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Exact correspondence between Israel-Stewart theory and first-order causal and stable hydrodynamics is
established for the boost-invariant massive case with zero baryon density and the same constant relaxation
times used in the shear and bulk sectors. Explicit expressions for the temperature dependent regulators are
given for the case of a relativistic massive gas. The stability and causality conditions known in the
first-order approach are applied, and one finds that one of them is violated in this case.
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I. INTRODUCTION

The success of relativistic hydrodynamics as a main tool
used for modeling heavy-ion collisions [1–5] triggered
broad interest in general aspects of this theory [6,7]. It
has turned out that the formalism of relativistic hydro-
dynamics includes many interesting new features such as
the asymptotic character of the hydrodynamic gradient
expansion [8–11] or the existence of hydrodynamic
attractors [12–17].
The phenomenological hydrodynamic models used to

analyze the data are based on the Israel-Stewart (IS) version
of this theory [18,19]—as already in the 1970’s it was
realized that the formulations derived earlier by Landau and
Eckart were not causal [20,21]. The IS approach treats the
shear stress tensor πμν and the bulk pressure Π as new
hydrodynamic variables, in addition to temperature T and
hydrodynamic flow uμ (in a baryon free case). In most of
the studied cases, the IS theory is stable and causal, which
is essential for its practical applications. In the meantime,
certain disadvantages of the IS formulation have been also
removed (see, for example, Refs. [22–30]).
Very recently, a completely new hydrodynamic approach

has been proposed by F. S. Bemfica, et al. and P. Kovtun
[31–33]. It treats T and uμ as fundamental hydrodynamic
variables and is based on a first-order expansion in
derivatives. It also employs the opportunity of a more
general choice of the hydrodynamic frame and introduces
a new set of kinetic coefficients that play the role of
ultraviolet regulators of the theory. They make it causal
(even in the full nonlinear regime) and linearly stable
around equilibrium. Below we refer to this theory with the

acronym FOCS, as it is first-order, causal, and stable (if the
proper choice of the regulators is made).
A natural question can be asked about possible relations

between the IS and FOCS formulations. In general no
direct connection between these two theories exists, as IS
leads to ten differential equations, while FOCS gives four
second-order equations which are equivalent to only eight
equations of the first order. Nevertheless, there may exist
special cases where the two frameworks lead to the same
dynamical equations. Such cases are interesting and useful
as they allow us to “transfer” the knowledge gained in one
sector to the other one. In particular, the information about
causality and stability established for the FOCS approach
can be used to analyze IS solutions, provided such con-
nections exist.
In our previous paper [34] we have found that there is an

exact matching between FOCS and IS for boost-invariant,
Bjorken expanding systems with a massless, conformal
equation of state, p ¼ 1

3
ε, and a regulating sector deter-

mined by a constant relaxation time τR. We have also
studied there the stability and causality properties of this
model. In this work, we extend these investigations to the
case of systems of massive particles.
As we have noticed above, no direct connections

between FOCS and IS are expected, as they lead to a
different number of equations and unknown functions. As a
matter of fact, in the massive and boost-invariant case
FOCS yields two equations, while IS leads to three
equations (for T, one independent component of the shear
stress tensor which we denote here as π, and the bulk
pressure Π). In this work, we demonstrate that there is a
special choice of the IS framework and its kinetic param-
eters such that the three IS equations contain the two FOCS
boost-invariant equations. As in the massless case, the
matching found between the two frameworks can be used
to learn more about the two theories by transferring the
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knowledge established for one formulation to the other one
(and vice versa). In this work we use the causality and
stability criteria established for FOCS to check the proper-
ties of the corresponding IS framework.
The paper is organized as follows: In the next section we

introduce the IS and FOCS hydrodynamic equations and
discuss the formula for the bulk viscosity coefficient ζ. In
Sec. III we construct a matching between the two frame-
works. The case of massive particles obeying classical
statistics is discussed in more detail in Sec. IV. In Sec. V we
apply the FOCS causality and stability criteria. We sum-
marize and conclude in Sec. VI. Throughout the paper we
use natural units ℏ ¼ c ¼ kB ¼ 1.

