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This paper presents high-precision theoretical predictions for s-channel eþe− → l−lþ scattering. The
calculations are performed using the SANC system. They take into account complete one-loop electroweak
radiative corrections as well as the longitudinal polarization of the initial beams. The reaction observables
are obtained using the helicity amplitude method with taking into account the initial- and final-state fermion
masses. Numerical results are given for the center-of-mass energy range

ffiffiffi
s

p ¼ 250–1000 GeV with
various degrees of polarization.
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I. INTRODUCTION

Planned experiments (with/without polarization of
the initial beams) in high energy physics for electron-
positron annihilation have been proposed with the capabil-
ity of precise measurements at the International Linear
Collider (ILC) [1–7], the eþe− Future Circular Collider
(FCC-ee) [8–12], the Compact Linear Collider (CLIC)
[13–15], and the Circular Electron Positron Collider
(CEPC) [16].
The high precision of experiments at future eþe− colliders

demands nontrivial requirements for theory, which are
reviewed in [17]. The first calculation of corrections to
the eþe− → μ−μþ process was carried out by Passarino and
Veltman [18]. Most of the theoretical works on lepton pair
production (LPP) before the large electron-positron (LEP)
collider era concerned the next-to-leading order electroweak
(EW) radiative corrections (RCs) (see, e.g., [19–24]).
The above-mentioned calculations were an evolution of

basic codes incorporated in the standard LEP tools such as
TOPAZO [25–27], ZFITTER [28], and ALIBABA [29,30]. A
comprehensive review of the underlying theory and meth-
ods which have been used to create these codes can be
found in the monograph [31].

Polarized electron/positron beams are important to
achieve relative uncertainty of measurements of the total
cross section and left-right asymmetry with an accuracy of
a few permille. In the LEP era, results were presented for
theoretical support of the polarized eþe− annihilation; see
[24,32–37]. However, the mentioned investigations did not
create a tool at the same level accuracy for polarized beams.
The only exception are calculations of the KKMC event

generator project [38–40], which provide differential and
total cross sections for arbitrary polarizations of the initial
eþe− beams and final-state fermions. The precision for
unpolarized case is at the two to four permille level. The
KKMC program includes the first order electroweak
corrections in the spin amplitudes using technique of form
factors in front of the invariant amplitudes in the matrix
element [39]. The spin amplitudes are defined and used not
only for a single hard photon but for an arbitrary number of
hard photons using technique of Kleiss-Stirling [41], which
employs Weyl spinor technique with arbitrary fermion spin
quantization axis [38,39].
There are three main eþe− processes to be used for

the purpose of high-precision luminometry at flavor facto-
ries and future colliders: Bhabha, LPP eþe− → l−lþ, and
photon pair production eþe− → γγ [42].
In a series of papers [43,44] and this paper, we recall

the above-mentioned three processes taking into account
the one-loop EW RC and longitudinally polarized eþe−
initial beams.
At the moment, the most advanced and widely used

generators with one-loop RCs for estimation of luminosity
by LPP process are BABAYAGA [45–48] and KKMC [39,49].
For the unpolarized case, we have already presented a

comprehensive comparison of the eþe− → ff̄ process with

*bondarenko@jinr.ru
†Also at Institute for Nuclear Problems, Belarusian State

University, Minsk, 220006 Belarus.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 102, 033004 (2020)

2470-0010=2020=102(3)=033004(11) 033004-1 Published by the American Physical Society

https://orcid.org/0000-0001-7333-6275
https://orcid.org/0000-0001-8620-225X
https://orcid.org/0000-0001-5976-7933
https://orcid.org/0000-0002-9157-6819
https://orcid.org/0000-0002-0709-4228
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.033004&domain=pdf&date_stamp=2020-08-24
https://doi.org/10.1103/PhysRevD.102.033004
https://doi.org/10.1103/PhysRevD.102.033004
https://doi.org/10.1103/PhysRevD.102.033004
https://doi.org/10.1103/PhysRevD.102.033004
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


the results of ZFITTER for all light fermion production
channels in [50]. In this work, we give a brief description,
focusing on the high energy region, of the calculation of
EW RCs for the lepton (muon) pair production including
the contributions of the longitudinal polarization of the
initial states.
In the future eþe− collider program, the optimized

accelerator parameters are the center-of-mass (c.m.) energy
of 250 GeV, and higher and longitudinal electron �80%
and positron 0;�30% degree of polarization. Moreover, it
proposes a balance between polarization and c.m. energy
sets for optimal physics diversity.
In this study, the relevant contributions to the cross

section are calculated analytically using the helicity ampli-
tudes approach, which allows one to evaluate the contri-
bution of any polarization of the initial and final fermions,
and then obtain a numerical result. The helicity amplitudes
were used not only for the Born-like parts but also for the
hard photon bremsstrahlung contribution taking into
account the initial and final masses of the radiated particles.
In this paper. we, to be specific, consider only longitudi-
nally polarized initial beams for experimental conditions of
future colliders [7,15,51]. The angular and energy depend-
ence is also considered.
In a special case of the LPP eþe− → τ−τþ reaction, the τ

lepton decays can be used to determine their polarization
[52], which gives extra information on the Zττ vertex. The
influence of the polarization of the initial beams to the
asymmetries and the final lepton polarization is given
in [53].
There are many papers devoted to the study of the

