
 

Semileptonic decays of heavy mesons with artificial neural networks

Cody M. Grant,1 Ayesh Gunawardana ,1 and Alexey A. Petrov 1,2

1Department of Physics and Astronomy Wayne State University, Detroit, Michigan 48201, USA
2Leinweber Center for Theoretical Physics University of Michigan, Ann Arbor, Michigan 48196, USA

(Received 21 April 2020; accepted 21 July 2020; published 5 August 2020)

Experimental checks of the second row unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
involve extractions of the matrix element Vcd, which may be obtained from semileptonic decay rates of D
to π. These decay rates are proportional to hadronic form factors which parametrize how the quark c → d
transition is realized in D → π meson decays. The form factors cannot yet be analytically computed over
the whole range of available momentum transfer q2, but can be parametrized with a varying degree of
model dependency. We propose analysis of the form factor shapes using a system of artificial neural
networks trained from experimental pseudodata and averaged together to predict their shapes with a
prescribed uncertainty. We comment on the parameters of several commonly-used model parametrizations
of semileptonic form factors. We extract shape parameters and use unitarity to bound the form factor at a
given q2, which then allows us to bound the CKM matrix element jVcdj.
DOI: 10.1103/PhysRevD.102.034003

I. INTRODUCTION

Studies of exclusive semileptonic decays of heavy
mesons play an important role in understanding the
dynamics of the strong interaction. They may also provide
additional constraints on physics beyond the standard
model (SM) [1]. Such searches, recently performed in B
decays yielded tantalizing results in measurements related
by lepton universality requirements, i.e., by the requirement
that couplings of leptons to gauge bosons be independent of
the lepton flavor. It is interesting to see if similar anomalies
exist in semileptonic decays of charmed particles if higher
precision data are available [2–5].
Accurate theoretical description of such transitions is

also needed for the extraction of relevant Cabbibo-
Kobayashi-Maskawa (CKM) matrix elements. In particu-
lar, decays of charmed D0, Dþ, or Ds mesons provide the
simplest way to determine the magnitudes of quark mixing
parameters Vcs or Vcd [5,6]. Extractions of these CKM
matrix elements from experimentally measured semilep-
tonic decay rates are done with the knowledge of matrix
elements of quark currents that describe strong interaction
effects. This implies that accurate description of semi-
leptonic transitions is also needed for improvement of our
understanding of quark hadronization mechanisms in
quantum chromodynamics (QCD). A hadronic transition

between two mesons in exclusive semileptonic decays
makes it a suitable system to theoretically analyze matrix
elements of flavor changing currents, which are usually
parametrized in terms of momentum-dependent form fac-
tors. In semileptonic decays of charmed mesons, the form
factors that describe the hadronic part of the decay
amplitudes are conventionally introduced as

hKðπÞðpKðπÞÞjq̄γμcjDðpDÞi

¼ Fþðq2Þ
�
Pμ −

m2
D −m2

KðπÞ
q2

qμ

�
þF0ðq2Þ

m2
D −m2

KðπÞ
q2

qμ;

ð1Þ

where P ¼ pD þ pKðπÞ and q ¼ pD − pKðπÞ. Experimental
studies of these form factors are performed through the
analysis of the differential decay rate dΓ=dq2. In the
simplest cases where the mass of the final state lepton
can be neglected, the differential decay rate can be written
as

dΓðD → KðπÞlνlÞ
dq2

¼ G2
FjVcqj2
24π3

jpKðπÞj3jFþðq2Þj2; ð2Þ

where jpKðπÞj is the magnitude of the KðπÞ 3-momentum
vector in the D-meson rest frame. As can be seen from
Eq. (2), only a single form factor, Fþðq2Þ, contributes.
Accurate calculations of the nonperturbative form factors

Fþ=0ðq2Þ in the whole momentum range are very chal-
lenging. Aside from lattice QCD [7] and/or QCD sum rule
(QCDSR) [8] calculations of matrix elements of hadronic
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currents in exclusive decays, we are currently lacking a
complete nonperturbative description of hadronic form
factors. While both lattice QCD and QCDSR computations
of form factors are improving, at the moment they only
provide model-independent predictions for Fþðq2Þ at
limited regions of q2.
Rather general arguments based on analyticity of Fþðq2Þ

have been used to place general constraints on the shapes of
the form factors. A popular approach that rigorously
employs analyticity requirement involves the so-called
z-expansion, where a series expansion of the form factor
around some point t ¼ q2 is improved by making a
conformal transformation to the parameter z [9],

zðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p ; ð3Þ

which maps the interval −∞ < q2 < tþ onto the line
segment −1 < z < 1. Here t0 is a free parameter that
corresponds to the values of q2 that maps onto z ¼ 0,
and t� ¼ ðmD �mπÞ2. The form factor can be expanded in
z as

Fþðq2Þ ¼
1

Φðq2; t0Þ
X∞
k¼0

akðt0Þzkðq2; t0Þ ð4Þ

where Φðq2; t0Þ is an arbitrary function that is analytic
anywhere but the unitarity cut [9,10]. Note that Φðq2; t0Þ is
often written as Φðq2; t0Þ ¼ Pðq2Þϕðq2; t0Þ, with the
Blaschke factor Pðq2Þ ¼ zðq2; m2