II. IS AND FOCS FRAMEWORKS

A. Israel-Stewart boost-invariant setup

In this work we follow the IS boost-invariant version of
hydrodynamic equations for baryon-free systems defined
by Eqs. (23)–(25) in Ref. [35]. They read as follows:

dε
dτ

¼ −
1

τ
½ðεþ pÞ þ Π − π�; ð1Þ

τπ
dπ
dτ

¼ 4

3

η

τ
− π − β

τπ
τ
π; ð2Þ

τΠ
dΠ
dτ

¼ −
ζ

τ
− Π − β

τΠ
τ
Π: ð3Þ

Here ε, p, π and Π are the energy density, pressure, shear
stress, and bulk pressure, respectively. They are all func-
tions of the longitudinal proper time τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
. The

parameters τπ and τΠ are relaxation times, while η and ζ are
the shear and bulk viscosity coefficients. In Eqs. (2) and (3)
the original value of β is 4=3; however, below we treat β as
a free parameter (with exception of Sec. V). We note that
Eqs. (1)–(3) represent one of the simplest versions of the IS
hydrodynamic framework—we do not consider richer
structures since for the massive systems they are not very
helpful to establish the IS–FOCS correspondence.
Following Ref. [34] we introduce the time derivative of

temperature as a separate variable, y ¼ dT=dτ, and rewrite
Eq. (1) as

π − Π ¼ dε
dT

yτ þ ðεþ pÞ; ð4Þ

which after differentiation with respect to τ yields

_π − _Π ¼ d2ε
dT2

y2τ þ dε
dT

_yτ þ
�
dp
dT

þ 2
dε
∂T

�
y: ð5Þ

Here the dot denotes the proper time derivative, i.e.,
_T ≡ dT=dτ.

Since the difference π − Π appears in Eq. (1), it is useful
to construct the second equation containing the same
difference from a linear combination of Eqs. (2) and (3).
If the new equation does not include the term π þ Π, we
obtain a system of two coupled equations that may match
the FOCS boost-invariant formulation. In this case, the
remaining equation constructed from Eqs. (2)–(3), which
includes the combination π þ Π only, remains decoupled
from the first two equations.
It is easy to check that the situation described above

happens if the relaxation times in the shear and bulk sectors
are the same. Consequently, in what follows we assume that
τπ ¼ τΠ ¼ τR, as in [35], and that τR is constant, as in [34].
Using these assumptions, from Eqs. (2) and (3) we obtain

τRð _π − _ΠÞ ¼
�
4

3

η

τ
þ ζ

τ

�
−
�
1þ β

τR
τ

�
ðπ − ΠÞ: ð6Þ

Substituting Eq. (4) into the right-hand side of Eq. (6)
and Eq. (5) into the left-hand side we obtain

τR
dε
dT

_yþ τR
d2ε
dT2

y2þy

�
τR
τ

�
dp
dT

þ2
dε
dT

�
þ
�
1þβ

τR
τ

�
dε
dT

�

þ
��

1þβ
τR
τ

�
εþp
τ

−
�
4

3

η

τ2
þ ζ

τ2

��
¼ 0: ð7Þ

In the last expression one can recognize the Ricatti equation
studied earlier in [36].

B. FOCS boost-invariant setup

For FOCS one uses the constitutive relations in the
form [32],

EðτÞ ¼ εðτÞ þ ε1
_T
T
þ ε2

τ
; ð8Þ

PðτÞ ¼ pðτÞ þ π1
_T
T
þ π2

τ
: ð9Þ

The coefficients εi and πi may be interpreted as regu-
lators of the theory since, if properly chosen, they result in
additional nonhydrodynamic modes in the sound and shear
channels of the theory guaranteeing its causality, existence
and uniqueness of solutions, and linear stability. By
resumming spatial gradient contributions, their presence
results in an effective modification of the high-momentum
collective modes thus they play the role analogous to
relaxation time in the standard second-order viscous
hydrodynamics. We note that the dimension of the coef-
ficients ε1 and ε2 (GeV3 in natural units) is different from
the dimension of the energy density ε.
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Equations (8) and (9) can be equivalently expressed as

