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We construct solutions of four-dimensional N ¼ 2 gauged supergravity coupled to vector multiplets
which are holographically dual to superconformal line defects. For the gauged STU and the
SUð1; nÞ=Uð1Þ × SUðnÞ coset models, we use the solutions to calculate holographic observables such
as the expectation value of the defect and one-point functions in the presence of the defect.
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I. INTRODUCTION

Extended objects such as defects, line operators, and
interfaces are important tools in the study of quantum field
theories. For conformal field theories (CFTs) with holo-
graphic duals, in many cases the extended objects have a
realization on the gravity side. One example of such a
duality is the fundamental string in AdS5 × S5 describing
a Wilson line in the fundamental representation [1,2], and
its generalization to D3 probe branes with an AdS2 × S2

worldvolume and D5 probe branes with an AdS2 × S4

worldvolume [3–7]. When the number of probe branes
becomes large, the backreaction cannot be neglected and a
fully backreacted type IIB supergravity solution replaces
the probe description. For the case of the half-
Bogomol’nyi-Prasad-Sommerfield (BPS) Wilson loop, this
solution was found in [8].1 In general, the fully backreacted
solutions in type II and M-theory are warped product
geometries and the solutions are complicated
and difficult to obtain.2 A simpler setting is to consider
lower-dimensional gauged supergravities, where the ansatz
is simpler and the number of fields is smaller. If the
gauged supergravity is a consistent truncation of a higher-
dimensional theory, the resulting lower-dimensional
solution can be uplifted to produce solutions in the
higher-dimensional theory.
In this paper, we consider four-dimensional N ¼ 2

gauged supergravity, which has been used in the past to

describe condensed matter systems in three dimensions in
order to find holographic models for superfluids and
superconductors, see e.g., [12–14]. We construct half-
BPS supergravity solutions which are dual to line defects
in three-dimensional N ¼ 2 superconformal field theo-
ries. The metric ansatz is given by AdS2 × S1 warped over
an interval. We correct an error in the analysis in a
previous paper by two of the present authors [15], which
excluded the existence of regular solutions in pure gauged
supergravity and generalize the analysis to the case of
matter couplings.
The structure of the paper is as follows. In Sec. II, we

review our conventions for four-dimensionalN ¼ 2 gauged
supergravity coupled to vector multiplets. In Sec. III, we
give a general solution describing a half-BPS line defect,
obtained by a double analytic continuation of the black hole
solutions first found by Sabra [16]. Since the behavior of
the vector multiplet scalars can only be determined implic-
itly, we consider three examples, namely a single scalar
model, the gauged STU model, and the SUð1; nÞ coset
model to obtain explicit solutions. In Sec. IV, we use the
machinery of holographic renormalization to calculate
holographic observables for the solutions, namely the
on-shell action and the expectation values of operators
dual to the supergravity fields. In Sec. V, we explore the
conditions for a regular geometry and calculate their
consequences. In Sec. VI, we discuss our results and
possible directions for future research. Our conventions
and some details of the calculations presented in the main
body of the paper are relegated to several Appendixes.

II. D= 4, N = 2 GAUGED SUPERGRAVITY

In this section, we review four-dimensional N ¼ 2
gauged supergravity coupled to n vector multiplets. We
use the conventions and notations of [17–19].
The field content of the gauged supergravity theory

is as follows. The supergravity contains one graviton eaμ,
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1See [9] for earlier work on IIB supergravity solutions for
Wilson loops.

2See [10,11] for gravity solutions dual to conformal defects in
both type IIB and D ¼ 11 supergravity.
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two gravitinos ψ i
μ, and one graviphoton A0

μ. The gravity
multiplet can be coupled to N ¼ 2 matter, and in particular
we consider n vector multiplets, which are labeled by an
index α ¼ 1; 2;…; n. Each vector multiplet contains
one vector field Aα

μ, two gauginos λαi , and one complex
scalar τα. In this paper we do not consider adding N ¼ 2
hypermultiplets.
It is convenient to introduce a new index I ¼ 0; 1;…; n

and include the graviphoton with the other vector fields as
AI
μ. The complex scalars τα parametrize a special Kähler

manifold equipped with a holomorphic symplectic vector

vðτÞ ¼
�
ZIðτÞ
F IðτÞ

�
; ð2:1Þ

where the Kähler potential Kðτ; τ̄Þ is determined by

e−Kðτ;τ̄Þ ¼ −ihv; v̄i≡ −iðZIF̄ I − F IZ̄IÞ: ð2:2Þ

In the models we will consider, there exists a holomorphic
function F ðZÞ, called the prepotential, that is homo-
geneous of second order in Z such that

F IðτÞ ¼
∂
∂ZI F ðZðτÞÞ: ð2:3Þ

The supergravity theory is fully specified by the prepo-
tential F ðZÞ and the choice of gauging of the SU(2)
R-symmetry. We will choose the U(1) Fayet-Iliopoulos
(FI) gauging. The only charged fields of the theory are
the gravitinos, which couple to the gauge fields through the
linear combination ξIAI, for some real constants ξI. The
two gravitinos have opposite charges �gξI for each U(1)
gauge factor, where g is the gauge coupling.
The bosonic action is3

e−1Lbos ¼
1

2
R − gαβ̄∂μτα∂μτ̄

β̄ − Vðτ; τ̄Þ

þ 1

4
ðImN ÞIJFIμνFJ

μν

−
1

8
ðReN ÞIJe−1ϵμνρσFI

μνFJ
ρσ; ð2:4Þ

where FI
μν ¼ ∂μAI

ν − ∂νAI
μ are the field strengths and

gαβ̄ ¼ ∂α∂ β̄K is the Kähler metric of the scalar manifold.
We use Gμν to denote the four-dimensional metric, so

e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detG

p
. The scalar potential is

Vðτ; τ̄Þ ¼ −2g2ξIξJððImN Þ−1jIJ þ 8eKZ̄IZJÞ; ð2:5Þ

where the kinetic matrix N IJ is given by

N IJðτ; τ̄Þ ¼ F̄ IJ þ 2i
ðImF ILÞðImF JKÞZLZK

ðImFMNÞZMZN ;

F IJ ≡ ∂
∂ZI

∂
∂ZJ F ðZÞ: ð2:6Þ

This is equivalently defined as the matrix which solves the
equations

F I ¼ N IJZJ; DᾱF̄ I ¼ N IJDᾱZ̄J; ð2:7Þ

where D is the Kähler covariant derivative,

Dαv ¼ ð∂α þ ∂αKÞv;
Dᾱv̄ ¼ ð∂ ᾱ þ ∂ ᾱKÞv̄;
Dαv̄ ¼ ∂αv̄ ¼ 0;