VÞ if there are poles
present in between q2 ¼ 0 and the beginning of the
unitarity cut, as in B → π transitions where mV ¼ mB�

[11,12]. Note that Pðq2Þ ¼ 1 for the D → πlν transition.
The expansion in Eq. (4) is converging rapidly, so only a
few terms in the expansion are really needed.1 Lattice QCD
[7] or QCD sum rule [8] results can be used to constrain the
coefficients ak to provide a model-independent parametri-
zation of the form factor.
As it stands, phenomenological parametrizations of the

form factors are also often used [14]. The most common
parametrization is a “single pole” shape, where the pole
refers to the lowest mass vector resonance formed in the
t-channel with quantum numbers of the quark current. For
example, in the decay D → πeν̄e the dominant pole is the
D⋆, a vector state with 1− quantum numbers,

Fpole
þ ðq2Þ ¼ Fþð0Þ

1 − q̂2
; ð5Þ

where Fþð0Þ is the value of the form factor at zero
momentum recoil that has to be fixed either from the

lattice QCD or from other arguments, and q̂2 ¼ q2=m2
D� .

While physical masses of the states D�ð2010Þ (for D → π
transition) or D�

sð2112Þ (for D → K transition) could be
used, the massmD� is often taken as a fit parameter, as there
is no reason to believe that the lowest-lying pole would
saturate the form factor over the whole available kinemati-
cal range. More complicated shapes, with more effective
poles, are also available [1],

Fþðq2Þ ¼
Fþð0Þ
ð1 − αÞ

1

1 − q2=m2
V
þ
XN
k¼1

ρk

1 − 1
γk

q2

m2
V

; ð6Þ

where α determines the strength of the dominant pole, ρk
gives the strength of the kth term in the expansion, and
γk ¼ m2

Vk
=m2

V , with mVk
representing masses of the higher

mass states with vector quantum numbers. In principle, a
form factor can be approximated to any desired accuracy by
introducing a large number of effective poles. Keeping the
number of terms in this expansion manageable, a popular
parametrization due to Becirevic and Kaidalov (BK) [15] is
often used, representing the N ¼ 1 truncation of the
expansion in Eq. (6),

FBKþ ðq2Þ ¼ Fþð0Þ
ð1 − q̂2Þð1 − aBKq̂2Þ

; ð7Þ

where aBK is a fit parameter. As with the case of a single
pole shape in Eq. (5), a good fit to experimental distribution
can be obtained if mV is regarded as a fit parameter as well.
While there is only one extra parameter between Eq. (5)
and (7), the BK parametrization starts off with more
parameters. A number of parameters is reduced by applying
relationships obtained in the heavy-quark limit to decrease
the number of parameters displayed in the above equation.
A further extension of the BK parametrization was pro-
posed by Ball and Zwicky (BZ) [16,17],

FBZþ ðq2Þ ¼ Fþð0Þ
1 − q̂2

�
1þ rBZq̂2

1 − aBZq̂2

�
; ð8Þ

where rBZ and aBZ are the shape parameters. Note that the
parametrization of the form factor in BZ model employed
in Eq. (8) [17] can be related to the original BZ-
parametrization [16]

FBZþ ðq2Þ ¼ r1
1 − q̂2

þ r2
1 − aBZq̂2

; ð9Þ

by the identification Fþð0Þ ¼ r1 þ r2 and rBZ ¼
ðaBZ − 1Þr2=ðr1 þ r2Þ. Note that aBZ represents paramet-
rization of the continuum states above D� and therefore
aBZ < 1.
All form factor parametrization discussed above re-

present physically-motivated ways to describe hadronic
1See however [13] for a discussion of possible shortcomings of

this approach.
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input. Yet, a question might be asked then what uncertainty
should be assigned to the choice of a particular shape of the
fit function. In other words, we will be interested if
choosing a specific functional form for the form factor
induces a bias in the interpretation of results of an
experimental analysis.
This question may be addressed in the framework of

machine learning (ML) approach, in particular, it can be
investigated with the help of artificial neural networks
(ANN). Based on the Kolmogorov-Arnold representation
theorem [18], it has been shown that ANN can be used as
an unbiased estimator of data [19,20]. This fact has been
used by the NNPDF collaboration to parametrize nucleon’s
parton distribution functions [21–23], and in form factor
analysis of nucleon data [24,25]. In this paper we shall
build a statistical interpolating model based on a system of
ANNs that contains information on experimental uncer-
tainties and correlations, but does not introduce theoretical
bias. Following [21,22], we employ an approach based on
multilayer feed-forward neural networks trained using the
back-propagation learning algorithm.