E ¼ εþ χ1

�
dε
dT

�
T

εþ p

_T
T
þ χ2

τ
; ð10Þ

P ¼ pþ χ3

�
dε
dT

�
T

εþ p

_T
T
þ χ4

τ
: ð11Þ

Hence, we can make the following identifications between
the regulators εi, πi and χi:

ε1 ¼ χ1
T

εþ p

�
dε
dT

�
; ε2 ¼ χ2; ð12Þ

π1 ¼ χ3
T

εþ p

�
dε
dT

�
; π2 ¼ χ4: ð13Þ

The bulk viscosity in FOCS is expressed in terms of the χi
coefficients [32],

ζ ¼ χ3 − χ4 þ c2sð χ2 − χ1Þ; ð14Þ

where c2s ¼ dp=dε is the sound velocity squared. Using
Eqs. (12) and (13), and the thermodynamic relations
εþ p ¼ Ts and dp ¼ sdT, we find

ζ ¼ c2sπ1 − π2 þ c2sðε2 − c2sε1Þ: ð15Þ

Using Eqs. (8) and (9) we find

dE
dτ

¼ dε
dT

_T þ dε1
dT

1

T
_T2 þ ε1

T
T̈

−
ε1
T2

_T2 þ 1

τ

dε2
dT

_T −
ε2
τ2

ð16Þ

and

E þ P
τ

¼ εþ p
τ

þ ε1
τ

_T
T
þ π1

τ

_T
T
þ ε2
τ2

þ π2
τ2

: ð17Þ

Equations (16) and (17) allow us to write the boost-
invariant FOCS equation,

dE
dτ

þ E þ P
τ

−
4

3

η

τ2
¼ 0 ð18Þ

as

ε1
T
_yþ y2

�
dε1
dT

1

T
−
ε1
T2

�
þ y

�
dε
dT

þ 1

τ

dε2
dT

þ ε1
τ

1

T
þ π1

τ

1

T

�

þ
�
εþ p
τ

þ π2
τ2

−
4

3

η

τ2

�
¼ 0; ð19Þ

where again we use the notation y ¼ _T (it should be
interpreted as the second differential equation).

III. MATCHING THE TWO APPROACHES

It is easy to notice that Eq. (19), similarly to Eq. (7), has
the form of the Ricatti equation. Hence, the IS and FOCS
frameworks may become equivalent if the coefficients
appearing in Eqs. (7) and (19) can be made equal.
Comparing the coefficients multiplying the time derivative
_y we find

ε1 ¼ τR
dε
dT

T: ð20Þ

Comparing the coefficients standing at y2 in Eqs. (7) and
(19) we find that

τR
d2ε
dT2

¼ dε1
dT

1

T
−
ε1
T2

: ð21Þ

It can be easily shown that ε1 given by Eq. (20) also
satisfies Eq. (21); hence, Eq. (21) becomes irrelevant.
In the next step it is convinient to compare the terms in

Eqs. (7) and Eq. (19) that do not contain y. This leads to the
relation,

�
1þ β

τR
τ

�
εþ p
τ

−
4

3

η

τ2
−

ζ

τ2
¼ εþ p

τ
þ π2

τ2
−
4

3

η

τ2
: ð22Þ

The equation above can be used to determine π2, namely

π2 ¼ βτRðεþ pÞ − ζ: ð23Þ

Using Eq. (15) in Eq. (23) we obtain a formula connecting
π1, ε1, and ε2,

π1 ¼
βτR
c2s

ðεþ pÞ − ðε2 − c2sε1Þ: ð24Þ

We recall that Eq. (20) defines the coefficient ε1 in terms of
the IS parameters. So if we knew ε2, then using (24) we
could determine π1. The missing constraint comes from the
comparison of the terms multiplying y in Eqs. (7) and (19),
which gives

dε
dT

þ 1

τ

dε2
dT

þ ε1
τT

þ π1
τT

¼ τR
τ

�
dp
dT

þ 2
dε
dT

�
þ
�
1þ β

τR
τ

�
dε
dT

: ð25Þ

With the help of the thermodynamic identities listed above,
Eqs. (24) and (25) lead to the differential equation for the
function ε2ðTÞ,

dε2
dT

−
ε2
T

¼ τR
dε
dT

: ð26Þ

A formal solution of Eq. (26) is
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ε2ðTÞ ¼ τRT
Z