eþe− → μþμ− channel at the one-loop level with polarized
effects in the initial state; see, e.g., [33,34] and references
therein. It is highly nontrivial to perform a tuned compari-
son of the numerical results, since the authors not always
present a complete list of input parameters.
We have performed high-precision tests at the tree level

using the electron-positron branch of the MCSANC integra-
tor [54,55] and the generator RENESANCE [56] with the
results of alternative codes. The polarized Born and hard
photon bremsstrahlung contributions were compared with
the corresponding values obtained with the help of the
CalcHEP [57] and WHIZARD packages [58–61]. The sum
of virtual and soft photon bremsstrahlung contributions
in the unpolarized case is compared with the AITALC-1.4

code [62].
Numerical estimations are presented for the total and

differential cross sections in the scattering angle cosϑl and
for relative corrections. Also, the left-right asymmetry ALR
is given.
Considering the eþe− → l−lþ process as one for the

purpose of luminometry, one needs to take into account
high-order effects, such as leading multiphoton QED
logarithms, EW, and mixed QCD-EW multiloop correc-
tions. These corrections will be implemented in the future.

The paper is organized as follows. Section II is devoted
to the expressions for the covariant amplitude (CA) and
helicity amplitude (HA) for the Born, virtual, and hard
photon bremsstrahlung contributions. The approach for
estimating polarization effects is also given. Section III
contains numerical results for the total and differential cross
sections as well as for relative corrections and ALR
asymmetry. The comparison with other computer codes
is also given. Finally, in Sec. IV, we present conclusions
and outlook for further work on LPP process within the
SANC framework.

II. DIFFERENTIAL CROSS SECTION

The cross section of the generic process eþe− → … of
the longitudinally polarized eþ and e− beams with the
polarization degrees Peþ and Pe− can be expressed as
follows:

σðPeþ ; Pe−Þ ¼
1

4

X
χ1;χ2

ð1þ χ1PeþÞð1þ χ2Pe−Þσχ1χ2 ; ð1Þ

where χ1ð2Þ ¼ −1ðþ1Þ corresponds to the particle iwith the
left (right) helicity.
The complete one-loop cross section of the process can

be split into four parts,

σone-loop ¼ σBorn þ σvirtðλÞ þ σsoftðλ;ωÞ þ σhardðωÞ; ð2Þ

where σBorn is the Born cross section, σvirt is the contri-
bution of virtual (loop) corrections, σsoftðhardÞ is the soft
(hard) photon emission contribution (the hard photon
energy Eγ > ω). Auxiliary parameters λ (“photon mass”)
and ω are canceled after summation.
We apply the helicity approach to all the contributions.
The virtual (Born) cross section of the eþe− → l−lþ

process

eþðp1; χ1Þ þ e−ðp2; χ2Þ → l−ðp3; χ3Þ þ lþðp4; χ4Þ ð3Þ

can be written as follows:

dσvirtðBornÞχ1χ2

d cos ϑl
¼ πα2

βl
2s

jHvirtðBornÞ
χ1χ2 j2; ð4Þ

where

jHvirtðBornÞ
χ1χ2 j2 ¼

X
χ3;χ4

jHvirtðBornÞ
χ1χ2χ3χ4 j2: ð5Þ

ml is the final lepton mass and βl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

l
s

q
, ϑl is the

angle between the final lepton l− and initial electron e−.
The soft photon bremsstrahlung terms [initial-state

radiation (ISR), interference (IFI), final-state radiation
(FSR)] are factorized to the Born cross section as follows:
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σsoft;ISR ¼ −σBorn
α

π
Q2

e

�
ð1þ LeÞ ln

�
4ω2

λ

�

þ Le

�
1þ 1

2
Le

�
þ π2

3

�
;

σsoft;IFI ¼ σBorn
α

π
QeQl

�
2 ln dt ln

�
4ω2

λ

�

þ
�
2 ln

�
1þ d2t

st

�
þ ln

�
−
st
d2t

��
ln

�
−
st
d2t

�

þ
�
2Jl − ln

�
1 −

2m2
l

βþl dt

��
ln
�
1 −

2m2
l

βþl dt

�

þ 2Li2

�
1þ 2t

βþl dt

�
− 2Li2

�
−
d2t
st

�

− 2Li2

�
β−l dt

ðm2
l þ tÞ − βldt

��
−
�
t ↔ u

�
;

σsoft;FSR ¼ −σBorn
α

π
Q2

l
1

βl

��
1þ

�
1 −

2m2
l

s

�
Jl

�
ln

�
4ω2

λ

�

þ Jl þ
�
1 −

2m2
l

s

��
1

2
J2l þ 2 ln

�
−
2β

βþl

�
Jl

þ2Li2

�
β−l
βþl

�
þ π2

3

��
;

where Le ¼ ln ðm2
e=sÞ, β�l ¼ 1� βl, Jl ¼ lnðβ−l Þ=βþl Þ,

dI ¼ m2
l − I; I ¼ t, u.

