þ þ Fþið0Þ
Z

dz−εðz−ÞDjFjiðz−Þ þ Fþið0Þ
Z

dz−εðz−ÞD−F−iðz−Þ þ 2F−iF−i þ FijFij

¼ −
Z

dz−εðz−ÞDiFi−ð0ÞFþ−ðz−Þ −
Z

dz−εðz−ÞD−F−ið0ÞFþiðz−Þ þ 2F−iF−i

−
Z

dz−εðz−ÞDjFjið0ÞFþiðz−Þ þ FijFij: ðA1Þ

After integration by parts, the first three terms of Eq. (A1) become

− i
Z

dz−εðz−Þ
Z

z−

0

dw−ðFi−ð0ÞgFþiðw−ÞFþ−ðz−Þ þ F−ið0ÞgFþ−ðw−ÞFþiðz−ÞÞ

þ
Z

dz−εðz−ÞFi−ðDiFþ− −D−FþiÞ þ 2F−iF−i: ðA2Þ

The second line of Eq. (A2) vanishes because DiFþ− −D−Fþi ¼ DþFi− so that

Z
dz−εðz−ÞFi−ð0ÞDþFi−ðz−Þ þ 2F−iF−i ¼ 0; ðA3Þ

where we used ∂z−εðz−Þ ¼ 2δðz−Þ. The last two terms of Eq. (A1) can be written as

−i
Z

dz−εðz−Þ
Z

z−

0

dw−Fjið0ÞgFþjðw−ÞFþiðz−Þ þ
Z

dz−εðz−ÞFjið0ÞDjFþiðz−Þ þ FijFij: ðA4Þ
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The last two terms of Eq. (A4) actually cancel. This can be seen by writing DjFþi → 1
2
ðDjFþi −DiFþiÞ ¼ 1

2
DþFji and

integrating by parts in z−. The sum of Eqs. (A2) and (A4) is then

−i
Z

dz−εðz−Þ
Z

z−

0

dw−Fμνð0ÞgFþμðw−ÞFþνðz−Þ: ðA5Þ

This exactly cancels the second line of Eq. (32).

APPENDIX B: USEFUL INTEGRALS

Here we list the integrals needed to evaluate Eqs. (45) and (46).

Z
ddk
ð2πÞd

1

ðk2 þ iϵÞððp − kÞ2 þ iϵÞ ¼
i

16π2
ΓðϵÞ

�
μ2

−p2

�
ϵ

ð1þ 2ϵÞ; ðB1Þ

Z
dk−dd−2k⊥

ð2πÞd
1

ðk2 þ iϵÞððp − kÞ2 þ iϵÞ ¼
i

16π2pþ ΓðϵÞ
�

μ2

−xð1 − xÞp2

�
ϵ

; ðB2Þ
Z

dk−dd−2k⊥
1

½kþ�MLðk2 þ iϵÞ ¼ 0; ðB3Þ

Z
dk−dd−2k⊥

ð2πÞd
1

½pþ − kþ�MLðk2 þ iϵÞ ¼
ip2

16π2ðpþÞ2 ΓðϵÞ
�

μ2

−p2

�
ϵ δð1 − xÞ

1 − ϵ
; ðB4Þ

Z
dk−dd−2k⊥

ð2πÞd
1

½kþ�MLðk2 þ iϵÞððp − kÞ2 þ iϵÞ ¼
i

16π2ðpþÞ2 ΓðϵÞ
�

μ2

−p2

�
ϵ ð1 − xÞ−ϵ

½x�þ
; ðB5Þ

Z
ddk
ð2πÞd

1

½kþ�MLðk2 þ iϵÞððp − kÞ2 þ iϵÞ ¼
i

96pþ : ðB6Þ

Z
dk−dd−2k⊥

ð2πÞd
k2⊥

½pþ − kþ�MLðk2 þ iϵÞððp − kÞ2 þ iϵÞ ¼
ip2

16πðpþÞ2 ΓðϵÞ
�

μ2

−p2

�
ϵ
�

x1−ϵ

ð1 − xÞϵ −
δð1 − xÞ
1 − ϵ

�
; ðB7Þ

Z
ddk
ð2πÞd

k2⊥
½pþ − kþ�MLðk2 þ iϵÞððp − kÞ2 þ iϵÞ ¼

−ip2

32π2pþ ΓðϵÞ
�

μ2

−p2

�
ϵ

ð1þOðϵ2ÞÞ: ðB8Þ

Note that Eq. (B6) is finite. The plus-prescription in Eq. (B5) is defined in Eq. (51). This can be understood as follows. For
kþ ≠ 0, the prescription is irrelevant and one can use Eq. (B2) to evaluate the integral. On the other hand, the kþ integral of
Eq. (B5) does not contain divergence due to Eq. (B6) so there must be a delta function singularity at kþ ¼ 0.
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