T

T0

dεðT 0Þ
T 0dT 0 dT

0; ð27Þ

where T0 is an integration constant that we set equal
to zero.
Consequently, if the equation of state is known, i.e., the

temperature dependence of the energy density, ε ¼ εðTÞ, is
given then from Eq. (27) we find ε2ðTÞ. Once ε2 is known,
from Eq. (24) we can find π1. The remaining two
coefficients, ε1 and π2 come from Eqs. (20) and (23),
respectively. Hence, all the coefficients appearing in FOCS
can be uniquely determined in terms of the IS coefficients η
and ζ, as well as the equation of state.
Interestingly, even if the equation of state is not known,

we can find direct relations connecting different regulators.
Since dε ¼ Tds, Eqs. (20) and (27) give

ε1 ¼ c−2s τRTs; ε2 ¼ τRTs: ð28Þ
Hence, the second expression in the round brackets on the
right-hand side of Eq. (24) vanishes, and we find

π1 ¼ βc−2s τRðεþ pÞ ¼ βc−2s τRTs ¼ βε1: ð29Þ
Similarly, using (23) one finds

π2 ¼ βτRTs − ζ ¼ βε2 − ζ; ð30Þ
thus, as long as ζ ≪ βε2 we expect π2 ≈ βε2. Expressing
the χi coefficients by εi and πi, we also find that

χ1 ¼ χ2 ¼
χ3
β
¼ χ4 þ ζ

β
¼ τRTs > 0: ð31Þ

IV. RELATIVISTIC GAS

In this section, to illustrate our procedure, we take into
consideration the equation of state of a relativistic gas. We
first analyze the massless case and subsequently turn to a
discussion of the massive gas obeying classical statistics.

A. Massless limit

As a limiting case of our procedure, we analyze massless
particles with a conformal equation of state ε ¼ 3p ¼ aT4,
vanishing bulk viscosity ζ ¼ 0, and c2s ¼ 1=3. The param-
eter a is a constant proportional to the number of internal
degrees of freedom of particles. The FOCS regulators are
obtained from Eqs. (20), (23), (24) and (27),

εðm¼0Þ
1 ¼ 4aτRT4;

εðm¼0Þ
2 ¼ 4

3
aτRT4;

πðm¼0Þ
1 ¼ βεðm¼0Þ

1 ;

πðm¼0Þ
2 ¼ βεðm¼0Þ

2 : ð32Þ

These expressions agree with our previous results obtained
with λ ¼ 0 [34].1

B. Massive classical case

Let us now generalize our results to the massive, classical
case. In this case the energy density and pressure are given
by the modified Bessel functions Kn [37],

εðTÞ ¼ a
6
T4z2½3K2ðzÞ þ zK1ðzÞ�;

pðTÞ ¼ a
6
T4z2K2ðzÞ; ð33Þ

respectively, where z ¼ m=T, and we set a ¼ 3g=π2 (with
g being the degeneracy factor) in order to agree with
previous expressions given in the massless limit.
The results of our numerical calculations for the regu-

lators ε1, ε2, π1, and π2, where we used the value of the
pion mass for m, are shown in Fig. 1. In the calculation of
π2 we used the formula for the bulk viscosity coefficient
given in [37],

0.0
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0.2 0.4 0.6 0.8 1.0 1.2 1.4

FIG. 1. Temperature dependence of the regulators ε1, ε2, π1,
and π2 obtained for the equation of state given by Eqs. (33)
with m ¼ mπ ¼ 140 MeV. The results are scaled by the values
corresponding to the m → 0 limit Eqs. (32).

