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We propose a deep learning method to build an AdS/QCD model from the data of hadron spectra.
A major problem of generic AdS/QCD models is that a large ambiguity is allowed for the bulk gravity
metric with which QCD observables are holographically calculated. We adopt the experimentally measured
spectra of ρ and a2 mesons as training data, and perform a supervised machine learning which determines
concretely a bulk metric and a dilaton profile of an AdS/QCDmodel. Our deep learning (DL) architecture is
based on the AdS/DL correspondence [K. Hashimoto, S. Sugishita, A. Tanaka, and A. Tomiya, Phys.
Rev. D 98, 046019 (2018)] where the deep neural network is identified with the emergent bulk spacetime.
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I. INTRODUCTION

The AdS/CFT correspondence [1–3], or the holographic
principle, is a promising way to define a quantum gravity. In
spite of its importance, a fatal problem is to find a dual
gravity system for a given quantum field theory (QFT), for
which so far no systematic approach has been successful.
Particularly important QFTs are those with Yang-Mills
sectors, including QCD, whose largeN and strong coupling
limit are believed to give a classical gravity dual, while we
are lacking in how to construct the dual concretely and
explicitly. So far, we know necessary conditions for the
gravity dual, such as symmetries and spectral properties, as
well as recently investigated out time order correlators [4–6]
and computational complexities [7].
The string theory “top-down” construction does not

solve the problem, because it merely provides examples
as a pair of a gravity and a QFT at the same time. Many
excellent works provided a pair in which the QFT side
resembles a given target QFT. A lot of effort has been put to
seek for a gravity dual of QCD, as QCD is the renowned,
and realistic QFT among all.
It should be emphasized that once a classical gravity

system is given, the dual QFT quantities can be easily
calculated by the AdS/CFT dictionary. The problem is how
we can go backwards: for given QFT correlators, how we
get the gravity system. To solve this kind of inverse

problem, we need special techniques. In particular, a
strongly coupled QFT consists of a vast amount of data,
such as n-point correlators for infinite kinds of local/
nonlocal gauge invariant operators. Furthermore, QCD is
a part of the Standard Model for which a lot of experimental
data is available. To this end, the machine learning method
may help us. If there exists a gravity dual of QCD which is
simple enough with a finite number of parameters, the
features of the data of QCD need to be efficiently extracted,
by solving the AdS/CFT backwards. Deep learning [8–10]
which technically advanced these years may shed light on
the fatal problem of the AdS/CFT.
In Ref. [11], deep learning was applied to determine an

emergent gravity metric from a given data of a QFT. The
dictionary used was for a one-point function of an operator
in the QFT, corresponding to a bulk field value in the dual
gravity system. In Ref. [12], the method was applied to
lattice QCD data of a chiral condensate, to find a metric of
the gravity system dual to QCD. Based on the success of
this method working for one-point functions, in this paper
we make one more step toward realistic QCD. We use
hadronic two-point functions, i.e. the hadron spectra which
are measured in experiments.
Needless to say, the most well-observed quantities in

experiments for QCD are hadron spectra and hadron
couplings. The best framework to test the deep learning
method is the AdS/QCD [13–15], a bottom-up construction
of phenomenological gravity models based on symmetries
and the dictionary. It is known that the simple AdS/QCD
framework can host lots of QCD quantities including
hadron spectra. Here, again, the conventional method in
the AdS/QCD is first to come up with a gravity model, then
to calculate the QCD quantities from the model and then to
compare those with experimental data. If the quantity does
not match well, one throws away the gravity model and
tries again with a different gravity model. The gravity
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model has a large arbitrariness, and in addition the dic-
tionary is nonlocal, so solving the inverse problem is
challenging. This is the reason why the deep learning
method can help in finding the gravity dual of QCD.
The AdS/DL correspondence in Ref. [11] was invented

due to the similarity between the deep neural network
(DNN) and bulk gravity system.1 In the training, weights of
the neural network are trained and determined by machine,
which is regarded as an emergence of the spacetime, as the
differential equation on the discretized gravity spacetime is
regarded as a propagation of information on the deep neural
network, with the depth direction identified with the AdS
radial direction.
In this paper, we upgrade the deep neural network given

in Refs. [11,12] to accommodate hadron two-point func-
tions as a supervised learning, and use the experimental
data of the mass of ρ mesons and a2 mesons at zero
temperature as the training data. The neural network is a
discretized bulk action of the AdS/QCD model [13–15],
with the metric and the dilaton fields identified as the
network weights. With some physically reasonable regu-
larizations, the supervised learning of the neural network is
successful, ending up with smooth profiles of the gravity
metric and the dilaton configuration in five spacetime
dimensions, as the trained weight parameters of the neural
network. Namely, the inverse problem of finding the
gravity system for a given hadron spectra is solved by
the deep learning. Using the obtained metric and dilaton,
we can predict excited hadron masses which were not used
as the training data.
The advantage of the deep learning method is that it can

provide a systematic approach to determine the gravity dual
from a given dataset of the QFT correlators, which even
generalizes for prediction. Using the data analysis methods
of deep learning [21], we may hope to combine all possible
information of QCD as the training data to discover a
proper gravity dual. For that, various QCD requirements
studied in improved holographic QCD [22,23] will help.
This paper is organized as follows. First, in Sec. II we

make a brief review of the concept of the renowned soft-
wall AdS/QCD model of Ref. [15]. Based on the model, in
Sec. III we construct our deep neural network by discretiz-
ing the bulk equation of motion. We provide our deep
learning architecture with experimental vector meson mass
spectra as our supervising dataset, and describe our hyper-
parameters and regularizations. The deep learning is
performed in Sec. IV. After a reproduction test of the
background of Ref. [15], we use the experimentally
measured data to train our AdS/QCD model to find an
optimized, emergent background geometry and dilaton. We

discuss physical implication of our emergent geometry.
Section V is for our conclusion. The Appendix includes the
details of our deep learning architecture.

