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We diagram the behavior of five-dimensional anti–de Sitter spacetime against horizon formation in the
gravitational collapse of a scalar field, treating the scalar field mass and width of initial data as free
parameters, which we call the stability phase diagram. We find that the class of stable initial data becomes
larger and shifts to smaller widths as the field mass increases. In addition to classifying initial data as stable
or unstable, we identify two other classes based on nonperturbative behavior. The class of metastable initial
data forms a horizon over longer time scales than suggested by the lowest order perturbation theory at
computationally accessible amplitudes, and irregular initial data can exhibit nonmonotonic and possibly
chaotic behavior in the horizon formation times. Our results include evidence for chaotic behavior even in
the collapse of a massless scalar field.
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I. INTRODUCTION

Through the anti–de Sitter spacetime (AdS)/conformal
field theory (CFT) correspondence, string theory on
AdS5 × X5 is dual to a large N conformal field theory in
four spacetime dimensions (R × S3 when considering
global AdS5). The simplest time-dependent system to
study in this context is the gravitational dynamics of a
real scalar field with spherical symmetry, corresponding to
the time dependence of the expectation value of the zero
mode of a single trace operator in the gauge theory. Starting
with the pioneering work of [1–4], numerical studies have
suggested that these dynamics may in fact be generically
unstable toward formation of (asymptotically) AdSdþ1

black holes even for arbitrarily small amplitudes. While
perhaps surprising compared to intuition from gravitational
collapse in asymptotically flat spacetimes, the dual picture
of thermalization of small energies in a compact space is
more expected. In terms of the scalar eigenmodes on a fixed
AdS background, the instability is a cascade of energy to
higher frequency modes and shorter length scales (weak
turbulence), which eventually concentrates energy within

its Schwarzschild radius. In a naive perturbation theory, this
is evident through secular growth terms.
However, some initial scalar field profiles lead to

quasiperiodic evolution (at least on the time scales acces-
sible via numerical studies) at small but finite amplitudes;
even early work [1,5] noted that it is possible to remove the
secular growth terms in the evolution of a single perturba-
tive eigenmode. A more sophisticated perturbation theory
[6–17] supports a broader class of quasiperiodic solutions
that can contain non-negligible contributions from many
modes, and other stable solutions orbit the basic quasi-
periodic solutions [14]. Stable solutions exhibit inverse
cascades of energy from higher frequency to lower fre-
quency modes due to conservation laws following from the
high symmetry of AdS (integrability of the dual CFT).
Stable behavior also appears in the full nonperturbative
dynamics for initial profiles with widths near the AdS
length scale [18–20]; however, analyses of the perturbative
and full dynamics in the literature have not always been in
agreement at fixed small amplitudes. For example, some
perturbatively stable evolutions at finite amplitude actually
form black holes in numerical evaluation of the full
dynamics [6,21,22]. Understanding the breakdown of the
approximations used in the perturbative theory, as well as
its region of validity, is an active and important area of
research [23–27].
Ultimately, the main goal of this line of inquiry is to

determine whether stability or instability to black hole
formation (or both) is generic on the space of initial data, so
the extent of the “islands of stability” around single-mode
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or other quasiperiodic solutions and how it varies with
parameters of the physics on AdS are key questions of
interest. The biggest changes occur in theories with a mass
gap in the black hole spectrum, such as AdS3 and Einstein-
Gauss-Bonnet gravity in AdS5, which cannot form hori-
zons at small amplitudes. While small-amplitude evolution
in AdS3 appears to be quasiperiodic [28,29], there is some
evidence to point toward late-time formation of a naked
singularity in AdS5 Einstein-Gauss-Bonnet gravity [30,31]
(along with a power-law energy spectrum similar to that at
horizon formation). Charged scalar and gauge field matter
[32] also introduces a qualitative change in that initial
data may lead to stable evolution or instability toward
either Reissner-Nordström black holes or black holes with
scalar hair.
In this paper, we extend the study of massive scalar

matter initiated in [33,34]. Specifically, using numerical
evolution of the full gravitational dynamics, we diagram
classes of gravitational collapse behavior as a function of
scalar field mass and initial scalar profile width, which we
call a stability phase diagram in analogy to a phase diagram
for phases of matter. This is the first systematic study of
behavior for classes of initial data in AdS gravitational
collapse using two tuning parameters. By considering the
time to horizon formation as a function of the initial
profile’s amplitude at finite amplitude, we identify several
different classes of behavior and indicate them on the phase
diagram. Finally, we analyze and characterize these differ-
ent behaviors, presenting evidence for chaotic behavior,
including the first evidence for chaotic behavior in the
horizon formation time of massless scalar collapse, which
has no length scale other than the AdS radius. Throughout,
we work in AdS5, due to its relevance to strongly coupled
gauge theories in four dimensions and because previous
literature has indicated massless scalars lead to greater
instability than in AdS4 (the main other case considered),
which makes the effects of the scalar field mass more
visible.
We note briefly two caveats for the reader. First, horizon

formation always takes an infinite amount of time on the
AdS conformal boundary due to the usual time dilation
effects associated with horizons; this agrees with the
understanding of thermalization in the CFT as an asymp-
totic process. Horizon formation times discussed in this
paper correspond to an approximate notion of horizon
formation that we will describe below, but alternate
measures of thermalization may be of interest. Second,
the black holes we discuss are smeared on the compact X5

dimensions of the gravitational side of the duality, as in
most of the literature concerning stability of AdS, and we
are particularly interested in small initial amplitudes that
lead to black holes small compared to the AdS scale. As
described in [35–37], small black holes in this situation
suffer a Gregory-Laflamme-like instability toward locali-
zation on X5 (which may in fact lead to formation of a

naked singularity). At the same time, certain light stable
solutions for charged scalars (boson stars) are stable against
localization on X5 [38]. We therefore provisionally assume
that the onset of the Gregory-Laflamme-like instability
occurs only at horizon formation, not at any point of the
earlier horizon-free evolution.
The plan of this paper is as follows: in Sec. II, we review

the time scales associated with horizon formation with an
emphasis on the behavior of massive scalars and briefly
discuss our methods. Then, in Sec. III, we present the phase
diagram of different stability behaviors, and an attempt at
heuristic analytic understanding appears in IV. We close
with a discussion of our results.

II. REVIEW

In this section, we review results on the stability of scalar
field initial data as well as our methods (following the
discussion of [34]).

A. Massive scalars, stability, and time scales

As in most of the literature, we work in Schwarzschild-
like coordinates, which have the line element (in asymp-
totic AdSdþ1)

ds2 ¼ 1

cos2ðxÞ ð−Ae
−2δdt2 þ A−1dx2 þ sin2ðxÞdΩd−1Þ

ð1Þ

in units of the AdS scale. In these coordinates, a horizon
appears at Aðx; tÞ ¼ 0, but reaching zero takes an infinite
amount of time (measured either in proper time at the origin
or in conformal boundary time); following the standard
approach, we define a horizon as having formed at the
earliest spacetime point (as measured by t) where A drops
below a specified threshold defined in Sec. II B below. Of
course, horizon formation represents a coarse-grained
description since the pure initial state of the dual CFT
cannot actually thermalize; a more precise indicator of
approximate thermalization may be the appearance of a
power-law energy spectrum (exponentially cutoff) in the
perturbative scalar eigenmodes. This indicator is tightly
associated with horizon formation (though see [30,31] for
some counterexamples).
A key feature of any perturbative formulation of the

gravitational collapse is that deviations from A ¼ 1, δ ¼ 0

appear at order ϵ2, where ϵ is the amplitude of initial data.
As a result, horizons can form only after a time t ∼ ϵ−2; in
the multiscale perturbation theory of [6,7,9–11,13–17],
there is in fact a scaling symmetry ϵ → ϵ0; t → tðϵ=ϵ0Þ2
that enforces the proportionality tH ∝ ϵ−2, where tH is the
(approximate) horizon formation time for unstable initial
data at small amplitude.
At this point, it is worth making a small clarification. If

the collapsing matter takes the form of a well-defined pulse,
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horizon formation occurs when the pulse nears the origin.
For massless matter, that means that tH is piecewise
continuous as a function of ϵ; each continuous “step”
has approximately constant tH and is separated from the
next step by a time of approximately π, the light crossing
time for a round trip from the origin to the boundary of
AdS. Massive matter does not reach the boundary, so the
steps are not always separated by π, and may in fact not be
separated at all if the pulse spreads out in radius. In any
case, though, the width of the steps decreases drastically as
amplitude decreases, so it becomes very difficult to find the
transition amplitudes numerically. In fact, adjacent ampli-
tudes in a numerical sample are typically multiple steps
apart once the evolution is already long, which justifies
using the perturbative scaling tH ∝ ϵ−2.