The cross section for the hard photon bremsstrahlung

eþðp1; χ1Þ þ e−ðp2; χ2Þ ¼ l−ðp3; χ3Þ þ lþðp4; χ4Þ
þ γðp5; χ5Þ ð6Þ

is given by the expression

dσhardχ1χ2

ds0d cos θ4dϕ4d cos θ5
¼ α3

s − s0

32πs2
β0l
βe

jHhard
χ1χ2 j2; ð7Þ

where s0 ¼ ðp3 þ p4Þ2, β0l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

l =s
0

q
, and

jHhard
χ1χ2 j2 ¼

X
χ3;χ4;χ5

jHhard
χ1χ2χ3χ4χ5 j2: ð8Þ

Here θ5 is the angle between 3-momenta of the photon
and positron, θ4 is the angle between 3-momenta of the
antimuon μþ and photon in the rest frame of ðl−lþÞ com-
pound, and ϕ4 is the azimuthal angle of the μþ in the rest
frame of ðl−lþÞ compound.

A. Covariant amplitude for the Born
and virtual parts

The covariant one-loop amplitude corresponds to the
result of the straightforward standard calculation by means
of the SANC programs and procedures of all diagrams

contributing to a given process at the tree (Born) and one-
loop levels. It is represented in a certain basis made of
strings of Dirac matrices and/or external momenta (struc-
tures) contracted with polarization vectors of gauge bosons,
if any. The amplitude also contains kinematic factors and
coupling constants and is parametrized by a certain number
of form factors (FFs), which we denote by F, in general
with an index labeling the corresponding structure. The
number of FFs is equal to the number of structures.
For processes with nonzero tree-level amplitudes, the

FFs have the form

F ¼ 1þ kF̃ ; ð9Þ

where “1” is due to the Born level and the term F̃ with the
factor k ¼ g2=16π2 is due to the one-loop level. After
squaring the amplitude, we neglect terms proportional
to k2.
Neglecting the masses of the initial particles, the covar-

iant one-loop amplitude of the eþe− → l−lþ process can be
parametrized by six FFs. If the initial-state masses were not
ignored, we would have ten structures with ten scalar form
factors and ten independent helicity amplitudes.
We work in the so-called LQD basis, which naturally

arises if the final-state fermion masses are not ignored. Six
form factors FLL;QL;LQ;QQ;LD;QDðs; t; uÞ correspond to six
Dirac structures. They are labeled according to their
structures. A common expression for this CA in terms
of F ij was presented in [50]. We recall it here to introduce
the notation; Aγ is also described by a QQ structure; it is
separated out for convenience,

AγðsÞ ¼ ie2
QeQl

s
StrQQF γ;

AZðsÞ ¼ ie2
χZðsÞ
s

½Ið3Þe ðIð3Þl StrLLFLL þ δlStrLQFLQÞ

þ δeðIð3Þl StrQLFQL þ δlStrQQFQQÞ
þ Ið3Þl ðIð3Þe StrLDFLD þ δeStrQDFQDÞ�: ð10Þ

We use the following notation for the structures:

StrLL ¼ γμð1þ γ5Þ ⊗ γμð1þ γ5Þ;
StrQL ¼ γμ ⊗ γμð1þ γ5Þ;
StrLQ ¼ γμð1þ γ5Þ ⊗ γμ;

StrQQ ¼ γμ ⊗ γμ;

StrLD ¼ γμð1þ γ5Þ ⊗ ð−imlDμÞ;
StrQD ¼ γμ ⊗ ð−imlDμÞ;

where the symbol γμ ⊗ γμ denotes the shorthand expres-
sion
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γμ ⊗ γν ¼ v̄ðp1Þγμuðp2Þūðp3Þγνvðp4Þ ð11Þ

and

Dμ ¼ ðp4 − p3Þμ: ð12Þ

Here and below χZðsÞ is the Z=γ propagator ratio,

χZðsÞ ¼
1

4s2Wc
2
W

s
s −M2

Z þ iMZΓZ
: ð13Þ

We also use the coupling constants

Qf; Ið3Þf ; σf ¼ vf þ af; δf ¼ vf − af;

sW ¼ e
g
; cW ¼ MW

MZ
:

For more details, see [50].

B. Helicity amplitude for Born and virtual parts

As was stated, we have six nonvanishing HAs. They
depend on kinematic variables, coupling constants, and six
scalar form factors,

H−þþ− ¼ −cþðQeQlF γ

þ χZðsÞδe½β−l Ið3Þl FQL þ δlFQQ�Þ; ð14Þ

H−þ�� ¼ 2mlffiffiffi
s

p sinϑl

�
QeQlF γ

þ χZðsÞδe
�
Ið3Þl FQL þ δlFQQ þ s

2
β2l I

ð3Þ
l FQD

��
;

ð15Þ

Hþ−�� ¼ −
2mlffiffiffi
s

p sinϑl

�
QeQlF γ

þ χZðsÞ
�
2Ið3Þe ðIð3Þl FLL þ δlFLQÞ þ δeI

ð3Þ
l FQL

þ δeδlFQQ þ s
2
β2l I

ð3Þ
l ð2Ið3Þe FLD þ δeFQDÞ

��
;

