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Black holes of sufficiently large initial radius are expected to be well described by a semiclassical
analysis at least until half of their initial mass has evaporated away. For a small number of spacetime
dimensions, this holds as long as the black hole is parametrically larger than the Planck length. In that case,
curvatures are small, and backreaction onto geometry is expected to be well described by a time-dependent
classical metric. We point out that at large D, small curvature is insufficient to guarantee a valid
semiclassical description of black holes. Instead, the strongest bounds come from demanding that the rate
of change of the geometry is small and that black holes scramble information faster than they evaporate.
This is a consequence of the enormous power of Hawking radiation in D dimensions due to the large
available phase space and the resulting minuscule evaporation times. Asymptotically, only black holes with
entropies S ≥ DDþ3 logD are semiclassical. We comment on implications for realistic quantum gravity
models in D ≤ 26 as well as relations to bounds on theories with a large number of gravitationally
interacting light species.
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I. INTRODUCTION

Generic (nonextremal) black holes famously have
both finite entropies and temperatures, which together lead
to Hawking radiance/luminosity and, eventually, complete
evaporation. Absent a full treatment within quantum
gravity, one studies evaporation within the semiclassical
approximation, where the length scale given by Newton’s

constant, lP ≔ G1=ðD−2Þ
N ¼ M−1

P ¼ tP, vanishes compared
to the length scales of the geometry. Geometric back-
reaction via quantum mechanical fluctuations then can be
safely ignored, which lets the radiation be cleanly com-
puted. A posteriori, one then assumes that the flux
calculated in the semiclassical approximation is accurate
even for a finite mass black hole.
The validity of this scheme has been the subject of active

debate for several decades. It necessarily breaks down at the
very late stages of black hole evaporation, when curvatures
become large compared to the Planck scale, requiring a full

treatment in quantum gravity. On the other hand, resolution
of the black hole information paradox—usually phrased as
the tendency of semiclassical black holes to turn pure
quantum states into mixed ones [1], a phenomenon that
would be in clear tension with basic postulates of quantum
mechanics—suggests a breakdown at much earlier stages.
There is compelling evidence that this should happen
at the so-called Page time [2] by which an initially
classical black hole has lost roughly half its initial area
via evaporation.
In this paper, we do not further explore the issue of

information loss, even though we hope that our findings
might provide nontrivial insights. Instead, we focus on the
much more innocent question about the properties that
allow for a semiclassical treatment of the early stages of
black hole evaporation. In four spacetime dimensions, this
is well understood. Whenever the Schwarzschild radius is
large compared to the Planck scale, a black hole is semi-
classical at least up to its Page time [3]. We show that when
the spacetime dimension D is sufficiently large, this ceases
to be true for a class of “large” black holes.
Recent studies of the limit of a large number of

spacetime dimensions D have led to a better understanding
of the aspects of classical general relativity, especially for
black holes [4,5]. Yet, semiclassical (and fully quantum)
features of black holes [6–9] within these new formulations
of this large-D limit seem to be relatively unexplored. This
paper is yet another partial step in this direction.
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The main thrust of our work stems from the evaporation
and scrambling timescales of Schwarzschild black holes in
D dimensions. The scrambling time is the time that a black
hole needs to process and obscure infalling information
[10]. It has been conjectured to saturate various bounds,
bounds which are necessary for an evaporating black hole
not to violate basic properties of quantum mechanics
[10,11]. At large D, black holes coupled to ND massless
modes, with Bekenstein-Hawking entropy SBH and
Hawking temperature TH, evaporate and scramble on the
timescales:

tevap
tP

∼
�
4π

D

�
Dþ1=2 SBH

ND
× S

1
D−2
BH; ð1Þ

tscr
tP

¼ MP

2πTH
log SBH ∼ S

1
D−2
BH ×

logSBH
D1=2 ; ð2Þ

where we have assumed the usual expression [10,11] for
the scrambling time to hold in general D, a premise that we
will discuss more towards the end of the paper. We have
parametrized the timescales in terms of the entropy SBH
as it is the only dimensionless quantity in pure gravity in
asymptotically flat spacetimes. As such, it allows us to
capture the entire D scaling without having to consider the
individual D dependence of dimensionful quantities, such
as Newton’s constant or the Schwarzschild radius.
Even from a very superficial view on black hole

information processing, it seems clear that a black hole
cannot evaporate faster than it scrambles information.
Any black hole that appears to do so cannot possibly
evaporate thermally and thus be described by semiclassical
physics. Yet, for fixed SBH, the ratio of the scrambling
and evaporation times indeed increases as tscr=tevap ∼
DDND logSBH=SBH. Thus, any fixed entropy black hole
can be described by semiclassical physics only up to some
critical dimension DcritðSBHÞ. Properly semiclassical black
holes have bounded entropy:

SBH ≳DDþ3 logD: ð3Þ

This implies that semiclassical black holes have RH
lP

≳D3=2.
We stress that we work with manifestly dimensionless
ratios and thus may safely ignore how lP ¼ tP ¼ 1=MP
scale with the spacetime dimension D.

II. SCHWARZSCHILD IN D DIMENSIONS

In this section, we first give general properties of
D-dimensional Schwarzschild black holes. We then find
their semiclassical evaporation and scrambling times.

A. Metric, entropy, and temperature

The metric for the D-dimensional Schwarzschild black
hole with ADM mass MH is well known to be

ds2 ¼ −hDðrÞdt2 þ
dr2

hDðrÞ
þ r2dΩD−2; ð4Þ

hDðrÞ ¼ 1 −
�
RH

r

�
D−3

;

�
RH

lP

�
D−3

¼ MH

MP

16π=ΩD−2

ðD − 2Þ ;

ð5Þ

where ΩD−2 ≡ 2π
D−1
2 =ΓðD−1

2
Þ is the area of the (D − 2)-

dimensional unit sphere. The periodicity properties of
g00ðrÞ ¼ −hDðrÞ in the Euclidean signature directly give
the Hawking temperature:

tE ∼ tE þ βBH; TH ¼ 1

βBH
¼ ðD − 3Þ

4πRH
: ð6Þ

This factor ofD is responsible for the high luminosities that
are the focus of this paper. It is straightforward to see that
the semiclassical Bekenstein-Hawking entropy is

SBH ≔
ABH

4GN
¼ ΩD−2

4

�
RH

lP

�
D−2

¼ 4π

D − 2
RHMH: ð7Þ

The black hole’s area is ABH; again GN ≔ lD−2
P . We frame

our main discussion in terms of the entropy SBH.

B. Evaporation times and scrambling times

We now combine properties of D-dimensional black
holes with those of blackbodies in D dimensions.
Straightforward computations, for example in [12], give
the following luminosity of a spherical blackbody with
radius R and temperature T in D dimensions:

PD ¼ ðNDDÞ ðTRÞ
D

R2

D − 1

D
ζðDÞ
π

: ð8Þ

Apart from dimensionless factors of D, this expression is
simple to understand. Since the power of blackbodies is
proportional to their area, one has PD ∼ RD−2. Dimensional
analysis then fixes the scaling with T. Finally, summing
over all decay channels gives a factor of ND. Note that
D−1
D ζðDÞ rapidly goes to 1 at large D.
We now use the properties of black holes as approximate

blackbody radiators in D dimensions. The D-dimensional
Bose-Einstein distribution for temperature T ¼ TH peaks
near

E ∼ E⋆ ≔ ðD − 1ÞTH ¼ ðD − 1ÞD − 3

4πRH
≃

D2

4πRH
: ð9Þ

Thus, when D ≫ 1, black hole radiance is dominated by
wavelengths that are small compared to RH. This excises
greybody physics—which we parametrize and denote by
the factor γDðRHÞ—from contributing to black hole radi-
ance for even moderate values of D (e.g., D≳ 8) [6].
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There is a further, slight, modification of the absorption/
emission area of the black hole. Rather than being a
function of RH, it is parametrized by the maximum critical
impact parameter bC, below which null rays are captured by
a black hole [12]: bC

RH
¼ ðD−1

2
Þ1=ðD−3ÞðD−1

D−3Þ1=2.
Combining these yields the black hole luminosity

PBH ¼ −
dMH

dt
¼ 8π

e2
ND

R2
H

�
D
4π

�
Dþ2

× KD × γDðRHÞ; ð10Þ

where both KD [defined in the Appendix in Eq. (A1)] and
γDðRHÞ (which is a proxy for greybody physics contri-
buting to the luminosity) approach unity as D grows [6].
Note that the most important factor in PBH, ðD=4πÞD,
fundamentally comes from the fact that RHTH ¼ D−3