Based on the perturbative scaling relation, initial data can
be divided into several classes with respect to behavior at
low amplitudes, as illustrated in Fig. 1 for massless scalars.
Stable initial data evolve indefinitely without forming a
horizon. In practice, we identify this type of behavior in
numerical evolutions by noting rapid horizon formation at
high amplitude with a vertical asymptote in tH just above
some critical amplitude. In our numerical results, we see a
sudden jump at the critical amplitude to evolutions with no
horizon formation to a large time tlim, possibly with a small
window of amplitudes with large tH just above the critical
amplitude. In a few cases, we have captured a greater
portion of the asymptotic region. See Fig. 1(a). Unstable
initial data, in contrast, forms a horizon at all amplitudes
following the perturbative scaling relation tH ∝ ϵ−2 as

(b)

(c) (d)

(a)

FIG. 1. Classes of initial data for massless scalars and initial width σ. Blue dots represent horizon formation; red triangles indicate a
lower limit for tH. Red curves in subfigures 1(b) and 1(c) are tH ¼ aϵ−2 þ b matched to the largest two amplitudes in the curve.
(a) Stable initial data for σ ¼ 1.5; (b) unstable initial data for σ ¼ 0.25; (c) metastable initial data for σ ¼ 0.85; (d) irregular initial data
for σ ¼ 1.1.
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ϵ → 0. In our analysis, we will verify this scaling by fitting
tH to a power law as described in Sec. II B below; if we
limit the fit to smaller values of ϵ, the scaling becomes more
accurate. Figure 1(b) shows unstable data. The red curve is
of the form tH ¼ aϵ−2 þ b with a, b determined by
matching the curve to the data for the largest two ampli-
tudes with tH ≥ 60 (not a best fit); note that the data
roughly follow this curve. The categorization of different
initial data profiles with similar characteristic widths into
stable and unstable is robust for massless and massive
scalars [34]; small and large width initial data are unstable,
while intermediate widths are stable. One of the major
results of this paper is determining how the widths of initial
data in these islands of stability vary with scalar mass.
A priori, there are other possible types of behavior, at

least beyond the first subleading order in perturbation
theory, that is, at finite ϵ. Metastable initial data collapse
with tH ∝ ϵ−p with p > 2 at small but not arbitrarily small
amplitudes (or another more rapid growth of tH with
decreasing amplitude). We will find this type of behavior
common on the “shoreline” of islands of stability where
stable behavior transitions to unstable. As we will discuss
further below, metastable behavior may or may not con-
tinue as ϵ → 0; in principle, as higher-order terms in
perturbation theory become less important, the behavior
may shift to either stable or unstable as described above. In
principle, initial data that are stable at third order in
perturbation theory but unstable at higher order could have
metastable scaling even in the ϵ → 0 limit, though our
numerical study cannot address this case. We in fact find
circumstantial evidence in favor of the different possibil-
ities. In the case that the ϵ → 0 behavior is perturbatively
unstable, the perturbative scaling tH ∝ ϵ−2 only appears for
larger tH than the typical unstable case; it may therefore be
reasonable for the reader to consider metastable initial data
as part of a second order transition between unstable and
stable classes of initial data. Figure 1(c) shows metastable
initial data that continue to collapse to times tH ∼ 0.6tlim
but more slowly than ϵ−2; note that tH for collapsed
evolutions at small amplitudes lies significantly above
the curve tH ¼ aϵ−2 þ b [which is determined as in
Fig. 1(b)]. There was one additional type of behavior
identified by [34], which was called “quasistable” initial
data at the time since the low-amplitude behavior was not
yet clear. We find here that these initial data are typically
stable at small amplitude but exhibit irregular behavior in
tH as a function of ϵ, so we will denote them as irregular
initial data; irregular behavior may be strongly nonmono-
tonic or even exhibit some evidence of chaos. Figure 1(d)
shows an example of irregular initial data. Later, we will see
more striking examples of this behavior for massive scalars.
We emphasize that we are not claiming that metastable or

irregular behavior persist to arbitrarily small amplitudes
(though a priori metastable behavior could). In that sense,
the multiscale perturbation theory suggests that the only

two classes of stability behavior are stable and unstable
with tH ∝ ϵ−2 scaling as ϵ → 0. However, it is also
important to understand physics outside the perturbative
regime, and classifying the behavior of AdS when higher-
order or nonperturbative effects contribute is still of
interest. For example, it is clear that metastable initial data
(as defined precisely below) do not exhibit perturbatively
unstable behavior for tH values as small as other unstable
initial data, even in the cases where it may at all. This may
help understanding the breakdown of the multiscale per-
turbation theory. Similarly, irregular initial data lead to
qualitatively different behavior even visually and suggest
that nonperturbative dynamics are important. It is in the
spirit of looking beyond the multiscale perturbation theory
that we call metastable and irregular initial data indepen-
dent classes of behavior, even if they are not quite on the
same standing as perturbatively stable or unstable classes.
This paper presents the first systematic mapping of where
these distinct behaviors appear.

B. Methods

For spherically symmetric motion, the Klein-Gordon eq-
uation for scalar mass μ can be written in first-order form as

ϕ;t ¼ Ae−δΠ; Φ;t ¼ ðAe−δΠÞ;x; ð2Þ

Π;t ¼
ðAe−δ tand−1ðxÞΦÞ;x

tand−1ðxÞ −
e−δμ2ϕ
cos2ðxÞ ; ð3Þ

where Π is the canonical momentum and Φ ¼ ϕ;x is an
auxiliary variable. The Einstein equation reduces to con-
straints, which can be written as

δ;x ¼ − sinðxÞ cosðxÞðΠ2 þΦ2Þ; ð4Þ

M;x ¼ ðtanðxÞÞd−1
�
A
ðΠ2 þΦ2Þ

2
þ μ2ϕ2

2cos2ðxÞ
�
; ð5Þ

A ¼ 1 − 2
sin2ðxÞ
ðd − 1Þ

M
tandðxÞ ; ð6Þ

where the mass function M asymptotes to the conserved
Arnowitt-Deser-Misner (ADM) mass at the boundary
x ¼ π=2. We will restrict to d ¼ 4 spatial dimensions.
Since results are robust against changes in the type of initial
data [34], we can take the initial data to be a Gaussian of the
areal radius in the canonical momentum and trivial in the
field. Specifically,

Πðt ¼ 0; xÞ ¼ ϵ exp

�
−
tan2ðxÞ
σ2

�
; ϕðt ¼ 0; xÞ ¼ 0: ð7Þ

The width σ and field mass μ constitute the parameter space
for our stability phase diagram.
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We solve the Klein-Gordon evolution equations (2) and
(3) and Einstein constraint equations (4) and (5) numeri-
cally using methods similar to those of [20] on a spatial grid
of 2n þ 1 grid points; we discuss the convergence proper-
ties of our code in the Appendix. We denote the approxi-
mate horizon position xH and formation time tH by the first
point such that AðxH; tHÞ ≤ 27−n. In detail, we evolve the
system in time using a fourth-order Runge-Kutta stepper
and initially use a fourth-order Runge-Kutta spatial inte-
grator at resolution n ¼ 14. If necessary, we switch to a
fifth-order Dormand-Prince spatial integrator and increase
resolution near horizon formation. Due to time constraints,
we do not increase the resolution beyond n ¼ 21 for any
particular calculation; if a higher resolution would be
required to track horizon formation for a given amplitude,
we exclude that amplitude.
To determine the stability class of initial data with a

given width σ, we allow evolutions to run to a maximum
time of tlim ¼ 500 in AdS units, so tlim is a lower limit for
tH for amplitudes that do not form a horizon within that
time. Normally, however, if the initial data appear unstable,
we only evolve amplitudes with tH ≲ 0.6tlim; this is partly
to save computational resources and partly to distinguish
stable evolutions from collapsing ones. For unstable or
metastable initial data, we find the best fit of the form
tH ¼ aϵ−p þ b to evolutions with tH > tfit, where tfit is a
constant time chosen such that amplitudes with evolutions
that last longer are usually roughly perturbative1; in
practice, tfit ¼ 60 gives results close to the perturbative
result p ¼ 2 for evolutions expected to be unstable from the
literature, but we will also consider tfit ¼ 80, 100 as
described below. In other words, since a given amplitude
ϵ may be in the perturbative scaling regime for one set of
initial data but nonperturbative for another, we compare
initial data at similar horizon formation times (addressing
the onset of perturbative behavior). Choosing tfit as above
gives consistent values of the fit parameters for the three
values of tfit for the largest and smallest initial data widths,
which are unstable.