II. REVIEW: THE ADS/QCD MODEL

The AdS/QCD [13–15] is to provide a simple phenom-
enological model in five-dimensional curved spacetime
which describes desired sectors of QCD effectively. The
five-dimensional Lagrangian is built under the guide of the
AdS/CFT dictionary. For example, to compute hadron
mass spectra, one introduces fields propagating in a five-
dimensional curved spacetime which are dual to the
hadrons of concern. One of the most popular models of
AdS/QCD is the so-called soft-wall models given in
Ref. [15] where, rather than using a brute cutoff of the
five-dimensional geometry as in the inaugural work
[13,14], one introduces a five-dimensional dilaton field
to realize a smooth wall to confine fields in the curved
geometry, which enables discussions on a part of the QCD
Regge trajectories.
In this section, we briefly review the model given by

Ref. [15] on which our deep learning architecture is built.
With the explicitly given five-dimensional action, the
vector meson spectra can be calculated by the model.
Generically, any AdS/QCD model is given in the

following manner. First of all, one assumes the existence
of an effective theory which is holographically dual to QCD
via the AdS/CFT correspondence. Next, based on the well-
known dictionary of the AdS/CFT, one writes the five-
dimensional bulk action of the theory, with ingredients
necessary to reproduce a QCD sector of one’s concern. For
example, for flavor symmetry, one introduces correspond-
ing gauge symmetry in the bulk theory. The associated
gauge bosons in five dimensions correspond to the flavor
current operators in QCD, which are nothing but the vector
mesons. The gauge bosons are in a five-dimensional curved
spacetime whose gravity metric and bulk dilaton field are
prearranged.
Let us focus on the vector meson spectra in QCD. The

gravity side is the five-dimensional effective action of a
Uð1Þ gauge theory,

Ivector ¼ −
1

4g25

Z
dzd4xe−ΦðzÞ ffiffiffiffiffiffi

−g
p

FMNFMN; ð1Þ

where FMN is the field strength of the five-dimensional
massless gauge field VMðz; xμÞ, and g5 is the gauge
coupling constant. The indices M, N represent those of
the five-dimensional spacetime, while the directions along
the four dimensions associated with QCD are denoted as μ,
ν. The emergent fifth direction is parametrized by the
coordinate z (≥0). Everything is made dimensionless by
using the AdS radius L.

1For a detailed relation, see Ref. [16]. An early study on the
similarity between the AdS=CFT and the DL is in Ref. [17]. See
Refs. [18,19] for related essays. A continuum limit of the deep
layers was studied in a different context [20].
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The theory is in a curved spacetime. The soft-wall
models include the gravity metric gMNðzÞ and the dilaton
field ΦðzÞ as the background fields. In particular, the
dilaton field is essential in the spectral analyses in
Ref. [15]. The metric is written with a single function
AðzÞ without losing its generality,

gMNdxMdxN ¼ e2AðzÞðdz2 þ ημνdxμdxνÞ; ð2Þ

because QCD is in an infinitely extended flat Lorentzian
spacetime, at zero temperature. For the use of the
AdS=CFT correspondence, it is assumed that the curved
spacetime is asymptotically AdS: AðzÞ ∼ − log z near the
AdS boundary z ¼ 0, where the unit L ¼ 1 is used.
Following Ref. [15], we choose a gauge Vz ¼ 0,

∂μVμ ¼ 0. Using the plane wave basis for the four
dimensions, we consider a solution of the form

Vμðz; xμÞ ¼ vðzÞcμe−ikx; ð3Þ
with a mass-shell condition −k2 ¼ m2 for the four-
dimensional mass m. Then we obtain the following
equation which the coefficient function vðzÞ should satisfy:

d
dz

�
e−BðzÞ

d
dz

vðzÞ
�
þm2e−BðzÞvðzÞ ¼ 0: ð4Þ

Here we have defined the combination

BðzÞ≡ΦðzÞ − AðzÞ: ð5Þ
In the AdS/CFT dictionary, for the current operator of

QCD to be excited, the corresponding modes in the gravity
side need to be normalizable. The differential equation (4)
has normalizable solutions only for discrete values of the
mass m ¼ mn (n ¼ 0; 1; 2;…). Therefore, these discrete
values mn are interpreted as the vector meson spectrum.
So, summarizing the procedures, once the explicit form

of the metric function AðzÞ and the dilaton profile ΦðzÞ is
given, one can calculate the normalizable solutions of (4) to
obtain the vector meson mass spectra. See Fig. 1 for the
illustration. In Ref. [15] the following functions are used:

AðzÞ ¼ − log z; ΦðzÞ ¼ z2: ð6Þ

This ansatz is simple enough since AðzÞ ¼ − log z means
that the whole five-dimensional spacetime is AdS5, and
ΦðzÞ ¼ z2 was adopted to produce the asymptotic Regge
behavior in the hadron spectra.
One can also calculate the spectra of higher spin mesons

from the five-dimensional model. A spin-Smeson is dual to
a rank-S symmetric tensor field [24]. By the procedures
similar to those of the vector meson case, the z-dependent
part of the bulk tensor field obeys the same equation as (4)
with a different definition of BðzÞ:

