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The renormalization properties of two local composite operators, (O, V,,), which are invariant under the
infinitesimal Becchi-Rouet-Stora-Tyutin (BRST) transformations, corresponding respectively to the gauge
invariant respectively to the gauge invariant description of the Higgs particle and of the massive gauge
vector boson, are scrutinized in the U(1) Higgs model by means of the algebraic renormalization setup.
Their renormalization Z’s factors are explicitly evaluated at one-loop order in the MS scheme by taking into
due account the mixing with other gauge invariant operators. In particular, it turns out that the operator V,,

mixes with the gauge invariant quantity 9, F,,, which has the same quantum numbers, giving rise to a2 x 2

mixing matrix. Moreover, two additional powerful Ward identities exist which enable us to determine the
whole set of Z’s factors entering the 2 x 2 mixing matrix as well as the Z factor of the operator O in a purely
algebraic way. An explicit check of these Ward identities is provided. The final setup obtained allows for
computing perturbatively the full renormalized result for any n-point correlation function of the scalar and

vector composite operators.
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I. INTRODUCTION

In two previous works [1,2], the elementary excitations of
the U(1) Higgs model, namely, the Higgs particle and the
vector massive gauge boson, have been investigated within a
fully gauge invariant setup, relying on the introduction of
two local operators (O, V), which are invariant under the
infinitesimal Becchi-Rouet-Stora-Tyutin (BRST) transfor-
mations, [3—5]1:

1
Ox) =3 (h? + 2vh + p?),
1
V,(x) = 5 (=p0,h + hd,p + v0,p
+ €A, (v* + h* + 2vh + p?)), (1)
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where (h,p) stand for the Higgs and Goldstone fields,
the parameter » is the minimum of the classical Higgs
potential, while A, is the gauge field and e is the gauge
coupling. The BRST invariance of the operators (0, V)
follows immediately by noticing that they do not contain
the Faddeev-Popov ghosts and that they are left invariant by
the local gauge transformations (13).

More precisely, the explicit one-loop computation of the
two-point correlation functions

(O(p)O(=p)), (Vu(p)Vo(=p)), (2)

worked out in [2] in the t Hooft R gauge has revealed that,
besides being independent from the gauge parameter &, the
pole masses of (O(p)O(=p)) and (V,(p)V,(-p))"
coincide, respectively, with the pole masses of the corre-
sponding elementary correlation functions (h(p)h(—p))
and (A,(p)A,(—p))", where ()7 denotes the transverse

components” of (V,(p)V,(=p)) and (A,(p)A,(=p)).

*The correlation functions (A, (P)A,(=p))and(V,(p)V,(=p))
can be decomposed into transverse and longitudinal components as
usual:

(Au(p)A,(=p)) = PuD(P?) + L L(p?), 3
(Au(p)A,(=p)T = P,D(p?).

D
where P, = (8, — %) and L, = % are the transverse and

longitudinal projectors.
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Moreover, both tree-level and one-loop expressions for the
longitudinal part of (V,(p)V,(—p)) remain independent
from the momentum p? [2], so that they are not associated
with any physical mode, a feature which is expected to hold
to higher orders.

Although the independence from the gauge parameter &
of the pole masses of (h(p)h(—p)) and (A,(p)A,(—p))" is
ensured by the Nielsen identities [8§—13], the corresponding
residui are not protected in the same way. In particular,
unlike® what happens for (A,(p)A,(=p))”, the residue of
(h(p)h(—=p)) turns out to be & dependent [1,2], a feature
which originates from the lack of gauge invariance of the
elementary Higgs field A.

As a consequence, one finds that the spectral density of
the Killén-Lehmann (KL) representation of (h(p)h(—p))
depends on the gauge parameter & as well, jeopardizing a
direct and gauge invariant description of the Higgs particle
in terms of the nongauge invariant field 4. From that
perspective, the employment of the manifest gauge invari-
ant operators (O, V,,) enables us to overcome all the above
mentioned difficulties. In fact, the correlator (O(p)O(—p))
enjoys a KL representation with a well-defined positive and
&-independent spectral density, a property which holds also
for (V,(p)V,(=p))" [2]. As such, the correlation functions
(O(p)O(=p)) and (V,(p)V,(—p))" provide a consistent
gauge invariant description of the elementary excitations of
the U(1) Higgs model. It is worth remarking that the
whole framework generalizes to the non-Abelian Yang-
Mills-Higgs models [3-5] as, for example, the SU(2)
Yang-Mills theory with a single Higgs field in the funda-
mental representation [14]. As one can easily figure out, in
the non-Abelian case, besides the gauge dependence of
(h(p)h(=p)), also the residue of the correlator
(A4(p)AL(—p))" will exhibit a manifest £ dependence,
due to the fact that in the non-Abelian case the transverse

component of A4, ie., A4 = (6,, — ag?”)A,‘f, is no more
gauge invariant. Therefore, in the non-Abelian case, the use
of a fully gauge invariant setup relying on the non-Abelian
generalization of (0,V,) [3-5] turns out to be very
welcome.

The goal of this work is that of filling a gap not yet
addressed in the previous analyses [l,2], namely, the
renormalization of the composite operators (0,V,) and
of their correlation functions. To some extent, the present
study completes the investigation of the operators (0, V)
in the U(1) Higgs model, paving thus the path in order to
face the more complex case of SU(2), where nonperturba-
tive issues related to the behavior of the theory in the

*We remind the reader here that the two-point correlation
function (A,(p)A,(—p))" is gauge invariant due to the gauge
invariance of the transverse component of the Abelian gauge field

3,0,
AZ = (6/'”’ - BT)AU

infrared region could be investigated within an exact BRST
invariant framework.

As is known from field theory textbooks, see [15], the
renormalization factor Z,, of a given local operator M (x),
introduced into the starting action by means of an external
source Jy(x), ie., [d*xJy(x)M(x), can be extracted
through the evaluation of the connected Green’s function®

(@(x1)....p(x,)M(y))
B 5n+IZC(J¢’ JM)
8 5(x1) -85 ()T ()| 1,10

(5)

containing a suitable set of elementary fields {¢(x)} having
a nonvanishing overlap with the insertion of the local
composite operator M(x) under investigation.

Looking at the expressions (1) of the two local composite
operators (0, V), it is apparent to realize that, due to the
presence of terms linear in the fields 4 and A, the simplest
connected Green’s functions fulfilling the above-mentioned
criterion are the two-point correlators:

5220
<h(x)0(y)> B 5Jh(x)5‘](y) sources:O’ (6)
and
2 zc
<Aﬂ <X) O(y)> N 5‘];1? (i)igv (y) sources:()’ <7)

where (J;,(x), J4(x)) and (J(x), Q,(x)) are respectively the
sources corresponding to the fields (/(x), A, (x)) and to the
composite operators (O(x), V,(x)).

In the following sections, in order to extract the renorm-
alization factors’ of O(x) and V,(x), we shall compute the
correlators of Egs. (6) and (7) at one-loop order in the MS

*We remind the reader that in the case in which a composite
operator M(x) is present in the theory, the generating functional
Z(J 4, J ) of the connected Green’s functions is defined through
the Legendre transformation

25y d) =T (T + / e, @)

where (¢, Jy,) is the generator of the 1PI Green’s functions
obtained by including the operator M(x) in the starting action
through the term [ d*xJy(x)M (x), where Jj;(x) is the external
source needed to define the composite operator M (x). Notice that,
in Eq. (4), the Legendre transformation is taken only with respect
to the variables {¢} and their corresponding sources {J,},
narsnely Jp=-% andqﬁ:%. o

We recall here that the renormalization Z’s factors of local
composite operators belonging to the cohomology of the BRST
operator are independent from the gauge parameters entering the
gauge fixing condition [16,17]; see also [18,19] and references
therein.
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renormalization scheme. Moreover, resorting to the BRST
invariant nature of (O(x),V,(x)), we shall make use of the
Landau gauge [20], d,A, = 0, which, in the present case,
displays several practical advantages when compared to the
R: gauge. In fact, besides the exact BRST invariance, the
Landau gauge exhibits a manifest global U(1) symmetry
which implies a very useful relation among the renormal-
ization factors of (h(x), v, p(x)), namely

Zy=2Z,=2,. (8)

Such a relation is lost in the R: gauge, see [10,11]. In
addition, thanks to the transversality of the gauge condition
d,A, = 0, the correlator (A,(x)V,(y)) will be automati-
cally projected into its transverse component.