III. PHASE DIAGRAM OF STABILITY

Here we give our main result, the phase diagram of
stability classes as a function of initial profile width and
scalar mass, along with a more detailed discussion of the
scaling of horizon formation time with amplitude for
varying initial data.
The stability phase diagram for spherically symmetric

scalar field collapse in AdS5, treating the width σ of initial
data and scalar field mass μ as tunable parameters, appears
in Fig. 2. Each ðμ; σÞ combination that we evolved

numerically is indicated by a point, with blue diamonds
and orange circles representing stable and unstable initial
data, respectively. The metastable class is represented by
green triangles, while the irregular class is represented by
red squares. Note that the graph has been divided into two
regions with different scales, separated by a break:
0 ≤ μ ≤ 1 is pictured on the bottom, while 5 ≤ μ ≤ 20 is
pictured on the top. At a glance, two features of the stability
phase diagram are apparent: as μ increases, the island of
stability moves toward smaller values of σ and takes up a
gradually larger range of σ. To be specific, the stable class
of initial data is centered at σ ¼ σ̄ ∼ 1.4 and has a width of
Δσ ∼ 0.7 for μ ¼ 0, 0.5, with σ̄ ∼ 1.2 for μ ¼ 1. Δσ
increases to ∼1.1, and the island of stability is centered
at σ̄ ∼ 0.9 for μ ¼ 5, 10, whileΔσ ∼ 1.2 for μ ¼ 15, 20 with
the stable class centered at σ̄ ∼ 0.8. Note that the transition
between “light field” and “heavy field” behavior occurs for
μ > 1 in AdS units.
The metastable and irregular classes appear at the

shorelines of the island of stability, the boundary between
unstable and stable classes. In particular, the slope of the
power law tH ∼ ϵ−p as ϵ → 0 increases as the width moves
toward the island of stability, leading to metastable behav-
ior. We find metastability at the large σ shoreline for all μ
values considered and also at the small σ shoreline for
several scalar masses. It seems likely that metastable
behavior appears in only a narrow range of σ for larger
μ, which makes it harder to detect in a numerical search,
leading to its absence in some parts of the stability phase
diagram. We find irregular behavior at the small σ shoreline
for every mass and at the large σ boundary for large μ,
closer to stable values of σ than metastable initial data. This
class of initial data includes a variety of irregular and
nonmonotonic behavior, as detailed below. Evidence for
chaotic behavior especially becomes more prominent at
larger values of μ, as we will discuss below.

A. Metastable versus unstable initial data

While stable and irregular initial data are typically
apparent by eye in a plot of tH vs ϵ, distinguishing the
unstable from metastable classes is a quantitative task. As
we described in Sec. II B, we find the least squares fit of
tH ¼ aϵ−p þ b to all evolutions with tH > tfit for the given
ðμ; σÞ, running over values tfit ¼ 60, 80, 100. Using the
covariance matrix of the fit, we also find the standard error
for each fit parameter. We classify a width as having
unstable evolution if the best-fit value of p is within two
standard errors of p ¼ 2 for tfit ¼ 60, 80 or one standard
error for tfit ¼ 100 (due to a smaller number of data points,
the standard errors for tfit ¼ 100 tend to be considerably
larger). In contrast, we classify a width as having meta-
stable evolution if the best-fit p is statistically significantly
different from 2 (in that the best-fit value is more than two
standard errors from p ¼ 2 for tfit ¼ 60, 80 and more than
one standard error from p ¼ 2 for tfit ¼ 100). This

1The power law plus constant fits the leading and first
subleading contribution to tH in a perturbative expansion in ϵ,
and we have found that the subleading term is typically not
negligible in the computationally accessible regime.
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indicates that either further subleading contributions in a
perturbative expansion of tH are non-negligible in this
regime for metastable initial data or that possibly meta-
stable initial data are stable at the first nontrivial order in
perturbation theory. Considering larger values of tfit helps
to ensure that the leading perturbative terms do not come to
dominate for particular initial profile at the smallest
computationally accessible amplitude values. In the case
that the fit to tH ¼ aϵ−p þ b has large reduced χ2 or is
sensitive to fitting algorithm, the data are not well described
by our fitting function, so we classify it as irregular (see the
next subsection).
The fits tH ¼ aϵ−p þ b allow us to explore the time scale

of horizon formation across the stability phase diagram, for

example, through a contour plot of one of the coefficients
vs σ and μ. In most cases, this has not been informative,
but an intriguing feature emerges if we plot the normali-
zation coefficient a vs σ for unstable initial data at small σ,
as shown in Fig. 3 for tfit ¼ 60. By eye, the coefficient
is reasonably well described by the fit a ¼ ð32.0�
0.3Þσ−ð2.01�0.02Þ (values following � are standard errors
of the best-fit values) independent of scalar field mass. This
is not born out very well quantitatively; the reduced χ2 for
the fit is χ2/degrees of freedom (d.o.f)¼ 180, indicating a
poor fit. However, the large χ2 seems largely driven by a
few outlier points with large scalar mass, so it is tempting
to speculate that the gravitational collapse in this region of
parameter space is driven by gradient energy, making all
fields effectively massless at narrow enough initial σ. The
picture is qualitatively similar if we consider the parameter
a for tfit ¼ 80, 100 instead.
Several examples of metastable behavior appear in

Fig. 4. These figures show both data from the numerical
evolutions (blue dots and red triangles) and fits of the form
tH ¼ aϵ−p þ b for points with tH > tfit ¼ 60 (magenta
curves). The best-fit parameters are given in Table I along
with the standard errors (listed following � for the fit
values) and χ2 values. The insets show the fit region with a
log-log scale and an additional line (red) showing an ϵ−2

power law normalized to fit the smallest amplitude shown
in the inset. It is visually clear that tH grows faster than ϵ−2

for all these examples as ϵ decreases in the fit region [there
is a significant constant offset in Fig. 4(d)].
Figures 4(a) and 4(b) demonstrate behavior typical of

most of the instances of metastable initial data we have
found; specifically, the initial data continue to collapse
through horizon formation times of tH ∼ 0.6tlim but with p
significantly greater than the perturbative value of p ¼ 2.

FIG. 3. Coefficient a from the fit tH ¼ aϵ−p þ b as a function
of width σ using tfit ¼ 60. Shows data for μ ¼ 0 (green
diamonds), 0.5 (red triangles), 1 (yellow stars), 5 (black circles),
10 (cyan squares), 15 (magenta Y), and 20 (blue circles). The
orange line is the best power-law fit.