BðzÞ ¼ ΦðzÞ − ð2S − 1ÞAðzÞ: ð7Þ

One understands that the spin dependence of the meson
spectra is encoded in the background bulk field profiles.
Now, one can see that the difficulty of the AdS/QCD

model building is in solving inversely the duality: the
direction of the standard procedures is only from the gravity
to QCD quantities. One needs the explicit metric and the
dilaton which are not known a priori.2

On the other hand, this paper aims at “optimizing” the
model by experimental data. More concretely, we deter-
mine the model background BðzÞ by using deep learning of
the training data of hadron masses. See Fig. 1. In addition,
using the spin dependence of the definition of BðzÞ in (7),
we can obtain the spacetime metric and the dilaton
separately: the machine finds different BðzÞ’s from the
data for the mesons with S ¼ 1 and S ¼ 2 respectively, then
the metric and the dilaton are obtained as

AðzÞ ¼ ðBS¼1 − BS¼2Þ=2; ð8Þ

ΦðzÞ ¼ ð3BS¼1 − BS¼2Þ=2: ð9Þ

Using these, one can calculate other QCD observables as a
prediction of the determined model. Our proposal offers a
new data-driven approach to the AdS/QCDmodel building.

III. NEURAL NETWORK FOR ADS/QCD

In this section we construct our neural network.
According to the concept of the AdS/DL correspondence
[11], we present a deep neural network architecture opti-
mizing a generic soft-wall AdS/QCD model. The optimi-
zation is conducted under a supervised deep learning, with

FIG. 1. In the ordinary AdS/QCD modeling, one prepares the
background metric and dilaton fields [AðzÞ and ΦðzÞ] and then
calculates the QCD observables (the hadron mass mn). The
judgment of whether the chosen background is appropriate is
checked after matching the calculated observables with exper-
imental data. On the other hand, our AdS/DL approach solves
backward.

2One can of course resort to Einstein dilaton equations of
motion assumed, to constrain possible profiles of the metric and
the dilaton fields, see Refs. [22,23]. A partial list of the obstacles
is (i) dilaton potential allows arbitrariness, (ii) since QCD is
N ¼ 3 quantum gravity corrections such as higher derivatives in
curvatures may exist, and (iii) string theory effective action is too
restrictive at tree level while generic quantum gravity corrections
are unknown.
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respect to the QCD experimental data, where the meson
spectrum m in (4) is treated as the input data.
The implementation can be divided into three steps.

First, we translate the equation of motion (EOM) of the
bulk field into a deep neural network. The network itself is
regarded as a spacetime, and the metric on the discretized
spacetime corresponds to trainable weight parameters in the
neural network. The next step is to arrange the input and the
output layers for a binary classification. The input data is
the vector meson spectrum data, and the output data is
related to the normalizability condition of the solution of
the bulk field equation. The remaining step is technical for
the training to be successful: fixing hyperparameters and
introducing a regularization. We have to adjust the value of
the hyperparameters such as the discretization spacing and
the number of layers. We also need a regularization which
comes from physical requirements such as smoothness of
the spacetime. In the following, in each subsection we
explain the three steps described above.

A. Deep neural network

We prepare a deep neural network where trainable
weight parameters are identified with the configuration
of the gravity/dilaton fields of the holographic model. We
identify the radial propagation (4) of the bulk vector field
from z to zþ Δzwith the propagation of the information on
the neural network from one layer to another.
We introduce a conjugate momentum field,

πðzÞ≡ ∂
∂z vðzÞ; ð10Þ

to reduce (4) to a set of first order differential equations, one
of which is

0 ¼ ∂
∂z ðe

−BðzÞπðzÞÞ þm2e−BðzÞvðzÞ
¼ e−BðzÞ½−B0ðzÞπðzÞ þ π0ðzÞ þm2vðzÞ�: ð11Þ

Then we discretize the z coordinate in (10) and (11) with a
spacing Δz,

�
πðzþ ΔzÞ ¼ πðzÞ þ ΔzðB0ðzÞπðzÞ −m2vðzÞÞ
vðzþ ΔzÞ ¼ vðzÞ þ ΔzπðzÞ: ð12Þ

The derivatives acting on the vector field π and v are
replaced by the difference, and we leave the form B0ðzÞ≡
∂B=∂z as it is.
With this (12), let us make a neural network re-

presentation of the bulk field equation. The propagation
equation (12) tells us that the values of ðπ; vÞ at z ¼ NΔz
with an integerN can be computed from the initial values of
ðπ; vÞ at z ¼ Δz and m, when a background B0ðzÞ is given.
Namely, the output of the system is given by the input
and B0ðzÞ:

�
πðNΔzÞ
vðNΔzÞ

�
¼ FðπðΔzÞ; vðΔzÞ; m;B0ðzÞÞ: ð13Þ

Recall that in a generic feedforward deep neural network
(DNN) the unit values at the final layer are calculated by the
unit values at the initial layer with given trainable weights.
The concept of the AdS/DL correspondence is based on
this similarity [11]. Following that, we find the dictionary
between the bulk field equation and the neural network as
shown in Table I.
Equation (13) is nothing but the deep neural network

itself, with the layer depth direction identified as the
emergent radial direction z. See Fig. 2. The AdS boundary
z ¼ 0 is identified with the input layer, while the deep
infrared region of the emergent space z ¼ ∞ is the output
layer. Generically, neural network weights are matrix-
valued trainable parameters, while our weights include
only B0ðzÞ as the trainable parameters. This means that our
neural network is sparse, and most of the weight compo-
nents are put to 0 or some fixed value.
As we mentioned, the five-dimensional spacetime is

asymptotically AdS5 near z ¼ 0, so we can determine the
values of ðπ; vÞ at the initial layer z ¼ Δz, based on their
behavior in the AdS. Using the asymptotic solution of (4)
with the AdS metric (and also assuming that the dilaton
vanishes there), we find

πðΔzÞ ¼ 2SðΔzÞ2S−1; vðΔzÞ ¼ ðΔzÞ2S: ð14Þ

See Appendix A 1 for the derivation. The overall propor-
tionality magnitude of v and π is ignored since the EOM (4)
is linear in vðzÞ. See Fig. 2 for the whole schematic view of
our neural network.