ð16Þ
Hþ−−þ ¼ −cþðQeQlF γ

þ χZðsÞ½βþl Ið3Þl ð2Ið3Þe FLL þ δeFQLÞ
þ δlð2Ið3Þe FLQ þ δeFQQÞ�Þ: ð17Þ

The expression for the amplitude H−þ−þ (Hþ−þ−) can
be obtained from the expression for H−þþ− (Hþ−−þ) by
replacing cþ → c−, β−l → βþl .
Helicity indices denote the signs of the fermion spin

projections to their momenta p1, p2, p3, p4, respectively,
where

c� ¼ 1� cos ϑl;

and the scattering angle ϑl is related to the Mandelstam
invariants t, u,

t ¼ m2
l −

s
2
ð1 − βl cosϑlÞ;

u ¼ m2
l −

s
2
ð1þ βl cosϑlÞ:

Though we have expressions for the helicity amplitudes,
which take into account the initial particle masses, in
Eqs. (14)–(17) they are omitted. The presence of the
electron masses gives additional terms proportional to
the 2me=

ffiffiffi
s

p
factor which is equal to 10−5 at the Z peak

energy and can be considered insignificant in the present
calculations.
In order to get helicity amplitudes for the Born level, one

should set Fγ;LL;LQ;QL;QQ ¼ 1 and FLD;QD ¼ 0.

C. Helicity amplitudes for hard photon bremsstrahlung

We present the HAs for eþe−lþl−γ → 0 (
P

pi ¼ 0)
process at any s, t, or u channel, where 0 stands for vacuum,
and all masses are not neglected.
The full expression for the photon bremsstrahlung

amplitude can be divided into two terms,

A…χi… ¼ 2
ffiffiffi
2

p
ðQeAe

…χi… þQlAl
…χi…Þ: ð18Þ

Each term corresponds to a gauge-invariant diagram
subset: Ae is the amplitude for radiation from the electron
line (ISR) and Al—for radiation from the final lepton
line (FSR).
There exists a crossing symmetry relation between them,

Al
χ1χ2χ3χ4χ5ðp1; p2; p3; p4; p5Þ
¼ Ae

χ3χ4χ1χ2χ5ðp3; p4; p1; p2; p5Þ and me ↔ ml:

ð19Þ

Explicitly, gauge-invariant form of the amplitude is
obtained,

ffiffiffi
2

p
Ae
χ1χ2χ3χ4χ5 ¼

Tr½=p1=p2F5�
z1z2

v̄1=e34u2

−
v̄1F5=e34u2

z1
−
v̄1=e34F5u2

z2
; ð20Þ

with abbreviations zi ¼ 2pi · p5, ui ≡ uχiðpiÞ, etc.
The polarization vector of a real photon appears only

in the combination F5 ¼ pμ
5ε

ν
5σμν. This is the familiar

Maxwell bivector, which is gauge invariant. We introduce
also abbreviations for the following combinations of
propagators and couplings constants:
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=e34 ¼
1

2

X
a;b¼�1

Dabðv̄3γμγbu4Þγμγa;

Dab ¼ QeQl

s0
þ gaegbl
s0 −M2

Z þ iMZΓZ
; ð21Þ

where g�l are the chiral couplings of the leptons l to the
vector boson Z.
We work in the chiral representation of gamma matrices

and exploit Weyl spinors. Our notation is consistent with
[63,64]. Below we use the following denotation for the
Dirac spinor decomposition into the Weyl one:

=p ¼
� pA _B

p _AB

�
¼

�
p̌

p̂

�
; u ¼

�
uA

u _A

�
¼

� jui
ju�

�
;

ū ¼ ð ūA; ū _A Þ ¼ ð hūj; ½ūj Þ;

F ¼
�
FA

B

F _A
_B

�
¼

�
F̌

F̂

�
: ð22Þ

Application of the Fiertz identities to the Pauli matrices
yields

ê34 ¼ jv̄3�Dþþhu4j þ ju4�Dþ−hv̄3j;
ě34 ¼ ju4iD−þ½v̄3j þ jv̄3iD−−½u4j: ð23Þ

The HAs are not Lorentz-invariant objects (they change
with boosts transverse to a momentum ray) and thus
rudimentally depend on an experimental setup. However,
one expects that all physical content of a reaction should
depend only on a relative configuration of particles by
analogy with the rigid body dynamics in a rotating
reference frame. This type of description usually appears
to be most economic one.
In order to factor out all information related to a

configuration of experiment, we must build a spin basis
in terms of problems momenta. Our investigations show
that one of the most economic choices is to put the
polarization vector of fermion ni with i ¼ 1…4 into the
same two-plane with its momentum pi and momentum of
photon p5. Each two-plane contains two lightlike vectors:
photon momentum and the other one denoted by ki.
Explicit expressions for ki can be found in [65].
Then, in the photon basis, we have

juþi i ¼ jv−i i ¼ jū−i i ¼ jv̄þi i ¼ jkii≡ jii;
ju−i � ¼ jvþi � ¼ jūþi � ¼ jv̄−i � ¼ jki�≡ ji�;
juþi � ¼ −jv−i � ¼ −jū−i � ¼ jv̄þi � ¼ −j5�ς�i ;
ju−i i ¼ −jvþi i ¼ −jūþi i ¼ jv̄−i i ¼ j5ijςi; ð24Þ

with ςi ¼ mi=hij5i, where we identify k5 ≡ p5.

