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In the context of realizing de Sitter vacua and the slow-roll inflation, several no-go conditions have been
found in the framework of type IIA (generalized) flux compactifications. In this article, using our recently
proposed T-dual dictionary [P. Shukla, A dictionary for the type II non-geometric flux compactifications,
arXiv:1909.07391], we translate various such type IIA no-go conditions that subsequently lead to some
interesting de Sitter no-go scenarios in the presence of (non)geometric fluxes on the dual type IIB side. We
also present the relevance of using K3=T 4-fibered Calabi Yau threefolds in order to facilitate one particular
class of the de Sitter no-go conditions. This analysis helps in refining certain corners of the vast
nongeometric flux landscape for the hunt of de Sitter vacua.
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I. INTRODUCTION

Recent revival of the swampland conjecture [1,2] has
boosted a huge amount of interest toward exploring the
(non)existence of de Sitter vacua within a consistent theory
of quantum gravity. The original idea of swampland has
been proposed to state that de Sitter solutions must be
absent in a consistent theory of quantum gravity [3]. This
idea has recently been endorsed as a bound involving the
scalar potential (V) and its derivatives given in the follow-
ing manner:

j∇Vj
V

≥
c
Mp

; ð1:1Þ

where the constant c is an order one quantity. This
conjecture has been supported by several explicit com-
putations in the context of attempts made for realizing
classical de Sitter solutions and inflationary cosmology
in the type II superstring flux compactifications [4–23].
Note the de Sitter maxima as well, and several counter-
examples were known [7,13,24–26] or have been
reported soon after the proposal was made [27–37]
reflecting the need of refining the de Sitter swampland
conjecture in Eq. (1.1). Subsequently a refined version
of the conjecture has been proposed which states that at
least one of the following two constraints should always
hold [38]:

j∇Vj
V

≥
c
Mp

; min

�∇i∇jV

V

�
≤ −

c0

M2
p
; ð1:2Þ

where c and c0 > 0 are order one constants. Note that
these two parameters can be related to the usual infla-
tionary parameters, namely the ϵV and ηV parameters,
which are needed to be sufficiently small for having the
slow-roll inflation (e.g., see [6,39,40]),

ϵV ≥
1

2
c2; jηV j ≤ c0: ð1:3Þ

Therefore, it is rather quite obvious that the conjecture
(1.2) poses an obstruction not only to realizing de Sitter
vacua but also to realizing slow-roll inflationary scenar-
ios, which demands ϵV ≪ 1 and jηV j ≪ 1. However, this
definition of the ϵV parameter follows from a more
general definition given in terms of the Hubble parameter
as ϵH ¼ − _H=H2, which only needs to satisfy ϵH < 1 for
having an accelerated universe. This leads to a possible
window circumventing the conjecture in the multifield
inflation with turning trajectories [40,41]. Moreover,
given the fact that no universal theoretical quantification
of the c and c0 parameters being available (though some
experimental estimates have been reported in [42]),
the order one statement may still keep some window
open [43,44].
The question of realizing de Sitters is twofold; the first is

about its existence and the second is about the stability, and
a plethora of interesting models have been proposed on
these lines [4,5,8–10,12,13,15,16,20,26,45]. The swamp-
land conjecture [3] has also been found to be in close
connections with the allowed inflaton field range in a
trustworthy effective field description as it has been argued
that a massive tower of states can get excited after a certain
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limit to the inflaton excursions [45–59]. The recent surge of
developments following the recent swampland proposal
can be found in [27–37,41–44,60–69] with an extensive
review on the status in [70].
Contrary to the (minimal) de Sitter no-go scenarios, there

have been several proposals for realizing stable de Sitter
vacua in the context of string model building [71–83]; see
[84,85] also for the F-theoretic initiatives taken in this
regard. In fact, realizing de Sitter solutions and possible
obstructions on the way of doing it have been the center
of attraction for decades.1 Moreover, some interesting
models realizing de Sitter vacua in the framework of
nongeometric flux compactifications have also been pro-
posed [11,14,87–96]. However, the issues related to fluxes
being integral and whether they satisfy all the NS-NS
Bianchi identities or not can still be considered to be among
some open questions in this regard. In fact, it has been
observed that the Bianchi identities are not fully known in
the beyond toroidal examples as there have been some
inconsistencies observed in two ways of deriving the
identities [97–101].