1It is important to mention that the Israel Stewart (IS) theory
considered in the present work does not contain the coefficient λ.
In Ref. [34], where we investigated the correspondence between
the FOCS and IS theories in the massless limit, the coefficient λ
appears as an additional parameter in the evolution equation of
the shear stress tensor (πμν). In Ref. [34] we obtained corre-
spondence between IS and FOCS for an ideal gas equation of
state for Bjorken flow, and we found that the FOCS coefficients
ε1, ε2, π1 and π2 can be expressed in terms of the IS coefficient λ
and the constant relaxation time (τR). The limit λ ¼ 0 of the
results obtained in Ref. [34] exactly agrees with Eq. (32).
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ζ¼ τR
pz2

3

�
−

zK2

3ð3K3þ zK2Þ
þ z
3

�
K1

K2

−
Ki;1

K2

��
; ð34Þ

where all Bessel functions are understood to be evaluated at
z and Ki;1ðzÞ ¼ π

2
½1 − zK0ðzÞL−1ðzÞ − zK1ðzÞL0ðzÞ� with

Li being the modified Struve function. The result (34) has
been obtained within the relaxation-time approximation
(RTA) in the kinetic theory [38]. We have identified here
the RTA and IS relaxation times. The quantity p in (34) is
the same equilibrium pressure as that appearing in hydro-
dynamic equations.
As expected the numerical calculations confirm that

π1 ¼ βε1. We also find that to a very good approximation
π2 ≈ βε2, which indicates that the considered values of the
bulk viscosity are relatively small. In the high temperature
limit, the values of the regulators approach their massless
limits given by Eqs. (32).
Using Eq. (20) and expanding it around z ¼ 0 one finds

deviations from the high-temperature limit, namely,

ε1¼ εðm¼0Þ
1

�
1−

z2

24
−

z4

192
þOðz6Þ

�
: ð35Þ

The expansion of π1 confirms that π1 ¼ βε1. On the other
hand, using Eq. (27) one finds

ε2 ¼ εðm¼0Þ
2

�
1 −

z2

8
þ z4

64
þOðz6Þ

�
ð36Þ

and

π2 ¼ πðm¼0Þ
2

�
1 −

z2

8
þ z4

64

�
1 −

20

27β

�
þOðz6Þ

�
; ð37Þ

so the scaling π2 ¼ βε2 is only approximate.
An analogous analysis at large z gives

ε1 ¼ κz

�
128z2 þ 624zþ 1785þO

�
1

z

��
ð38Þ

and π1 ¼ βε1, where for simplicity of notation we have
defined the function,

κðT; zÞ ¼ 1

3072

ffiffiffi
π

2

r
εðm¼0Þ
1 e−z

ffiffiffi
z

p
: ð39Þ

One similarly obtains

ε2 ¼ κ

�
128z2 þ 560zþ 945þO

�
1

z

��
ð40Þ

and

π2 ¼ κβ

�
128z2 þ 560z

�
1þ 16

105β

�

þ 945

�
1þ 928

2835β

�
þO

�
1

z

��
: ð41Þ

This leads to an approximate relation π2 ≈ βε2 if the terms
containing inverse powers of β can be neglected.

V. STABILITY AND CAUSALITY CONDITIONS

Finally, we turn to the discussion of causality and
stability conditions derived for FOCS in [32]. For the
reader’s convenience and also in order to be concrete we list
them below and divide into two classes:
Causality conditions,

λBDN> 0; χ1 > 0; η≥ 0; λBDN ≥ η; β≥
ϕ

χ1
; ð42Þ

χ1½λBDNðc2s þ βÞ þ ϕ� ≥ 0; ð43Þ

λBDN χ1

�
1 − c2s

�
ϕ

χ1
− β

��
≥ χ1½λBDNðc2s þ βÞ þ ϕ�; ð44Þ

9χ21

�
λ2BDNc

4
s þ 2λBDNc2s

�
λBDN

�
2ϕ

χ1
− β

�
þ ϕ

�

þ ½ϕþ λBDNβ�2
�

≥ 0: ð45Þ

Stability conditions,

ϕ ≥ 0; ð46Þ

9ϕfc2sðλBDN þ χ1Þðλ2BDN þ λBDN χ1 þ χ21Þ
þ χ1½ χ1ϕþ λBDNβðλBDN þ χ1Þ�g ≥ 0: ð47Þ

ðλBDN þ χ1Þð1 − c2sÞ ≥ ϕ: ð48Þ

The above conditions, where ϕ ¼ 4η=3þ ζ, have been
checked by us for the case of the relativistic massive gas
discussed in the previous section. Besides the bulk viscos-
ity coefficient, for which we have used Eq. (34), the
causality and stability conditions involve the shear viscos-
ity coefficient η. We have used the formula for η from
Ref. [37] that reads