4π .
Thus, a black hole with entropy SBH evaporates after

tevap
tP

¼ e2

8π

ffiffiffi
2

e

r �
D
4π

�
−ðDþ1

2
Þ SBH
ND

× S
1

D−2
BH ×

LD

KD
; ð11Þ

where LD, defined in Eq. (A2), also goes to unity for
increasing D. This expression for tevap comes from rewrit-
ingMH in terms of SBH. We recover Eq. (1) as KD=LD → 1

and ðD − 3Þ2=ðDðD − 1ÞÞ → 1.
Finally, the scrambling time is [11]

tscr
tP

≔
MP

2πTH
logSBH ¼ 2

log SBH
D − 3

×

�
4SBH
ΩD−2

� 1
D−2

: ð12Þ

As is well known, in D ¼ 4 a large black hole, with
SBH ≈ ðRH=lPÞ2 ≫ 1, will scramble significantly faster
than it evaporates: tscr ≪ tevap. However, the factor of
SBH=ðD4πÞD in tevap makes room for large black holes in
D ≫ 1 that have both SBH ≫ 1 and tscr ≫ tevap.

III. SEMICLASSICAL PHYSICS AND LARGE D

Towards the end of the evaporation process, the semi-
classical analysis is expected to break down for any black
hole. For instance, we expect that once the evaporation
has proceeded to a sufficiently advanced point, the dynam-
ics of the black hole is no longer well described by the
background spacetime evolving solely according to the
classical Einstein equations. Nonetheless, for sufficiently
large initial entropies, the evaporation and scrambling times
are very well approximated by the expressions in Eqs. (11)
and (12). In this section, we make this statement more
precise. In particular, we identify sources of the breakdown
of semiclassicality, such as large curvature at the horizon
or quasistaticity of the geometry. We will see that at
sufficiently large D, the strongest bound is obtained from
demanding scrambling times to be short as compared to the
black hole lifetime.

To this end, it is useful to discuss black hole families inD
dimensions, indexed by positive numbers k and Ŝ0:

SBHðk;DÞ ≔ Ŝ0D
Dk
2 ⇒

�
RH ∼ lPD

kþ1
2 ;

MH ∼MPD
Dkþ1−k

2 :
ð13Þ

At largeD, these families of black holes (i.e., these large-D
limits) exactly correspond to those studied by Emparan
et al. [4] (and are related to the large-D limits studied by
Battacharya et al. [5]), where they fix RH ≔ R̂0Dl=2 and
study families of black holes with l ¼ 1 and l ¼ 2. (Note
that their Dl=2 is our Dðkþ1Þ=2.)

A. Where should semiclassical gravity apply?

We need clear criteria where the above semiclassical
analysis applies. Clearly, we must have RH > lP and
SBH ≫ Oð1Þ. However, there are further conditions.
Sub-Planckian curvature: First, we should require

that the length scale defined by the curvature invariant
R2
αβμν ≔ RαβμνRαβμνjr¼RH

is sub-Planckian:

R2
αβμν

M4
P

����
r¼RH

¼ ðD − 1ÞðD − 2Þ2ðD − 3Þ
ðRH=lPÞ4

≃
� ffiffiffiffi

D
p

SBH

�4
D

≪ 1: ð14Þ

This bound serves to ensure the subdominance of higher
curvature corrections to the Einstein-Hilbert action under
the assumption of technical naturalness.
Softness of radiation: Second, we fix the energy of the

most likely quanta E⋆ to be lighter than the black hole:

E⋆
MH

≃
D
SBH

≪ 1: ð15Þ

The radiation cannot match a blackbody if E⋆ ∼MH.
1

Quasistatic geometry: Third, we would like the black
hole geometry to be relatively static during evaporation:

���� dRH

dt

���� ¼
���� dMH

dt
dRH

dMH

���� ¼ PBH

D − 3

RH

MH
≪ 1: ð16Þ

Explicitly, as the Schwarzschild solution is static in
Einstein gravity, if there is any appreciable departure from
static geometry, characterized by jdRH=dtj≪1, then we

1We may also require E⋆ < MP [4]. If we insist on this
constraint, then we find that k ≥ 3. However, this does not seem
directly connected to the integrity of semiclassicality. Amusingly,
the shallow gravitational potential in D ≫ 1 is less efficient at
attenuating the energy in trans-Planckian Hawking quanta created
near the horizon. InD ≫ 1, trans-Planckian Hawking quanta may
propagate to infinity, magnifying the trans-Planckian problem.
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assume that the system ceases to be semiclassical.2