FIG. 2. Stability phase diagram as a function of initial data width σ and scalar mass μ. Blue diamonds represent stable initial data,
orange circles unstable initial data, green triangles metastability, and red squares irregular behavior.
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Note that the evolutions of Fig. 4(b) have been extended to
larger values of tH to demonstrate that the evolutions
continue to collapse to somewhat smaller amplitude values.
Figure 4(b) is also of interest because its best-fit value p ≈
2.07� 0.02 is approximately as close to the perturbative
value as several stable sets of initial data but has a smaller
standard error for the fit, so the difference from the
perturbative value is more significant (again, the value
following the � is the standard error).
Figure 4(c) shows metastable evolution to tH ≲ 0.6tlim

but then a sudden jump to stability until t ¼ tlim. In the
figure, the fit has been extended to the largest noncollaps-
ing amplitude, which demonstrates that there is no collapse

over a time period significantly longer than the fit predicts.
This example argues that metastable data may in fact
become stable at the smallest amplitudes. On the other
hand, Fig. 4(d) shows a similar jump in tH to values
tH < tlim; evolution at lower amplitudes shows metastable
scaling with p ≈ 5.6� 0.8 for 360 < tH < tlim. The figure
also shows a metastable fit with larger reduced χ2 at larger
amplitudes corresponding to tfit < tH < 0.4tlim. So this is
another option: metastable behavior may transition
abruptly to metastable behavior with different scaling (or
possibly even perturbatively unstable behavior) at suffi-
ciently small amplitudes. It is also reasonable to classify
this case as irregular due to the sudden jump in tH; we

(a) (b)

(c) (d)

FIG. 4. Metastable behavior: blue dots represent horizon formation and red triangles a lower limit on tH . Magenta curves are fits
tH ¼ aϵ−p þ b over the shown range of amplitudes. Insets show the fit region with log-log scale; note that the fit is not strictly a power
law, so the fits are not straight lines. See Table I for best-fit parameters. Red lines in insets are ϵ−2 power laws normalized to the tH of the
smallest amplitude shown.
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choose metastable due to the clean metastable behavior at
low amplitudes.
Our point of view is that initial data in the metastable

class are distinct from the unstable class at finite ampli-
tudes corresponding to tfit < tH < 300; they take longer to
collapse at a fixed small value of ϵ than would be expected
by the perturbative scaling. An alternate point of view is to
ask whether we can determine if a given set of initial data is
perturbatively unstable in the ϵ → 0 limit. We have already
seen that metastable initial data do not follow the pertur-
bative scaling when fit to tH ¼ aϵ−p þ b, the first two
terms of the perturbative expansion. However, it is possible
that a perturbative description applies but requires a further
subleading term. To test this hypothesis, we fit unstable
and metastable initial data to tH ¼ aϵ−p þ bþ cϵ2; as
described earlier in this section, we determine if p is
within two standard errors of the perturbative value p ¼ 2
(or one standard error for tfit ¼ 100).
The unstable class of initial data is instructive. For the

new fits of unstable initial data, p is statistically equal to 2,
and the new values of a, p, b are consistent with the values
from the old fits to within two standard errors (or some-
times slightly more). The fit value of c is uniformly within a
standard error of zero, and, for the amplitude values in the
fit region, the ϵ2 term is small compared to the constant and
ϵ−2 terms. What is more, for some unstable initial data near
the island of stability, the original tH ¼ aϵ−p þ b fits for
tfit ¼ 60 have p > 2 statistically; on the other hand, the
new fits have p ¼ 2 within statistical error. In other words,
the perturbative expansion is still valid but requires more
terms. Part of the metastable class of initial data also
behaves in this manner and could therefore be reasonably
considered to be perturbatively unstable. Of the metastable
initial data we found, these are σ ¼ 1.9 for μ ¼ 0, σ ¼ 0.8
and 1.9 for μ ¼ 0.5, σ ¼ 0.7 for μ ¼ 1, σ ¼ 1.7 for μ ¼ 5,
σ ¼ 0.155 for μ ¼ 10, σ ¼ 0.11 and 1.5 for μ ¼ 15, and
σ ¼ 1.5 for μ ¼ 20. In addition, μ ¼ 1, σ ¼ 1.8 and
μ ¼ 10, σ ¼ 1.7 initial data have similar behavior, but p
is not statistically consistent with 2 for any of the fit
regions, though it is closer than in the original fits. On the
other hand, the other metastable initial data (σ ¼ 0.85 and
1.8 for μ ¼ 0, σ ¼ 1.7 and 1.8 for μ ¼ 0.5, σ ¼ 1.45 for
μ ¼ 10, and σ ¼ 1.4 for μ ¼ 20) show no evidence for
perturbative behavior. Specifically, p remains statistically

larger than 2 for all fits, the ϵ2 term in the new fit is roughly
the same magnitude as the other terms, and the a, p, b
values in the new fits are not statistically consistent with the
original fits.
To check if perturbative scaling might be masked by

numerical errors, we have also fit these remaining meta-
stable data (σ ¼ 0.85, 1.8 for μ ¼ 0, σ ¼ 1.8 for μ ¼ 0.5,
σ ¼ 1.8 for μ ¼ 1, σ ¼ 1.45, 1.7 for μ ¼ 10, and σ ¼ 1.4
for μ ¼ 20) with tH ¼ aϵ−p þ bϵ−1 þ c. Of these, only the
μ ¼ 1, σ ¼ 1.8 and μ ¼ 10, σ ¼ 1.7 initial data have best-
fit p values statistically consistent with p ¼ 2. However,
except for μ ¼ 1, σ ¼ 1.8 initial data, the best-fit p values
are all further from p ¼ 2 in absolute terms (usually
substantially); the main effect of including the ϵ−1 term
is to increase the standard error on the best fit for p.
Therefore, it is not clear that potential numerical errors
alone can be responsible for the observed deviation from
perturbative scaling. We would also point out that, even if
the extra ϵ−1 term turns out to be important for these initial
data, the fact that it is only important at the boundary of the
island of stability indicates a change in behavior for these
mass/width combinations as compared to those farther from
the stable region. This justifies a separate classification
related to the slower entry of these mass/width combina-
tions into the perturbative regime (as measured by horizon
formation time).

B. Irregular behaviors

We have found a variety of irregular behaviors at the
transition between the metastable and stable classes which
we have classified together as irregular initial data; how-
ever, it may be better to describe them as separate classes.
The stability phase diagram 2 indicates that the irregular
class extends along the “inland” side of the small σ
shoreline and at least part of the large σ shoreline of the
island of stability. What is not clear from our evolutions up
to now is whether each type of behavior appears along the
entire shoreline or if they appear in pockets at different
scalar field masses. Examples of each type of behavior that
we have found appear in Fig. 5.
The first type of irregular behavior, shown in Fig. 5(a), is

monotonic (tH increases with decreasing ϵ as usual), but it
is not well fit by a power law. In fact, this behavior would

TABLE I. Best-fit parameters for the cases shown in Fig. 4 restricting to tH > tfit ¼ 60 and as noted. Listed errors
(� values) are standard errors. χ2=d:o:f is the reduced χ2 value used as a measure of goodness-of-fit.

a p b χ2=d:o:f

μ ¼ 15, σ ¼ 1.5 0.10� 0.01 2.33� 0.05 −27� 4 0.7736
μ ¼ 5, σ ¼ 1.7 0.91� 0.06 2.07� 0.02 −33� 2 0.5070
μ ¼ 0, σ ¼ 1.8 0.06� 0.02 4.3� 0.2 30� 5 1.502
μ ¼ 0.5, σ ¼ 1.7 (tH < 0.4tlim) ð4� 32Þ × 10−45 73� 5 70� 2 5.409
(tH > 0.72tlim) 0.02� 0.03 5.6� 0.8 260� 20 1.078
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classify as metastable by the criterion of Sec. III A in that
the power law of the best-fit tH ¼ aϵ−p þ b is significantly
different from p ¼ 2, except for the fact that the reduced χ2

value for the fit is very large (greater than 10) and also that
different fitting algorithms can return significantly different
fits, even though the data may appear to the eye like a
smooth power law. In any case, this type of behavior
apparently indicates a breakdown of metastable behavior
and hints at the appearance of nonmonotonicity. So far, our
evolutions have not demonstrated sudden jumps in tH
typical of stability at low amplitudes, however.
Figure 5(b) exemplifies nonmonotonic behavior in the

irregular class. This type of behavior, which was noted
already by [18], involves one or more sudden jumps in
tH as ϵ decreases, which may be followed by a sudden
decrease in tH and then resumed smooth monotonic
increase in tH. There are suggestions that this type of

initial data is stable at low amplitudes due to the usual
appearance of noncollapsing evolutions, but it is worth
noting that these amplitudes could instead experience
another jump and decrease in tH, just at tH > tlim.
Finally, [34] studied this type of behavior in some detail,
denoting it as quasistable.
Some irregular initial data demonstrate evidence of

chaotic behavior, in that tH appears to be sensitive to
initial conditions (i.e., value of amplitude) over some range
of amplitudes. This type of behavior appears over the range
of masses [see Fig. 1(d) for a mild case for massless
scalars], but it is more common and more dramatic at larger
μ. Figures 5(c) and 5(d) represent the most extreme
behavior of this type among the initial data that we studied
with collapse at tH < 50 not very far separated from
amplitudes that do not collapse for t < tlim along with
an unpredictable pattern of variation in tH. This type of