Dᾱv ¼ ∂ ᾱv ¼ 0: ð2:8Þ

The equations of motion are obtained by varying the
Lagrangian (2.4)

Rμν ¼ 2gαβ̄∂μτ
α∂ντ̄

β̄þVGμν

þðImN ÞIJ
�
−FI

μ
ρFJ

νρþ
1

4
FIρσFJ

ρσGμν

�
;

∂μðegαβ̄∂μτ̄β̄Þ¼ e

�
ð∂αgβγ̄Þ∂μτβ∂μτ̄

γ̄

−
1

4
∂αðImN ÞIJFIμνFJ

μνþ∂αV

�

þ1

8
∂αðReN ÞIJϵμνρσFI

μνFJ
ρσ;

0¼ ∂μ

�
eðImN ÞIJFJμν−

1

2
ðReN ÞIJϵμνρσFJ

ρσ

�
:

ð2:9Þ

The supersymmetry transformations are given in
Appendix A.

III. LINE DEFECT SOLUTION

In this section, we give a general solution describing a
half-BPS line defect in four-dimensional N ¼ 2 gauged
supergravity, and then construct the solution for three
specific choices of the prepotential.

A. Holographic line defects

A conformal line defect in three dimensions is a
codimension-two defect which breaks the three-
dimensional conformal group SOð3; 2Þ down to an
SOð2; 1Þ × SOð2Þ subgroup. The subgroup factors re-
present the unbroken conformal symmetry along the3We set 8πGN ¼ 1.
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defect and transverse rotations about the defect, respec-
tively. Minkoswski space R1;2 is related by a Weyl trans-
formation to AdS2 × S1, namely

−dt2 þ dr2 þ r2dϕ2 ¼ ΩðrÞ
�
−dt2 þ dr2

r2
þ dϕ2

�
: ð3:1Þ

Hence in the holographic dual, the SOð2; 1Þ × SOð2Þ
symmetry can be realized as the isometries of
AdS2 × S1, which we choose as the boundary of the
four-dimensional asymptotically anti-de Sitter space.
Therefore we consider a metric ansatz with AdS2 × S1

warped over a radial coordinate. We note that the location
of the defect at r ¼ 0 in Minkowski space gets mapped
to the boundary of AdS2 in the AdS2 × S1 geometry.
Secondly, the absence of a conical singularity on the
boundary fixes the periodicity of the angle ϕ to be 2π.
The superconformal algebras in three dimensions are

OSpðN j4Þ, where N ¼ 1; 2;…; 6; 8. For the CFT dual of
four-dimensional N ¼ 2 gauged supergravity, the relevant
superalgebra is OSpð2j4Þ which has four Poincaré and four
conformal supercharges. A conformal line defect is called
superconformal if it preserves some supersymmetry. In the
present paper, we will consider half-BPS defects which
preserve an OSpð2j2Þ superalgebra and hence four of the
eight supersymmetries.

B. General solution

Four-dimensional N ¼ 2, U(1) FI gauged supergravity
admits half-BPS black hole solutions first found in [16].
The line defect solutions with AdS2 × S1 geometry are
constructed by a double analytic continuation of the black
hole solution. The metric and gauge fields are given by

ds2 ¼ r2
ffiffiffiffiffiffiffiffiffiffi
HðrÞ

p
ds2AdS2 þ

fðrÞffiffiffiffiffiffiffiffiffiffi
HðrÞp ds2S1 þ

ffiffiffiffiffiffiffiffiffiffi
HðrÞp
fðrÞ dr2;

fðrÞ ¼ −1þ 8g2r2HðrÞ;

HðrÞ1=4 ¼ 1ffiffiffi
2

p eK=2ZIHIðrÞ;

HIðrÞ ¼ ξI þ
qI
r
; I ¼ 0; 1;…; n;

AI ¼ ð−2HðrÞ−1=4eK=2ZI þ μIÞdθ; I ¼ 0; 1;…; n;

ð3:2Þ

for some real constants qI and μI, where ZI ¼ Z̄I . Given a
prepotential F ðZÞ and choice of parametrization of the
symplectic sections ZIðτÞ, the scalars τα are given implic-
itly by the equation

iH1=4eK=2ðF I − F̄ IÞ ¼
1ffiffiffi
2

p HI: ð3:3Þ

At the conformal boundary where r → ∞, in order to have
asymptotic AdS4 we need 2

ffiffiffi
2

p
gθ to be 2π-periodic, i.e.,

θ ∼ θ þ π=
ffiffiffi
2

p
g. The AdS4 length scale is then given by

L−2 ¼ 8g2Hðr ¼ ∞Þ1=2: ð3:4Þ

We will set 8g2 ¼ 1 to obtain the usual S1 periodicity
θ ∼ θ þ 2π.
The center of the space4 r ¼ rþ corresponds to the

largest value of r where fðrÞ ¼ 0. We consider radii taking
values in the range r ∈ ½rþ;∞Þ. Demanding a regular
geometry also requires rþ > 0 and the absence of a conical
singularity at the center of the space, both of which can be
done by tuning the qI and ξI parameters. This is explored in
further detail in Sec. V.

C. Examples

For a general prepotential, Eq. (3.3) is very complicated
and can only be solved numerically. Consequently, we will
explicitly work out the line defect solution for three specific
prepotentials, for which we can find explicit expressions
for the scalars. An important requirement is the existence
of an AdS4 vacuum, which not all prepotentials admit, see
e.g., [19,20].

1. Single scalar model

Consider a single (n ¼ 1) vector multiplet with the
prepotential F ðZÞ ¼ −iZ0Z1. This theory has a single

complex scalar τ and the scalar manifold is SUð1;1Þ
Uð1Þ . Using

the parametrization ðZ0; Z1Þ ¼ ð1; τÞ, we can calculate the
Kähler potential, kinetic matrix, and scalar potential,

eKðτ;τ̄Þ ¼ 1

2ðτ þ τ̄Þ ;

N ðτ; τ̄Þ ¼ −i
�
τ 0

0 1=τ

�
;

Vðτ; τ̄Þ ¼ −
1

2ðτ þ τ̄Þ ðξ
2
0 þ 2ξ0ξ1ðτ þ τ̄Þ þ ξ21ττ̄Þ: ð3:5Þ

The potential has extrema at τ ¼ �ξ0=ξ1, but only τ ¼ ξ0=ξ1
maintains eK > 0 for ξI > 0. The cosmological constant at
this extremum gives the AdS4 length scale

L−2 ¼ 1

2
ξ0ξ1: ð3:6Þ

We choose ξ1 ¼ 2=ξ0 to set the AdS4 length scale to unity.
The line defect solution (3.2) has the explicit form

4For the black hole geometry this is the location of the horizon.
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ds2 ¼ r2
ffiffiffiffi
H

p
ds2AdS2 þ

fffiffiffiffi
H

p ds2S1 þ
ffiffiffiffi
H

p

f
dr2;

fðrÞ ¼ −1þ r2HðrÞ;ffiffiffiffiffiffiffiffiffiffi
HðrÞ

p
¼ 1

2
H0H1;

HIðrÞ ¼ ξI þ
qI
r
; I ¼ 0; 1;

AI ¼
�
−

ffiffiffi
2

p

HI
þ μI

�
dθ; I ¼ 0; 1: ð3:7Þ

The scalar is given by

τ ¼ H0

H1

: ð3:8Þ

We have verified that the above fields obey the equations of
motion (2.9).