This constraint is closely related to requiring _T=T2 ≪ 1
for an approximately thermal emitter. However, since
_T=T2 ∼ j _RHj=D, this gives a considerably weaker con-
straint at large D.
Similarly, we may demand the black hole’s decay width,

given by its inverse lifetime, to be much smaller than its
mass. However, this related constraint is much weaker than
the constraint jdRH=dtj ≪ 1.
Short scrambling times: In the next section, we show

that there is a range of black holes that satisfy all of the
above conditions, even though their scrambling times (12)
are longer than their semiclassical half-life, tevap=2 (11).
If true, this would imply that information would leak out
of the black hole essentially unobscured. This is clearly
incompatible with semiclassical Hawking radiation and
forces us to impose the new condition

tscr < tevap: ð17Þ

When tscr > tevap, unitary evolution of the black hole and
its radiation field is in tension with this rapid decay.

B. Bounds on k

Here, we focus on which families of black holes defined
in (13) can be consistent with the constraints (14)–(16).
First, constraints (14) and (15) together imply

R2
αβμν

M4
P
∼D2−2k ≪ 1

E⋆
MH

∼D1−ðDþ1Þk
2 ≪ 1

9=
; ⇒ k ≥ 1: ð18Þ

If k ∈ Z<1, then both (a) median Hawking quanta have
energies greater than the rest energy of the black hole and
(b) the curvature scales are sub-Planckian. Alternatively,
at large D, any black hole with k ≥ 1 has sub-Planckian
curvature and emits Hawking quanta whose energies are
∼D1−ðDþ1Þk=2 smaller than its rest energy.
Due to the rapid evaporation times (which motivated

this paper), one of the tightest constraints comes from
requiring that the size/geometry of the black hole varies
slowly over time, i.e., constraint (16). Relating RH=MH to
SBH via Eq. (7), noting PBH from Eq. (10), and writing
SBH ¼ Ŝ0ðD4πÞlþðkD=2Þ, we find

���� dRH

dt

���� ∼ ND

Dl

ð4πÞl
Ŝ0

�
D1−k=2

4π

�
D
≪ 1 ⇒ k ≥ 2: ð19Þ

In pure gravity ND counts distinct graviton polarizations

and grows quadratically: ND ¼ DðD−3Þ
2

∼D2. Thus, the
“k ¼ 2” black holes evolve slowly at large D; they should
be well described by semiclassical physics.
As a consequence of the above considerations, semi-

classical black holes at large D should have entropies that
grow at least as quickly as SBH > DD−2. However, it is
straightforward to see that

tevap
tscr

����
D≫1

¼
��

4π

D

�
D 1

ND

�
SBH

logSBH

e2

2
; ð20Þ

where, for ease, we have used the simplified scalings in
Eqs. (1) and (2) with properly restored order-one factors.
Minimally, ND is at least DðD − 3Þ=2 ≃ 8π2ðD=4πÞ2. This
lets us bound tevap=tscr from above:

tevap
tscr

����
D≫1

≤
��

4π

D

�
Dþ2

�
SBH

log SBH

e2

ð4πÞ2 : ð21Þ

Thus, black holes with ðD
4πÞD−2 < SBH < ðD

4πÞDþ3 logD
evaporate parametrically faster than they scramble,
without violating the bounds (14)–(16), derived from
semiclassicality.
However, we recall that for evolution to be unitary, as

happens within the semiclassical approximation, we must
have tscr ≪ tevap. Thus, we need to impose

SBH >

�
D
4π

�
Dþ3

logD: ð22Þ

We observe an increase of the minimal entropy of semi-
classical black holes by a factor ofD3 logD as compared to
the conventional bounds listed above. This is the main point
of our paper.
This is also good news from a different perspective.