η ¼ τRpz3

15

�
3

z2
K3

K2

−
1

z
þ K1

K2

−
Ki;1

K2

�
: ð49Þ

The remaining unknown function appearing in the con-
ditions (42)–(48) is the energy flow coefficient λBDN.

2

2In the causality and stability conditions we have introduced
the energy flow coefficient λBDN which in the full FOCS
theory controls the heat flow in the system, Qμ ¼ Δμ

νTναuα ¼
λBDNðc

2
sΔμν∂νε
εþp þ uα∂αuμÞ where uν is the fluid four-velocity and

Δν
μ ¼ gνμ − uμuν is the spatial projector [32]. Although in the

considered Bjorken-expanding system the heat flow vanishes
identically for generality we keep it here as a free parameter.
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In order to fulfill the fourth condition in (42), in our checks
we have used the values λBDN ≥ η.
In the temperature range 0 ≤ T ≤ 200 MeV, we have

numerically found that all conditions except for one defined
by Eq. (45) are satisfied. This result has been subsequently
confirmed by the analytic calculations where different
relations between the regulator functions have been used.
It means that the special case of the IS theory considered
here is not causal.
The causality condition discussed here requires that the

group velocity for k → ∞ (with k denoting the wave
number of a hydrodynamic mode) should not be super-
luminal. It is important to note that it is the asymptotic
behavior which is important in the context of the causality
of a hydrodynamic theory, as discussed in Ref. [39]. On the
basis of linear perturbation theory, it has been argued in
Ref. [39] that the group velocity can become superluminal
for some finite value of the momentum, but it is the
asymptotic value of the group velocity that determines
whether the theory as a whole is causal or not. One should
also keep in mind that the causality of a hydrodynamic
theory as defined in Ref. [39] is restricted only to the linear
regime but the causality conditions discussed in Ref. [32]
are given for the fully nonlinear regime.
We should also mention that in relativistic dissipative

hydrodynamics causality and stability are intimately related
for nonvanishing bulk and shear viscosities [39,40]. Thus,
if the theory is acausal it also develops instability.
Therefore, in order to check the stability conditions one
also has to consider the causality conditions [32].
In the present work we could conclude about the

causality and stability of the IS theory using our knowledge
of nonlinear causality and stability of FOCS theory due to
the correspondence between them. On general grounds IS
and FOCS theories are quite different; hence, it is expected
that the correspondence between dynamical equations in
these theories may be found only for limited number of
special cases. In the present investigation we found the

correspondence between IS and FOCS theory using the
approximation of constant relaxation time. If we remove
the approximation of the constant relaxation time, then the
correspondence between IS theory and FOCS theory may
not work. Therefore in that case we may not able to use the
knowledge of FOCS theory to study the causality and
stability in the IS theory. One could also check the causality
and the stability of the IS theory in the massless limit by
considering T=m ≫ 1 limit. One may conclude that even in
the massless limit all the causality conditions cannot be
satisfied for the IS theory considered here.

VI. SUMMARY

In this work we have found the exact correspondence
between Israel-Stewart (IS) hydrodynamic approach and
first-order causal and stable (FOCS) hydrodynamics for the
boost-invariant massive case with zero baryon density. The
crucial assumption that allowed for this matching was that
the same constant relaxation times were used in the shear
and bulk sectors. Explicit expressions for the temperature
dependent regulators of the FOCS theory have been given
in the case where the system’s equation of state is that of a
relativistic massive gas. The stability and causality criteria
known in the first-order approach have been applied to the
Israel-Stewart framework. We have found that one of them
is violated in the considered case. We note that recently [41]
the conditions for causality and stability of the IS theory
have been obtained, which can be directly used in future
investigations.
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