II. NEURAL NETWORKS

A. Basic facts about neural networks

With the recent explosion of interest in machine learning,
artificial neural networks are now widely employed in
analyses in experimental particle physics. Their use in jet-
finding algorithms and other applications are well known
[26]. Roughly speaking, a neural network is represented by
a certain nonlinear function that connects input and output
data. This leads to another feature of ANNs which we

explore in this paper: their ability to provide unbiased
universal approximants to incomplete data [19,20].
An ANN is built to mimic the structure of human

neurons and consists of a set of interconnected units (see
Fig. 1) called neurons or nodes. The activation state of a
neuron is determined as a function of the activation states of
the i neurons connected to it. Each pair of neurons is
connected by a synapsis, characterized by a weight, which
we call ωi. We also introduce a set of θi, representing
thresholds for each neuron to “fire.” Each ANN contains
several groups of neurons called layers. The first layer is
called an input layer. It provides input information that is to
be approximated. In this paper the input information is the
value of q2 for each bin in q2 distribution of the CKM
matrix element times the semileptonic form factor. We find
it convenient in this work to work with an input layer that
contains two nodes, as we shall explain later. The final layer
is the output layer. It gives the value of form factor for each
q2 along with its uncertainty. Layers between the input and
output are conventionally called hidden. In this work we
employ ANNs with two hidden layers containing 3 nodes
in first hidden layer and 4 in the second one. The ANN is
trained when optimal sets of weights and thresholds are
determined such that ANN reproduces the training data
within a given uncertainty. This is achieved by minimizing
the error function,

E½ω; θ�≡ 1

2

Xnp
A¼1

ðoðq2AÞ − yAÞ2; ð10Þ

where np is the number of pseudodata used to train an
ANN, oðq2AÞ is the output, which is given by the ANN’s fit
for a given input data q2A. The target data point for our
paper, yA, is obtained from the magnitude of the CKM
matrix element times the semileptonic form factor,
jVcdFþðq2Þj. The differential distribution of Eq. (2) is
proportional to its square.
The oðq2AÞ is obtained using forward propagation. In

order to achieve this we pass the input through a network of
hidden nodes. The output from the first hidden layer with
n1 number of nodes is

ξ½1� ¼ g

�Xn1
i¼1

ω½1�
i q2 − θ½1�

�
: ð11Þ

In this equation the response of each neuron is given by

gðxÞ≡ 1

1þ e−x
; ð12Þ

which is the sigmoid activation function, and the summa-
tion over the q2 data points is implied.
The ξ½1� is then used as an input for the second hidden

layer with n2 number of hidden nodes, and so on. The

FIG. 1. A sample structure of an artificial neural network with
two hidden layers. In this work we used the ANN structure
(2,3,4,1), i.e., a network with two nodes in the input layer, three
(four) nodes in the first (second) hidden layer, and one node in the
output layer. The function ξl is defined in Eq. (13).
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process is continued until the output layer of ANN is
reached. In general, we can construct the output from lth
hidden layer with nl number of nodes as

ξ½l� ¼ g

�Xnl
i¼1

ω½l�
i ξ½l−1� − θ½l�

�
: ð13Þ

where ξ½l−1� is the output from the (l − 1)th layer. The fit of
the L layer ANN oðq2Þ is then defined as

oðq2Þ ¼ ξ½L�: ð14Þ

In the training process the thresholds and weights need to
be adjusted so the output represented the training data with
a set precision, so the error function in Eq. (10) need to be
minimized. It is common to use the method of steepest
descent for this purpose. Instead, we decided to use the
nonlinear conjugate gradient (NLCG) method [27,28]
to minimize Eq. (10). In each iteration the ωi and the θi
update as

δω½l� ¼ −η
∂E
∂ω½l� ; δθ½l� ¼ −η

∂E
∂θ½l�i

; ð15Þ

where η is the learning rate at a given iteration. The NLCG
method employed here does not require a pre-defined
learning rate. The learning rate is initially determined by
using line search algorithms [27], and then iteratively
updated based on the gradients that are in a conjugate
direction to original gradient used in the line search
algorithm. As it turns out, the NLCG method converges
much faster than steepest descent method for the fits
employed in this paper. For more details on the NLCG
method, see Ref. [28]. The gradients of the error function
are obtained by using the method of back propagation [29].
Back propagation can be thought of as a consecutive
application of the chain rule. By applying the chain rule
we find the gradient of the Lth layer to be

Δ½L� ¼ g0ðh½L�Þ½oðq2Þ − y� ð16Þ

where g0ðh½L�Þ is the derivative of the activation function
with respect to h½L� and

h½L� ¼
XnL−1
i¼1

ω½L�ξ½L−1�i − θ½L�: ð17Þ

The derivatives with respect to ωi and θi for layer L are
given by

∂E
∂ω½L�

i

¼ Δ½L�ξ½L−1�i ; i ¼ 1;…; nL−1;

∂E
∂θ½L�i

¼ −Δ½L�: ð18Þ

The output of Eq. (16) is used to obtain the derivatives of

the (L − 1)th layer, Δ½L−1�
j ,

Δ½L−1�
j ¼ g0ðh½L−1�ÞΔ½L�

i ω½L�: ð19Þ

The procedure is repeated for the hidden layers to find
derivatives of error function with respect to ωi and θi in
each layer,

∂E
∂ω½l�

ij

¼ Δ½l�
i ξ½l−1�j ; i ¼ 1;…; nl; j ¼ 1;…; nl−1;

∂E
∂θ½l�i

¼ −Δ½l�
i ; i ¼ 1;…; nl: ð20Þ

Using these we can obtain the numerical gradient of the
error function and find the corrections to the weights and
thresholds.