2. Gauged STU model

The STU model is given by considering n ¼ 3 vector
multiplets with the prepotential

F ðZÞ ¼ −2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z0Z1Z2Z3

p
: ð3:9Þ

This theory has three complex scalars τ1, τ2, τ3 and the

scalar manifold is three copies of SUð1;1Þ
Uð1Þ . When all

ξI ¼ ξ > 0 are equal, this theory is a consistent truncation
of N ¼ 8 gauged supergravity [21,22]. For reference
on this model, see [23]. Using the parametrization
ðZ0;Z1;Z2;Z3Þ¼ð1;τ2τ3;τ1τ3;τ1τ2Þ, the Kähler potential is

eKðτ;τ̄Þ ¼ 1

ðτ1 þ τ̄1Þðτ2 þ τ̄2Þðτ3 þ τ̄3Þ : ð3:10Þ

The expressions for the kinetic matrix and scalar potential
are complicated, but simplify for real scalars τα ¼ τ̄ᾱ,
which will be the case for the line defect solution,

N ðτ; τ̄ ¼ τÞ ¼ −idiag
�
τ1τ2τ3;

τ1

τ2τ3
;
τ2

τ1τ3
;
τ3

τ1τ2

�
;

Vðτ; τ̄ ¼ τÞ ¼ −
1

2

�
ξ0

�
ξ1
τ1

þ ξ2
τ2

þ ξ3
τ3

�

þ ðτ1ξ2ξ3 þ ξ1τ
2ξ3 þ ξ1ξ2τ

3Þ
�
: ð3:11Þ

The potential has extrema at

τ1 ¼ �
ffiffiffiffiffiffiffiffiffi
ξ0ξ1
ξ2ξ3

s
; τ2 ¼ �

ffiffiffiffiffiffiffiffiffi
ξ0ξ2
ξ1ξ3

s
; τ3 ¼ �

ffiffiffiffiffiffiffiffiffi
ξ0ξ3
ξ1ξ2

s
:

ð3:12Þ

Positivity of eK requires us to choose the positive root.
The cosmological constant at this extremum gives the AdS4
length scale

L−2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ0ξ1ξ2ξ3

p
: ð3:13Þ

We pick the nonzero constants ξI in a way that sets the
AdS4 length scale to unity. The line defect solution (3.2)
has the explicit form

ds2 ¼ r2
ffiffiffiffi
H

p
ds2AdS2 þ

fffiffiffiffi
H

p ds2S1 þ
ffiffiffiffi
H

p

f
dr2;

fðrÞ ¼ −1þ r2HðrÞ;
HðrÞ ¼ H0H1H2H3;

HIðrÞ ¼ ξI þ
qI
r
; I ¼ 0; 1; 2; 3;

AI ¼
�
−

1ffiffiffi
2

p
HI

þ μI
�
dθ; I ¼ 0; 1; 2; 3: ð3:14Þ

The scalars are

τ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
H0H1

H2H3

s
; τ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
H0H2

H1H3

s
; τ3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
H0H3

H1H2

s
:

ð3:15Þ

This solution is also the double analytic continuation of
the hyperbolic black hole solution in [24]. As consistency
checks, we have verified that the above solution obeys the
equations of motion (2.9) and is half-BPS. The latter was
done by a direct calculation, independent of [16], which can
be found in Appendix A.

3. SUð1;nÞ coset model

Another model which admits an AdS4 vacuum has the
prepotentialF ðZÞ ¼ i

4
ZIηIJZJ, and can be formulated with

any number of vector multiplets. ηIJ is a Minkowski metric,
which we will take to be η ¼ diagð−1;þ1;…;þ1Þ. The
scalar manifold of this theory is SUð1;nÞ

Uð1Þ×SUðnÞ. Using the

parametrization ðZ0; ZαÞ ¼ ð1; ταÞ, the Kähler potential is

eKðτ;τ̄Þ ¼ 1

1 −
P

ατ
ατ̄α

: ð3:16Þ

Once again, the kinetic matrix and scalar potential have
simpler forms for real scalars τα ¼ τ̄ᾱ. The matrix ηIJ is
used to lower indices, e.g., ZI ¼ ηIJZJ.

N IJðτ; τ̄ ¼ τÞ ¼ −
i
2
ηIJ − ieKðτ;τÞZIZJ;

Vðτ; τ̄ ¼ τÞ ¼ 1

2
ξIη

IJξJ −
ðξ0 þ

P
αξατ

αÞ2
1 −

P
αðταÞ2

: ð3:17Þ
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This potential has an extremum at τα ¼ −ξα=ξ0.
5

The cosmological constant at this extremum gives us the
AdS4 length scale

L−2 ¼ −ξ2=2; ð3:18Þ

where ξ2 ¼ ξIη
IJξJ. We pick a timelike ξI with ξ2 ¼ −2

that will set the AdS4 length scale to unity. The line defect
solution (3.2) has the explicit form

ds2 ¼ r2
ffiffiffiffi
H

p
ds2AdS2 þ

fffiffiffiffi
H

p ds2S1 þ
ffiffiffiffi
H

p

f
dr2;

fðrÞ ¼ −1þ r2HðrÞ;ffiffiffiffiffiffiffiffiffiffi
HðrÞ

p
¼ −

1

2
HIη

IJHJ;

HIðrÞ ¼ ξI þ
qI
r
; I ¼ 0; 1;…; n;

AI ¼
� ffiffiffi

2
p

ηIJHJffiffiffiffi
H

p þ μI
�
dθ; I ¼ 0; 1;…; n: ð3:19Þ

The scalars are

τα ¼ −
Hα

H0

: ð3:20Þ

We have verified that the above fields obey the equations
of motion (2.9).