B. Dataset for binary classification

The next step is to prepare the training dataset for our
supervised learning. Since we want to extract possible
features from the experimental data of the meson spectrum,
we may simply use the value of the spectrum as our input.
Then, what should the output data be? In view of (13), the
output data is the values of the vector field at z ¼ ∞.
Depending on whether the mode vðzÞ is normalizable or
not, the values of vðzÞ at large z vanish or diverge. It needs
to be normalizable only when we have the correct value of

TABLE I. The relationship between the EOM (11) and the
DNN. Here m is z-independent in (11), so it corresponds to a unit
of a fixed value.

EOM DNN

z Layer label
B0ðzÞ Weights
πðzÞ; vðzÞ; m Units
F Architecture
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the input mass m. In this way, we can arrange the neural
network as a binary classification problem, by putting a
discrimination label to the input mass.
More concretely, as the input data we prepare a set of

random real numbers (the mass). The range of the gen-
erated random numbers includes the experimentally mea-
sured values of the meson mass. If the random number is
close to (far from) the experimental values in the real
spectrum, it is named as a positive (negative) data. In the
training data, the output value as the label for the positive
(negative) data should be 0 (1), which is the discrimination
label. Therefore, we give our neural network a task to
classify the input real numbers: a meson mass classifier.
Since we expect the final output to be 0 or 1, we

introduce an additional layer there. This layer outputs 0 or 1
according to whether the value of vðNΔzÞ satisfies the
following normalizability condition or not:

vðNΔzÞe−BðNΔzÞ=2 ≤ ϵ: ð15Þ

For this, we arrange as the final layer a smeared box
function of the width ϵ, with no weight multiplication.3 As
for the loss function, we simply adopt L1 loss.

C. Hyperparameters and regularization

For the machine learning to work, we have to tune the
hyperparameters in the architecture, and also need to
introduce regularization terms to the loss function.
Our hyperparameters are the number of layers N, and the

discretization spacing Δz which appears in the fixed
weights of the neural network,4 and the discrimination
threshold ϵ in (15) in the classification layer. In fact, these
are closely related to each other from a physical viewpoint,
as follows.

First, N and Δz give the infrared location z ¼ NΔz at
which whether the vector field vðzÞ behaves as a normal-
izable function or not is verified, while the threshold for the
discrimination is ϵ. Although in principle we have ϵ → 0
for N → ∞, for our numerical calculations we need a finite
N. In addition, even though the analytic solution goes to 0
at z → ∞, due to the discretization error of the differential
equation (4) the value at z ¼ NΔz could deviate from 0. So,
for the network to work properly even with the discretiza-
tion effect, we need to tune ϵ such that it also allows the
deviation. In practice, we fix these hyperparameters by
using the analytic solutions in the famous soft-wall model
of Ref. [15], see Appendix A 2 for the details.
The regularization which should be added to the loss

function is introduced by the following three reasons. The
first one is the spacetime interpretability. The obtained set
of weights is interpreted as BðzÞ, which is the dilaton field
and the metric field. They need to be a smooth function of
z, otherwise there is no physical interpretation [11,12].
Second, as in (14), for the AdS/CFT to work, we impose the
asymptotic AdS condition, which constrains the form of
BðzÞ near the initial layer, the boundary z ¼ 0. The third
reason is the soft wall. For (4) of the vector field to have
normalizable solutions,5 the background field needs to have
an infrared wall. This is also related to the technical
trainability of the neural network, and to the choice of
the random initial configurations of B0ðzÞ before the
training.
Therefore, we introduce the following three kinds of

regularization terms:
(i) BðzÞ is a smooth function of z.
(ii) BðzÞ is asymptotically AdS at small z.
(iii) BðzÞ has a wall at large z.

For concrete functional forms of these regularizations in the
loss function, see Appendix A 3.

FIG. 2. Neural network representation of (12). The layer depth direction (horizontal direction in this figure) corresponds to the
emergent radial direction of the five-dimensional spacetime. The input is on the left, the output is on the right. Only the thick lines are
trainable weights, corresponding to the bulk background field B0ðzÞ. The binary classification layer at the output is not shown in this
figure, for simplicity.

3Here, π also needs to be normalizable for a positive data, but
in our implementation we do not look at it. This is because π is
expected not to converge well at large z, due to discretization
errors.

4There is an option to treat Δz as additional trainable
parameters. This Δz could even depend on z. This training of
the z-dependent spacing Δz appears to be a quantum gravity,
which is intriguing, and we leave the optimization of the spacing
in AdS/DL to a future problem.