B. Neural network training

Training of ANNs described in the previous section must
be performed either on real or artificial data (pseudodata).
The pseudodata is generated using as much experimental
information as possible. It can be constructed with uncor-
related data, correlated data, normalized data, or some
combination of all three. In this work we elected to follow
[23] and generate pseudodata from the BES III exper-
imental data set of [30] employingMonte Carlo techniques.
We chose to select only this experimental data set and not to
include earlier experimental data because the BES III data
set includes complete correlation matrices for statistical and
systematic uncertainties. It would indeed be interesting to
apply our methodology to upcoming Belle II data. The
artificial data is generated as

jVcdFþðq2ÞjðartÞ;ðkÞi ¼ jVcdFþðq2ÞjðexpÞi

þ
XNsys

j¼1

rðkÞsys;jσsys;ji þ
XNstat

m¼1

rðkÞstat;mσstat;mi

ð21Þ

where i ¼ 1;…; Ndata is the number of experimental data
entries considered, which is equal to the number of q2 bins.
These entries are used to generate k ¼ 1;…; Nrep of
Monte Carlo “replicas.” These replicas are generated
following the recipe of [23]. The first term on the right-
hand side of Eq. (21) is the central value from the
experimental data point for a given q2 bin. The data points
in the replicas are created from it by using the remaining
terms on the right-hand side of Eq. (21), which provide
variation in pseudodata samples. They represent experi-
mental uncertainties (correlated systematic, and correlated
statistical, respectively) obtained from the experimental
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data. Each “uncertainty term” is multiplied by a Gaussian

random number rðkÞsys;j or r
ðkÞ
stat;m, which have a mean of zero

and a standard deviation of one. The correlation matrix
elements, corrðj; iÞ, found in Ref. [30] is a normalized
correlation matrix. We use the relative uncertainty found
under the correlation matrix in the same table to compute
σsys;ji and σstat;li:

σj;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̃iσ̃jcorrðj; iÞ

q
; ð22Þ

where σ̃i is the relative uncertainty for the ith bin of data.
Every value of jVcdFþðq2ÞjðartÞ has a different and unique
q2 input generated for it.
There are three possible ways to generate pseudodata for

each given value of q2 inside each bin: a random choice of
q2 generated with a flat prior across the entire q2 bin, the
central q2 value for each bin, or a random choice of q2

assuming some non-flat distribution of q2 values inside the
bin. We chose the first option, as introducing a distribution
of q2 values, be it a delta function at the middle of the bin or
some other continuous random distribution, would intro-
duce a bias in the ANN curve related to the choice of the q2

distribution. Therefore, we feel that generating a flat prior
for q2 inside each bin is the best option with the least
number of assumptions.
We generate a new set of pseudodata when we initialize a

new neural network. Each batch has an average q2 and a
standard deviation relating to the q2 values, which are used
to scale the each value of q2 which we have generated.
Using the scaled q2 data as a secondary input is recom-
mended to improve the stability and the performance of
ANNs [31]. In particular, data standardization is a
popular data scaling choice, and it is defined as
q̃2iρ ¼ ðq2iρ − q̄2ρÞ=σρ, where ρ is the batch number and i
is a single q2 value in the batch. With this transformed data,
each of our ANNs has the structure (2,3,4,1), as the two
hidden layers provide the most efficient structure without
compromising the performance or accuracy. We terminate
ANN training when the difference in the error functions
from the current and last epochs reaches a value of 10−8 or
less. We found that using a larger bound results in a poor fit,
while using a smaller bound exponentially increases the
computation time. With a higher number of nodes, the fit
for the system of ANN’s would have a smaller uncertainty,
but the training speed would also be reduced. Finally, to
address overfitting concerns, we studied various configu-
rations of ANNs. Please see Appendix for more informa-
tion regarding various choices of hyperparameters.

III. FORM FACTOR PARAMETRIZATION WITH
NEURAL NETWORKS

We generated 18,000 pseudodata points for q2 bins for
each of the ten networks. After training all networks

individually, we found the average ANN-predicted curve
for jVcdFþðq2Þj with uncertainty calculated for every q2

value. The differential decay rate, dΓ=dq2, can then be
easily computed. The q2 dependences of the rate and
the jVcdFþðq2Þj curves are shown in Figs. 2 and 3
respectively. Further results of the ANN training and
relevant graphs are available at the URL https://s.wayne
.edu/hepmachinelearning/.
We would like to point out that ANNs are worse at fitting

the values near the edges of their training ranges when
compared to fitting values near the middle of that range,
which is common for ANN fits [32]. Yet, considering the
ANN-predicted jVcdFþðq2Þj curve in Fig. 3, it appears that
there is only a slight “flaring” of the uncertainty at the

FIG. 2. Our averaged ANN result for the differential decay rate
plotted against the experimental measurement. The purple data
points are the experimental data from [30]. The black and cyan
curves are the average value and one standard deviation,
respectively, from the output of our averaged ANN.