IV. HOLOGRAPHIC CALCULATIONS

In this section, we use the machinery of holographic
renormalization [25,26] to calculate the on-shell action and
the one-point functions of dual operators of the boundary
CFT in the presence of the defect, namely the stress tensor,
scalar, and currents. This is done explicitly for the three
examples in Sec. III C.

A. General procedure

First, we put the metric into the Fefferman-Graham (FG)
form,

ds2 ¼ 1

z2
ðdz2 þ gijðx; zÞdxidxjÞ; ð4:1Þ

where i, j ¼ 1, 2, 3 run over the AdS2 and S1 indices and
z → 0 is the conformal boundary. This is done by taking
z ¼ zðrÞ so that the appropriate coordinate change is
obtained by the solution to the ordinary differential
equation

−
HðrÞ1=4
fðrÞ1=2 dr ¼

dz
z
; ð4:2Þ

which can be integrated perturbatively in 1=r. This coor-
dinate change gives the FG expansions of the fields, which
we assume will take the form

gij ¼ g0ij þ z2g2ij þ z3g3ij þOðz4Þ;
AI ¼ AI

0 þ zAI
1 þOðz2Þ;

τα ¼ τα0 þ zτα1 þ z2τα2 þOðz3Þ;
τ̄ᾱ ¼ τα0 þ zτα1 þ z2τα2 þOðz3Þ; ð4:3Þ

where AI
0 and AI

1 are one-forms on the x1, x2, x3

coordinates. The constants τα0 are the AdS4 vacuum values
of the scalars, which depend on the model. There is no
gravitational conformal anomaly (i.e., a term proportional
to z3 log z in the expansion of gij) since d ¼ 3 is odd.
In the three-dimensional boundary CFT, the conformal

dimensions of the dual operators corresponding to the
scalars τα and vector fields AI are determined by the
linearized bulk equations of motion near the AdS boundary.
For instance, using the expansion τα ∼ τα0 þ zΔτ in the
linearized equation of motion for the scalar, we find that
the scaling dimension of the dual operator is related to the
mass-squared of the field by the equation

ΔτðΔτ − 3Þ ¼ −2: ð4:4Þ

The mass-squared is −2 for all scalars of the three examples
considered in this paper. This mass-squared is within the
window where both standard and alternative quantization
are possible [27], which implies that the scaling dimension
of the dual operator can be either Δτ ¼ 1 or Δτ ¼ 2.
Similarly, using the expansion AI ∼ zΔA−1dθ in the linear-
ized equation of motion for the vector field gives us

ðΔA − 1ÞðΔA − 2Þ ¼ 0: ð4:5Þ

We must have ΔA ¼ 2 as the vector field sources a
conserved current of the boundary CFT.
These scaling dimensions naturally fit into the flavor

current multiplet A2Ā2½0�ð0Þ1 of the d ¼ 3, N ¼ 2 boundary
CFT, using the notation of [28]. This short multiplet

contains, in addition to the spin-1 operator ½2�ð0Þ2 with

scaling dimension Δ ¼ 2, two scalar operators ½0�ð0Þ1 and

½0�ð0Þ2 as bottom and top components with scaling dimen-
sions Δ ¼ 1 and 2 respectively. The stress tensor multiplet

A1Ā1½2�ð0Þ2 is also present, as usual.
In the four-dimensional gauged supergravity, for a

well-defined variational principle of the metric we need
to add to the bulk action given by the Lagrangian (2.4) the
Gibbons-Hawking boundary term,

5The other extrema at ξ0 þ
P

α ξατ
α ¼ 0 do not admit AdS4

vacua while maintaining eK positive.
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Ibulk ¼
Z
M
d4xLbos;

IGH ¼
Z
∂M

d3x
ffiffiffiffiffiffi
−h

p
Trðh−1KÞ; ð4:6Þ

where hij is the induced metric on the boundary and Kij

is the extrinsic curvature. In FG coordinates, these take
the form

hij ¼
1

z2
gij; Kij ¼ −

z
2
∂zhij: ð4:7Þ

The action Ibulk þ IGH diverges due to the infinite volume
of integration. To regulate the theory, we restrict the bulk
integral to the region z ≥ ϵ and evaluate the boundary term
at z ¼ ϵ. Divergences in the action then appear as 1=ϵk

poles.6 Counterterms Ict are added on the boundary which
subtract these divergent terms. The counterterms have been
constructed in [23] and are compatible with supersym-
metry. They are

Ict ¼
Z
∂M

d3x
ffiffiffiffiffiffi
−h

p �
W −

1

2
R½h�

�
;

W ≡ −
ffiffiffi
2

p
eK=2jξIZIj; ð4:8Þ

where R½h� is the Ricci scalar of the boundary metric andW
is the superpotential. In all, the renormalized action,

Iren ¼ Ibulk þ IGH þ Ict; ð4:9Þ

is finite. We can then take functional derivatives to obtain
finite expectation values of the dual CFT operators. Let Tij

be the boundary stress tensor, Oα be the operators dual to
τα, and JIi be the current operators dual to AI

μ.

1. Stress tensor expectation value

The expectation value of the boundary stress tensor is
defined to be [29]

hTiji≡ −2ffiffiffiffiffiffiffiffi−g0
p δIren

δgij0
: ð4:10Þ

The variation decomposes into two contributions: one
coming from the regularized action and one coming from
the counterterms. As usual [30], the former is given by

Treg
ij ½h�≡ −2ffiffiffiffiffiffi

−h
p δðIbulk þ IGHÞ

δhij
¼ −Kij þ hijTrðh−1KÞ:

ð4:11Þ

The latter is straightforward to compute, and is given by

Tct
ij½h�≡ −2ffiffiffiffiffiffi

−h
p δIct

δhij
¼ hij

�
W −

1

2
R½h�

�
þ Rij½h�: ð4:12Þ

Therefore,

hTiji ¼ lim
ϵ→0

½ϵ−1ðTreg
ij ½h� þ Tct

ij½h�Þjz¼ϵ
�: ð4:13Þ

By construction of the counterterms, this limit exists.

2. Scalar expectation values

The expectation value of the operator Oα is similarly
defined by

hOαi≡ 1ffiffiffiffiffiffiffiffi−g0
p δIren

δτα1
¼ lim

ϵ→0

�
ϵ−2

1ffiffiffiffiffiffi
−h

p δIren
δτα

����
z¼ϵ

�
: ð4:14Þ

The variation has contributions from the bulk action and the
counterterms, and is

1ffiffiffiffiffiffi
−h

p δIren
δτα

¼ gαβ̄z∂zτ̄
β̄ þ ∂αW: ð4:15Þ

For real scalars, supersymmetry implies hOαi ¼ 0. A proof
of this statement can be found in Appendix B.