The paper is organized as follows: in Sec. II we briefly
review some basic features of the U(1) Higgs model
quantized in the Landau gauge. In Sec. III we shall
introduce the operators (O(x),V,(x)). We shall first
analyze them from the point of view of the cohomology
of the BRST operator [19] in order to detect the existence of
possible mixings with other operators. In particular, we
shall see that V,,(x) mixes with the gauge invariant operator
d,F,, = (0,(0A) — 0*A,), while O(x) requires the intro-
duction of the constant quantity v> which is easily handled.
We shall proceed then by introducing the starting BRST
invariant classical action X containing all needed operators
and corresponding sources. The next step will be that of
presenting the Ward identities obeyed by Z. In Sec. IV,
following the algebraic renormalization setup [19], we shall
make use of the Ward identities to characterize the most
general local invariant counterterm from which both bare
action and renormalization Z’s factors will be introduced.
Section V is devoted to the one-loop evaluation of the Z’s
factors in the MS renormalization scheme, including those
of the composite operators. The knowledge of the Z’s
factors will allow us to provide some explicit checks of the
consequences implied by the Ward identities of the U(1)
Higgs model in the Landau gauge. In particular, a whole
subsection will be devoted to the existence of two special
Ward identities, one local and one integrated, which enable
us to characterize the 2 x 2 mixing matrix between the
operators (V,,d,F,,) as well as the Z factor of the operator
O in a purely algebraic way. In Sec. VI we present our
conclusion and perspectives. The final Appendixes contain
the calculations of the Feynman diagrams contributing to
the correlation functions of Egs. (6) and (7). Finally, let us
underline that a whole subsection of Appendix B has been
devoted to the evaluation of the one-loop two-point
correlation function of the Goldstone field, (p(p)p(—p)),
showing that it remains massless, as required by the global
U(1) Ward identity of the Landau gauge.

II. BRIEF SUMMARY OF THE U(1) HIGGS
MODEL IN THE LANDAU GAUGE

The Abelian U(1) Higgs model [21-24] is characterized
by the following action:

SHiggs
.1 . 1 , vH\?
= [ d'x ZF/wpr_'_(Dﬂgo) (Dﬂ(p)+§/1 |(,0| _E ’
9)

where

F,=0,A,-0A,

D,p = (0, +ieA,)p. (10)

with ¢ being a complex scalar field, e the electric charge,
and A the quartic self-coupling.

Expanding the complex field ¢ around the minimum of
the classical potential in Eq. (9), i.e.,

1
=—(wv+h+ip),
7 ﬂ( )

where h and p are the Higgs and the Goldstone fields,
expression (9) becomes

1 1 1
SHiggs :/d4x |:4F;411Ful/ +§8ﬂhauh+§aﬂpaﬂp
1 1
—I—EezvaﬂAﬂ +evA,0,p +5/1U2h2 —eA,p0,h
1 1
+eA,hd,p+e*vhA A, +§ezp2AﬂA” +§ezh2AﬂAﬂ
+1/1h4 +1/1p4 +lﬂvh3 —|—llvhp2 —|—11h2p2
8 8 2 2 4 ’
(11)

showing that both gauge and Higgs fields have acquired a
mass, given respectively by

m? = v (12)
The field p, called the would-be Goldstone boson, remains

massless. The action (11) is left invariant by the local gauge
transformations

Soh=—eap, S,p=ealv+h), (13)

with a(x) a local gauge parameter:

5aSHiggs =0. (14)
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In order to quantize the model, we employ the Landau
gauge [20], 0,A, = 0. Following the BRST procedure
[19], for the Landau gauge-fixing term we have

Sef = /d4x(ib8MAﬂ + ¢d*c), (15)

where b stands for the Nakanishi-Lautrup field, while ¢ and
¢ are the Faddeev-Popov ghosts. The local gauge invari-
ance, Eq. (14), is now replaced by the exact nilpotent BRST
invariance, namely

S(SHiggs + ng) = 0’ (16)
where
sA, = —0,c, sc=0,
sh = —ecp, sp =ec(v+ h),
s¢ = ib, sb =0,
52 =0. (17)

Besides the BRST invariance, the action (SHiggS +ng)
enjoys the discrete charge conjugation symmetry

A, = —A,, h—h
P = =P, b — —b,
¢ — —C, c— —c, (18)
as well as the global invariance
Sph=—ewp,  S,p=ew(v+h),
5mA;l = 07 5&)6‘ - 07 5wc - 0, 5wb = 0, (19)
with
5w<SHiggs + ng) = 0’ (20)

where @ is a constant parameter. As we shall see in the
following, the global invariance, Eq. (20), can be converted
into a Ward identity which will imply helpful relationships
between the various terms of the most general local
invariant counterterm needed to renormalize the model.
It is worth observing here that, unlike in the R: gauge
[10,11], the Faddeev-Popov ghosts (¢,c¢) are now non-
interacting fields, being completely decoupled. This is
another useful advantage of the Landau gauge. The same
property holds for the b-field, which appears only at the
quadratic level.

Let us end this short summary by noticing that the
composite operators (O(x),V,(x)) are, respectively, even
and odd under charge conjugation, i.e.,

O(x) = O(x),

V,(x) = =V,(x), (21)

a feature which will be exploited in the next section.

III. INTRODUCTION OF THE BRST INVARIANT
OPERATORS (O(x),V,(x))

A. BRST cohomology

In order to implement the set of Ward identities needed
for the renormalization analysis of the composite operators
(O(x),V,(x)), let us first look at them by means of the
cohomology of the BRST operator [19]. This study will
enable us to detect possible mixings with other operators
[16,17]. In Ref. [18], for example, the full mixing matrix
for the composite operator Fy, (x)Fy,(x) has been worked
out in the case of Yang-Mills theories.

Let us start with the scalar operator O(x), Eq. (1). It has
dimension two, ghost number zero® and is even under
charge conjugation, Eq. (21). Therefore, we look at the
most general scalar nonintegrated quantity with dimension
two and even under charge conjugation, A(x), such that
sA(x) = 0 and A # sA for some A with ghost number —1.
After a little algebra, it turns out that the most general
expression for A is given by

A(x) = a;0(x) + ayv?, (22)
where a; and a, are arbitrary coefficients. We see therefore
that the introduction of the even operator O(x) requires that
of the quantity v, a task easily done due to its constant
nature.

Let us consider then the case of the odd, dimension three
vector operator V,(x), Eq. (1). We look thus at the most
general odd vector quantity, A, (x), of dimension three and
ghost number zero such that sA,(x) = 0. In the vector case,
it turns out that the most general expression for A, (x) is
provided by

A (x) = c1V,(x) + 0, F,, + ¢30,b, (23)
where (¢, ¢,, c3) are arbitrary coefficients. We notice that,
as already mentioned, the gauge invariant quantity 0,F,,
shows up. It is worth mentioning here that the presence
of this term was already pointed out long ago by Clark
in his work on the Abelian Higgs model in the Landau
gauge [20].

The term 0,b corresponds to the exact trivial part
of the cohomolgy of the operator s, as 0,b = —is(0,c).
Moreover, due to the rich set of Ward identities exhibited
by the model in Landau gauge, the term d,b will not give

The fields (A, h,p,b) have ghost number zero, while (¢, ¢)
have, respectively, ghost number (-1, 1).
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rise to contributions at the quantum level, a feature also
corroborated by the fact that b is not an interacting field.
Finally, the two operators (V,,0,F,,) will give rise to
a 2 x 2 mixing matrix, encoded in the renormalization of
the corresponding external sources needed to introduce
them.