FIG. 3. ANN fits for jVcdFþðq2Þj plotted against the three
models described in the text. The black and cyan curves are the
average value and one standard deviation, respectively, from the
output of our neural network. The dotted red curve is the simple
pole model. The dot-dashed green curve is the modified pole
model. The dashed magenta curve is the BZ model. The purple
data points are calculated from the experimental data in Ref. [30].
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kinematical boundaries. The uncertainties of dΓ=dq2 curve
in Fig. 2 are then roughly doubled, as it is a square’ of
jVcdFþðq2Þj times some kinematical factors. The fractional
uncertainty at the q2 ¼ 0 boundary is visually more
pronounced due to larger experimental uncertainties of
data toward q2 ¼ 0. We would like to compare our results
with some common form factor models: simple pole, the
BK model (or modified pole), and the BZ model [15–17].
Since the ANN fits a product of Vcd and Fþðq2Þ, a direct
comparison will be affected by the value of Vcd that would
have to be taken as an external parameter. With that in
mind, we can compare jVcdFþð0Þj obtained from the
model fits and our ANN analysis of the semileptonic decay
data.
A further insight into how well model-inspired para-

metrizations describe hadronic dynamics is possible if we
expand the form factor around q2 ¼ 0,

jVcdFþðq2Þj ¼ jVcdFþð0Þjð1 þ F1q2 þ F2q4 þ � � �Þ;
ð23Þ

and compare the coefficients Fn of the higher order terms
for the models to our averaged ANN output. We looked at
the ratios of the nth derivative of the form factor divided by
the form factor at q2 ¼ 0,

Fn ¼
1

n!Fþð0Þ
dnFþðq2Þ
dðq2Þn

����
q2¼0

: ð24Þ

We note that the first and second terms in Eq. (23), which
are independent of the value of Vcd, are quite sensitive to
the quark hadronization dynamics. In particular, drawing
parallels to the discussion of the charge radius of the proton
[33], the slope of Fþðq2Þ at q2 ¼ 0, denoted F1, encodes
the information about the effective size of the volume
where the quark transition takes place. We shall call the
coefficient F1 a transitional charge radius.
In order to compare F1;2 of a particular model-inspired

parametrizations to our ANN fits, we need to determine
shape parameters for each form factor model. Other than
the simple pole model, where we take the mass of the
D�ð2010Þ resonance as mD� , the parameters that need to be

fit include aBK for the BK model, and aBZ and rBZ for the
BZ model. We obtain these shape parameters by fitting the
model to the experimental data. Using this procedure we
find aBK ¼ 0.277� 0.029 for the BK model and rBZ ¼
0.295� 0.123 and aBZ ¼ 0.192� 0.555 for the BZ model.
We note that for each of these parametrizations the
combination jVcdFþð0Þj is also treated as a fit parameter.
The resulting values for jVcdFþð0Þj, F1, and F2 for the

neural network parametrization and the model-inspired
parametrizations can be found in Table I. Please note that
ANN output is a discrete set of values for various values of
q2. Regardless of how fine the values of q2 are spaced,
numerical calculations of derivatives for F1 and F2 [see
Eq. (24)] need to be done very carefully. Since we only
use data close to q2 ¼ 0, i.e., the data in the range
0 ≤ q2 ≤ 0.54 GeV2, we found it easier to fit the
averaged ANN curve directly to a Taylor expansion around
q2 ¼ 0.
As we can see from the first column of Table I, the values

of jVcdFþð0Þj and F2 are consistent throughout the popular
form factor models and are roughly consistent with the
results of our ANN study. The agreement is much worse
for the parameter F1: the ANN fits are consistently smaller
for the transitional charge radius F1. It is likely that this
happens due to rather rigid parametrizations of the model-
inspired form factors, which artificially decrease possible
uncertainties associated with them. This is particularly true

for the simple pole parametrization Fpole
þ ðq2Þ: the uncer-

tainty of F1;2 is unreasonably small because once
jVcdFþð0Þj is fixed, the only uncertainties that can cause
the spread in F1;2 are the experimental uncertainties in the
value of mD� , which are rather small. We conclude that it is
possible that more effective poles need to be taken into
account if model-inspired form factors are used for para-
metrizations of future experimental data. We compare ANN
and model fits in Fig. 3.

IV. FORM FACTOR BOUNDS AND THEIR
DERIVATIVES

We can use our ANN fits to obtain separate bounds on
the CKM matrix element Vcd if we combine our fits with

TABLE I. Form factor parameters at q2 ¼ 0 for this work and three common model choices. Note the
unreasonably tiny uncertainty of the parameters F1;2 of the pole form factor, which is related to the rigidity of
the chosen functional form.