Maxwell bivector has a factorized form in spinor nota-
tion F̌þ

5 ¼ ffiffiffi
2

p j5ih5j, F̂−
5 ¼ ffiffiffi

2
p j5�½5j, F̌−

5 ¼ F̂þ
5 ¼ 0, which

allows us to organize the amplitude in terms of blocks,

Ae
χ1χ2χ3χ4χ5 ¼ Sχ5Bχ1χ2χ3χ4 − C1χ1χ5G

2
χ2χ3χ4χ5 − C2χ2χ5G

1
χ1χ3χ4χ5 ;

ð25Þ
where

Bχ1χ2χ3χ4 ¼ ½v̄1jê34ju2i þ hv̄1jě34ju2�; ð26Þ

G1
χ1χ3χ4� ¼

� ½v̄1jê34j5i
hv̄1jě34j5�

�
; G2

χ2χ3χ4� ¼
� h5jě34ju2�
½5jê34ju2i

�
;

Sχ5 ¼ −
� ½1j2�
½1j5�½2j5� ;

h1j2i
h1j5ih2j5i

�
;

C1χ1χ5 ¼
� ½5j1�

h5j1i

�−1
; C2χ2χ5 ¼

� ½2j5�
h2j5i

�−1
:

We are going to evaluate the amplitude only for positive
photon helicity, because the case of negative one can be
easily obtained with CP symmetry,

Aχ1χ2χ3χ4− ¼ −χ1χ2χ3χ4A�−χ1−χ2−χ3−χ4þ; ð27Þ

with “þ” ↔ “−” in Dab.
Below we give all amplitudes with positive photon

helicity,

Ae−−−þþ ¼ −Sþh4j5iðDþþ½3j1�ς2 þD−þ½3j2�ς1Þ;
Ae−−þ−þ ¼ −Sþh3j5iðDþ−½4j1�ς2 þD−−½4j2�ς1Þ;
Ae−þ−−þ ¼ Sþh2j5iðDþþ½3j1�ς4 þDþ−½4j1�ς3Þ;
Aeþ−−−þ ¼ Sþh1j5iðD−þ½3j2�ς4 þD−−½4j2�ς3Þ;
Ae

−−þþþ ¼ Sþ½5j1�ðDþ−h3j5iς2ς�4 þDþþh4j5iς2ς�3Þ
þ Sþ½5j2�ðD−−h3j5iς1ς�4 þD−þh4j5iς1ς�3Þ;

Aeþþ−−þ ¼ Sþh1j5iðD−þ½5j3�ς�2ς4 þD−−½5j4�ς�2ς3Þ
þ Sþh2j5iðDþþ½5j3�ς�1ς4 þDþ−½5j4�ς�1ς3Þ;

Ae−þ−þþ ¼ SþðDþþ½3j1�h2j4i −D−þh4j5i½5j3�ς1ς�2
−Dþ−h2j5i½5j1�ς3ς�4Þ þ C2þþDþþ½3j1�h4j5i;

Ae
−þþ−þ ¼ SþðDþ−½4j1�h2j3i −D−−h3j5i½5j4�ς1ς�2

−Dþþh2j5i½5j1�ς�3ς4Þ þ C2þþDþ−½4j1�h4j5i;
Aeþ−−þþ ¼ SþðD−þ½3j2�h1j4i −Dþþh4j5i½5j3�ς�1ς2

−D−−h1j5i½5j2�ς3ς�4Þ þ C1þþD−þ½3j2�h4j5i;
Aeþ−þ−þ ¼ SþðD−−½4j2�h1j3i −Dþ−h3j5i½5j4�ς�1ς2

−D−þh1j5i½5j2�ς�3ς4Þ þ C1þþD−−½4j2�h3j5i;
Ae−þþþþ ¼ −Sþ½5j1�ðDþ−h2j3iς�4 þDþþh2j4iς�3Þ

− C2þþ½5j1�ðDþ−h3j5iς�4 þDþþh4j5iς�3Þ;
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Aeþ−þþþ ¼ −Sþ½5j2�ðD−−h1j3iς�4 þD−þh1j4iς�3Þ
− C2þþ½5j2�ðD−−h3j5iς�4 þD−þh4j5iς�3Þ;

Aeþþ−þþ ¼ Sþ½5j3�ðD−þh1j4iς�2 þDþþh2j4iς�1Þ
þ h4j5i½5j3�ðC1þþD−þς�2 þ C2þþDþþς�1Þ;

Aeþþþ−þ ¼ Sþ½5j4�ðD−−h1j3iς�2 þDþ−h2j3iς�1Þ
þ h3j5i½5j4�ðC1þþD−−ς�2 þ C2þþDþ−ς�1Þ;

Aeþþþþþ ¼ Ae
−−−−þ ¼ 0:

To obtain HA H with definite helicity, the basis-trans-
formation matrices Cξi

χi should be applied independently
for each index χ of external particles whose polarization is
not averaged,

H…ξi… ¼ Cξ1
χ1…Cξ4

χ4A…χi…: ð28Þ

Explicit expressions for the matrices C can be found in [66]
and for our special case in [65]. Geometrically, they realize
the Wigner rotation of the spin axis [67,68].