3. Current expectation values

The expectation value of the current operator JI is
defined by

hJiIi≡ 1ffiffiffiffiffiffiffiffi−g0
p δIren

δAI
0i
¼ lim

ϵ→0

�
ϵ−3

1ffiffiffiffiffiffi
−h

p δIren
δAI

i

����
z¼ϵ

�
: ð4:16Þ

The only contribution to the variation comes from the bulk
action, and is

1ffiffiffiffiffiffi
−h

p δIren
δAI

i
¼ −ðImN ÞIJhijz∂zAJ

j : ð4:17Þ

4. On-shell action

We can evaluate the on-shell action for the line defect
solution by further simplifying the bulk action to a total
derivative [31],

Ibulkjon−shell ¼ VolðAdS2ÞVolðS1Þ

×

�
−
H0ðrÞ
4HðrÞ r

2fðrÞ − rðfðrÞ þ 1Þ
�����∞

rþ

;

ð4:18Þ

where VolðS1Þ ¼ 2π and VolðAdS2Þ ¼ −2π is the regu-
larized volume of AdS2.

6In even boundary dimensions, a term proportional to log ϵ
may also appear.
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B. Examples

In this section, we use the general expressions derived in Sec. IVA to compute observables for the three examples
considered in this paper.

1. Single scalar odel

Let us consider the defect solution (3.7), (3.8) for the single scalar model. The FG expansion of the radial coordinate r
from solving the ordinary differential equation (4.2) is

1

r
¼ zþ 1

2

�X1
I¼0

qI
ξI

�
z2 þ −16þ ð3q1ξ0 þ q0ξ1Þð3q0ξ1 þ q1ξ0Þ

64
z3

þ ðq1ξ0 þ q0ξ1Þð−16þ 12q0q1ξ0ξ1 þ 3ðq0ξ1 þ q1ξ0Þ2Þ
384

z4 þOðz5Þ: ð4:19Þ

Using this coordinate change, the metric, gauge fields, and
scalar can be expanded in FG coordinates. The one-point
functions in the presence of the line defect can then be
evaluated by computing the limits (4.13), (4.14), (4.16)
directly. For the renormalized on-shell action (4.9), the
finite terms at the conformal boundary cancel, leaving just
the term obtained by evaluating (4.18) at r ¼ rþ. In the end,
we obtain the following expectation values:

Iren ¼ VolðAdS2ÞVolðS1Þrþ;

hTiji ¼
1

2

�X1
I¼0

qI
ξI

��−gAdS2 0

0 2gS1

�
ij

;

hTi
ii ¼ 0;

hOi ¼ 0;

hJIii ¼
qIffiffiffi
2

p δiθ: ð4:20Þ

2. Gauged STU model

Let us consider the defect solution (3.14), (3.15) for the
gauged STUmodel. Some of the calculations for this model
are identical to those found in [24]. The FG expansion of
the radial coordinate r from solving the ordinary differ-
ential equation (4.2) is

1

r
¼ zþ A

4
z2 þ −16þ B1 þ 10B2

64
z3

þ −16Aþ C1 þ 11C2 þ 62C3

384
z4 þOðz5Þ; ð4:21Þ

where we have defined the constants

A¼
X3
I¼0

qI
ξI
; B1¼

X3
I¼0

�
qI
ξI

�
2

; B2¼
X
I<J

qIqJ
ξIξJ

;

C1¼
X3
I¼0

�
qI
ξI

�
3

; C2¼
X
I≠J

�
qI
ξI

�
2qJ
ξJ
; C3¼

X
I<J<K

qIqJqK
ξIξJξK

:

ð4:22Þ

Using this coordinate change, the fields of the defect
solution can be expanded in FG coordinates. We obtain
the following on-shell action and one-point functions:

Iren ¼ VolðAdS2ÞVolðS1Þrþ;

hTiji ¼
1

4

�X3
I¼0

qI
ξI

��−gAdS2 0

0 2gS1

�
ij

;

hTi
ii ¼ 0;

hO1i ¼ hO2i ¼ hO3i ¼ 0;

hJIii ¼
qIffiffiffi
2

p δiθ: ð4:23Þ

Note that the expression for Iren is identical to that of the single
scalar model, but the radius rþ ¼ rþðξI; qIÞwill be different.

3. SUð1;nÞ coset model

For the defect solution (3.19), (3.20) of the SUð1; nÞ
coset model, the FG expansion of the radial coordinate r is

1

r
¼ z −

1

2
qIξIz2 −

1

4

�
1þ 1

2
qIqI −

3

4
ðqIξIÞ2

�
z3

þ 1

12
qIξI

�
1þ 3

2
qIqI −

3

4
ðqIξIÞ2

�
z4 þOðz5Þ; ð4:24Þ

where ηIJ is used to raise the indices of ξI and qI . Using this
coordinate change and expanding the fields in FG coor-
dinates, the on-shell action and one-point functions are

Iren ¼ VolðAdS2ÞVolðS1Þrþ;

hTiji ¼ −
qIξI

2

�−gAdS2 0

0 2gS1

�
ij

;

hTi
ii ¼ 0;

hOαi ¼ 0;

hJIii ¼
qIffiffiffi
2

p δiθ: ð4:25Þ
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V. REGULARITY

In this section, we impose two regularity conditions on
the solutions. First, we demand that the geometry smoothly
closes off at the largest positive zero of fðrÞ without a
conical singularity in the bulk spacetime. This condition is
analogous to the regularity condition imposed on Euclidean
black hole solutions. Second, we fix the periodicity of
the S1 at the conformal boundary such that when the
AdS2 × S1 boundary is conformally mapped toR1;2 there is
no conical deficit on the boundary. This condition is
different from the one imposed in the holographic calcu-
lation of supersymmetric Rényi entropies [32–35], which
use solutions that are related by double analytic continu-
ation. For these solutions, the periodicity is related to the
Rényi index n.
The regularity conditions will impose constraints on the

parameters of the solutions. Since the general solution is
only implicit, a detailed analysis is performed for the
examples presented in this paper. We will show that for
the single scalar and coset models, these conditions imply a
bound on the expectation value of the boundary stress tensor.