Form factor jVcdFþð0Þj × 10−2 F1 × 10−1 GeV−1 F2 × 10−1 GeV−1

ANN (this work) 15.52� 1.07 1.049� 0.148 1.322� 0.343
Fpole
þ ðq2Þ 15.57� 0.10 2.4830� 0.0001 1.2330� 0.0001

FBKþ ðq2Þ 14.37� 0.16 3.170� 0.072 1.666� 0.055
FBZþ ðq2Þ 14.35� 0.25 3.215� 1.378 1.666� 0.887
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model-independent bounds on the hadronic form factor
imposed by analyticity and unitarity requirements [11]. In
order to do so and place an upper bound on jFþð0Þj, we
would need to calculate moments of the heavy-light

invariant amplitude Πþðq2Þ, which we denote by χðnÞþ .
They are defined by the relation,

χðnÞþ ¼ 1

π

Z
∞

tþ
dt

ImΠþðtþ iϵÞ
tnþ1

; ð25Þ

where n denotes a specific moment and tþ ¼ ðmD þmπÞ2.
These moments can be computed in QCD. In addition, an
inequality for the imaginary part of Πþðq2Þ, which holds
for t > tþ,

ImΠþðtþ iϵÞ ≥ 3

2

1

48π

½ðt − tþÞðt − t−Þ�3=2
t3

jFþðtÞj2 ð26Þ

can be found via the unitarity sum of the Dπ state spectral
function in the isospin limit [11]. This result leads to an
inequality with respect to the moment,

χðnÞþ ≥
1

π

Z
∞

tþ
dtρðnÞþ ðtÞjFþðtÞj2. ð27Þ

The functions ρðnÞþ ðtÞ are defined as a product of the
denominator from Eq. (25) and the phase space factors
from Eq. (26),

ρðnÞþ ðtÞ ¼ 3

2

1

48π

½ðt − tþÞðt − t−Þ�3=2
tnþ4

: ð28Þ

The form factor is an analytic function in the cut complex t-
plane, so we can apply the standard techniques to derive the
constraint on the form factor [11]. We can bring Eq. (27) to
a canonical form by mapping it to the interior of a unit disk
using the transformation in Eq. (3). In this mapping
zðtþÞ ¼ 1 and zð∞Þ ¼ −1. In terms of z, the inequality is

1

2π

Z
2π

0

dϕjgðnÞþ ðeiϕÞj2 ≤ χðnÞþ : ð29Þ

On one hand the analytic function gðnÞþ ðzÞ can be written as

gðnÞþ ðzÞ ¼ Fþðt̃ðzÞÞωðnÞ
þ ðzÞ; ð30Þ

where ωðnÞ
þ ðzÞ is called the outer function. The outer

function is analytic and has no zeroes in the support

domain, such that jωðnÞ
þ j2 is equal to ρðnÞþ ðt̃ðeiϕÞÞ times

the Jacobian of Eq. (3),

ωðnÞ
þ ðzÞ ¼

�
1

4
ffiffiffiffiffiffi
2π

p
� ðtþ − t̃ðzÞÞð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t−
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t̃ðzÞp Þ32ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t̃ðzÞp Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t04
p ð ffiffiffiffiffi

tþ
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t̃ðzÞp Þðnþ4Þ ; ð31Þ

where we have set t0 ¼ 0 for our calculation. The outer
function and the form factor can be expressed in terms of

the variable z using t̃ðzÞ ¼ tþð1 − ð1−zÞ2
ð1þzÞ2Þ, which is the

inverse transform of Eq. (3). On the other hand, gðnÞþ ðzÞ can
be expanded in z,

gðnÞþ ðzÞ ¼ gðnÞþ;0 þ gðnÞþ;1zþ gðnÞþ;2z
2 þ…: ð32Þ

This expansion is convergent for jzj < 1. It follows from
Eq. (29) that the coefficients must satisfy the inequality

χðnÞþ ≥
X∞
j¼0

ðgðnÞþ;jÞ2. ð33Þ

The left side of the above inequality is always positive,
which leads to a maximum number of g-coefficients
being nonzero. Expanding Eq. (30) in a Taylor series

around z ¼ 0 and setting it equal to Eq. (32) results in each
g-coefficients being a function of Fþð0Þ, F1;2, and meson

masses. Substituting gðnÞþ;jðFþð0Þ; F1;2;…Þ into Eq. (33) and
solving for Fþð0Þ leads to a bound on the form factor (at

q2 ¼ 0) in terms of F1, F2, and χðnÞþ ,

jFþð0Þj ≤
16tþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πχðnÞðtþ þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

tþΔt�
p Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðnÞðF1; F2; tþ; t−Þ

q ; ð34Þ

where we definedΔt� ¼ ðtþ − t−Þ, and hðnÞðF1; F2; tþ; t−Þ
is the denominator for this bound, which depends on the
moment that is being used to calculate the bound. Changing
the moment also means we have to change which outer
function we have to use via Eq. (31). Explicitly, the
denominator of the jFð0Þj bound from the first moment
and outer function can be written as
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hð1ÞðF1; F2; t�Þ ¼
5