III. NUMERICAL RESULTS AND COMPARISONS

In this section, we show numerical results for EW RC to
eþe− → μ−μþ scattering obtained by means of the SANC

system. Comparison of our results for specific contribu-
tions at the tree level with CalcHEP [57] and WHIZARD [58–
61] is given. Numerical results are completed by estimating
the polarization effect and evaluating angular and energy
distributions at the one-loop level.
We used the following set of input parameters:

α−1ð0Þ ¼ 137.03599976;

MW ¼ 80.45150 GeV; MZ ¼ 91.1867 GeV;

ΓZ ¼ 2.49977 GeV; me ¼ 0.51099907 MeV;

mμ ¼ 0.105658389 GeV; mτ ¼ 1.77705 GeV;

md ¼ 0.083 GeV; ms ¼ 0.215 GeV;

mb ¼ 4.7 GeV; mu ¼ 0.062 GeV;

mc ¼ 1.5 GeV; mt ¼ 173.8 GeV: ð29Þ

The αð0Þ and Gμ EW schemes are used in calculations.
All the results are obtained for the c.m. energies

ffiffiffi
s

p ¼ 250,
500, and 1000 GeV and for the following magnitudes of
the electron ðPe−Þ and positron ðPeþÞ beam polarizations
[7,15,51]:

ðPe− ; PeþÞ
¼ ð0; 0Þ; ð−0.8; 0Þ; ð−0.8; 0.3Þ; ð0.8; 0Þ; ð0.8;−0.3Þ:

ð30Þ

A. Comparison with other codes

1. Triple comparison of the Born and hard photon
bremsstrahlung cross sections

First of all, we have compared the numerical results for
the polarized Born and hard photon bremsstrahlung cross
section with the ones obtained with the help of the CalcHEP

and WHIZARD. The agreement for the Born cross section
was found to be excellent.
Since the integration of the hard photon bremsstrahlung

cross section without any angular cuts is an unstable
task, additional efforts have been made to compare the
results: the CALCHEP code was recompiled with quadruple
precision and the “BreitWigner range parameter” was
adjusted; WHIZARD code was recompiled with the support
of extended precision numbers, and phase-space setup was
tuned to work better without any cuts.
Table I gives the triple tuned comparison between the

SANC (S), CALCHEP (C), and WHIZARD (W) of the hard
photon bremsstrahlung (6) cross section calculations.
The results are given within the αð0Þ scheme for c.m.

energies
ffiffiffi
s

p ¼ 250, 500, and 1000 GeV, ω ¼ 10−4, and the
fixed 100% polarized initial states in the total phase space.
The comparison demonstrates very good (within four to

five digits) agreement with the above-mentioned codes.

2. Comparison of virtual and soft photon
bremsstrahlung contributions

We have obtained very good agreement (six significant
digits) in the comparison of the SANC and AITALC-1.4 [62]
results for the unpolarized differential Born cross sec-
tion and for the sum of virtual and soft photon brems-
strahlung contributions. The comparison was carried out
for different values of the scattering angles (cosϑ: from
−0.9 up to þ0.9999).

TABLE I. The triple tuned comparison between the SANC (S),
CalcHEP (C), and WHIZARD (W) of the hard photon bremsstrah-
lung (6) cross section calculations.

Pe− ; Peþ −1, −1 1, −1 −1, 1 1, 1

σhardeþe− , fb,
ffiffiffi
s

p ¼ 250, GeV
S 169.0(1) 8802(1) 11263(1) 169.0(1)
C 168.9(1) 8801(1) 11262(1) 169.0(1)
W 169.0(1) 8802(1) 11263(1) 169.0(1)

σhardeþe− , fb,
ffiffiffi
s

p ¼ 500, GeV
S 47.38(1) 2314(1) 2899(1) 47.38(1)
C 47.38(1) 2314(1) 2898(1) 47.38(1)
W 47.38(1) 2314(1) 2899(1) 47.38(1)

σhardeþe− , fb,
ffiffiffi
s

p ¼ 1000, GeV
S 12.65(1) 624.7(1) 778.8(1) 12.65(1)
C 12.65(1) 624.7(1) 778.7(1) 12.64(1)
W 12.65(1) 624.7(1) 778.8(1) 12.65(1)
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B. Born, one-loop cross sections and
relative corrections

1. Energy dependence

In Tables II–IV, the results of the Born cross sections,
weak contribution (weak), and complete one-loop contri-
butions (EW), as well as the relative corrections δ (%) for
the c.m. energies

ffiffiffi
s

p ¼ 250, 500, 1000 GeV, and the set
(30) of the polarization degree of the initial particles in the
αð0Þ and Gμ EW schemes are presented. The results were
obtained without any angular cuts.
The relative correction δ (in %) is defined as

δ ¼ σone-loopðPe− ; PeþÞ
σBornðPe− ; PeþÞ

− 1: ð31Þ

As is seen from the tables, the corrections for all
considered c.m. energies, EW schemes, and degrees of

polarization are positive, rather large and equal to about
170%–175% for the c.m energy

ffiffiffi
s

p ¼ 250 GeV, about
182%–186% for the c.m energy

ffiffiffi
s

p ¼ 500 GeV, and
about 200%–204% for the c.m energy

ffiffiffi
s

p ¼ 1000 GeV
in the αð0Þ EW scheme. The calculations in the Gμ scheme
reduce RCs by about 5%–6%.
The main impact on one-loop corrections is due to

the QED contributions. It can be described by large
logarithms of the radiating particle masses (ln s=m2

l )
appearing for collinear photons. The contribution of the
collinear photons is clearly seen from Fig. 1, where a rapid
increase of the cross section at small angles of the final
muon (j cosϑμj ≈ 1) is observed. The real-life experimental
angular cuts can rapidly reduce the QED radiative correc-
tions and the whole cross section.
The degree of the initial particle polarization changes the

magnitude of the cross section, the minimal value achieved
for unpolarized beams and the maximum (from the set (30))
for the ðPe− ; PeþÞ ¼ ð0.3;−0.8Þ ones. It can be useful to
increase the signal reaction.