A. General statements

Given the metric

ds2 ¼ r2
ffiffiffiffiffiffiffiffiffiffi
HðrÞ

p
ds2AdS2 þ

fðrÞffiffiffiffiffiffiffiffiffiffi
HðrÞp ds2S1 þ

ffiffiffiffiffiffiffiffiffiffi
HðrÞp
fðrÞ dr2;

ð5:1Þ

the center of the space r ¼ rþ is defined to be the largest
zero of fðrÞ ¼ −1þ r2HðrÞ. We can identify four criteria a
regular geometry should satisfy:
(a) positivity of the zero, rþ > 0,
(b) 0 < HðrÞ < ∞ on r ∈ ½rþ;∞Þ,
(c) 0 < fðrÞ < ∞ on r ∈ ðrþ;∞Þ, and
(d) no conical singularity at r ¼ rþ.
Criteria (b) and (c) are satisfied if HðrÞ is continuous:
the AdS length scale (3.4) is well defined if and only if the
limit Hðr ¼ ∞Þ is positive and finite. Since a zero of HðrÞ
occurs at fðrÞ < 0, positivity of HðrÞ at large r and
continuity imply that the spacetime closes off before a
zero of HðrÞ is ever encountered.
By expanding the metric around the center of the space,

criterion (d) is satisfied when

f0ðrþÞ2 ¼ 4HðrþÞ: ð5:2Þ

This can be simplified to

H0ðrþÞðr2þf0ðrþÞ þ 2rþÞ ¼ 0: ð5:3Þ

As the second factor is the sum of two positive quantities,
a conical singularity can be avoided if we satisfy the
condition H0ðrþÞ ¼ 0. As rþ is determined implicitly in

terms of the qI , ξI constants through the equation
fðrþÞ ¼ 0; this condition can be viewed as a constraint
on the possible values qI , ξI can take. Additionally, we will
see that criterion (a) manifests as an inequality on qI , ξI that
we must satisfy.
The constants μI appearing in the expressions for the

gauge fields in (3.2) are fixed by demanding that the gauge
fields vanish at r ¼ rþ.

B. Single scalar model

The single scalar model is simple enough that the
conditions for a regular geometry can be solved exactly.
Let us define xI ≡ qI=ξI , but still pick the AdS length
scale to be unity, i.e., keep ξ0ξ1 ¼ 2. The metric functions
become

HðrÞ ¼
�
1þ x0

r

�
2
�
1þ x1

r

�
2

;

fðrÞ ¼ −1þ 1

r2
ðrþ x0Þ2ðrþ x1Þ2: ð5:4Þ

Let us first satisfy the criterion rþ > 0. Solving fðrÞ ¼ 0,

0 ¼ ðr2 þ rðx0 þ x1 − 1Þ þ x0x1Þ
× ðr2 þ rðx0 þ x1 þ 1Þ þ x0x1Þ: ð5:5Þ

When the first factor is zero, we have a solution

r1 ¼
1

2

�
−ðx0 þ x1 − 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 þ x1 − 1Þ2 − 4x0x1

q �
;

ð5:6Þ

where we took the þ sign to get the largest root. This
solution exists when ðx0 þ x1 − 1Þ2 − 4x0x1 ≥ 0, which is
a region on the x0x1 plane bounded by a parabola, shown in
Fig. 1(a). The red shaded region indicates where r1 does not
exist and the blue shaded region indicates where r1 > 0.
When the second factor of (5.5) is zero, we have another
solution

r2 ¼
1

2

�
−ðx0 þ x1 þ 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 þ x1 þ 1Þ2 − 4x0x1

q �
;

ð5:7Þ

where we also took the þ sign. We have also marked
regions where this solution exists and is positive in
Fig. 1(b). In regions where r1 and r2 both exist and
r1 > 0, we have r1 > r2. Therefore, we can take rþ ¼
r1 and restrict the ðx0; x1Þ parameter space to the blue
shaded region of Fig. 1(a).
Let us now avoid the conical singularity by satisfying

H0ðrþÞ ¼ 0. Calculating the derivative of HðrÞ in (5.4) and
plugging in rþ ¼ r1 from (5.6), we get the condition
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0 ¼ ðx0 − x1Þ2 − 2ðx0 þ x1Þ: ð5:8Þ

This is a parabola, marked by the black curve in Fig. 1(a) in
the region where rþ > 0. For the single scalar model to
admit a regular geometry, the parameters xI ¼ qI=ξI must
satisfy this condition. As a corollary, we can note that

0 ≤ x0 þ x1 < 2: ð5:9Þ

This implies that the components of the boundary stress
tensor (4.20) have bounded expectation value. Additionally,
the pure AdS4 vacuum (x0 ¼ x1 ¼ 0) is the only solution
with regular geometry and hTiji ¼ 0.

C. SUð1;nÞ coset model

The coset model is also simple enough that the con-
ditions for a regular geometry can be solved exactly.
We can note that

HðrÞ ¼
�
1 −

qIξI

r
−
qIqI

2r2

�
2

ð5:10Þ

actually has the same form as (5.4), where

x0 ¼
−qIξI −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqIξIÞ2 þ 2qIqI

p
2

;

x1 ¼
−qIξI þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqIξIÞ2 þ 2qIqI

p
2

: ð5:11Þ

This map is always well defined as ðqIξIÞ2 þ 2qIqI ≥ 0,
which can be checked by rotating to the frame where
ξI ¼ ð ffiffiffi

2
p

; 0; 0;…Þ. Thus all our results for the single scalar
model can be carried over. The bound (5.9) for the single
scalar model translates to the same bound on hTiji for the
coset model:

0 ≤ −qIξI < 2: ð5:12Þ

The condition (5.8) for a regular geometry translates to

0 ¼ ðqIξIÞ2 þ 2qIqI þ 2qIξI: ð5:13Þ

We can show that the only regular geometry with vanishing
hTiji is the AdS4 vacuum. If we rotate to the frame where

ξI ¼ ð ffiffiffi
2

p
; 0; 0;…Þ, the only q which satisfies qIξI ¼ 0 and

qIqI ¼ 0 is qI ¼ 0. A general ξ then has a q in the orbit of
qI ¼ 0, which is still the zero vector.

D. Gauged STU model

For the gauged STU model, it is not practical to solve
fðrÞ ¼ 0 to find rþ as f is a quartic polynomial. However,
we still expect the criterion rþ > 0 to impose an inequality
on the four-dimensional parameter space ðx0; x1; x2; x3Þ and
the condition of avoiding a conical singularity to reduce this
to a three-dimensional hypersurface. However, note that
unlike the single scalar and coset models, the expectation
value hTiji is not bounded. In Appendix C we give special

FIG. 1. Candidate rþ for the single scalar model.
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cases of the STU model with regular geometry which can
have arbitrarily large x0 þ x1 þ x2 þ x3.