(a) (b)

(c) (d)

FIG. 5. Irregular behavior: blue dots represent horizon formation and red triangles a lower limit on tH .
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evidence for chaotic behavior has been seen previously in
the collapse of transparent but gravitationally interacting
thin shells in AdS [39] as well as in the collapse of massless
scalars in AdS5 Einstein-Gauss-Bonnet gravity [30,31];
these references speculated that the tH vs ϵ curve is fractal.
In both cases, this type of behavior is hypothesized to be
due to the transfer of energy between two infalling shells,
with horizon formation only proceeding when one shell is
sufficiently energetic. In the latter case, the extra scale of
the theory (given by the coefficient of the Gauss-Bonnet
term in the action) leads the single initial pulse of scalar
matter to break into two pulses.
We should therefore ask two questions: does this

irregular behavior show evidence of true chaos, and is a
similar mechanism at work here? We note first that [30]
found evidence (using a modified box test) that the tH vs ϵ
curve has a noninteger fractal dimension for plots visually
similar to our Figs. 5(c) and 5(d). Here, to quantify the
presence of chaos, we examine the difference in time
evolution between similar initial conditions (nearby ampli-
tudes), which diverge exponentially in chaotic systems.
Specifically, any quantity Δ should satisfy jΔj ∝ expðλtÞ
for Lyapunov coefficient λ. Our characteristic will be the
upper envelope of the Ricci scalar at the origin per light
crossing time, R̄ðtÞ. We consider three sets of irregular
initial data: a massless scalar of width σ ¼ 1.1 with
amplitudes ϵ ¼ 1.02, 1.01, 1.00 [see Fig. 1(d)], a μ ¼ 5
massive scalar of width σ ¼ 0.34 and ϵ ¼ 3.52, 3.51, 3.50,
and a μ ¼ 20 scalar of width σ ¼ 0.19 and ϵ ¼ 6.98, 6.95,
6.92 [Fig. 5(d)]. We also determined the Lyapunov coef-
ficient for unstable initial data with μ ¼ 0.5, σ ¼ 0.3 and
ϵ ¼ 1.22, 1.20, 1.18 for comparison.

Figure 6 details evidence for chaotic evolution in the
μ ¼ 5, σ ¼ 0.34 case; Fig. 6(a) shows our characteristic
function R̄ðtÞ for the amplitudes ϵ1 ¼ 3.50, ϵ2 ¼ 3.51, and
ϵ3 ¼ 3.52. By eye, R̄ shows noticeable differences after
a long period of evolution. These are more apparent in
Fig. 6(b), which shows the log of the differences Δab ≡
R̄ϵa − R̄ϵb , along with the best fits. Although there is
considerable noise—or oscillation around exponential
growth—in the differences (leading to R2 values ∼0.2,
0.26 for the fits), the average slope gives Lyapunov
coefficient λ ¼ 0.007 (within the error bar of each slope),
and each slope differs from zero by more than 3 standard
errors. One interesting point is that the tH vs ϵ curve in
Fig. 5(b) does not appear chaotic to the eye, even though it
shows some of the mathematical signatures of chaos at least
for ϵ1 < ϵ < ϵ3 (the visible spike in tH is at ϵ ∼ 3.57).

(a) (b)

FIG. 6. Left: the upper envelope of the Ricci scalar for amplitudes ϵ1 ¼ 3.50 (blue circles), ϵ2 ¼ 3.51 (red triangles), and ϵ3 ¼ 3.52
(green squares) for μ ¼ 5, σ ¼ 0.34. Right: logðjΔ12jÞ and best fit (blue circles and line) and logðjΔ23jÞ and best fit (red squares and
line), calculated as a function of the midpoint tmid of the time interval.

TABLE II. Best-fit Lyapunov coefficients λ for adjacent am-
plitude pairs and average λ value for each μ, σ system studied.
Standard errors are given following � signs.

λ Average λ

μ ¼ 0, σ ¼ 1.1 Δ12 0.011� 0.005 0.011
Δ23 0.011� 0.005

μ ¼ 0.5, σ ¼ 0.3 Δ12 0.021� 0.0007 0.022
Δ23 0.024� 0.001

μ ¼ 5, σ ¼ 0.34 Δ12 0.006� 0.002 0.007
Δ23 0.007� 0.002

μ ¼ 20, σ ¼ 0.19 Δ12 0.046� 0.009 0.032
Δ23 0.019� 0.007
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The story is similar for the massless and μ ¼ 20 cases we
studied, which exhibit λ values that differ from zero by at
least 1.9 standard errors; see Table II. This is a milder
version of the behavior noted by [30,31,39], especially for
the μ ¼ 5 case studied. One thing to note is that the strength
of oscillation in logðjΔjÞ around the linear fit increases with
increasing mass, so that the two best-fit Lyapunov expo-
nents for μ ¼ 20 are no longer consistent with each other at
the one-standard-deviation level. We should note, however,
that the unstable initial data with μ ¼ 0.5, σ ¼ 0.3 also
exhibit a statistically positive Lyapunov exponent, though
we should note that the value of λ quoted in Table II
includes the time shortly before horizon formation, which
does increase λ somewhat (though not more than the
quoted error).
Since the Lyapunov coefficients do not distinguish

the irregular and unstable cases, we also consider the
phase space trajectories of the evolutions. Following
[40], we consider the trajectory of evolutions in Π and ϕ
evaluated at the origin for t ≤ 50 in Fig. 7. Neither μ ¼ 5,
σ ¼ 0.34, ϵ ¼ 3.51 [Fig. 7(a)] nor μ ¼ 0.5, σ ¼ 0.3,
ϵ ¼ 1.20 [Fig. 7(b)] trajectories close, though there is a
clear difference. Specifically, the former trajectory is
visually disorganized (that is, strongly varying orbits) with
very rapid motion (seen in the gap between points on the
trajectory between plotted time steps). Meanwhile, the
latter motion is comparatively regular, typical of quasi-
periodic motion. Figure 7(a) is typical of turbulence and
clearly shows that these evolutions are nonperturbative,
even though tH is large (well into the perturbative regime
for unstable initial data).
To sum up, we have identified irregular initial data that

show evidence of chaotic behavior. Specifically, several of
the tH vs ϵ curves appear qualitatively similar to analogous

plots in [30,31,39], which were demonstrated to have
fractal-like behavior (including fractional fractal dimension
in one case). Furthermore, a number of cases of irregular
initial data (and some unstable) have positive Lyapunov
exponents; phase space trajectories for irregular initial data
show very rapid motion typical of turbulence, while
unstable initial data have more regular trajectories. Taken
together, this is strong evidence for chaotic behavior for
some irregular initial data, similar to that discussed in other
studies of gravitational collapse in AdS. Furthermore, this
is the first evidence of chaos in the tH vs ϵ curve for
gravitational collapse of a massless scalar in AdS to our
knowledge.
The mechanism underlying the possibly chaotic behav-

ior seems somewhat different or at least weaker than the
two-shell or Einstein-Gauss-Bonnet systems. When exam-
ining the time evolution of the mass distributions of these
data, we see a single large pulse of mass energy that
oscillates between the origin and boundary without devel-
oping a pronounced peak. However, there is also apparently
a smaller wave that travels across the large pulse. We can see
this by comparing snapshots of the mass distribution at
different times, as in Fig. 8. In the massless case examined,
this wave deforms the pulse, leading to a double-shoulder
appearance seen at two times in Fig. 8(a). In the μ ¼ 5,
σ ¼ 0.34 case, the secondary wave is more like a ripple,
usually smaller in amplitude but more sharply localized, as
toward the right side of the main pulse in Fig. 8(b). So, the
chaotic behavior may be caused by the relative motion of the
twowaves, rather than energy transfer between two shells. In
this hypothesis, a horizon would form when both waves
reach the neighborhood of the origin at the same time.
As a note, we have run convergence tests on several sets

of irregular initial data and find that our calculations are

(a) (b)

FIG. 7. Trajectories inΠðx ¼ 0Þ;ϕðx ¼ 0Þ phase space for one irregular and one unstable evolution. Trajectories are shown for t < 50.
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convergent overall, as expected (even at lower resolution
than we used). In particular, the massless scalar evolutions
studied in Table II are convergent already at resolution
given by n ¼ 12 (note that we typically start at n ¼ 14); we
also observe convergent behavior for μ ¼ 5 evolutions
discussed in Table II. We have therefore validated that
nonmonotonic behavior and even evidence of chaos occurs.
The only caveat may be for some of the apparently initial
data with scalar mass μ ¼ 20, which nonetheless appears
well behaved according to other indicators. The reader may
or may not wish to take them at face value but should recall
that we have presented other chaotic initial data with
rigorously convergent evolutions. See the Appendix for a
more detailed discussion.