5The EOM (4) can be rewritten in the form of a Schrödinger
equation (see Ref. [15]), and the potential of the Schrödinger
equation depends only on derivatives of BðzÞ. In the model of
Ref. [15] the background (6) corresponds to a harmonic oscillator
potential at large z, which is the “wall” of a confining geometry.
We introduce a regularization so that the machine can find a
similar behavior.
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IV. OPTIMIZATION BY THE DATA
OF MESON SPECTRA

In this section, we determine the background of the AdS/
QCD model (1) by training our neural network with the
dataset of the meson spectrum. We have two numerical
experiments. The first one is a test case to check whether
our deep learning can actually reproduce the soft-wall
model (6) of Ref. [15] from the data which is generated by
the model with (6) in advance. We confirm that our
architecture can learn the model successfully. The second
numerical experiment is the optimization of the model by
deep learning with the experimental data of the meson
spectrum. The machine finds a metric function AðzÞ and a
dilaton profile ΦðzÞ which are consistent with the exper-
imental data. We discuss physical implication of the
determined AdS/QCD model.

A. Reproduction test

Since the implementation of our neural network is totally
based on the generic soft-wall model, as a first check of
whether our architecture works properly, we perform a
reproduction test of the model of Ref. [15] with (6). First,
we prepare the mass spectra calculated by the model with
(6). Then, using only that set of data, we train our neural
network to find B0ðzÞ. Then we compare the function B0ðzÞ
which machine determined, and the function (6). If we
confirm that they are similar enough, then we claim that our
architectureworks and the model of Ref. [15] is reproduced.
For the dataset of m2, we generate a set of real numbers

in the range [0, 10). This range includes the first two levels
of the spectrum, since the meson masses calculated by the
model of Ref. [15] is m2

n ¼ 4ðnþ 1Þ with n ¼ 0; 1; 2;…
[see Fig. 3(a)]. Note that the widths of the region of the
positive data [the blue dots in Fig. 3(a)] are chosen by hand,
which are hyperparameters.
In Fig. 4, we show the result of our deep learning with

N ¼ 20, Δz ¼ 0.2, ϵ ¼ 0.25, and 20 times of the repetition
of the training. The result shows that the soft-wall model of
Ref. [15] is reproduced well, qualitatively. Although we
introduce some physical regularizations such as the asymp-
totic AdS condition and the wall condition, it is worth
noting that only a part of the meson spectra is used for
training the model. Hence we claim that our deep learning
architecture works for the meson spectrum as the input
data. In particular, the AdS/DL paradigm is shown to be
helpful to construct effective AdS/QCD models.

B. Model determined by experimental data

Finally, we come to the actual aim of the deep learning
method: the determination of the metric/dilaton functions
by the experimental data of the meson spectra. We use the
spectra of the ρ meson (S ¼ 1) and the a2 meson (S ¼ 2).
Combining the results of these two, we can obtainΦðzÞ and
AðzÞ separately, as shown in (7).

The experimental data of the tower of the ρ meson
spectrum [25] is given as ρð770Þ, ρð1450Þ, ρð1700Þ, …,
and we use only the first two levels, since it is expected by
the analysis of the model of Ref. [15] that the discretization
errors are difficult to be handled for higher excitations. As
for the a2 meson, a2ð1320Þ, a2ð1700Þ are reported as the
established poles [25]. We generate the input data with
these values, and design our neural network. [See Figs. 3(b)
and 3(c) for the generated input data, and Table II for the
hyperparameters of the architecture. For details of the
hyperparameters, the initial weights, and the dataset gen-
eration, see Appendices A 2, A 4, and A 5, respectively].
In the implementation of the dimensionful quantities

(such as the masses) into the numerical experiment, we
normalized everything appearing in (4) in the unit of the

FIG. 3. Visualization of the positive/negative datasets we use.
Blue/orange points represent positive/negative data. The data
(a) is for the spectrum m2 of the model of Ref. [15] used in
Sec. IVA, and the data (b) and (c) are for the spectram=L of the ρ
meson and for a2 meson used in Sec. IV B, respectively.

FIG. 4. The trained result of the reproduction test, BðzÞ. The
trained 20 functions B0ðzÞ (for 20 trainings) are averaged, then
discretely integrated over z to get BðzÞ, plotted with 2σ error bars.
The blue curve represents the model of Ref. [15], BðzÞ ¼ log zþ
z2 given in (6).
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AdS radius L. It is actually the unique dimensionful
parameter in the simple AdS/QCD model (1). The input
values in Figs. 3(b) and 3(c) are multiplied by L when they
are used in the training. The value of L can be chosen
arbitrarily, and here we choose it in such a way that the
mass of the lowest ρmeson (0.77 GeV) is equal to the mass
of the ground state [m2

n ¼ 4ðnþ 1Þ] of the model of
Ref. [15] in the unit of L, for simplicity.6 This results in
L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=0.772

p
∼ 2.6 GeV−1as the unit of length.

We repeat the training of the neural networks with those
datasets, twenty times for the ρmeson and five times for the
a2 meson, separately. The network is optimized, and the
emergent B0ðzÞs are obtained, which are shown in Fig. 5.
To obtain the metric and the dilaton, we calculate BðzÞ

by a discretized integration

Bðz ¼ nΔzÞ ¼
Xn
k¼1

B0ðkΔzÞΔzþ C: ð16Þ

We set the integration constant C such that BðΔzÞ¼ logΔz,
because BðzÞ should behave as an asymptotically AdS
spacetime, AðzÞ ≃ − log z by the assumption. From this
integral we compute the metric profile function AðzÞ and
the dilaton profile function ΦðzÞ. They are shown in
Figs. 6 and 7.
The emergent metric AðzÞ for the near-boundary region