Demanding k ≥ 2 alone allows for black holes that
have tevap < tP, despite their Schwarzschild radius scaling
as RH ∼D3=2lP. Indeed, if SBH ≔ Ŝ0ðD=4πÞDþl for
−2 < l < 5=2, then the evaporation times vanish in the
strict large-D limit:

SBH ≔ Ŝ0

�
D
4π

�
Dþl

⇒
tevap
tP

≃ Ŝ0

�
4π

D

�
5=2−l

: ð23Þ

The scrambling bound implies l ≥ 3, such that these black
holes cannot be semiclassical.
Let us end this section by noting that the effect appears

less dramatic when expressed in terms of the Schwarzschild
radius. The above condition becomes

RH

lP
>

�
4

ΩD−2

�
D
4π

�
Dþ3

logD

� 1
D−2

: ð24Þ

2One may argue that a quickly changing geometry is not per se
in tension with semiclassicality since all corrections may still be
captured in a self-consistent semiclassical expansion, in the spirit
of [13]. However, as we will see, this plays no role at sufficiently
large D since quasistaticity does not pose the strongest bound on
semiclassicality.
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For D ≫ 1, this bounds k ≥ 2, which in turn bounds the
radii of semiclassical black holes by RH=lP ≳D3=2. An
interesting consequence of this analysis is that semiclass-
ical black hole temperatures are now bounded from above
by TH=MP ¼ ðD − 3Þ × ð4πRH=lPÞ−1 < ð4π ffiffiffiffi

D
p Þ−1.

C. Light crossing and scrambling

Equation (2) for the scrambling time is rather natural,
irrespective of the number of dimensions. A black hole as a
strongly coupled quantum system is characterized by its
temperature TH and an effective number of qubits ∼SBH.
Fast scrambling is associated with an exponential growth
of mixing, with a rate naturally set by the temperature.
Complete scrambling then sets in when all qubits mix, after
a time t ∼ T−1

H log SBH, in agreement with (2).
Nonetheless, one may reasonably wonder whether the

physics of scrambling at largeD has hidden powers ofD in
it which could close the window where jdRH=dtj ≪ 1 and
yet tevap=tscr ≪ 1. While this would be extremely interest-
ing, in particular, since it could shed important light on the
dynamics behind scrambling even at small D, let us
elaborate why we find it rather implausible.
Indeed, one might wonder if the physics at largeD could

significantly alter the scrambling time such that tscr is
several factors of D faster than the quoted result in (2).
This is unlikely. The analysis that led to this estimate for
the scrambling time is explicitly D independent [11]. In
particular, various plausibility arguments for the scaling of
the scrambling time, such as the spreading of charge over
the stretched horizon [10], suggest that if tscr at large-D
scales with an overall factor of 1=D or faster, such
spreading would be governed by a timescale that is either
independent of the area of the horizon or inversely propor-
tional to it. Neither seems likely.
Irrespectively of the precise dynamics, however, causal-

ity puts a stringent lower bound on the scrambling time.
As we now show, even if scrambling were to happen at the
fastest rate compatible with causal dynamics, our conclu-
sions would remain essentially unchanged. To this end, we
notice that however fast the scrambling dynamics may be,
in Schwarzschild coordinates, a black hole cannot scramble
information faster than the time it takes for light to travel
between two points that are separated by twice its
Schwarzschild radius, 2RH. We call this time the light-
crossing time and define it as t× ≔ 2RH. In these coor-
dinates, this timescale represents the fastest possible
propagation of information consistent with causality.
In the equations, we must have

tscrðRHÞ ≥ t× ¼ 2RH: ð25Þ

Now, the parametric D-scaling of tscr in (12) only weakly
differs from t×:

tscr
t×

¼ log SBH
4πRHTH

¼ logSBH
D − 3

: ð26Þ

Now, we focus on the interesting regime where SBH ¼
Ŝ0ðD=4πÞDþl. We see that tevap=t× < 1 is still stronger
than the two semiclassical constraints jdRH=dtj ≪ 1 and
R2
αβγδ=M

4
P ≪ 1. This follows straightforwardly from the

fact that for these black holes, we have

tscr=t× ∼ logD; ð27Þ
and thus the constraints from Eqs. (20) and (21) translate
into the constraint that

tevap
t×

����
D≫1

≲
��

4π

D

�
Dþ2

�
SBH
D

e2

ð4πÞ2 : ð28Þ

This more stringent constraint still leaves almost the
entire window open. Explicitly, black holes with entropies
within the range ðD