VI. DISCUSSION

In this paper, we constructed solutions of four-
dimensional N ¼ 2 gauged supergravity by a double
analytic continuation of the half-BPS black hole sol-
utions first found by Sabra [16]. While the black hole
solutions exist for arbitrary prepotentials, explicit
expressions for the scalars fields involve algebraic
equations which in general can only be solved numeri-
cally. We considered three explicit examples of matter-
coupled gauged supergravities, namely the single scalar
model, the gauged STU model, and the SUð1; nÞ=Uð1Þ ×
SUðnÞ coset model to find solutions and calculate
holographic observables.
The solutions we find are holographic duals to line

defects in three-dimensional SCFTs. The defect is charac-
terized by a nontrivial expectation value of the R-symmetry
and flavor currents along the S1 factor in the AdS2 × S1

description of the defect. After conformally mapping to
Minkowski space, this corresponds to a holonomy when
encircling the line defect. The expectation values of the real
scalar operators vanish for general models as a conse-
quence of supersymmetry.
For a conformal defect on AdS2 × S1, the expectation

value of the stress tensor can be parametrized by a single
coefficient h,

hTabi ¼ hgAdS2ab ; hTθθi ¼ −2hgθθ; ð6:1Þ

in analogy to the scaling dimension of local operators
[36,37]. However, there are in general no unitarity
bounds on h which follow from the superconformal
algebra. For line operators in N ¼ 4 SYM and
Aharony-Bergman-Jafferis-Maldacena theories, h can
be related to the so-called Bremsstrahlung function B
[38–42] which has been used in the application of
conformal booostrap techniques to the study of defects
[43–46]. For the single scalar and coset models studied in
this paper we find that −2 < h ≤ 0, where the upper
bound is saturated only by the AdS4 vacuum. However,
such a bound does not seem to generally hold, since for
the gauged STU model, h can become arbitrarily neg-
ative. Based on numerical searches we conjecture that
only the AdS4 vacuum has vanishing h. Note that
recently the relation of h and B, as well as the negativity
of h has been established on the SCFT side for various
defect theories [47–50] and the arguments should carry
over to the defects dual to the solutions studied in the
paper.7

The solutions we find are related to supergravity
solutions [24,33–35] which are holographic duals for a
supersymmetric version of Rényi entropy first formulated
in [32]. We note two differences. First, the solutions we
find in Minkowski time signature have real gauge fields,
unlike the duals cited above.8 Second, we impose the
condition that the periodicity of the circle in AdS2 × S1

boundary is such that after a conformal map we obtain
flat space without a conical singularity. On the other
hand, in the holographic duals to the super-Rényi
entropy, the conical singularity is related to the Rényi
index n. We note that in [24,33–35] the holographic
calculation of the Rényi entropy was compared to a
localization calculation and agreement was found, and it
would be interesting to see whether such a calculation
can be performed for the holonomy defects described in
this paper.
Another interesting question is whether more general

solutions going beyond the examples discussed in this
paper can be found. First, it would be interesting to study
(numerical) solutions for more complicated superpoten-
tials. Second, it would be interesting to see whether one can
go beyond the gauged supergravity approximation and find
solutions dual to holonomy defects in ten- or eleven-
dimensional duals of N ¼ 2 SCFTs. Uplifting the solutions
found in this paper might prove to be a useful guide in this
direction [22].
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APPENDIX A: SUPERSYMMETRY

We use the metric conventions η ¼ ð−þþþÞ and
ϵ0123 ¼ −ϵ0123 ¼ 1. The gamma matrices are defined as
usual, e.g.,

fγa; γbg ¼ 2ηab;

γab ¼
1

2
½γa; γb�;

γ5 ¼ iγ0γ1γ2γ3: ðA1Þ

The two chiral gravitinos can be written in terms of a
single complex (Dirac) spinor ψμ, and likewise for the
gauginos λα. The supersymmetry transformations of the
four-dimensional gauged supergravity are [18]

7We thank Marco Meineri and Lorenzo Bianchi for a useful
correspondence regarding these matters.

8After analytic continuation to Euclidean signature, the gauge
fields in both cases are real.
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δψμ ¼
�
∂μ þ

1

4
ωab
μ γab þ

i
2
Qμγ5 þ igξIAI

μ þ geK=2γμξIðImZI þ iγ5ReZIÞ

þ i
4
eK=2γabðImN ÞIJðImðF−I

abZ
JÞ − iγ5ReðF−I

abZ
JÞÞγμ

�
ϵ;

δλα ¼
�
γμ∂μðRezα − iγ5ImzαÞ þ 2geK=2ξIðImðDβ̄Z̄

Igαβ̄Þ − iγ5ReðDβ̄Z̄
Igαβ̄ÞÞ

þ i
2
eK=2γabðImN ÞIJðImðF−I

abDβ̄Z̄
Jgαβ̄Þ − iγ5ReðF−I

abDβ̄Z̄
Jgαβ̄ÞÞ

�
ϵ; ðA2Þ

where ϵ is a complex spinor, and we have defined

F�I
ab ≡ 1

2
ðFI

ab � F̃I
abÞ; F̃I

ab ≡ −
i
2
ϵabcdFIcd: ðA3Þ

The Kähler connection Qμ is

Qμ ¼ −
i
2
ð∂μτ

α∂αK − ∂μτ̄
ᾱ∂ ᾱKÞ: ðA4Þ

For the gauged STU model defect solution (3.14), we
can work with the explicit coordinates ðx0; x1; x2; x3Þ ¼
ðt; η; θ; rÞ and the metric

ds2 ¼ r2
ffiffiffiffi
H

p �
−dt2 þ dη2

η2

�
þ fffiffiffiffi

H
p dθ2 þ

ffiffiffiffi
H

p

f
dr2: ðA5Þ

The nonvanishing spin connection one-forms of the
metric are

ω01 ¼ −
dt
η
; ω03 ¼ f1=2

H1=4

d
dr

ðrH1=4Þ dt
η
;

ω13 ¼ f1=2

H1=4

d
dr

ðrH1=4Þ dη
η
; ω23 ¼ f1=2

H1=4

d
dr

�
f1=2

H1=4

�
dθ:

ðA6Þ

For the following calculations, we use the parametri-
zation ðZ0; Z1; Z2; Z3Þ ¼ ði; iz2z3; iz1z3; iz1z2Þ. The BPS
equations (A2) simplify to

0 ¼ δψμ ¼
�
∂μ þ

1

4
ωab
μ γab þ igξIAI

μ þ
ffiffiffi
2

p
gγμ

d
dr

ðrH1=4Þ

−
i
2
γ23γμ

d
dr

ðH−1=4Þ
�
;

0 ¼ δλα ¼ dzα

dr

�
f1=2

H1=4 γ3 þ 2
ffiffiffi
2

p
grH1=4 þ i

H1=4 γ23

�
ϵ:

ðA7Þ

The gaugino equation implies the projector

0 ¼
�
1þ 2

ffiffiffi
2

p
gr

ffiffiffiffi
H

pffiffiffi
f

p γ3 −
iffiffiffi
f

p γ2

�
ϵ: ðA8Þ

The μ ¼ t, η, θ components of the gravitino equation then
simplify to

0 ¼
�
∂t −

1

2η
γ01 −

i
2η

γ023

�
ϵ;

0 ¼
�
∂η −

i
2η

γ123

�
ϵ;

0 ¼
�
∂θ þ i

ffiffiffi
2

p
g

�
−1þ 1ffiffiffi

2
p ξIμ

I

��
ϵ: ðA9Þ

These can be integrated to

ϵ ¼ exp

�
−i

ffiffiffi
2

p
gθ

�
−1þ 1ffiffiffi

2
p ξIμ

I

��
exp

�
i
2
γ123 ln η

�

× exp

�
t
2
ðγ01 þ iγ023Þ

�
ϵ̃ðrÞ: ðA10Þ

We can see that we need ξIμ
I ∈ 2

ffiffiffi
2

p
Z in order for ϵ to be

antiperiodic under the identification θ ∼ θ þ π=
ffiffiffi
2

p
g.9 The

μ ¼ r component of the gravitino equation simplifies to

�
∂r þ

1

8

H0

H
þ f0

8
ffiffiffi
2

p
gr

ffiffiffiffi
H

p ffiffiffi
f

p γ3

�
ϵ: ðA11Þ

The gaugino projector (A8) and the radial equation (A11)
take the form of the equation solved in the appendix of [51]
by identifying

x≡ 2
ffiffiffi
2

p
gr

ffiffiffiffi
H

pffiffiffi
f

p ; y≡ −iffiffiffi
f

p ;

Γ1 ≡ γ3; Γ2 ≡ γ2: ðA12Þ

9In all the cases studied in this paper the condition is satisfied
for the μI determined by the regularity of A at r ¼ rþ.
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The solution is

ϵ̃ðrÞ ¼ 1

H1=8

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

p
þ 2

ffiffiffi
2

p
gr

ffiffiffiffi
H

pq

− γ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

p
− 2

ffiffiffi
2

p
gr

ffiffiffiffi
H

pq �
ð1 − γ3Þϵ0; ðA13Þ

where ϵ0 is a constant spinor.

APPENDIX B: VANISHING OF SCALAR ONE-
POINT FUNCTIONS FROM SUPERSYMMETRY

The scalar one-point function is given by

hŌᾱi ¼ lim
ϵ→0

�
1

ϵ2
ðzgβᾱ∂zτ

β þ ∂ ᾱWÞ
�
: ðB1Þ

The derivative of the superpotential W simplifies to

∂ ᾱW ¼ ∂ ᾱ

�
−

ffiffiffi
2

p
eK=2ξIjZIj

	

¼ −
1ffiffiffi
2

p eK=2ξI

� ffiffiffiffiffi
ZI

Z̄I

r
∂ ᾱZ̄I þ ð∂ ᾱKÞjZIj

�
; ðB2Þ

where jZIj2 ¼ ZIðτÞZ̄Iðτ̄Þ. For real scalars, we can choose a
parametrization such that Z̄I ¼ ZI . This implies

∂ ᾱW ¼ −
1ffiffiffi
2

p eK=2ξIð∂ ᾱZ̄I þ ð∂ ᾱKÞZ̄IÞ

¼ −
1ffiffiffi
2

p eK=2ξIDᾱZ̄I; ðB3Þ

so that

hŌᾱi ¼ lim
ϵ→0

�
1

ϵ2

�
zgβᾱ∂zτ

β −
1ffiffiffi
2

p eK=2ξIDᾱZ̄I

�����
z¼ϵ

�
: ðB4Þ

The gaugino BPS variation in FG coordinates is

ðzγ3∂zτ
β − 2igeK=2ξIgβᾱDᾱZ̄Iγ5ÞϵþOðz3Þϵ ¼ 0; ðB5Þ

since Fab ∼ 1=r2 ∼Oðz2Þ. At Oðz2Þ, the BPS equations
imply

z∂zτ
β ¼ �2igeK=2ξIgβᾱDᾱZ̄I: ðB6Þ

Without loss of generality, we can choose the upper sign
by sending g → −g if necessary. After setting g2 ¼ 1=8
we have

hŌᾱi ¼ hOαi ¼ 0: ðB7Þ

APPENDIX C: STU MODEL SPECIAL CASES

Here we give a construction for STUmodels with regular
geometry and arbitrarily large x0 þ x1 þ x2 þ x3. The
approach we took to find these models was different than
that of Sec. V B. Instead of solving the condition f ¼ 0 and
then H0 ¼ 0, we first solved H0 ¼ 0 and then f ¼ 0. The
benefit is that H0 is a lower-degree polynomial and is
technically simpler to solve. The downside is that this
generates spurious solutions: it is possible that the r we
obtain is not the largest root rþ, and rþ does not satisfy the
equation H0 ¼ 0. These spurious solutions then need to be
removed by hand.
To summarize our findings, consider the following

construction:
(1) Let x0 be any positive number.
(2) Numerically solve the equation

27x1ðx0 − x1Þ4 ¼ −16x0ðx0 þ 3x1Þ2: ðC1Þ

Let x1 be the unique solution satisfying
−x0=3 < x1 < 0.

(3) Consider an STU model with unit AdS4 length scale
where

x0 ¼
q0
ξ0

; x1 ¼
q1
ξ1

¼ q2
ξ2

¼ q3
ξ3

: ðC2Þ

Numerically solve the equation fðrÞ ¼ 0 for r,

ðrþ x0Þðrþ x1Þ3 ¼ r2: ðC3Þ

There exist exactly two solutions: a positive solution
greater than −x1, and a negative solution less than
−x0. Let rþ be the positive solution.

(4) Check that H0ðrþÞ ¼ 0. This is guaranteed by the
following argument. Consider r� ¼ −4x0x1=ðx0 þ
3x1Þ > 0 which satisfies H0ðr�Þ ¼ 0. This also
satisfies fðr�Þ ¼ 0, as plugging r ¼ r� into (C3)
simplifies to (C1), which is satisfied by construction
of x1. But as the positive solution to f ¼ 0 is unique,
we must have rþ ¼ r�.

The steps above give a STU model with regular geometry.
To prove that x0 þ 3x1 is arbitrarily large, we need a better
bound than −x0=3 < x1 < 0. To satisfy (C1) for large x0,
we have

x1 ∼ −
16

27x0
: ðC4Þ

Therefore x0 þ 3x1 ≈ x0 for large x0, and can be arbitrar-
ily large.
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