IV. SPECTRAL ANALYSIS

As we discussed in the introduction, instability toward
horizon formation proceeds through a turbulent cascade
of energy to shorter wavelengths or, more quantitatively,
to first-order scalar eigenmodes with more nodes. Inverse
cascades are typical of stable evolutions. Therefore, under-
standing the energy spectrum of our evolutions, both
initially and over time, sheds light on the behavior of
the self-gravitating scalar field in asymptotically AdS
spacetime, providing a heuristic analytic understanding
of the stability phase diagram.
The (normalizable) eigenmodes ej are given by Jacobi

polynomials as

ejðxÞ ¼ κj cosλþðxÞPðd=2−1;
ffiffiffiffiffiffiffiffiffiffiffi
d2þ4μ2

p
=2Þ

j ðcosð2xÞÞ ð8Þ

(κj is a normalization constant) with eigenfrequency

ωj ¼ 2jþ λþ and λþ ¼ ðdþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4μ2

p
Þ=2 in AdSdþ1

for j ¼ 0; 1;… (see [41,42] for reviews). Including gravi-
tational backreaction, we define the energy spectrum

Ej ≡ 1

2
ðΠj

2 − ϕjϕ̈jÞ; ð9Þ

where

Πj ¼ ð
ffiffiffiffi
A

p
Π; ejÞ;ϕj ¼ ðϕ; ejÞ;

ϕ̈j ¼ ðcotd−1ðxÞ∂x½tand−1ðxÞAΦ�− μ2 sec2ðxÞϕ; ejÞ; ð10Þ

and the inner product is ðf; gÞ ¼ R π=2
0 dx tand−1ðxÞfg. The

sum of Ej over all modes is the conserved ADM mass.

A. Dependence on mass

The most visibly apparent feature of the stability phase
diagram of Fig. 2 is that the island of stability both expands
and shifts to smaller widths as the scalar mass increases. As
it turns out, the energy spectrum of the Gaussian initial data
(7) provides a simple heuristic explanation.
It is well established both in perturbation theory and

numerical studies that initial data given by a single scalar
linear-order eigenmode is in fact nonlinearly stable, and the
spectra of many quasiperiodic solutions are also dominated
by a single eigenmode. As a result, we should expect
Gaussian initial data that approximate a single eigenmode
(which must be j ¼ 0 due to lack of nodes) to be stable. To
explore how this depends on mass, we find the best-fit

(a) (b)

FIG. 8. Radial derivative of the mass function at the indicated time for two systems that show evidence of chaos. Note the appearance
of a secondary wave on top of the main pulse. ðμ; σ; ϵÞ as indicated. (a) μ ¼ 0; σ ¼ 1.1; ϵ ¼ 1.01, at times t ¼ 60 (solid black), t ¼ 62
(dashed red), t ¼ 64 (dotted green); (b) μ ¼ 5; σ ¼ 0.34; ϵ ¼ 3.52, at times t ¼ 132 (solid black), t ¼ 137 (dashed red), t ¼ 140
(dotted green).
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values of ϵ, σ for the j ¼ 0 eigenmode for each mass that
we consider (defined by the least-square error from the
Gaussian to a discretized eigenmode); this is the “best
approximation” Gaussian to the eigenmode. Then we find
the energy spectrum of that best-fit Gaussian; these are
shown in Fig. 9(a). From the figure, it is clear that the j ¼ 0
eigenmode is closer to a Gaussian at larger masses. That is,
other eigenmodes contribute less to the Gaussian’s spec-
trum at higher masses (by several orders of magnitude over
the range from μ ¼ 0 to 20). Simply put, the shape of the
j ¼ 0 eigenmode is closer to Gaussian at higher masses,

which suggests that the island of stability should be larger
at larger scalar field mass. Figure 9(b) compares the j ¼ 0
eigenmode and best-fit Gaussian for μ ¼ 0 and 20; on
inspection, there is more deviation between the eigenmode
and Gaussian for the massless scalar.
In addition, the best-fit Gaussian width decreases from

σ ∼ 0.8 for a massless scalar as the mass increases. At
μ ¼ 20, the best-fit width is σ ∼ 0.31. This suggests that
Gaussians that approximate the j ¼ 0 mode well enough
are narrower in width at higher masses. An interesting point
to note is that the island of stability for μ ¼ 0, 0.5 is actually

(a) (b) (c)

(d) (e) (f)

FIG. 10. Initial (t ¼ 0) energy spectra for the indicated evolutions. In order, these represent stable, unstable, metastable, monotonic
irregular, nonmonotonic irregular, and chaotic irregular initial data.

(a) (b)

FIG. 9. Left: spectra of the best-fit Gaussians (7) to the j ¼ 0 eigenmode for masses μ ¼ 0 (blue circles), 0.5 (yellow squares),
1 (empty orange circles), 5 (green diamonds), 10 (empty cyan squares), 15 (upward red triangles), and 20 (downward purple triangles).
Right: an overlay of the best-fit Gaussian and e0 eigenmode for μ ¼ 0 (solid blue is best fit, orange dashed is eigenmode) and μ ¼ 20
(solid green, red short dashes).
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centered at considerably larger widths than the best-fit
Gaussian. This may not be surprising, since the best-fit
Gaussians at low masses actually receive non-negligible
contributions from higher mode numbers; moving away
from the best-fit Gaussian can actually reduce the power in
higher modes. For example, the stable initial data shown
in Fig. 10(a) below have considerably less power in the
j ¼ 2 mode.

B. Spectra of different behaviors

A key question that one might hope to answer is whether
the stability class of a given ðμ; σÞ can be determined easily
by direct inspection of the initial data without requiring

many evolutions at varying amplitudes. The initial energy
spectra for examples of each class, including monotonic,
nonmonotonic, and apparently chaotic irregular behaviors,
are shown in Fig. 10. These spectra are taken from among
the smallest amplitudes we evolved in order to minimize
backreaction effects.
Unfortunately, the initial energy spectra do not seem to

provide such a method for determining the stability class.
Very broadly speaking, stable and metastable ðμ; σÞ corres-
pond to initial spectra that drop off fairly quickly from the
j ¼ 0 mode as j increases, while unstable and irregular
behaviors tend to have roughly constant or even slightly
increasing spectra up to j ¼ 5 or 10. However, Fig. 10(d)

(a) (b)

(c) (d)

FIG. 11. The time dependence of the energy spectra as a fraction of the total ADM mass for the indicated μ, σ, ϵ. Lower panels show
the lowest seven modes (in colors cyan, red, purple, green, yellow, brown, and gray, respectively). Upper panels show cumulative energy
to mode j ¼ 0, 1, 2, 4, 8, 16, 32 (in colors blue, orange, brown, yellow, aqua, red, and magenta).
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shows that some irregular initial data have spectra that
decrease rapidly after a small increase from j ¼ 1 to j ¼ 2.
Kinks in the spectrum are more prevalent for widths of the
AdS scale or larger, while spectra for smaller widths tend to
be smoother.