4πÞD−2 < SBH < ðD
4πÞDþ3 will evaporate

parametrically faster than any causal signal could conceiv-
ably propagate in flat space. This holds even though (1) the
geometry is static, i.e., jdRH=dtj ≪ 1, and (2) the curvature
at the horizon is sub-Planckian.
Because t× is the shortest, fastest way that a physical

effect can possibly be consistent with causality, we see that
the most general restrictions from fast scrambling come
from requiring tevap=t× < 1. In particular, these constraints
necessarily hold at large D.
Let us finally note that the above arguments rest on the

assumption of quasistaticity, which, however, impeccably
holds for k ≥ 2. Since we are looking for those black holes
with the largest k that pose a challenge to a semiclassical
analysis, we can safely assume the geometry to remain
unchanged for the majority of the black hole’s lifetime. In
fact, were it not for the tension with scrambling, all black
holes with k ≥ 2 would, at sufficiently large D, be the
perfect playground for semiclassics since backreaction on
the geometry is essentially turned off. Only at the very latest
stages of evaporation, when remaining lifetimes are much
shorter than the light-crossing time, can corrections to
quasistaticity become sizable. By then, however, most of
the black hole’s mass has been radiated away in a distinctly
nonsemiclassical manner. We can illustrate this fact by
comparing both RHðtÞ and SBHðtÞ as they easily follow
from integrating Eq. (10) for D ¼ 4 and D ≫ 1, as shown
in Fig. 1.

D. Short-lived black holes and string theory

Clearly, when D is Oð1Þ, the standard conditions for the
curvature scale at the horizon, or the quasistatic nature
of the black hole geometry, are, together, strong enough to
dictate whether a black hole is well described by semi-
classical physics. In other words, for Oð1Þ values of D,
scrambling times for such black holes are necessarily much
shorter than their evaporation times.
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Here, we briefly note that the lowest value of D where
tscr ∼ tevap for an otherwise “semiclassical” Schwarzschild
black hole, i.e., one whose curvature scales are sub-
Planckian and whose geometry varies slowly in time
(due to Hawking radiation), is significantly larger than
D ¼ 26. In other words, the new condition for semi-
classicality in this paper only applies above the upper
critical dimension for consistent string theories.

IV. CONNECTION TO PREVIOUS WORK

Previous work has also noted that black hole informa-
tion, entropy, and evaporation can exhibit qualitatively new
features at large D. Though recent work on the large-D
limit of general relativity has focused on classical features
of the theory, they are explicitly aware of the high
luminosity (and short timescales) that would be associated
with semiclassical, and fully quantum, gravity in large D.
Moreover, semiclassical aspects of black hole physics

at large D have been a direct focus of [6–9]. In particular,
the Hawking luminosity was explicitly found in [6], and
Refs. [7–9] have discussed the relative size of black hole
entropy as compared to the entropies of unbound systems
of weakly gravitating matter at large D.
In particular, Ref. [8] prominently discusses possible

tension between basic principles of black hole entropy and
properties of weakly gravitating systems when the entropy
of a black hole is SBHðDÞ≲ ðD=4πÞDþl if l lies in the
interval l ∈ ð1

2
; 1Þ. In our present context, it is very

amusing to note that these black holes fall squarely within
the family of black holes for which the scrambling bound is
the strongest. In fact, our inequality (22) resolves possible
tension by demonstrating that a semiclassical analysis of
such black holes should not be trusted.
Our results are similar in spirit to results derived in the

context of a large number N of gravitationally interacting
species [14]. Their presence opens up the phase space in a
similar fashion as going to large D. Consequently, evapo-
ration times and scrambling times can become comparable
for sufficiently large N, which again bounds the validity of
the semiclassical approximation [15]. Interestingly, in the
case of species, breakdown of semiclassicality is directly

tied to a loss of perturbative unitarity [14,16]. We leave the
question of exploring such a connection in the context of
large-D physics [17,18] for the future.

V. CONCLUSIONS AND FUTURE WORK

Analyzing the first quantum corrections to black holes
in a large number of dimensions, D ≫ 1, reveals rather
curious properties. The presence of this large dimensionless
number has the capacity to significantly alter the naive
intuition, gleaned from black holes in four and five
dimensions, for the timescales in unitary evaporation.
Indeed, in D ≫ 1, black hole temperatures grow linearly

with D. Explicitly, THRH ∼D, which comes from the
gradient of g00ðrÞ ∼ 1 − ðRH

r ÞD at the horizon. Further,
the Hawking luminosity grows factorially with D. This
growth is mainly due to the growth of the available phase
space with D. Neither of these scalings is surprising. Yet,
they inexorably lead to very short evaporation timescales
for even relatively massive black holes, with MH