0 < z ≤ 2.0 can be consistently fit with a function,

AðzÞ ¼ − log zþ a1ðz− 0.2Þ þ a2ðz− 0.2Þ2 þ a3ðz− 0.2Þ3;
ð17Þ

with a1 ¼ 0.849, a2 ¼ −0.496, and a3 ¼ −0.433. The first
term ð− log zÞ is for the AdS5 spacetime, and the correc-
tions are obtained as above. The fitting Taylor series for the
deviation from the AdS is in the power of (z − 0.2) where
z ¼ Δz ¼ 0.2 is the location of the initial layer.7

The emergent dilaton profile is plotted in Fig. 7. The
obtained points with the error bars can be fit well with a
linear function,

ΦðzÞ ¼ ϕ1ðz − 0.2Þ; ð18Þ

with a constant ϕ1 ¼ 1.43. As one can see in Fig. 7, our
deep learning has found a linear dilaton profile, rather than
the z2 behavior which was originally anticipated in
Ref. [15]. The linear dilaton is a popular background in
string theory as the world sheet theory is solvable, and it is
interesting that it shows up in the machine learning.8

C. Physical properties of the emergent spacetime

With the optimized emergent metric and dilaton func-
tions, we can even try to make a prediction. We calculate
the mass of the next-higher level excitation of the ρ meson
and the a2 meson. Numerically calculating the eigenvalue
of (4) with our emergent BðzÞ, we summarize the result in
Table III.
In the middle column of Table III, the calculated mass of

the third-lowest excitation of each meson is shown. As for
the ρ meson, our optimized model predicts the mass which
is compared with the experimental data within 10 percent
error. Our prediction of the a2 meson mass will be
confirmed in future experiments, as there is no established
value in experiments at present.
Our prediction accompanies a caution, as our architec-

ture is based on various hyperparameters and discretization
errors, as well as the fact that we only use the lowest
and the second-lowest meson masses as the training data.
A change in widths introduced in the positive/negative
data in Fig. 3 may cause unsuccessful trainings. One
of the deficits of deep learning in general is unknown
relations between hyperparameters and generalization,
and any prediction is with such a caution. Nevertheless,
we find that our prediction is still reasonable, which is
encouraging.
Finally, let us discuss the physical property of the

emergent metric (17) and the dilaton (18). Using these,
we find an effective volume element

ffiffiffiffiffiffi−gp
e−Φ which is in

the action (1). Since the radial z-dependence of the volume
element reflects physical properties of the geometry,
we plot a logarithm of our optimized effective volume
element 5A −Φ in Fig. 8. In the figure, for a comparison,
we plot the dashed line which is 5A −Φ of the model
of Ref. [15].
We notice that when z is increased and goes to the

infrared, our volume element gradually deviates in the

TABLE II. Hyperparameters and dataset we use. The values of
the mass spectra are taken from Ref. [25].

Meson Δz N ϵ Mass (GeV) Number of input data

ρ 0.2 20 0.25 0.77, 1.45 pos:2000/neg:2000
a2 0.05 80 0.25 1.32, 1.70 pos:3000/neg:3000

6Our neural network given in Fig. 2 is constructed based on the
equation of motion for the model of Ref. [15], which includes no
dimensionful quantity, whilewe confirm this conducts the training
successfully as shown in the reproduction test. To adopt the same
architecture for the trainingwith the hadron data, we normalize the
mass spectra by L. The value of L, which we choose so that the
scale of input value is as large as the one of the reproduction test
case, can be also important for the training to be successful.

7The IR parts of Figs. 6(a) and 7 are not so reliable compared to
theUVparts of them, simply because themesonwave functions are
suppressed at the IR region and so less sensitive to the background
metric and the dilaton. The obtained IR behavior could depend on
our hyperparameters and regularization.

8In the context of holographic QCD the exact linearity may
cause a problem of continuous glueball spectra [22]. Since we
have not assumed a bulk gravity action which is necessary to
argue the glueball spectra, we leave this issue for our future
problem.
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positive direction once, compared to the AdS spacetime of
Ref. [15]. This can be also seen from the fact that the first
correction a1 in (17) is positive, meaning that the AdS
spacetime is deformed toward a slower warping. One

possible interpretation is that this is a tendency toward a
confining geometry, which is consistent with that the
nonsupersymmetric QCD is a confining theory at zero
temperature.

(a) (b)

FIG. 5. The trained result of B0ðzÞ, for (a) ρ meson and for (b) a2 meson. The training is repeated 20 times and 5 times, respectively.
The average values over the iteration are plotted. The error bars represent 2σ.
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FIG. 6. (a) Emergent metric function AðzÞ with the statistical error bars. (b) Enlarged figure near the boundary, z ∼ 0. The solid line is
the fitting function (17). The dashed line is − logðzÞ which is the AdS spacetime.
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FIG. 7. Emergent dilaton profile. The solid line is a fit (18), and
the dashed line is Φ ¼ z2 of the model [15].

0.5 1.5
z

10

5

5

10
5A

FIG. 8. The logarithm of the volume element with the dilaton,
log½ ffiffiffiffiffiffi−gp

e−Φ� ¼ 5A −Φ. The dashed line is that of Ref. [15],
5A −Φ ¼ −5 log z − z2.
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Then, with a further increasing of z, our effective volume
element goes below the AdS line. The resultant bump of the
volume element as a function of z resembles the machine-
learned geometry of the AdS/DL model for the lattice data
of the QCD chiral condensate [12], where at the finite
temperature the emergent geometry consists of both the
confining wall and the black hole horizon. Our geometry is
trained with experimental meson spectra, while the one in
Ref. [12] is with different QCD observables. Finding a
unique geometry consistent with more QCD observables is
a challenging problem.