Motivations, goals, and a brief summary
of the results

Several de Sitter no-go theorems on the type IIA side
have been well known for a decade or so [5,6,8,15], which
have also been studied for the type II nongeometric
compactifications using a simple isotropic torus case in
[11,87]. With a goal of extending the nongeometric flux
phenomenology beyond the toroidal cases, the study of
generic four-dimensional type II scalar potentials and their
ten-dimensional origin have been performed in a series of
papers [102–107]. Taking this program one step further, in
a companion paper [108], we have presented a one-to-one
T-dual mapping of the two type II effective scalar poten-
tials, along with the flux constraints arising from the
NS-NS Bianchi identities and the tadpole cancellation
conditions, which are also in one-to-one correspondence
under T-duality. The main motivations and the goals aimed
for in this article can be presented under the following points:

(i) Our so-called “cohomology” or “symplectic” for-
mulation of the scalar potential presented in [108]
opens up the window to study the nongeometric
models beyond the toroidal constructions, and also
enables one to explicitly translate any useful find-
ings of one setup into its T-dual picture. On these
lines, we plan to T-dualize the several de Sitter no-
go scenarios realized in some purely geometric
type IIA frameworks [5,6,8,15]. This helps us in
delving into their type IIB counterparts, which turn
out to be nongeometric de Sitter no-go frameworks,

and those have not been known before. The utility
of our approach can be underlined by the fact that
although the type IIA no-go scenarios have been
known for more than a decade, there have been no de
Sitter no-go proposals in the generic nongeometric
type IIB framework.

(ii) In our analysis, we show the relevance of consid-
ering the complex structure moduli in deriving the
T-dual type IIB no-go conditions. Note that all the
type IIA no-go results in [5,6,8,15], which we T-
dualize, are realized using the extremization con-
ditions only in the “volume/dilaton” plane, and
without taking into account the complex structure
moduli sector. This illustrates that any claim of
evading the no-go originated from the volume/
dilaton analysis should be checked by including
all the remaining moduli.

(iii) On the lines of classifying type IIA and type IIB
models based on their (non)geometric nature via
turning on a certain set of fluxes at a time, we present
an interesting recipe that corresponds to considering
what we call some “special solutions” of the NS-NS
Bianchi identities. These solutions are such that they
lead to a purely geometric framework as a T-dual of
a nongeometric setup on either of the respective IIA
or IIB sides. In particular, the type IIA nongeometric
model with fluxes allowed as in the special solution
of the Bianchi identities is T-dual to a purely
geometric type IIB model, which has been known
to have de Sitter no-go scenario [16,29], and
subsequently our analysis concludes that the corre-
sponding T-dual type IIA model despite having the
nongeometric fluxes (still allowed by the special
solution) cannot evade the no-go result.

This shows that our approach will be useful for
playing with constructing models in search of the de
Sitter no-go or against those no-go arguments, given
that the most generic nongeometric setup could still
be expected to evade the no-go, though there are
several specifics to be checked in a given model
before arriving at any final conclusion.

(iv) In addition to finding the (non)geometric flux
regime or the types of fluxes needed to evade a
certain kind of de Sitter no-go result, we also find
that if there are some specific geometries involved,
such as the K3=T 4-fibered complex threefold, then
there can be a restoration of the no-go results despite
the inclusion of those fluxes which apparently could
be anticipated to evade the respective no-go results.
We illustrate this observation for explicit type IIA
and IIB toroidal nongeometric setups.

So, our results can be considered as providing some
systematics about constructing de Sitter no-go scenarios
along with the recipes to find the possibilities of evading
them, and at the same time, in looking for some specific

1For an updated recent review on realizing de Sitter solutions
in string theoretic models along with the status on quintessence,
we refer the readers to [86].
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geometries of themoduli spacewhich could again restore the
deSitter no-go result, despite the presence of those fluxes that
are naively anticipated to evade the no-go. Thus, our analysis
presents a playing ground for constructing/evading the de
Sitter no-go scenarios.
The article is organized as follows: In Sec. II we present

some interesting solutions of the NS-NS Bianchi identities
which we further use for deriving the no-go conditions in
the upcoming sections. Section III presents a type IIA no-
go with standard fluxes and its T-dual type IIB counterpart,
which includes nongeometric fluxes as well. In Sec. IV first
we rederive the fact that one can evade the type IIA no-go-1
with geometric fluxes and Romans mass, and then we T-
dualize it to study the type IIB counterpart. Section V
presents the relevance of the K3=T4-fibered Calabi Yau
threefolds, which help in finding a new class of de Sitter no-
go scenarios in both the type II theories. Finally we
conclude with the results and observations in Sec. VI.
Note: Let us mention at the outset that we will follow the

T-dual dictionary from a companion paper [108], which
includes the necessary ingredients of thegeneric formulation
of the four-dimensional scalar potentials for the type IIA and
the type IIB supergravities with (non)geometric fluxes, and
this dictionary is placed in the Appendix. For the current
interests in this article, we will directly utilize the scalar
potential for the possible applications in the lights of deSitter

and inflationary no-go scenarios. Thoughwe attempt to keep
the article self-contained, we encourage the interested read-
ers to follow theother relevantdetails if necessary, e.g., on the
superpotential, D-terms, directly from [108].