We have now all ingredients to construct the most
general BRST invariant starting action to face the goal
of the present work. This will be the issue addressed in the
next section.

B. The complete starting classical action
2 and its Ward identities

Having identified all quantities needed for the renorm-
alization of the composite operators (O(x),V,(x)), we
proceed by introducing the following external sources
term:

Sext = / d*x(L(sh) + R(sp) +JO + nv* + Q,V,

+7Y,0,F,, +0,0,b). (24)

The sources (L,R) are needed in order to define the
nonlinear BRST variations of the fields (h,p) [19],
Egs. (17). The remaining sources (J,n,Q”,TWG)M) are
needed to introduce all quantities which appear in the
previous BRST cohomology analysis of (O(x), V,(x)). All

external sources are BRST invariant, i.e.,
SL=sR=sJ=sn=s5Q,=sT,=50,=0.(25)

For the complete form of the starting classical action £ we
write thus

X = SHiggs + ng + Sexts (26)
with
ST = 0. (27)

The fields (A, h, p, b) have dimensions (1,1,1,2) and ghost
number zero. The Faddeev-Popov ghosts (¢,c¢) have
dimensions (2,0) and ghost number (—1,1). The two
external sources (L,R) have dimension three and ghost
number —1. Finally, the sources (J,7,€,,Y,,0,) all have
vanishing ghost number and dimensions (2,2,1,1,1).

It turns out that the complete classical action X fulfills
a huge number of Ward identities, which we enlist
below:

(i) The Slavnov-Taylor identity expressing the BRST

invariance of X at the functional level

S(z) =0, (28)
where
5% ST6Y 6TSY 6%
%) = [ dtx( =000 + 2202 L 0202 1 02,
S(Z) / x( a"‘15,4,,+5L5hJF&R(S,HL’ 55)
(29)

(i) The b-Ward identity [19]

5%
= i0,A, 0,0, (30)

Notice that the right-hand side of Eq. (30), being linear in the
quantum fields, is a linear breaking, not affected by quantum
corrections [19]. This equation expresses in functional form
the fact that the b field is a noninteracting field.

(iii) The antighost and ghost Ward identities

oX
5—86', (31)

and

oz
o= —0°¢ —Re(v + h) + Lep. (32)
c

These two Ward identities express in functional form
the decoupling of the Faddeev-Popov ghost fields in the
Landau gauge.
(iv) The global invariance, Eq. (19), can be extended to
the external sources in such a way that

Sph = —ewp, Spp = ewn(v+h),
0,4, =0, d,¢ =0, O,c =0, b =0,
0yl = —ewR, O0,R = ewL,
6{1}'] = 6(1)]1 = 5(1)9[4 = 5(})Tﬂ = 60}@/4 = 07 (33)
with
0y =0, (34)
yielding the powerful Ward identity
ox oX ox ox
d*x|—p— h)—-R—+L—| =0.
/ x{ Pon TS R LR
(35)
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(v) The charge conjugation invariance

Aﬂ - —Aﬂ,
h = h,
P = =P
b — —b,
¢ — —C,
c— —c,
L - L,
R - —R,
J-=J,
Qﬂ — —Qﬂ,
T# - —Tﬂ,
0,— -0, (36)
(vi) The ghost number Ward identity
N(Z) =0, (37)

5% 6% 6T 6%
%)= [ dix(c=—e=- L= R,
N(E) / dx<65c “5c oL 5R> (38)

(vii) The external sources Ward identities

5%
um—— vz,

on

5%

—— =0 F

5T, 0w

5%

= = 9,b. 3
50, O (39)

Notice that all terms in the right- hand side of Eqgs. (39) are
linear breakings, which will not be affected by quantum
corrections [19]. As a consequence, these equations imply
that the most general local invariant counterterm turns out to
be independent from (n, T, ®).

Let us end this section by observing that the power
counting and the Ward identities could allow for terms
purely quadratic in the sources (J/,€,) like, for example:

/ d*xJ?,

oreven cubic and quartic ones. These terms would give rise to
contact terms, see [2], in the correlation functions containing
two (or more) insertions of the composite operators

/ d*xQ,0°Q,, etc., (40)

(0(x). V, (x)) like (O(x)0(3)) = 552 |oeeso- These
higher order terms are, however, not included in the complete
starting classical action X, Eq. (26), since in a perturbative
framework they, as well as any UV divergence related to
them, arise from quantum corrections. Even though one
cannot rule out nonperturbative tree-level contributions that
could be associated e.g., with condensates involving the
composite operators, we will not consider these phenomena
and will attain ourselves to establishing a perturbative setup
for treating the composite operators.

All allowed nonlinear terms in the sources (J,€,) will
be identified and discussed in the next sections when
writing down the most general counterterm. It should be
noted thus that our final setup may be applied to thoroughly
compute at the perturbative level any renormalized n-point
correlation function of the composite operators.

C. Extra Ward identities due to composite operators

The set of Ward identities (28)—(39) can be written down
independently from the introduction of the composite
operators (O(x), V,(x)). It is worth thus opening a special
subsection to mention specifically what happens when V,
and O are coupled to the corresponding sources in the
starting action. In the present work V, and O are the aim of
our analysis, with our interest being Green’s functions
involving these composite operators. Let us therefore
simply look at Sy;ee, and at the equations of motion of
the fields 7 and A, to try to figure out what kind of
information they can provide. The action Syiee has a
quadratically broken global symmetry that holds » and &
together, yielding

5Si S N iggs
/d4x< ;‘hgg> - ;gg :/d“mo. (41)
v

Notice that the right-hand side of the previous equation
contains precisely the composite operator O(x). Expression
(41) cannot be translated as it stands into a Ward identity at
the quantum level unless the operator O is introduced in the
very beginning, as was already done in the case of Z. If we
replace Sygs by 2, we get a true Ward identity:

) oz 0%
A =) = 22 = 4 —
/d x<5h Av 5J> 5 /d xv(J=2n). (42)

As already mentioned in the Introduction, besides the
Ward identities (28)—(39) and (42), the complete action
%, Eq. (26), displays an additional local powerful identity
which reads

o 2
—— 265— — e ox
A, e, Tl
) ev? 5
=—-0,F,, —id,b+—Q,+07,-0,0,7,.

: 43)
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The Ward identity (43) relies on a rather nice feature of the
vector operator V,(x). Let us look in fact again at the
classical equations of motion which follow from the action
Stiges> Bq. (9), namely

55Higgs _ —(825
MUY

- —0,0,)4, +2eV,,  (44)

H

so that

1. OShiggs
OuVu =300 5a,
"

(45)

which shows that, at the classical level, V, is a conserved
current. The Ward identity (43) expresses in a functional
off-shell form this property of the operator V. Notice that,
once more, the right hand side of (42) and (43) have a linear
breaking, i.e., they are linear in the quantum fields, being
unaffected by quantum corrections [19].