C. Evolution of spectra

While the initial spectrum for a given ðμ; σÞ pair does not
have predictive value regarding the future behavior as far as
we can tell, the time dependence of the spectrum through-
out the evolution of the system is informative. Figure 11
shows the time dependence for examples of the stable,
unstable, metastable, and chaotic irregular classes. In each
figure, the lower panel shows the fraction Ej=MADM in each
mode up to j ¼ 6, while the upper panel shows
the cumulative fraction

P
j Ej=MADM to the mode 2k with

k ¼ 0 to 5.
The difference between stable evolution in Fig. 11(a) and

unstable evolution in Fig. 11(b) is readily apparent. As the
evolution proceeds, we expect a cascade of energy into
higher mode numbers, but inverse cascades to lower modes
can also occur. The stable evolution shows a slow pattern of
cascades and inverse cascades, in fact. On the other hand,
the unstable evolution shows a nearly monotonic cascade of
energy into the highest modes along with a simultaneous
cascade of energy into the lowest modes (therefore deplet-
ing intermediate modes). These are common observations
in the literature and are included here for completeness.
The metastable evolution shown in Fig. 11(c) is inter-

esting in light of the stable and unstable spectra. The
amplitude shown is from the unstable portion of Fig. 4(d),
the part consistent with the perturbative scaling tH ∼ ϵ−2.
However, the spectrum shows a similar pattern of slow
cascades and inverse cascades to the stable initial data
example, though on a somewhat faster time scale in this
case. While perhaps surprising, this is in keeping with the
similarities noted between the initial spectra in Figs. 10(a)

and 10(c). We have also checked that the time-dependent
spectrum at a higher amplitude with tH ∼ 100 follows the
same pattern as in Fig. 11(c); in fact, it looks essentially the
same but simply ends at an earlier time. This lends some
credence to the idea that metastable initial data are stable at
lowest nontrivial order in perturbation theory, with insta-
bility triggered by higher-order corrections. Alternately, the
instability could be caused by an oscillatory singularity in
the perturbative theory, as discussed in [15,23–25] in the
case of two-mode initial data. These divergences do not
appear in the energy spectrum.
Figure 11(d) shows the time dependence of the spectrum

in an irregular evolution, specifically μ ¼ 20, σ ¼ 0.19 at
ϵ ¼ 6.95, which is in the chaotic region of the tH vs ϵ
plot in Fig. 5(d). There is rapid energy transfer among
modes, including cascades out of and inverse cascades into
mode numbers j ≤ 32 over approximately a light-crossing
time. It is easy to imagine that horizon formation might
occur at any of the cascades of energy into higher modes,
leading to seemingly random jumps in tH as a function of
amplitude.
Finally, the time-evolved energy provides another pos-

sible measure of approximate thermalization in the dual
CFT; namely, the spectrum should approach an (exponen-
tially cutoff) power law at thermalization. In most cases,
this occurs shortly before horizon formation, but there are
exceptions, such as the late time behavior of initial data
below the critical mass for black hole formation in Einstein-
Gauss-Bonnet gravity [30]. When there is evidence of
chaotic behavior, it is particularly interesting to know if the
spectra for similar amplitudes approach a power law at
similar times even if horizons form at very different times.
Figure 12 shows the energy spectra for two amplitudes in
the chaotic region of the tH vs ϵ plot for μ ¼ 0, σ ¼ 1.1.
Figure 12(a) is the spectrum just before horizon formation
for ϵ ¼ 1.01, while Fig. 12(b) is the spectrum at approx-
imately the same time for ϵ ¼ 1.02, which is very long
before horizon formation. In this example, we see that the

(a) (b)

FIG. 12. Spectra at time t ≈ 71 for μ ¼ 0, σ ¼ 1.1 for the two amplitudes given. ϵ ¼ 1.01 forms a horizon at tH ≈ 71.1, ϵ ¼ 1.02 at
tH ≈ 248.0.
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spectrum does approach a power law for the evolution that
is forming a horizon, while the other evolution demon-
strates a more rapid decay (typically fit by a power law
times an exponential in the literature). Therefore, this
example suggests that a power-law spectrum may yield
similar results to horizon formation as a measure of
thermalization in the dual CFT.

V. DISCUSSION

For the first time, we have presented the phase diagram
of stability of AdS5 against horizon formation, treating the
scalar field mass μ and width σ of initial data as free
parameters. In addition to mapping the location of the so-
called island of stability, we have gathered evidence for two
nonperturbative classes on the shorelines of the island, the
metastable and irregular classes. While these must either
exhibit stability (no collapse below some critical amplitude)
or instability (collapse at arbitrarily small but finite ampli-
tude) as the amplitude ϵ → 0, they are distinguished by
their behavior at computationally accessible (finite) ampli-
tudes. While perturbatively unstable evolutions obey tH ∝
ϵ−2 as ϵ → 0 (and show evidence of this behavior at finite
ϵ), metastable initial data follow tH ∝ ϵ−p for p > 2 over a
range of amplitudes ϵ > 0. The irregular class is charac-
terized by horizon formation times tH that are not well
described by a power law and sometimes exhibits non-
monotonicity or even evidence of chaos. Both of these
classes appear across the range of μ values that we study
and at both small- and large-width boundaries of the stable
class of initial data.
At this time, it is impossible to say whether metastable

initial data are stable or unstable as ϵ → 0 (or if all
metastable data behave in the same way in that limit).
Our numerical evolutions include cases in which the lowest
amplitudes jump either to metastable scaling with smaller p
or to evolutions that do not collapse over the time scales we
study. We did find evidence that many metastable profiles
move toward perturbatively unstable scaling (tH ∝ ϵ−2) as
ϵ → 0 but more slowly than the initial data that we have
classified as unstable. It is also possible that some metastable
initial data are stable in the perturbative theory (i.e., to ϵ3

order in a perturbative expansion) but not at higher orders.
We emphasize once again, however, that our interest and
therefore our classification is in small but finite ϵ behavior
(which is by definition not strictly in the perturbative
regime).
The irregular class seems likely to be (mostly) stable at

arbitrarily small amplitudes based on our numerical evo-
lutions, though we have not found a critical amplitude for
monotonic irregular initial data. The irregular initial data
include the quasistable initial data described in [18,34],
which has a sudden increase then decrease in tH as ϵ
decreases as well as evidence for chaotic behavior. In fact,
we have found evidence for weakly chaotic behavior for
nonmonotonic initial data in the form of a small but

nonzero Lyapunov coefficient and in the phase space
trajectory. Both nonmonotonicity and chaos become
stronger and more common at larger scalar masses; how-
ever, we have also found evidence of chaotic behavior for
the massless scalar including in the tH vs ϵ curve. To our
knowledge, this is the first evidence of chaos in this
relationship for spherically symmetric massless scalar
collapse in AdS, which is particularly interesting because
there is only one physically meaningful ratio of scales, σ as
measured in AdS units.
While we have emphasized the appearance of new

behaviors outside perturbation theory, metastable and
irregular initial data are interesting potential subjects for
analysis in the multiscale perturbation theory. A key
question is if they demonstrate any unusual behavior there
or map directly onto the stable or unstable classes.
Aside from the ultimate stability or instability of meta-

stable and irregular initial data, several questions remain.
For one, black holes formed in massive scalar collapse in
asymptotically flat spacetime exhibit a mass gap for initial
profiles wider than the Compton wavelength 1=μ [43].
Whether this mass gap exists in AdS is not clear, and it may
disappear through repeated gravitational focusing as the
field oscillates many times across AdS, investigating this
type of critical behavior will likely require techniques
similar to those of [44]. Returning to our stability phase
diagram, the physical mechanism responsible for chaos that
seems to occur for some irregular initial data is not yet clear.
Is it some generalization of the same mechanism as found
in the two-shell system? Also, would an alternate definition
of approximate thermalization in the dual CFT, such as
development of a power-law spectrum, lead to a different
picture of the stability phase diagram? Finally, the big
question is whether there is some test that could be
performed on initial data alone that would predict in
advance its behavior? So far, no test is entirely successful,
so new ideas are necessary.
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APPENDIX: CONVERGENCE TESTING