V. CONCLUSION

In this paper, we have proposed a deep learning
architecture to discover an AdS/QCD model from a given
experimental data of meson mass spectra. The neural
network depth direction is identified with the emergent
radial direction z of the five-dimensional model. The model
is a soft-wall model based on Ref. [15], with the unknown
metric function AðzÞ of the curved geometry and the
unknown dilaton profile ΦðzÞ. We have identified those
profiles with weights of the deep neural network (Fig. 2).
By the supervised training with the lowest and the second-
lowest ρ and a2 meson mass values as the training data, our
machine has found optimized profiles of the geometry AðzÞ
and the dilaton ΦðzÞ (Figs. 6 and 7). Therefore, the deep
learning, based on the concept of AdS/DL [11,12], can
derive an effective AdS/QCD model from QCD experi-
mental data.
With the emergent geometry and the dilaton profile,

we have calculated the excited meson masses. This pre-
diction has turned out to be reasonable, although it should
not be taken seriously, as the architecture has various
regularization and discretization errors. Nevertheless, the
training to obtain the emergent geometry is worthwhile in a
larger perspective. This framework may open up a whole
scheme of determining a better holographic model by
a vast amount of data of QCD. As we have emphasized
in Sec. I, QFT has an infinite number of data, which are
spectra and scattering amplitudes, equivalent to n-point
correlators of infinite kinds of gauge invariant operators.
Finding better holographic models is equivalent to the
feature extraction of QCD, which may help in revealing
the hidden mechanism of how the AdS/CFT correspon-
dence works.

Relatedly, the similarity between the holographic dic-
tionary and the deep neural network architecture may have
some physical origin, and such a standpoint may provide a
new way to investigate two subjects which appear distantly
related: quantum gravity and data science. In the growing
subject (see Ref. [26] for a recent summary of data science
application to string theory), the idea of equating a holo-
graphic spacetimewith neural network [11,12,16,17,27–29]
may be intertwined with machine learning string landscapes
initiated by Refs. [30–33]. Discovering a complete gravity
dual of QCD is a challenging problem, and various data-
scientific methods applied to string theory may help for it.
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APPENDIX: SUPPLEMENT FOR
CODING OUR ARCHITECTURE

In this Appendix we provide details of our deep learning
architecture. Our PYTHON code for the machine learning is
written on the basis of the code used in Ref. [12]. The latter
code is available at [35] and we revise the forward function
and the regularization terms of the code. In addition, the
preparation of the input data shown in Fig. 3 is necessary. In
the following, we provide details about the input layer, the
hyperparameters, the loss function and the regularizations,
the initial weights, and the dataset generation.

1. Input values at the initial layer

At the end of Sec. III A, we substitute the initial layer for
units v, π with the asymptotic solution of a typical soft-wall
model as in (14), while the unit m2 receives its value from
the input data. We derive (14) in the following.
As mentioned, we assume that our model background is

asymptotically AdS5. This means that AðzÞ ∼ − log z and
ΦðzÞ vanishes at z ∼ 0. Then the function BðzÞ defined in
(7) is approximated by ð2S − 1Þ log z. Hence the bulk field
equation (4) reduces near the AdS boundary z ∼ 0 to

∂z

�
1

z2S−1
∂zv

�
þm2

1

z2S−1
v ¼ 0: ðA1Þ

Assuming a power-law configuration v ∼ zα, then the
equation above reduces to

TABLE III. Comparison of the experimentally measured spec-
tra of the third-lowest excitation of ρ and a2 [25], with our
prediction from the optimized AdS/QCD model on the emergent
background.

Meson Model prediction (GeV) Experiment (GeV)

ρ 1.52 1.70
a2 2.44 � � �
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αðα − 2SÞzα−1−2S þm2zαþ1−2S ¼ 0; ðA2Þ

which forces us to choose α ¼ 0; 2S. We can write a
general solution as

v ¼ aþ bz2S: ðA3Þ

According to the AdS=CFT dictionary, the non-normalizable
part a corresponds to a source in the boundary theory and
the normalizable part b corresponds to the expectation
value of an operator associated with the source. Since we
are interested in hadron spectra without the source, we set
a ¼ 0, and moreover we can choose b ¼ 1 due to the
linearity of Eq. (A1). Therefore we estimate the behavior
of v near the boundary as

v ∼ z2S ðz ∼ 0Þ ðA4Þ

which also derives π ∼ 2Sz2S−1, that is (14).

2. Hyperparameters

Aswe described briefly in Sec. III C, our hyperparameters
N;Δz; ϵ in our neural network are fixed by carefully looking
at discretization errors. Here we describe how to choose the
value of the hyperparameters. We choose Δz first, then
determine the others. For the evaluation of the discretization
errors, we need some analytic solutions for comparison, and
we adopt the fluctuation solutions of Ref. [15].
Figure 9 shows the lowest solution v0ðzÞ of the equation

of motion of the bulk field, which is vðzÞwithm ¼ mn¼0 of
the model [15]. Both the analytic solution and the numeri-
cal solution are plotted. The numerical solution is obtained
by the Euler method with width Δz ¼ 0.2. As mentioned in
Sec. III C, we have to look at the location where the
solution converges, and also at the difference between the
analytic solution and the numerical solution.
First, the plot shows that the analytic v0 almost touches

the z axis around z ¼ 4. This suggests to set N ¼ 20 in
order to discriminate the normalizability of the solution.