2. Angular distributions

In Fig. 1, the unpolarized Born and complete one-loop
cross section for c.m. energies

ffiffiffi
s

p ¼ 250, 500, and
1000 GeV are shown for the muon angle. As is seen,
the Born distributions are rather smooth, while the EWone-
loop RCs have large values at small angles. As it was
mentioned above, this is due to the collinear emitted
photons. Both distributions are asymmetric.
Since the polarization effects do not change the form of

the distributions, only unpolarized cross section is shown.
The integrated values of the polarization effects are shown
in Tables II–IV.

C. Left-right asymmetry

In Fig. 2, the left-right asymmetry distributions are
shown as a function of the muon angle cosine. The ALR
is defined in the following form:

TABLE II. Born cross sections, weak contribution (weak) and
complete one-loop contributions (EW), and relative corrections
δ (%) for the c.m. energy

ffiffiffi
s

p ¼ 250 GeV and the set (30) of the
polarization degree of the initial particles in the αð0Þ and Gμ EW
schemes.

Peþ , Pe− 0, 0 0, −0.8 0.3, −0.8 0, 0.8 −0.3, 0.8

σBornαð0Þ , pb 1.6537(1) 1.8040(1) 2.2572(1) 1.5034(1) 1.8440(1)

σBornGμ
, pb 1.7611(1) 1.9212(1) 2.4039(1) 1.6011(1) 1.9638(1)

σweakαð0Þ , pb 1.8360(1) 1.9447(1) 2.4261(1) 1.7273(1) 2.1271(1)

δ;% 11.03(1) 7.81(1) 7.49(1) 14.89(1) 15.36(1)
σweakGμ

, pb 1.8547(1) 1.9614(1) 2.4466(1) 1.7480(1) 2.1532(1)

δ;% 5.31(1) 2.10(1) 1.78(1) 9.18(1) 9.64(1)

σEWαð0Þ, pb 4.534(1) 4.923(1) 6.115(1) 4.145(1) 5.047(1)

δ;% 174.2(1) 172.9(1) 170.9(1) 175.7(1) 173.7(1)
σEWGμ

, pb 4.728(1) 5.132(1) 6.376(1) 4.323(1) 5.263(1)

δ;% 168.5(1) 167.1(1) 165.2(1) 170.0(1) 168.0(1)

TABLE III. The same as in Table II for the c.m. energy
ffiffiffi
s

p ¼ 500 GeV.

Peþ , Pe− 0, 0 0, −0.8 0.3, −0.8 0, 0.8 −0.3, 0.8

σBornαð0Þ , pb 0.40084(1) 0.43351(1) 0.54196(1) 0.36820(1) 0.45215(1)

σBornGμ
, pb 0.42689(1) 0.46167(1) 0.57717(1) 0.39211(1) 0.48152(1)

σweakαð0Þ , pb 0.44633(1) 0.46766(1) 0.58278(1) 0.42501(1) 0.52413(1)

δ;% 11.35(1) 7.88(1) 7.53(1) 15.43(1) 15.92(1)
σweakGμ

, pb 0.45095(1) 0.47168(1) 0.58768(1) 0.43022(1) 0.53067(1)

δ;% 5.64(1) 2.17(1) 1.82(1) 9.72(1) 10.21(1)

σEWαð0Þ, pb 1.145(1) 1.233(1) 1.531(1) 1.056(1) 1.286(1)

δ;% 185.7(1) 184.5(1) 182.4(1) 186.8(1) 184.5(1)
σEWGμ

, pb 1.195(1) 1.287(1) 1.597(1) 1.102(1) 1.342(1)

δ;% 180.0(1) 178.8(1) 176.7(1) 181.1(1) 178.8(1)

ONE-LOOP ELECTROWEAK RADIATIVE CORRECTIONS TO … PHYS. REV. D 102, 033004 (2020)

033004-7



ALR ¼ σLR − σRL
σLR þ σRL

; ð32Þ

where σLR and σRL are the cross sections for 100%
polarized electron-positron e−Le

þ
R and e−Re

þ
L initial states.

The ALR asymmetry distributions for the Born and one-
loop contribution are shown for three c.m. energiesffiffiffi
s

p ¼ 250, 500, 1000 GeV.
One can see that the EW RCs strongly affect the

asymmetry. The Born contribution to ALR has a smooth

TABLE IV. The same as in Table II for the c.m. energy
ffiffiffi
s

p ¼ 1000 GeV.