16
t2− −

1

2
t−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
tþΔt�

p þ 25

16

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t3þΔt�

q
− t−tþ þ 109

64
t2þ

þ F1tþ

�
2t2− −

13

2
t−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
tþΔt�

p
−
17

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t3þΔt�

q
−
11

2
t−tþ −

17

4
t2þ

�

þ F2
1t

2þð5t2− − 32t−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tþΔt�

p þ 106

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t3þΔt�

q
− 85t−tþ þ 106t2þÞ

þ F1F2t3þð−32t2− þ 88t−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tþΔt�

p
− 224

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t3þΔt�

q
þ 200t−tþ − 224t2þÞ

þ F2t2þð−4t2− þ 10t−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tþΔt�

p
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t3þΔt�

q
þ 11t−tþ − 2t2þÞ

þ F2
2t

4þð32t2− − 64t−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tþΔt�

p þ 128

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t3þΔt�

q
− 128t−tþ þ 128t2þÞ: ð35Þ

The moments χðnÞþ in Eq. (34) have been calculated in OPE
as the sum of the perturbative and nonperturbative con-
tributions. We calculated updated numbers for the moments
based on new values for the condensates and masses at a
scale of μ ¼ 2 GeV. The parameter values at a scale of
μ ¼ 2 GeV were calculated in [34–37] and can be found in
Table II. The perturbative pieces for the heavy to light
correlators were calculated for up to two loops in Ref. [38].
Using Eqs. (34), (35), and the Appendix of Ref. [38], we

can find the updated values for χðnÞPTþ , for which we include

uncertainties. The results are in the Table III. The non-
perturbative piece can be written as

χðnÞNP
þ ¼ −

1

m2ðnþ2Þ
c;pole

�
m̄chūui þ

hαG2i
12π

�
ð36Þ

where hūui and hαG2i are the quark and gluon condensates,
respectively. These parameter values have been taken from
Table II, and the updated values for the moments can be
found in Table III.
As shown in Table I, we foundF1 andF2 for our averaged

system of neural networks to be F1 ¼ ð1.049� 0.148Þ ×
10−1 GeV−1 and F2 ¼ ð1.322� 0.343Þ × 10−1 GeV−2.
Using these two values with jVcdFþð0Þj ¼ ð15.52�
1.07Þ × 10−2, and plugging it into the inequality we obtained
with Eq. (34), we can find an upper bound for the form factor
at q2 ¼ 0 for each moment that has been calculated. The
results can be found in Table IV. The results quoted in the
table are consistent with the result jVcdj ¼ 0.218� 0.004
quoted by the Particle Data Group (PDG) [37].

V. CONCLUSIONS

Accurate theoretical description of semileptonic form
factor Fþðq2Þ are needed for accurate extraction of the
CKM matrix elements Vcd and for studies of possible new
physics contributions. While lattice QCD and QCD sum
rules’ calculations provide model-independent results for
various portions of available q2 range, extrapolations of
Fþðq2Þ are often needed to extend the predictions to other
values of q2, for which a particular shape of the q2-
dependence is often used. What systematic uncertainty
does choosing a particular function to describe a q2

dependence of the form factors brings to such extrapola-
tion? We performed the fit of the available experimental
data to an artificial neural net, which was used in a capacity
of a universal unbiased approximant. We found that the
optimal configuration of each perceptron neural net to be
(2,3,4,1), i.e., a net with two hidden layers with 3 (4) nodes
in the first (second) hidden layer. The results of the ANN

TABLE II. Perturbative and nonperturbative parameters used in
the calculation of moments χþ.

Quantity Value

αS (2 GeV) 0.38� 0.03
mc;pole 1.67� 0.07 GeV
hūui (2 GeV) ð−0.276þ0.012

−0.010 GeVÞ3
hαG2i ð7.0� 1.3Þ × 10−2 GeV4

m̄c (2 GeV) 1.10� 0.03 GeV

TABLE III. Perturbative and nonperturbative parts of the mo-
ments χðnÞþ for n ¼ 1, 2, 3.

Moment, n χðnÞNP
þ × 10−3 χðnÞPTþ × 10−3 χðnÞþ × 10−3

1 (in GeV−2) 0.98� 0.25 6.37� 0.67 7.35� 0.89
2 (in GeV−4) 0.35� 0.12 0.80� 0.15 1.15� 0.26
3 (in GeV−6) 0.13� 0.05 0.14� 0.04 0.27� 0.09

TABLE IV. Upper bound for jFþð0Þj and lower bound for jVcdj
calculated for each moment.

Moment, n jFþð0Þj, upper bound jVcdj, lower bound
1 0.529� 0.171 0.293� 0.097
2 0.847� 0.271 0.183� 0.060
3 1.593� 0.494 0.097� 0.030
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training and relevant graphs are available at https://s
.wayne.edu/hepmachinelearning/. While the simple
ANNs employed in this paper do not provide spectacular
extrapolation to q2 ¼ 0, the obtained results, displayed in
Table I, can be used to test existing models of q2-
dependence of the Fþðq2Þ form factor. Based on our fits,
we conclude that it is possible that more effective poles
need to be taken into account if model-inspired form
factors are used for parametrizations of future experimen-
tal data. Finally, we used the resulting ANN fit to improve
unitarity constraints on the form factor, which allowed for
the model-independent bounds on Vcd.
We would like to note that while our system of ANNs

was only trained with one set of data, we believe a
completely trained system of ANNs, such as ours, can
in principle be used for analyses of the same form factor in
other datasets of exclusive semileptonic D decays.
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APPENDIX: HYPERPARAMETER TUNING OF
ARTIFICIAL NEURAL NETWORKS