Next, the numerical solution approaches 0.2, not 0, due to
the discretization error. So we have to choose ϵ greater than
0.2. From the analysis above, we set these hyperparameters
to the values shown in Table III.
Of course, we may choose a smaller Δz and a larger N.

However, the discretization error does not change so much,
while a larger N makes the computation too heavy because
the neural network becomes deeper.

3. Loss function and regularization

The total loss function we use is

E0 ¼ Eþ
X
i

pi; ðA5Þ

where E is an L1 loss function, which is commonly used in
binary classification. Denoting y0 as the output of the neural
network and y as the output part of the training data, then
the loss function is made of the L1 distance y0 − y,

Eðy0 − yÞ ¼ 1

d

Xd
i

jy0i − yij: ðA6Þ

Here i labels the data and d is the number of the data.
The output of our neural network takes a binary value 0

or 1, which is transformed from the unit value of v at the
Nth layer by its normalizability condition. This trans-
formation is given by a smeared box (step) function which
was also used in Ref. [12]. For more details, see the
function named “t” in the code of Ref. [12].
The loss function (A5) contains a sum of pi ’s, which

are the regularizations. Explicitly, they have the following
form:

8>>>>>><
>>>>>>:

p1 ¼
P

N
l¼1 c1;l

�
2S−1
lΔz − B0ðlÞ

�
2

p2 ¼
P

N
l¼1 c2;lðB0ðlÞ − B0ðl−1ÞÞ2

p3 ¼
P

N
l¼1 c3;lðB0ðlÞ − 2B0ðl−1Þ þ B0ðl−2ÞÞ2

p4 ¼
P

N
l¼1 c4;lreluðB0ðl−1Þ − B0ðlÞ þ δÞ:

ðA7Þ

Here B0ðlÞ denotes the weight at lth layer, or equivalently
B0ðlΔzÞ. The coefficient constant ci;l determines how their
constraints are effective as the regularization. There are four
kinds of regularizations, pi (i ¼ 1, 2, 3, 4). In the following
we explain each in detail.
p1 is the regularization to require that the emergent

background is asymptotically AdS. Note that S is spin of
meson whose mass spectrum we use as the input, and this
factor comes from (7). Since this constraint is only for the
boundary region of the five-dimensional geometry, we turn
it on only at the first few layers. We set most of c1;l to 0.
When we train the network with the ρ meson spectrum, we
use the following coefficients:

FIG. 9. The ground sate solution of (4) with the model back-
ground given in Ref. [15] [BðzÞ ¼ z2 þ log z], solved analytically
(yellow line) and numerically (blue line). The blue line inter-
polates the plots of the numerical solution.
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fc1;lg ¼ f0.001; 0.0001; 0.0001; 0;…; 0g: ðA8Þ

p2 and p3 are the regularizations to require that the
emergent background is a smooth geometry. This constraint
is necessary to be imposed over all the layers but the first
few. So, in the ρ meson case, we impose p2 regularization
on the fourth layer and deeper layers. For p3, after some
tuning, we find that it is enough to impose it from the
seventh layer. The coefficients used in the ρ meson training
are shown below:

fc2;lg ¼ f0; 0; 0; 0.00001; 0.00001; 0.00001; 0.0001;…g;
fc3;lg ¼ f0; 0; 0; 0; 0; 0; 0.0001;…g: ðA9Þ

p4 is the regularization to require that the weight B0ðzÞ is
a monotonously increasing function. “relu” is a built-in
function of machine learning package, which is defined as

reluðxÞ ¼
�
0 for x ≤ 0

x for x > 0:
ðA10Þ

Hence, if B0 decreases along two layers, this regularization
provides a positive loss. A small constant δ plays a roll to
require that B0 should increase at least by δ. A nonzero
small δ is necessary to train the a2 meson data in our case.
The p4 regularization is to require that BðzÞ should provide
the wall-like behavior not to have a continuum spectra. For
that, we need this p4 regularization at the large z region,
otherwise the model allows some unexpected continuous
spectrum at a larger mass. The coefficient used in the ρ
meson training is the same as that of p3,

fc4;lg ¼ f0; 0; 0; 0; 0; 0; 0.01;…g: ðA11Þ
All the coefficients above are for the ρ meson training.

For the a2 meson training, we choose the coefficients as
follows:

c1;1 ¼ 0.01;

c1;i ¼ 0.001ði ¼ 2;…; 8Þ;
c3;i ¼ 0.01ði ¼ 9;…; 12Þ;
c3;j ¼ 0.005ðj ¼ 13;…; 21Þ;
c3;k ¼ 0.001ðk ¼ 22;…; 80Þ;
c4;i ¼ 10ði ¼ 61;…; 80Þ; ðA12Þ

and the other components are put to zero.

4. Initial weight

For a successful training, we need to control the initial
values of theweights to some extent. In the ρmeson training,
we initially sample the values of the weights at the lth layer
from the normal distribution whose mean is 1þ 0.5l with
the standard deviation 0.3l when we initialize the neural
network. In the a2 meson training, we initially sample them
from the normal distribution whose mean is 3=ð0.5lþ
0.05Þ þ 0.05l − 7 with the standard deviation 10.

5. Training dataset

Here we present our PYTHON code to generate the dataset
given in Figs. 3(b) and 3(c). Our training trials observe that
the success of the training depends on the range of the
positive data values and also the local density of data
points, which is presented explicitly in the following codes
for the ρ meson and for the a2 meson.
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1. Dataset for ρ meson [Fig. 3(b)]
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1. Dataset for a2 meson [Fig. 3(c)]
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