IV. ALGEBRAIC CHARACTERIZATION
OF THE MOST GENERAL LOCAL
INVARIANT COUNTERTERM

In order to characterize the most general local invariant
counterterm, we follow the algebraic renormalization setup
[19] and perturb the starting action X, i.e., £ — (X 4 €X)
with € being an expansion parameter. In agreement with the
power counting, X is an integrated local polynomial in the
fields and linear in the external sources with dimension
four, invariant under charge conjugation and having van-
ishing ghost number. Demanding then that the perturbed
action, (X + €X®), fulfills to first order in the expansion
parameter € the same Ward identities of the action X,
namely Egs. (28)—(39), one gets the following conditions:

|

1

+ a ((Dﬂ(/’)*(Du(p) + QMVﬂ + 8

2 2 4

’Q,Q, +

5zct 5201 520[
= = = 0, 46
ob oc oc (46)
as well as
5zct 5zct Sxet
Sl (47)

sn 80, &Y,

Since X is independent from the antighost ¢, it immedi-
ately follows that, due to the fact that the sources (L, R)
have ghost number —1, they cannot give rise to a dimension
four quantity with vanishing ghost number, namely

520{ 52Ct
p— P— 4
oL OR (48)
Therefore
Xt =%A h,p,v,J,Q). (49)

The result (48) simplifies very much the Slavnov-Taylor
identity, which takes the simpler form

STt =0, (50)

From Eqgs. (42) and (43) there are two additional conditions

626‘[ 620[ 52Ct
—2e2 e, %% 0 51
A, Ceq, sl S
and
52Ct 52(‘[ aZCt
& - ~= o 52
/ x( sh " 51) v (52)

After some algebraic calculations, it turns out that the most
general form of X¢ is given by

8e?

1 1 1 1
Z(;t — /d4x{a0 (ZF,MUF[IV —_ Z_eQﬂaVFyﬂ — @Qﬂazg” + _Qﬂa’uaygv)

1
7 ogﬂg,,>

321

A \2 1 1
+a [— <go*(p - ”—) +J0 --09,Q, + — (2,2,2,Q, + 16J* - SJQMQﬂ)}

2 1 1 1
+ 60 [% (h* 4+ 20h + p*) + 7 <Ju2 -2 ’Q,Q, —2J0 + 5 OQ,,QM>
1
— o (R0, + 16J* - smﬂgﬂ)] } (53)

where (ag, a,, a,,6c) are free parameters. Expression (53)
displays a few features worth being pointed out. The first one
is the presence of the term Q,0,F,,, with Q, being the
source coupled to the vector operator V.. As we shall see, the

presence of this term gives rise to the mixing between the

operators V,, and d,F,,. The second feature concerns the

BRST invariant counterterm (50)%2(h2 +20h +p?). A
quick inspection reveals that this term is not present in
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the starting classical action X. It has in fact been removed
from X by means of the expansion of the complex field ¢,
Eq. (11), around the minimum of the classical Higgs
potential in Eq. (9). However, the appearance of this term
is a well-known property of the Higgs model [10,11,25,26],
enabling us to cancel the tadpoles related to the Higgs field
h, order per order in perturbation theory, i.e., it is determined
by requiring the condition

(h) = 0. (54) T4 €X' = Tpge + O(€2), (55)
Notice also the presence of the new source terms (Qﬂa%z,,,
Q4 JQ?,..). They are allowed not only by (46)—(48), (51),  where
|
2
_ v
Zhare = Z(Agys hos Pos bos €os Co, V0, €05 405 Jos 05 o> Loy Oops Lo, Ro) + /d4X500?O(h5 + 200ho + p5)
4 1 5 1 1, 1
+ d X (ZA - 1) —@QW@ QQM + ggoﬂaﬂaygoy + (Zh - 1) §UOQOMQOM +10090ﬂ90ﬂ
0 0
1 1
+(Z,+22,-3) {—Z 00920,£2,, + 324 (€20,020,90,Q0, + 1675 — SJOQOﬂQOﬂ)}
1 1 1 1
+ 6oy LO <— 1 U%QOﬂQO# + 5 OOQO”QO#> - 87(2) (£20,,£20,,£20,20, + 16J3 — SJOQO#QO”)] } (56)
with b 1
ZA = Ze =1 —|—§€a0,
Ay, = Z2A,, I 1
e 7 =27 =70 =1+ca,
ho = Z,h, 2
1 ZA:1+€(C12—2611),
Po = Zpp, L
1 Z%‘ - 5-2,
vy = Z3v, N
. Zo =7, =7,
by =Z,b, o
¢y = Zhe 2, =2y = 232,22,
0 — ]L s ZQQ _ 1’
- . E—
Co = Z2&, Zoy =0,
eg = Zee, 1 1
Z = - - - Z - 1 5
do = Z,2, e = o e =5 (Za 1)
1 1
Lo—ZLL, ZTT:ZA2:1—§€(10,
Ry = ZgR, p 14 ( 256>
= elay—a; —2— ),
0,0 = ZeO, (57) ” !
and Z;, =0,
7 oo
()= (e o) (£)
TO/A ZTQ Z’r'r T” Z’]”] = Z;l =1- €ay, (59)
Jo Z; Z J
()= 2 o9
o Zn] me n
(60), = €(b0). (60)

A simple inspection of Eq. (55) yields

(52) in Z¢, but also by (29)—(32), (B23)—(37), (39)—(43) in
the starting action X. However, as previously remarked, all of
them, except possible condensate terms, start from the order
7 onwards.

Having obtained the most general form of the local
invariant BRST counterterm, (53), we proceed with the
characterization of the bare action, namely
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Thus, for the bare action, we get7

1 A A
Zhare = / d*x ( Fo uwFo uw + (Dou@o)* (Dougo) +50 (‘/’3400—70) >

+ / d4x((_:06200 + iboaﬂAOﬂ + J()O() + 1107}(2) + QOﬂVOy + TOMQ,FOW)

1
+ / d*x <( ;)0 v§(h§ + 2vohg —l—p(z)))

1
+/d4x{(zA - 1)<—8290,,a2s20”
€0

( - 1)( UOQOﬂQOy + - 4

1
+(Z,+2Z,-3) {—ZOOQOHQOI,

OO QO# QOﬂ )

1
+ o2 QOﬂaﬂal/QOD)
€

(£20,,£2,,£20,2, + 16J3 — SJOQOMQO/‘)}

1 1 1 1
+ 50'0 |:/10 (_ Z y(z)QO”QO” + 5 OOQOﬂQ0ﬂ> 8/12 (QOﬂQOﬂQOIJQOU + 16‘]0 SJOQO/JQO#>1| }’ (61)

32/1
with
1/2
h .
=——(v+h+ip). 62
®o ﬁ( ) (62)

Equation (61) shows that, apart from the term €% v3(h3 +

2v9hy + p3) and the purely source® terms Wthh in a
loop expansion, start at one-loop order onwards, the
remaining terms of the general invariant counterterm can

"Since we are not interested in the calculation of Green’s
functions with insertions of the BRST exact operators (sh, sp),
from now on, we shall set to zero the corresponding external
sources, i.e., L = R = 0.

It is worth observing also that the higher order terms in the
external sources could be reabsorbed into the starting action X,
Eq. (26), by means of a nonlinear redefinition of (J,7), given by

Jo = J + e(z)d + 209,Q, + 2307, (63)

and

No=n-+e z,,,q+zjj+zgsz,,£2ﬂ+ Q1672 —8JQ%) |,  (64)

with
56 ay

ijaz—al—zj, ZQ__Za

o0
23—7, 2y —dayp,

oo oo a, oo
2y =—, o =——, = — . 65
477 Ty “=5 g ()

Notice that (z;,z,) are the same expressions entering in the
factors Z,; and Z,, of Egs. (59).

be reabsorbed into the starting action (26) through a
suitable redefinition of the fields, parameters, and sources,
establishing thus the already known renormalizability of
the model, which is extended here with the introduction of
the composite operators (O(x),V,(x)). This final bare
action represents a closed setup for perturbatively comput-
ing renormalized correlation functions involving any num-
ber of composite-operator insertions.

Before starting with the one-loop evaluation of all Z’s
factors and of do, let us point out a few features displayed
by Egs. (59):

(1) As it is apparent from Eqgs. (59), the quantities

(v, h, p) have a common renormalization factor, i.e.,

Zy=2,=7,. (66)

This property follows from the rich set of Ward
identities present in the Landau gauge, in particular
from the existence of the global Ward identity (35).
The relation (66) turns out to be very helpful in the
practical calculations of the Z’s factors of the
composite operators (O(x), V,(x)).