Due to the large number of evolutions we have carried
out, it is not computationally feasible to test all of them for
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convergence. Therefore, we have checked several interest-
ing cases of irregular initial data, which are the most
curious. These are carried out by evolving the initial data
with a base resolution n ¼ 14 and again at n ¼ 15, 16 with
commensurate time steps, as described in [34]. In the cases
indicated, we evaluated the order of convergence at lower
resolutions. We remind the reader that the order of con-
vergence Q is the base-2 logarithm of the ratio of L2 errors
(root-mean-square over all corresponding grid points)
between successive pairs of resolutions. We also note that
the initial data are defined analytically, so Q can appear
poor at t ¼ 0 since the errors are controlled by round off; in
some cases, Q is therefore undefined and not plotted.
First, we carried out convergence tests for mass μ ¼ 0.5,

width σ ¼ 1, and amplitude ϵ ¼ 1.12, which is monotonic
irregular initial data presented in Fig. 5(a). This amplitude

collapses with tH ∼ 88. Figure 13(a) shows the (L2 norm)
order of convergence for the field variable ϕ, the mass
function M, and the metric functions A, δ. While the order
of convergence is initially poor and even negative, all these
variables show approximately fourth order convergence for
times t≳ 70. The reason for the initially poor convergence
is that the error between successive resolutions is already
given by (machine limited) round off. As a demonstration,
we tested the order of convergence with base resolution
n ¼ 12, as shown in Fig. 13(b). The variables show order of
convergenceQ≳ 3 already at this resolution for most of the
evolution, losing convergence only for t > 80, where we
see approximately fourth-order convergence in the n ¼ 14
resolution computations.
Two of the authors have discussed the convergence

properties of evolution for the nonmonotonic irregular

(a) (b) (c)

FIG. 14. Convergence results for μ ¼ 15, σ ¼ 0.2. Left: tH vs ϵ. Middle and right: order of convergence vs time for ϕ;M; A; δ (blue
thin solid line, green dashed line, red dash-dotted line, cyan thick solid line, respectively) for indicated amplitudes.

(a) (b)

FIG. 13. Convergence results for μ ¼ 0.5, σ ¼ 1, ϵ ¼ 1.12 showing order of convergenceQ vs time for ϕ;M; A; δ (blue thin solid line,
green dashed line, red dash-dotted line, cyan thick solid line, respectively). Left: resolutions n ¼ 14, 15, 16 used. Right: resolutions
n ¼ 12, 13, 14 used.
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initial data with μ ¼ 20, σ ¼ 0.1, ϵ ¼ 11.74, which is in an
amplitude region of increased tH surrounded by smaller
values, in detail in [34]. In short, the variables ϕ;M; A; δ all
exhibit fourth-order convergence, as does Π2ðt; 0Þ, and the
conserved mass actually has sixth-order convergence.
Initial data for μ ¼ 15, σ ¼ 0.2 are also nonmonotonic,

as shown in Fig. 14(a). While we have not analyzed all
aspects of the convergence, we see from the remainder of
Fig. 14 that ϕ;M; A; δ exhibit convergent behavior at better
than second order for ϵ ¼ 7.42 [Fig. 14(b), second-largest
value of tH in Fig. 14(a)] and ϵ ¼ 7.40 [Fig. 14(c), adjacent
amplitude in Fig. 14(a)]. It is important to note that the
larger amplitude also has the larger horizon formation time,
contrary to the usual monotonic behavior. In other words,
we have validated the nonmonotonicity of this initial data
through convergence testing.
It is most crucial to validate the convergence of chaotic

evolutions. In Table II, we noted that the Ricci scalar at the
origin has nonzero Lyapunov exponent at almost the

2 sigma level for amplitudes ϵ ¼ 1.02, 1.01, 1.00 for
μ ¼ 0, σ ¼ 1.1. We show the results of convergence tests
for these amplitudes in Fig. 15; because these are longer
evolutions, we consider the convergence at the lower
resolutions n ¼ 12, 13, 14. After a transient start-up period,
these are all convergent with Q > 2.5 for all variables
considered at all times; for most of the time, the order of
convergence is Q > 3.5. It is worth noting that one of the
amplitudes does not form a horizon through t ¼ 500. These
convergence tests validate both the nonmonotonic nature of
the evolution (tH ≈ 248, 71 and > 500 for ϵ ¼ 1.02, 1.01,
1.00 respectively) and also the calculation of the Lyapunov
coefficient.
Also in Table II, we found a nonzero Lyapunov exponent

for μ ¼ 5, σ ¼ 0.34 at amplitudes ϵ ¼ 3.52, 3.51, 3.50.
The results of convergence tests for these amplitudes
appear in Fig. 16. For t≳ 20, these evolutions exhibit
convergent behavior with Q > 3.5 (and always Q > 2). At
early times, the apparent poor convergence is again due to

(a) (b) (c)

FIG. 15. Convergence results for μ ¼ 0, σ ¼ 1.1 for listed amplitudes showing order of convergenceQ vs time for ϕ;M; A; δ (blue thin
solid line, green dashed line, red dash-dotted line, cyan thick solid line, respectively); resolutions n ¼ 12, 13, 14.

(a) (b) (c)

FIG. 16. Convergence results for μ ¼ 5, σ ¼ 0.34 for listed amplitudes showing order of convergence Q vs time for ϕ;M; A; δ (blue
thin solid line, green dashed line, red dash-dotted line, cyan thick solid line, respectively); resolutions n ¼ 14, 15, 16.
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the errors being dominated by round-off; we have carried
out additional convergence tests (not shown) and verified
that these evolutions are already convergent with order of
convergence close to Q ¼ 4 at base resolutions n ¼ 12 for
t≲ 20. Again, convergence tests validate chaotic behavior
for these initial data.
Initial data with μ ¼ 1, σ ¼ 1 are chaotic over a narrow

range of amplitudes. We have carried out convergence
testing for amplitudes ϵ ¼ 1.15, 1.14, which are the two
amplitudes with tH < 100 between amplitudes with tH ≳
150 in Fig. 17(a). The order of convergence was poor for
these amplitudes in our initial tests with base resolution
n ¼ 14 because the error between resolutions was domi-
nated by round-off, similar to the convergence tests we
discussed above for μ ¼ 0.5, σ ¼ 1. In subsequent tests
with lower resolutions n ¼ 11, 12, 13, we find an order of
convergence Q ∼ 4 for most of the evolutions (and always

Q > 3). It is important to note again that our evolutions
exhibit convergence while showing horizon formation at a
later time for a larger amplitude in this case, again
validating the nonmonotonic behavior.
Finally, we ran convergence tests for the chaotic initial

data with μ ¼ 20, σ ¼ 0.19 for ϵ ¼ 6.95, 6.92, with
tH ≈ 65.5, 40.8, respectively. As shown in Fig. 18, the
simulations are close to fourth-order convergence for most
of the evolution, but there are periods where the order of
convergence for evolution and constraint variables becomes
negative. This of course leads to the concern that the
evolutions should have collapsed during those periods
and extend into an “afterlife” evolution. We have therefore
evolved these amplitudes through these regions (approx-
imately t ¼ 30–40 for ϵ ¼ 6.95 and t ¼ 18–30 for
ϵ ¼ 6.92) at high resolution (n ¼ 18). If the evolutions are
truly in an afterlife, this higher resolution calculation may

(a) (b) (c)

FIG. 17. Convergence results for μ ¼ 1, σ ¼ 1. Left: tH vs ϵ. Middle and right: order of convergenceQ vs time for ϕ;M; A; δ (blue thin
solid line, green dashed line, red dash-dotted line, cyan thick solid line, respectively); resolutions n ¼ 11, 12, 13.

(a) (b)

FIG. 18. Order of convergence vs time for ϕ;M; A; δ (blue thin solid line, green dashed line, red dash-dotted line, cyan thick solid line,
respectively) for μ ¼ 20, σ ¼ 0.19 and indicated amplitudes.
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include horizon formation. We do not observe this. Another
tell-tale of would-be horizon formation is a decrease in the
time step size by an order of magnitude or more followed
by an increase. We monitor the time step size every 500
time steps through this evolution but do not observe a
decrease in time step size by more than a factor of 2. As a
result, we believe the values of tH found are reliable, though
the reader may wish to consider them with some caution.
In other words, while convergence testing is the gold
standard to validate our numerical evolutions, there are
other indicators of reliability, which these evolutions

satisfy. It is also worth noting that the rapid energy transfer
characteristic of Fig. 11(d) for ϵ ¼ 6.95 begins immediately
and is therefore seen in a convergent region of the
evolutions, particularly for t≲ 14.
Nonetheless, we emphasize that we have found con-

vergent evolutions for irregular initial data at scalar masses
from μ ¼ 0 to 20. It is important to note that we have
validated nonmonotonic behavior in plots of tH vs ϵ.
Convergence testing also specifically validates the evolu-
tions used to find a nonzero Lyapunov coefficient (at nearly
the 2σ level) for massless scalar collapse.
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