Peþ , Pe− 0, 0 0, −0.8 0.3, −0.8 0, 0.8 −0.3, 0.8

σBornαð0Þ , pb 0.099570(1) 0.107474(1) 0.134335(1) 0.091666(1) 0.112599(1)

σBornGμ
, pb 0.106038(1) 0.114455(1) 0.143061(1) 0.097620(1) 0.119913(1)

σweakαð0Þ , pb 0.11017(1) 0.11422(1) 0.14218(1) 0.10611(1) 0.13103(1)

δ;% 10.64(1) 6.28(1) 5.85(1) 15.8(1) 16.4(1)
σweakGμ

, pb 0.11127(1) 0.11511(1) 0.14325(1) 0.10743(1) 0.13269(1)

δ;% 4.93(1) 0.57(1) 0.13(1) 10.05(1) 10.66(1)

σEWαð0Þ, pb 0.3003(1) 0.3223(1) 0.3997(1) 0.2782(1) 0.3392(1)

δ;% 201.6(1) 199.9(1) 197.5(1) 203.5(1) 201.2(1)
σEWGμ

, pb 0.3137(1) 0.3367(1) 0.4176(1) 0.2907(1) 0.3543(1)

δ;% 195.9(1) 194.2(1) 191.9(1) 197.8(1) 195.5(1)
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FIG. 1. The Born (dashed line) and one-loop (solid line)
differential cross sections of the eþe− → μ−μþ reaction for the
c.m energies
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p ¼ 250, 500, 1000 GeV.
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dependence on cosϑμ, equals zero at cosϑμ ¼ −1, and the
value 0.12–0.14 depending on the c.m energy. The one-
loop contribution has two maxima: the first at cosϑμ ¼ 1

and the other one at cosϑμ ¼ −0.6 for
ffiffiffi
s

p ¼ 250 GeV,
cosϑμ ¼ −0.8 for

ffiffiffi
s

p ¼ 500 GeV, and around the
cosϑμ ¼ −1 for

ffiffiffi
s

p ¼ 1000 GeV.
The shape of ALR is mainly formed by the radiation of

hard photons from the initial electron-positron pair. The left
and right peaks of ALR are defined by a specific interplay of
the intermediate Z boson and photon propagator contribu-
tions (note that the symmetric photon contribution affects
only the denominator of ALR). Besides, the interference
γ=Z term has an influence on the scale of ALR; see Fig. 3.
During the LEP era, the ALR asymmetry (as well as AFB,

AFBLR and final lepton polarization) calculated at the Z pole
was used to measure experimentally sin2 θW. A compre-
hensive investigation of the one-loop contribution to the
above-mentioned variables in wide c.m. energy region
(

ffiffiffi
s

p ¼ 20–500 GeV) can be found in [53].

IV. CONCLUSIONS AND OUTLOOK

The theoretical description of eþe− → lþl− scattering
taking into account complete one-loop and high-order

radiative corrections is crucial for luminosity monitoring
at modern and future eþe− colliders. Consideration of
beam polarization is a novel requirement for theoretical
predictions for eþe− collisions at CLIC and ILC energies.
In the paper, we have described the implementation of

the complete one-loop EW calculations including the hard
photon bremsstrahlung contribution to the SANC frame-
work. It allows one to calculate observables for polarization
processes of the lepton pair production.
In this study, the relevant contributions to the cross

section are calculated analytically using the helicity ampli-
tudes approach, which allows one to evaluate the contri-
bution of any polarization of the initial and final fermions
and then estimated numerically. The helicity amplitudes
were used not only for the Born-like parts but also for the
hard photon bremsstrahlung contribution taking into
account the initial and final masses of radiate particles.
The effect of polarization of the initial beams is carefully
analyzed for certain states. The angular and energy depend-
ences are also considered.
All contributions to the complete one-loop corrections,

i.e., Born, virtual, and real soft and hard photon brems-
strahlung, were obtained using the helicity amplitude
approach. The independence of the form factors of the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

√s = 250 GeV Z
γ γ/Z

γ γ
+

+ /Z+Z

 0

 0.1

 0.2

 0.3

 0.4
√s = 500 GeV

A
LR

 0

 0.1

 0.2

 0.3

 0.4

-1 -0.6 -0.2 0.2 0.6

√s = 1000 GeV

cosϑμ

 0.001

 0.01

 0.1σγ

 0.001

 0.01

 0.1

-1 -0.6 -0.2 0.2 0.6 1
 0.001

 0.01

 0.1

cosϑμ

FIG. 3. The contributions of the intermediate Z boson and photon propagators to the ALR asymmetry (ISR part of hard photon
bremsstahlung).
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gauge parameters was tested, and the stability of the result
on the variation of the soft-hard separation parameterωwas
checked.
The calculated polarized tree-level cross sections for the

Born and hard photon bremsstrahlung were compared with
the CALCHEP and WHIZARD results and very good (within
four to five digits) agreement with the above-mentioned
codes was found.
Also, we obtained very good agreement (six significant

digits) in comparing the SANC and AITALC-1.4 [62] results
for the unpolarized differential Born cross section and
for the sum of virtual and soft photon bremsstrahlung
contributions.
As a result, the polarization effects are significant and

give increase in the cross section at the definite
initial degrees of polarization compared to the unpolarized
one.

We show that the complete OðαÞ electroweak radiative
corrections provide a considerable impact on the differ-
ential cross section and the left-right asymmetry ALR.
Moreover, the corrections themselves are rather sensitive
to polarization degrees of the initial beams and depend
quite strongly on energy.
Considering the eþe− → l−lþ process as one for the

purpose of luminometry, one needs to take into account
high-order effects, such as leading multiphoton QED
logarithms and leading EWand mixed QCD-EWmultiloop
corrections. It will be implemented in the future.
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