(i) The renormalization factor of the electric charge e is
not independent from the renormalization factor of
the gauge field A,. This property, usually written as

epho, = eA,,  ZZY* =1, (67)

is a well-known feature of the Abelian U(1) models,
being present also in spinor QED.” An explicit check

*This property is expressed, for example,
Eq. (7-73), of Ref. [15].

in page 346,
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of this property will be provided by the evaluation of
the divergent one-loop contribution to the gauge
boson mass m.

(iii) Finally, let us rewrite the mixing matrices in a more
explicit form, namely

(ra) = (o 1-400) (£)
e(ay—a; —2%
o G (9]

(68)

from which one recognizes the general pattern given
in [16,17], see also [18].
We can now proceed with the one-loop evaluation of the
Z’s factors.

V. EXPLICIT EVALUATION OF THE Z’S
FACTORS AT ONE-LOOP ORDER AND
CHECK OF THE WARD IDENTITIES

Having at our disposal the bare action, Eq. (61), we can
immediately obtain the one-loop action, including all
|

[l (1) (1) . (1) A *\?
Zpre = | i3 (14 WZ)FF + (L4 02 )(D,) (D) + (1 +120) (1 +202))) 5 (979 - =

needed counterterms, to face the evaluation of the Z’s
factors. Setting

Z, =1+ nz!,
Zy=1+nz",
Z,=1+hz\),
Zy =1+ nzly),
Z, = hz.).
Zyy =0,

Zy = Zgl,

ZQQ — 1 + legg)z,

1
+edPc + ibD,A, + h(80) V) Zv2(h? + 2vh + p?) + (1 + nZ3)) (1 +hz")J0 + hZ) 10* + g

+ (1 4+ hZ5Y) (1 + hZy)Q,V, + hZ\hQ,0,F,, + T,,(?,,FW}

m{ 1 1 (1 1
+ / d4x{hZA (—@Qﬂamﬂ +@QM8M8DQD) + hZz, (— ’Q,Q, +709,9,

1 1

+n(z" +22\") [ i

324

1 1

1 1
+ A(50)) [E <__v2gﬂgﬂ +3 OQ”QM> -7 (.00, + 167 - 8JQﬂQ”)] } +O(R?).

4

Since

(D) (D) =5 [(D,)(O1) + (2,0 Dy0)
+ 2evA,(9,p) + 1A A,
—2epA,(0,h) + 2ehA,(0,p)
+ e?p’AA, +2*vhA A, + 2 PA A,
)

and

09Q,Q, + - (Q,2,Q,Q, + 16J* - SJQ,,Q,,)]

Zg = hZ).
ZQT = O,

_1
Z’r'r == ZAZ,
(66)y = h(60)), (69)

we get
2 2
8
(70)

) 1)2 2
o2

A
:g(h4 +402h% 4 p* + 4ol 4217 p* +-4vhp?),  (72)

we can split the action into the sum of the quadratic piece
with the interaction and one-loop counterterm, namely

Tpare = S+ 7S, + O(R?),

where
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1
Squad — / d4X{§A/4<_5ﬂuaz + aﬂau + mzb'lw)AD + ib@,,Aﬂ

1 1
+§h(—62 + m})h + 4

1o
Sy = / d4x{22A Ay (=6,0* +8,0,)A,

1

+-zV

—_ N | =

1
+ EZE' )[—hﬁzh —p0%p +2evA,(0,p) + €*v*A A,

(=0%)p + evA,(0,p) + E@zc}, (73)

[—2epA,(D,h) + 2ehA,(D,p) + €*p*A,A, + 2e*vhA,A, + e*h*A A,

—2epA,(0,h) + 2¢hA,(0,p) + ep*A A, + 2e*vhA A, + 2 h*AA,]

2 A
+(Z2)) 422 S0+ (142, +22,)) S+ p* + 4ok + 2079 + dvhp?)

m( 1 1
+/d4x{ZA (—@Quam,, +@Q,,a,,aygb> +Z
)

+(2)) +2z))

4 321

1

1 1
+ (80)M) [1 <——UZQ”Q/4 +3

4

From expressions (73) and (74) we can derive the tree-level
field propagators and the one-loop Feynman rules obtained
by keeping the sources (J,7,L,,T,) as external fields.

For the benefit of the reader, all propagators and Feynman
rules can be found in Appendix A. Appendix B collects
all details of the evaluation of Green’s functions of the
elementary fields, ie., (h), (h(x)h(y)), (A,(x)A,(¥)).
A complete subsection has also been devoted to the
one-loop calculation of the Goldstone two-point Green’s
function (p(x)p(y)), showing that the Goldstone mode
remains massless in the Landau gauge, providing a
very useful check of the whole setup. Appendix C is
fully devoted to the details of the evaluation of Green’s
functions of the composite operators (h(x)O(y)) and
(A, )V, ())-

Let us start with the one-loop vanishing tadpoles con-
dition

<h(x)>1—100p =0. (75)

From Eqgs. (B2)-(B3) of Appendix B, one obtains

1
V(0 + 20k + ) + 5 (1 + (Z) + Z\)I (W + 20 + p?) + RZLY J0* + no?

1 1
<§ Q0+ ogﬂgﬂ)

1 1
[— ~0Q,9, + — (2,9,0,Q, + 162 - SJQ,,Q,,)}

1
OQ”Q”) -7 (202,20, +16/ - SJQ”Q”)} } (74)

(30) = (== o) =) ). 76)

and, for the one-loop divergent part of (55)") in the MS
scheme (with d =4 — ¢):

m_ L 13, 0) (2
(50)div—(4ﬂ)2 2(36 m +2/1mh> <£ y+In(4n) ).

(77)

The renormalization factors (Zgl) ,Zﬁll),Zﬁl)) can be

obtained evaluating the one-loop connected two-point

functions (A, (x)A,(v)), (A(x)h(y)) and {p(x)p(y)), all
presented in Appendix B. It turns out that'

""The factors (Zf‘,l), Zgl) give rise to the standard expressions
for the one-loop f functions [10], namely

1
g = g2 (57 =60+ 6. (78)
T
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NG
z) = 4;[ (— —y+1In (4;:)) (79)
a 3¢ (2
2 =5 (S-r+mn) ), (80)

1 2
z\V = 162(5/1+6——6e><;—7/+1n(4ﬂ)>. (81)

Before proceeding with the evaluation of (Z,, ng]g)z, ng))),
let us spend a few words on the relation (67), namely
eoAOM = EAﬂ, ZC,Z:“/z =1. (82)
There are several ways to test this relation computing, for
example, the corrections to the three vertex ve’hA,A,.
Moreover, the Higgs model offers a very nice and direct
check of Eq. (82) through the corrections to the gauge boson
mass. In fact, the above-mentioned relation would imply that

1 Zy
—e%’lj(z)AoﬂA()ﬂ = 76 7)2A A (83)

2
meaning that the renormalization factor of the gauge boson
mass should be given entirely by the wave function renorm-
alization of the Higgs field /4, Z,,. That this is precisely the case
follows from the evaluation of the two-point gauge boson
correlation function (A, (p)A,(—p))'™°P reported in
Appendix B, see Egs. (B9) and (B10).

We now turn to the evaluation of (Z,;, Z&lgz Zézg)z) which
can be extracted from the knowledge of the correlation
functions ((x)O(y)) and (A,(x)V,(y)), whose details are
collected in Appendix C. To that end we first evaluate
(h(x)); and (A,(x)),, where the use of the indices J and Q
means that these sources are not yet set to zero, being
treated as external fields in the Feynman rules, see
Appendix A. After the one-loop computation of (h(x)),
and (A,(x)),, we differentiate them with respect to J and
Q, obtaining thus the desired correlation functions, i.e.,

5<h( )>
8J(y)
< #())g
6,0

The first correction for Z;; can be determined through
Green’s function (h(x)O(y)), whose calculation can be
found in Appendix C:

= (h(x)O(y)),

= (A, (V. (). (84)

J=Q=0

1

1
Z&J) - 167 T6.2

(24— 3¢%) (% —y+1n (4ﬂ)> . (85)

It is easy to see that (85) agrees with the result given by the
Ward identities and the algebraic analysis, Eq. (59), i.e.,

1
(50' )((113

7y =7+ 70 2%

(86)
Another prediction of the Ward identities and the algebraic
analysis is the remarkable result

ZQQ - 1,

1
Zyaq=——(Z,—1). 87
va = =5 (Zs = 1) (87
which means Zgo does not receive quantum corrections,
while Z starts at order /2 and can be expressed in terms of
the gauge boson wave function renormalization factor Z.