MP
≲ ðD

4πÞD,
which may lead to new observations.
Within this paper, we have taken the conservative

approach of interpreting all possible sources of tension
that appear within the semiclassical approximation as
pointing to the latter’s demise. In particular, we have
identified a range of parameters in which otherwise semi-
classical black holes appear to evaporate much faster than
they scramble information. Since this is incompatible with
everything we understand about the microscopic dynamics
of scrambling, we have taken this as a signal that in a large
number of dimensions, semiclassical physics breaks down
at scales significantly larger than naively expected.
Interestingly, this realization helps us to clarify nontrivial

puzzles that have arisen in the literature, such as the
possibility of having hyperentropic matter at sufficiently
large D [7] that violates the Bekenstein bound [19].3 While
recent arguments argue against the validity of such con-
clusions on different grounds [9], we think that our picture
provides a complementary and conceptually very simple
explanation for why such apparent tension arises outside
the regime of validity of semiclassical gravity.
One of the main assumptions underlying this work is

the validity of expression (12) for the scrambling time in
any D. From a certain point of view, this may seem
unnatural. After all, it implies that the entire D dependence
of the scrambling time lies only in the D dependence of
temperature and entropy. One may thus wonder whether
corrections to this expression, relevant only at sufficiently
large D, could lead to a decrease of thermalization

FIG. 1. Comparison of typical evaporation curves for D ¼ 4
(red) and D ≫ 1 (blue), where for concreteness we picked
D ¼ 100 for the latter. In the left panel, we plot RHðt=tevapÞ,
while on the right we display SBHðt=tevapÞ.

3Such matter does not violate the covariant entropy bound,
which is a factor of 2

D−2 weaker in D ≠ 4 [20]. It would be
interesting to see whether the fact that the Bekenstein bound is
potentially violated only outside the semiclassical regime can
shed light on the mismatch of the bounds.
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timescales such that tscr < tevap for any D and SBH > 1. On
the other hand, the expected nonlocal nature of scrambling
dynamics [11] appears to directly imply scrambling to
be insensitive to the number of spacetime dimensions. We
hope to shed more light on this issue in future work. We
close with a few comments.
First, although holographic dualities between conformal

field theories (CFTs) in D dimensions and gravitational
theories in (Dþ 1) dimensions are not expected to be
“nice” (or, perhaps, to exist at all) when D ≫ 1, there are
hints that CFTs might be very simple at large D [21]. It
might be interesting to see if this is relevant in small black
hole evaporation in (Dþ 1) dimensions.
Second, in [22] the near-horizon geometries of black

holes at large D were found to match those in the specific
2D dilaton gravity model of Callan, Giddings, Harvey and
Strominger (CGHS) [23]. Strikingly, aspects of this anal-
ogy seem to persist at the semiclassical level. Explicitly,
black holes at large D and in the 2D CGHS model have
mass-independent temperatures. As this and other semi-
classical aspects of large-D BHs are captured by dilaton
gravity in 2D, this may suggest that corresponding features
of the information problem also be captured by the much
simpler aspects of gravity in two dimensions. It would be
extremely interesting to study whether this bridge between
2D and large D could be made more robust and,
if so, whether it offered new insights on the information
problem in D dimensions.
Finally, similar considerations to the ones presented here

have played an important role in formulating gravitational
consistency conjectures, such as the weak gravity [24] and
swampland [25] conjectures. It will be interesting to see

whether large-D physics can yield nontrivial insights there,
like in the case of cosmic censorship [26,27].
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APPENDIX: KD AND LD

The function KD introduced in Eq. (10), for black hole
lifetimes, is explicitly

KD ≔ 2e2ζðDÞ
�
D − 1

D2

��
bcrit
RH

�
D−2

�
D − 3

D

�
D
; ðA1Þ

and LD in Eq. (11), also for black hole lifetimes, is

LD ≔
�
D − 3

D − 1

D − 2

D

� ffiffiffi
e
2

r ffiffiffiffiffiffi
4π

D

r �
4

ΩD−2

� 1
D−2

: ðA2Þ

Note that LD;KD→1 as D→∞. While we do not give an
expression for γDðRHÞ, we recall that limD→∞γDðRHÞ¼1 [6].

[1] S. W. Hawking, Phys. Rev. D 14, 2460 (1976).
[2] D. N. Page, Phys. Rev. Lett. 71, 1291 (1993).
[3] D. N. Page, J. Cosmol. Astropart. Phys. 09 (2013) 028.
[4] R. Emparan, R. Suzuki, and K. Tanabe, J. High Energy

Phys. 06 (2013) 009.
[5] S. Bhattacharyya, A. De, S. Minwalla, R. Mohan, and A.