In this Appendix we discuss the optimization of artificial
neural network in terms of its hyperparameters. The
hyperparameters of a multilayer neural networks are

FIG. 4. Impact of the number of epochs per neural network training. ANN structure (2,3,4,1): (a) ANN fit for 20 epochs, (b) ANN fit
for 30 epochs, (c) ANN fit for 40 epochs, and (d) ANN fit for 50 epochs.
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defined as the number of hidden nodes in each layer,
the number of training epochs per neural network,
and the size of the training set per neural network.
Here we concentrate on the case of ANN with two hidden
layers.
In literature, the grid method and random search are

two most popular ways to search for the optimal set of
hyperparameter values. However, the grid method is
considered to be a somewhat brute force method [39], so
we decided to employ a randomly generated hyper-
parameter space for the following analysis. Specifically,
we randomly generated the number of nodes in each
layer and provided a representation of different con-
figurations in the parameter space. In the following,
the ANN fits were obtained by averaging over ten

ANNs, and we used 18,000 pseudodata points per
ANN q2 bin.

1. Impact of the number of epochs

To analyze the impact of the number of epochs per neural
network, we generated the following figures. Starting from
20 epochs, we increased the amount up to 50 with ten
epoch intervals. The structure of the neural networks is
fixed at (2,3,4,1). Figure 4 shows the neural network output
for different epochs.
The optimization algorithm iteratively updates the

weights (ω) and cutoff (θ) in each epoch. A large
number of epochs increase the probability of finding
the global minimum of the error function. As a result,
ANN fit gradually improved as the number of epochs
increased.

FIG. 5. Impact of the number of hidden nodes per neural network for 20 epochs: (a) ANN fit for (2,1,2,1), (b) ANN fit for (2,3,4,1),
(c) ANN fit for (2,6,8,1), and (d) ANN fit for (2,15,12,1).
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FIG. 6. Impact of the number of hidden nodes per neural network for 20 epochs: (a) ANN fit for (2,20,23,1), (b) ANN fit for
(2,30,37,1).

FIG. 7. Impact of the number of hidden nodes per neural network for 50 epochs: (a) ANN fit for (2,1,2,1), (b) ANN fit for (2,3,4,1),
(c) ANN fit for (2,6,8,1), and (d) ANN fit for (2,15,12,1).

SEMILEPTONIC DECAYS OF HEAVY MESONS WITH … PHYS. REV. D 102, 034003 (2020)

034003-11



2. Impact of number of hidden nodes for
small number of epochs

The number of epochs were fixed to 20. Starting from
ANN structure (2,1,2,1) we increased the number of hidden
nodes as (2,3,4,1), (2,6,8,2), (2,15,12,1), (2,20,23,1),
and (2,30,37,1). Figures 5 and 6 show the impact of
number of hidden nodes on ANN fits at the lower end
of epoch space.
As expected, the neural networks fit gradually improved

with the increasing number of hidden nodes.

3. Impact of the hidden nodes for
large number of epochs

Similarly, we analyzed the impact of a large number of
epochs. Starting from the ANN structure (2,1,2,1), we
increased the number of hidden nodes per ANN while
keeping the number of epochs fixed at 50. Figures 7 and 8
show the ANN fit obtained for (2,1,2,1), (2,3,4,1),
(2,6,8,1), (2,15,12,1), (2,20,23,1) and (2,30,37,1).
At 50 epochs, we obtain a robust ANN fit with a

relatively small number of hidden nodes. For example,

FIG. 8. Impact of the number of hidden nodes per neural network for 50 epochs: (a) ANN fit for (2,20,23,1), (b) ANN fit for
(2,30,37,1).

FIG. 9. Impact of the 180 pseudodata points per q2 bin at 20 epochs and 50 epochs for ANN structure (2,3,4,1): (a) ANN fit for 20
epochs, and (b) ANN fit for 50 epochs.
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at 50 epochs, our ANN fit starts to capture the experimental
data set features for the structure (2,3,4,1). In comparison,
at 20 epochs, a similar performance was observed only at
the structure (2,15,12,1). On the other hand, from Figs. 7
and 8, we infer that at 50 epochs, the ANN’s with a large
number of hidden nodes started to overfit the data set.

4. Impact of the number of pseudodata points per q2 bin

The number of pseudodata per q2 bin was changed to
180. We start our analysis with 20 epochs and then
increased to 50 while keeping the structure (2,3,4,1).
Figure 9 provide the ANN fits for 20 epochs and 50 epochs.

Similarly, Fig. 10 provides the ANN fits for 1800 pseu-
dodata points per q2 bin. We trained the neural networks
with 20 and 50 epochs while keeping the structure fixed
at (2,3,4,1).
Figures 9 and 10 should be compared with the Figs. 5(b)

and 7(b). We found that the number of pseudodata per bin
does not play a significant role than the number of epochs.
However, if we trained a large number of neural networks,
then the number of pseudodata points per bin could
have been an important parameter. Finally, we observed
that 18,000 pseudo data per bin is adequate to train
ten ANNs.
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