At one-loop order, we get

1 e 2
ZTQ —@ (8—}’+]1’1 (471')) (88)
The explicit check of Egs. (88) can be found in the last
subsection of Appendix C.

VI. CONCLUSION

In the present paper we have pursued the investigation
started in [1,2] of the two BRST invariant local operators
(0.V,), Eq. (1), by studying their renormalization proper-
ties, encoded in the renormalization of the corresponding
external sources (/,€,) needed to introduce them in the
starting action X, Eq. (26). As shown in [1,2], these operators
provide a BRST invariant framework to describe the Higgs
particle and the gauge vector boson in the U(1) Higgs model.
As such, the current paper gives formal ground for the
renormalization and subtraction procedures applied in [1,2]
to obtain the spectral properties associated with the BRST
invariant, composite description of the physical degrees of
freedom of the model. Moreover, the presented final bare
action allows for perturbatively computing any renormalized
n-point correlation function of the composite operators.

The BRST invariant nature of (O, V) has been exploited
by making use of the Landau gauge condition, 9,4, = 0,
which, due to the large set of Ward identities, provides
several practical advantages with respect to the R gauge as
far as BRST invariant quantities are concerned.

Our results are displayed in Sec. V, where the explicit
one-loop expression of the Z’s factors of both fields and
operators have been displayed. We underline the fact that
the vector operator V,, mixes with 9, F,,, a feature already
observed in [20]. Moreover, a powerful Ward identity
exists, Eq. (43), which has enabled us to obtain a purely
algebraic characterization of the 2 X 2 mixing matrix.

Our next goal will be that of looking at the Yang-Mills
case, where a generalization of the operators (O, V) can be
constructed in order to have a BRST invariant setup for both
Higgs and gauge vector bosons, see [6] and references therein
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for a general overview. This is the case, for instance, of
the SU(2) Yang-Mills model with a single Higgs field in the
fundamental representation. Such a study could be the
starting point to investigate the behavior of Yang-Mills-
Higgs models in the infrared region, where possible non-
perturbative effects related to the existence of Gribov copies
could be taken into account by means of the BRST invariant
formulation of the Gribov-Zwanziger horizon function
established in [27]. These studies could lead to an interesting
comparison with both present, see Ref. [6], and future lattice
investigations of Yang-Mills-Higgs models.
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APPENDIX A: PROPAGATORS AND ONE-LOOP
FEYNMAN RULES

From the quadratic action, Eq. (73), we can easily derive
the following tree level propagators:

1 PuPv
I e ]

I ) p—

pP+m’
(PP =
P
(@(P)e(=P) e = pl
(Au(P)B(=P))yee = %
m2
P(PID(=P)) e = =i (A1)

Let us also remind the reader that the fields (b, ¢, ¢) are non
interacting fields, so that they will not enter into the
interaction vertices. In order to give the Feynman rules,
we shall make use of the following diagrammatic notation

<AM (p) A, (_p)>tree =
(@) A (=P ree = ——

(P () P (=P)) ree

The interaction action Sj, Eq. (74), leads to the following
Feynman rules, here given in d-dimensional Euclidean
space-time, with d = 4 — & and incoming momenta:

4 = o) en ) o (14 (29 +20)) Tw) (A2)
= (14 (2 4 20)) im0 ) (A3)

A = —% (14 (280 + 287) ) v () + 200" P () B () (Ad)
0 = = (28 0P —paps) + 280 m) ) 6 0+ a) (A5)
N = = (200 + (20 +220 ) md + (50)V0?) (21)" 6 (0 + ) n6)

- (1 + (ZL(IIJ) + Z;(zl))) T(p+aq)
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N = = (2084 00)De?) 2m) 'S (0 + )

- (1 + (251} +Z;(Ll))> J(p+aq)

WY = e (1 + (Zs% + Z;(Ll))) Q(p+a),

Liq/ = —ievZyq, (2m) 5 (p+q) |

\\P{q// = ;(1‘1'(2()“‘2(1)))b(qu_pu)ﬁu(p‘f'(ﬁ )

\
N\

rq
N
{,,/ = de(qu—ra) (1+27) @16+ a+7)

e (14+27) b Cm) 30+ a+7+5)

\gf‘ —2¢%v 1+Z(1)) S 2m) 5 (p+aq+7)

Ve
::ir\g = —2e%0,, (1+Z(1)) m's(p+q+r+s),

Y —3/\11 (Zg” +2Z,§1>)) @) (p+a+r+s),

pr
>< -3 (14 (20 +220)) @) 6+ +r+5) |
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NP

fl/<fl = (14 (20 +220)) e st atrts) (A17)
;r( = (14 (2 +270)) e atr+s) | (A18)
\ ff - —w (1+(Z§”+2Z,§1>))(27r)d6(p+q+r), (A19)
Y = (1 (24 20) Do), (x20

) g,, - —e(1+(Z§23+Zgl>))ﬁu(p+q+r), (A21)

where (J(p),Q,(p)) stand for the Fourier transformation of (J(x), Q,(x)).

APPENDIX B: GREEN’S FUNCTIONS OF THE where
ELEMENTARY FIELDS

d
1. The condition of vanishing tadpoles (h)=0 (M?) = k1
a4 (27)? K* + M?
The diagrams contributing at one-loop order to (k) are
displayed in Fig. 1, where the counterterm (5¢)(!) has also — 1 ,1F<1 _ g) (M2, (B1)
been included. o (4r): 2
Using dimensional regularization in the MS scheme, the
evaluation of the first diagram gives For the other contributions, one gets sequentially
11 d%k 1 1 3 ) 11 / dlk 1
= - _— = —_— h = —— —)] ——:O’
=30 O | Gy ( 2/11}))( (i) =2 ) | e

11 dk 1 k,k
//_‘\‘ h e —2 25[/ _— 5b_ laahid
(). - O Py e (o)
—loop -
1

FIG. 1. One-loop diagrams contributing to the one-point (h), = — (= (66)23).
Green’s function (/) of the Higgs field h. my,
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Imposing now the condition (k) =0 at one-loop order,
yields

v

(80) =3 (== ) =) ) (B2)

Thus, for the one-loop divergent part of (65)(!) in the MS
scheme, we have

(1) 11 20, 3, 5\ (2
D — — = 2 v+ In(4n)).
(60) 4w @7 <3e m- + 2/1mh> <€ y + In (47)

>>1—loop _ P;m(p) Pvﬁ(p)
1 p2 4 m2 p2 + m2
_ Pulp) s
(p2 +m2)2

<A;t (p)AD (_P

[N

(—262 Uéap) (—262 U(Sﬂl)

2. The connected two-point function
of the gauge field (AA)

At one-loop order, for the connected two-point gauge
field correlation function we have, including the counter-
term, the diagrams shown in Fig. 2.