Saha, J. High Energy Phys. 04 (2016) 076.
[6] S. Hod, Classical Quantum Gravity 28, 105016 (2011).
[7] S. Hod, Phys. Lett. B 695, 294 (2011).
[8] S. Hod, Phys. Lett. B 700, 75 (2011).
[9] S. Hod, Phys. Rev. D 97, 126012 (2018).

[10] P. Hayden and J. Preskill, J. High Energy Phys. 09 (2007)
120.

[11] Y. Sekino and L. Susskind, J. High Energy Phys. 10 (2008)
065.

[12] R. Emparan, G. T. Horowitz, and R. C. Myers, Phys. Rev.
Lett. 85, 499 (2000).

[13] C.-I. Kuo and L. Ford, Phys. Rev. D 47, 4510 (1993).
[14] G. Dvali, Fortschr. Phys. 58, 528 (2010).

[15] G. Dvali and C. Gomez, Phys. Lett. B 674, 303 (2009).
[16] G. Dvali and M. Redi, Phys. Rev. D 77, 045027 (2008).
[17] A. Strominger, Phys. Rev. D 24, 3082 (1981).
[18] N. E. J. Bjerrum-Bohr, Nucl. Phys. B684, 209 (2004).
[19] J. D. Bekenstein, Phys. Rev. D 23, 287 (1981).
[20] R. Bousso, J. High Energy Phys. 04 (2001) 035.
[21] A. L. Fitzpatrick, J. Kaplan, and D. Poland, J. High Energy

Phys. 08 (2013) 107.
[22] R. Emparan, D. Grumiller, and K. Tanabe, Phys. Rev. Lett.

110, 251102 (2013).
[23] C. G. Callan, Jr., S. B. Giddings, J. A. Harvey, and A.

Strominger, Phys. Rev. D 45, R1005 (1992).
[24] N. Arkani-Hamed, L. Motl, A. Nicolis, and C. Vafa, J. High

Energy Phys. 06 (2007) 060.
[25] C. Vafa, arXiv:hep-th/0509212.
[26] R. Penrose, Riv. Nuovo Cimento 1, 252 (1969) [Gen.

Relativ. Gravit. 34, 1141 (2002)].
[27] T. Andrade, R. Emparan, D. Licht, and R. Luna, J. High

Energy Phys. 09 (2019) 099.

BLACK HOLE EVAPORATION AND SEMICLASSICALITY AT … PHYS. REV. D 102, 026016 (2020)

026016-7

https://doi.org/10.1103/PhysRevD.14.2460
https://doi.org/10.1103/PhysRevLett.71.1291
https://doi.org/10.1088/1475-7516/2013/09/028
https://doi.org/10.1007/JHEP06(2013)009
https://doi.org/10.1007/JHEP06(2013)009
https://doi.org/10.1007/JHEP04(2016)076
https://doi.org/10.1088/0264-9381/28/10/105016
https://doi.org/10.1016/j.physletb.2010.10.045
https://doi.org/10.1016/j.physletb.2011.04.048
https://doi.org/10.1103/PhysRevD.97.126012
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1103/PhysRevLett.85.499
https://doi.org/10.1103/PhysRevLett.85.499
https://doi.org/10.1103/PhysRevD.47.4510
https://doi.org/10.1002/prop.201000009
https://doi.org/10.1016/j.physletb.2009.03.024
https://doi.org/10.1103/PhysRevD.77.045027
https://doi.org/10.1103/PhysRevD.24.3082
https://doi.org/10.1016/j.nuclphysb.2004.02.012
https://doi.org/10.1103/PhysRevD.23.287
https://doi.org/10.1088/1126-6708/2001/04/035
https://doi.org/10.1007/JHEP08(2013)107
https://doi.org/10.1007/JHEP08(2013)107
https://doi.org/10.1103/PhysRevLett.110.251102
https://doi.org/10.1103/PhysRevLett.110.251102
https://doi.org/10.1103/PhysRevD.45.R1005
https://doi.org/10.1088/1126-6708/2007/06/060
https://doi.org/10.1088/1126-6708/2007/06/060
https://arXiv.org/abs/hep-th/0509212
https://doi.org/10.1023/A:1016578408204
https://doi.org/10.1023/A:1016578408204
https://doi.org/10.1007/JHEP09(2019)099
https://doi.org/10.1007/JHEP09(2019)099