Defining

H(m?, m3, p*) = p>x(1 — x) +xm? + (1 — x)m3,

for each diagram we obtain sequentially:

dk P, (k) 1
(27)? k> + m?* (p — k)* + m;,

et (4;) /0 L {F(z —§> H(m?, ni2, pz);’—z}

Py(p) 1 ! 1 d 2~ 2
_(pzi 1%2)2464”2 (4::)%% [WF<1—§><H(0,mi,p2)3 L= H(m?,m}, p?))|,
oop _ Pualp) Puplp) [ dk L, 1
A A (- I-loop __ " pa vp / ie(=2ky + po) 5——ie(2kz —
< [l(p) ( p)>2 p2+m2p2+m2 (Zﬂ)d ( p )k2+m%l ( p pﬂ) (p_k)Z
P (p) 1 1 d d
P, 5 _a 2 2141
G G o (15 o 0.1,

(4, (p)a, (—pyow = L L) Prp(P)

dk 1

3

P, (p)

> (—2€%5,5) /—7
2p% +m?p* 4+ m? (27)? k> + m3,

1 d J
= —e? F(] ——> m?):!,
(p2 + m2)2 ( ) (4][)% 2 ( h)
_ 1 Pu(p) Pu(p) dk 1
A A (= lloop:_ HC 12 _n 2 er - B4
< ﬂ<p> l/( p)>4 2P2+m2p2+m2( e aﬂ)/(zﬂ)dkz s ( )
where P, (p) stands for the transverse projector
PuPv
P/w(p) = <5 - ;2 ) (BS)

+ 34
ANNANNANNANAN

+,V\M,><,V\M

FIG. 2. Diagrams contributing to the one-loop two-point Green’s function of the Abelian vector field A,.
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For the one-loop counterterm, we get

P;m(p) Pv/}(p)

p> 4+ m? p? +m?
P, (p) ) (1)

:_7@2:—’%2)2 (2, p*+Z, ' m?). (B6)

—loo 1 1
(A, (P)A, (=p))!=toop — _ (2 (%605 = papp) + 2 m?5,)

Notice that, in the evaluation of (A, (p)A,(—p))'™"P, we have not taken into account the contributions of tadpole
diagrams which cancel by construction due to the condition (/2);_,,, = 0. Therefore, summing up all contributions,
Egs. (B4)-(B6), we get

1 Hl—loop
A A (= 1-loop P AA , B7
AP = () + e (87)
1-loo 1 1 d d_ 1 d d_
m,,°” = [4e4112 (4”)% ; dx|T 2—5 H(m?,m3, p?): 2+—2m2F 1—5 H(m? m3, p*)=!
1 d
-— 62F<1 - —) (m3)r! — (Z;l)p2 + Zil”mz)} : (B8)
(4r): 2

From

)1
VR
ok
|
NSRS~
N~
I
|
™ |
+
<
|
—
+
=~

it follows that

WA ) = P L (P man ) (<5

1 1 H 2 2 0,2
_ (Z(Upz +Z£ll)m2) — 4e2m? / dxln( (m*, my, p ))
0

2

1 ! H(m?, m3, p?)
+282—/ dxH(m?, m2, p? (ln(’—h’ -1
(@t Jo ) e

aremi(n(E) 1))} (59

Thus, in the MS scheme, for the one-loop renormalization factors (Zgl), Zﬁll)), we have

2
(1) e 2
zZ0 = _ i
A 48712(8 Hn(”))’

2
1 3e 2
2, =1 <g—y+ln(47z)>, (B10)

so that the one-loop renormalized connected two-point gauge correlation function turns out to be

1 (l—[l—loop

AA )re;>’ (Bll)

p? —i—m2+ (p* +m?)

(Au(D)A (=p)) 0 = P, (p) (

with
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’ ! H(m?, m?2, p* 1 Hm2 m2. p?
(o) e i {_4m2/ dxln <M> +2/ dxH(mz,m,zZ)<ln (M) 3 1)}
(47) 0 H 0 4

)]

Let us end this subsection by underlining that, from Egs. (B9) and (B10), it follows that the renormalization factor of the
gauge boson mass is given by the wave function Z; of the Higgs field, as stated by the Ward identity (67).

3. The connected one-loop two-point correlation function of the Higgs field (hh)

Let us now consider the connected one-loop two point function of the Higgs field, whose contributing Feynman diagrams
are depicted in Fig. 3.

As done before in the evaluation of (A,(p)A,(—p))'™°P, we have not taken into account contributions of tadpole
diagrams which vanish due to the condition (4);_j,,, =

For each single contribution we get

I-loop __ 1 _ 2 ddk 1 1
=PI =S (3 [

! m?2 4 F<2—C—l> /la’xH(m2 m, p?)i2
(p +mh) h(4ﬂ)% 2 o o My P

9

2

9 A 9 A 1 H(m2, m?, p?)

Z s 4 In(4r) ) =Zm? dxln| ———hm 2 J B13
G o e (o e miem) 3 g [ aem (U (B13)

oo 11 k11
HPHP)S™ =3 s (00 [ S
22 | _d ! X 5=
=022 (4ﬂ)%r<2 2)/0 dxH(0,0, p*)72

1
2
gl o) bl (1505 e

(B15)

N =

with

—+
+
+

A

FIG. 3. Feynman diagrams which contribute to the one-loop two-point function of the Higgs field A.
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1 d% P,(k) Pu(p—k)
= = (=26208,,)(—2¢*v5 ww .
( ev ;m)( ev uﬁ) (27[)dk2+m2 (p_k)2+m2

2
o A (e O e (R PR Y RS L

<2—§> (1= x)2(H(0,0, p?)5% — H(m?,0, p*)i72 = H(0,m?, p*)52 + H(m?, m?, p*)2)

T

d 2

{24

( y + In (4x) )
o ) 5 () (221

u

) () )t

() o R . )

_5;(1 _x)2r<2—‘2i> (H(0,0,p?)572 = H(m*,0, p*)7?)
_zpnjzr<1 —L2i>(H(O,O,p2)2 ! (m*,0, p?) )}

1 e (2
= (e (7 )
o s ) (2

Lm0 (T ) a0 () )]}

—loo 1 1 d’k 1
(h(p)h(=p))5”" P:§W<_ ) 20+

(0 +1mi)2 {_%ﬂ (43:)%F<1 _g) (m%)%_l}

- (p? 4—1171%)2 B i (4fr)2 (% —rtin (4ﬂ)> - % (4i)2 & (ln Clﬁ) - 1)] (B18)

PP = 5 s () [ G =0 (®19)
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)> 1-loop __
7 =

[NSRR

(h(p)h(=p
1

@%‘ W/(

dk P,
Zﬂdk2+m

~ [— 2(d=1)— = r<1 - g) (m2)‘—é—1}

1 [ Am? e2
=————> |3m
(p* +my)? (47)*
Finally, for the one-loop counterterm, we have

1

(h(p)h(=p))er *P = P+ miy

so that

3e2 /2
Z§11> 1662< y+ln(4ﬂ))

1 1 2
z{ = 162(5/14—6/1—66)(8—7/4-111(4”))- (B22)

It is worth remarking that the value of Zzl) in Eq. (B22)is in
full agreement, as expected, with that obtained from the
evaluation of (A,(p)A,(—p))L-1°P, see Eq. (B10). As
already mentioned, this feature offers a very simple check
of the nonrenormalization property epAg, = eA, in the

Abelian Higgs model.

4. The connected one-loop two-point correlation
function of the Goldstone field (pp)

This subsection is devoted to the study of the would-be
Goldstone boson two-point correlation function (pp). This
will provide an additional check of the Ward identities
displayed by the U(1) Higgs model. In particular, in the
Landau gauge, the field p ought to be massless as a
|

<§—y+ln (47r)) —e? (4i)2m2 (3 1n<’:—22) - 1)} (B20)
-2 P+ (2" + Z,))ym} + (60) V1)) (B21)

I
consequence of the global Ward identity, Eq. (35), which,
when written on the generator I of the 1PI connected
Green’s functions, takes the form

or st _or T
/d“ [—p— (v+h)——-R—+L—| =0.

B23
Sh sp 8L R (B23)

Indeed, acting now on Eq. (B23) with the test operator T?v)’

using the tadpole condition (k) = 0, setting all sources and
fields to zero and taking the Fourier transform one gets, in
momentum space,

(B24)

showing in fact that the Goldstone mode p remains
massless in the Landau gauge (see also its tree-level
propagator in Eq. (Al)).

Let us confirm here this property by an explicit one-loop
calculation, amounting to compute the diagrams depicted
in Fig. 4.

For each contribution we have

o0 1 d'k 1 1
I R e
%(ﬁ ) (4ﬂ)%r(2 —g) /0 (0, m2. p)2
1 1 1 2 0,m2, p?
:F(ﬁm%) (471)2A dx(;—y—f—ln(ém)—ln(w))
e (2 o (HO )
—?(lm%) ) A dx<; y +In (4x) 1< ﬂzh )) (B25)
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( @ )ﬁrst—order U

FIG. 4. Feynman diagrams contributing to the two-point Green’s function of the Goldstone field p.

1 / d'k P (k)
pt) o)k +m?
1o,

(), P (p?) = ie(=2p, + ki)

1
(p—k)?+m3

: 2 d 2 0 2y
de pT 2—5 H(m? m3, p*):

2

2
€
62 1 H(m2 m2 pZ)
+4—/ dx{—p”n(’ih’)
(47)* Jo e
4

2

H H

_ Lzz (H(0,m}. p?) (111 <W) - 1)

d'k P (k)
(2m)k* + m?

(p(p)p(=p))s P = %%(—Zez%) /

For the one-loop counterterm we have

p* d a
-—(1- x)2F<2 - —> (H(0,m2, p*)>=2 — H(m*, m3,

1)}

d
- —r<1 -3 (H(0,m3, p*)5" — H(m?, m}, p*)}

H(0 2 2 H 2 2 2
—|—p(1—x)2<ln( ( ’n’lzhvp ))_1n< (mvmh’p>
m

11 Ak 1 [
35D [ a = |5 (1
2p (2n)*k*+m;, p 2 (47)3

p?)

=5 {—&(d - 1)@%1 - g) (m2)%—1] ,

2 ie(zpu - ku)

72)

)

_ 1
(pp)er " (p?) = = —(Z" p? + (86)V12)).
Since
1-loo 1 1 62 A 2
<'0p>div p(pZ) - ? (471.)2 )“m% + (471_)2 3p2 +§m% + 3e’m? E -y + In (471’) y
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we obtain

2
a _ 3e
Zn = 167* (

and

(1) 1
i

(6G)dv = (4”)2 v

1 31 2
— [362m2 + Tm,%} (E —7+In (47r)> .

“—7+In (4@), (B32)

(B33)

agreeing with the previous result, Eq. (B3). Therefore, the renormalized two-point function (pp)!~1°P turns out to be

(pp)' =P (p?) =

where

I L0y2
_+—H p )
p2 (p2)2 PP ( )

& (6)) - Lo

(B34)

H(0,m?, p?)

)]

—21? {H(O,m%,p2)<ln<m+j’pz)> - 1) — H(m* m}, p*) <IH<LZM) - 1)” (B35)

For the resummed one-loop two-point correlation func-
tion we get

1

7}72 - H},})(pQ) +O(n?). (B36)

(p(p)p(=p))'~®(p?) =

Since

H(0,m?,0) = (1 —x)m3, (B37)
it follows that
1 H 2 2
/ dxln(M) - ln<m—2h) ~1,  (B38)
0 p u
implying that
1)) (0) = 0. (B39)

This shows that, as required by the Ward identity (B23), the
Goldstone field p remains massless.

APPENDIX C: GREEN’S FUNCTIONS OF THE
COMPOSITE OPERATORS

Let us now face the computation of the correlation
functions with insertions of the local composite operators

(0(x), Vu(x)).

1. Evaluation of the one-loop connected
Green’s function (h(x)O(y))

As explained in Sec. V, in order to evaluate (h(x)O(y)),
we first look at (h(x)),, where the source J is an external
field. At the end we shall differentiate with respect to J and
set it to 0. The Feynman diagrams which contribute to
(h(x)), are given in Fig. 5. For each contribution we get

(D) = 5 -y (30T
dk 1 1
X/(2ﬂ)dk2+m%,(p—k)2+m%’ (C1)
1 1 ~ dk 1 1
(P = 3y TN [ s
)
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FIG. 5. Feynman diagrams that contribute at one loop to the two-point Green’s function (A (x)),.

1 ~ () (Dy,2
R O N I @+my<<ﬁp+< *Zm;
+(50) D02 (0T (), &
PN = gy TP T). () PS5 = (-0 + 2. (C6)

Therefore, collecting all contributions, differentiating with

where T1,,'°® stands for the Higgs one-loop self-energy,  respect to the source J and setting it to 0, for the one-loop
g8 P gy
see prev1ous Appendix B and [1,2] correlation function (h(p)O(—p))'71°P, we get
|
(h(p)O(=p))1-loop 1 3/1 / dk 1 1
— - (2w
P P p?+m2\2 (2) k> +m; (p—k)? +m;,

1 /1 dlk 11 L, 0
———— (=4 — - z
*ﬁumﬂzo/aw%@—w+(” g o )
+ (2 (1)

v v 1-loop (Dy,,2 (1,2
+ + I1 (p? ( + 2z, Yym; + (60)V0v?)).  (C7

After isolating the divergent part, we have

A2
zW 4z =2 T <; —y+1In (4;;)) .

Using the previous result for ZEII), Eq. (B22), it turns out that

1

(1)
Zy = ——
T 1672

2
(24 —3e?) (— —y+1In (471)) . (C8)
€
As was already mentioned, this result is in perfect agreement with the Ward identities,
(604
1
2. Evaluation of (4,(p)V,(-p))

Let us consider finally the last Green’s function, (A,(p)V,(—p)), whose contributing Feynman diagrams at one-loop
order are given in the Fig. 6.

zW=zV+z -2 (C9)

FIG. 6. One-loop diagrams contributing to Green’s function (A,(p)),-
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Each contribution turns out to be

P ) - Ak Py(k) 1
(I = 2 (2620 ooy () [ Ly
P;m ~ 1 1 d d_
= m@e%z)ga(p) (471)%A dx{F<2 - 5) H(m?*, m3)7?
—ﬁr(l —g) (H(0, m2)! —H(mz,m%)%_l)}, (C10)
P, dk . 1 1. - 1
(I =22 [ etk + o) (5100 = 2000 ) 2
o P/m(p) A _ﬂ L ! '\ m2 %—l
~ el e o){r(1-5) o | et 0} ci
1 Py, ~ dk 1
Mo =y ) [t
= p?f:l;)z <—;eﬁa(p)) (417[)%F<] - Z) (m})s, (C12)
d
U = 520 (=) [ s =0 c13)
(Ve = D0 ) (= e ). (c14
where T, ,°” stands for the one-loop gauge boson self-energy, see Eq. (B9),
Vs = s (- 0 = pap) + 2 w2)) (3 0 (p))
= ) 4 2 ) (30 0)). ©15)
(AP = ;":L(Zl)z (—;evzfza(p)), (C16)
a0 =20 | 2+ 2160 0) + 2P (9. (c1)

Therefore, after summing up all contributions, differentiating with respect to Q, and setting it to zero, for the divergent part
of <Aﬂ (p) Vu (_p)>(1ﬁ—‘/100p’ we obtain

(A (D)VL(-p) = T2 (g —rtn <4”>> (4,1z>z {%’” B %}

= im
Puy 1 20 ) (1) -
+m —Eev (Zgg‘FZh )+ZTQP . (Clg)
It turns out thus that
1 1 362 2
Zoh +2;) =162 \ g v Hin(4n) ). (C19)
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and

m _ e (2 _ 1o om
Zvo = 562 (8—y+ln(47r)) = _ZZAA'

(C20)

One sees that the factor Zgll), Eq. (B22), cancels completely the right-hand side of Eq. (C19), yielding

zh)l =o0.

(C21)

Equations (C20) and (C21) are in full agreement with the Ward identities.
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