II. SOLUTIONS OF BIANCHI IDENTITIES

In this section we aim to present some interesting
solutions of the Bianchi identities satisfied by the various
fluxes of the type IIA and IIB theories. The full list of
allowed NS-NS fluxes, namely fH; w;Q;Rg in type IIA
and fH;ω; Q; Rg in type IIB along with the RR fluxes,
namely fF0 ≡m0; F2 ≡ma; F4 ≡ ea; F6 ≡ e0g in type IIA
and fF0; Fi; Fi; F0g in type IIB, and their T-duality
relations are collected in Table I, which has been adopted
from the Table VIII of the T-dual dictionary given in the
Appendix. Here the flux as well as various moduli are
counted via the Hodge numbers as α ∈ f1; 2;…; h1;1þ g, a ∈
f1; 2;…; h1;1− g on both sides, while Λ ∈ f0; 1; 2;…; h2;1− g
and J; K ∈ f1; 2;…; h2;1þ g on the type IIB side, whereas the
splitting of the complex structure indices on the type IIA
side is such that the k and λ sum to h2;1. The various fluxes
appearing in the four-dimensional type IIA supergravity are
constrained by the following five classes of NS-NS Bianchi
identities [108]:

ðIÞ Hλŵαλ ¼ Hk̂ŵα
k̂;

ðIIÞ HλQ̂α
λ ¼ Hk̂Q̂

αk̂; wa
λŵαλ ¼ wak̂ŵα

k̂;

ðIIIÞ Q̂α
λwa

λ ¼ wak̂Q̂
αk̂; Qa

k̂ŵα
k̂ ¼ Qaλŵαλ;

ŵαλQ̂
αk̂ ¼ Q̂α

λŵα
k̂; ŵαλQ̂

α
ρ ¼ Q̂α

λŵαρ; ŵα
k̂Q̂αk̂0 ¼ Q̂αk̂ŵα

k̂0 ;

RλHk̂ − HλRk̂ þ wa
λQa

k̂ − Qaλwak̂ ¼ 0;

H½k̂Rk̂0� þ Qa
½k̂wak̂0� ¼ 0; H½λRρ� þ Qa½λwa

ρ� ¼ 0;

ðIVÞ Rλŵαλ ¼ Rk̂ŵα
k̂; QaλQ̂α

λ ¼ Qa
k̂Q̂

αk̂;

ðVÞ RλQ̂α
λ ¼ Rk̂Q̂

αk̂: ð2:1Þ
Similarly on the type IIB side, we have the following five classes of Bianchi identities [98]:

ðIÞ HΛωa
Λ ¼ HΛωΛa;

ðIIÞ HΛQ̂Λ
α ¼ HΛQ̂

αΛ; ωa
ΛωbΛ ¼ ωb

ΛωaΛ; ω̂α
Kω̂βK ¼ ω̂β

Kω̂αK;

ðIIIÞ ωaΛQ̂
αΛ ¼ ωa

ΛQ̂α
Λ; QaKω̂αK ¼ Qa

Kω̂
K
α ;

HΛRK þ ωaΛQa
K þ Q̂α

Λω̂αK ¼ 0; HΛRK þ ωa
ΛQa

K þ Q̂αΛω̂αK ¼ 0;

HΛRK þ ωaΛQaK þ Q̂α
Λω̂α

K ¼ 0; HΛRK þ ωa
ΛQaK þ Q̂αΛω̂α

K ¼ 0;

ðIVÞ RKω̂αK ¼ RKω̂α
K; Q̂αΛQ̂β

Λ ¼ Q̂βΛQ̂α
Λ; QaKQb

K ¼ QbKQa
K;

ðVÞ RKQaK ¼ RKQa
K: ð2:2Þ

First we argue how choosing a certain type of involution can project out many flux components and hence can indeed
simplify the generic set of identities, for which finding solutions becomes rather easier. Moreover, we present another set of
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solutions that we call a special solution for both the type
IIA and the type IIB theories. They are very peculiar in
many aspects as we will elaborate later on.

A. Simple solutions

The set of type IIA Bianchi identities given in Eq. (2.1)
suggests that if one chooses the antiholomorphic involution
such that the even (1,1)-cohomology sector is trivial, which
is very often the case one considers for a simple phenom-
enological model [99,107,109,110], then only the follow-
ing Bianchi identities remain nontrivial:

RλHk̂ − HλRk̂ þ wa
λQa

k̂ − Qaλwak̂ ¼ 0;

H½k̂Rk̂0� þ Qa
½k̂wak̂0� ¼ 0; H½λRρ� þ Qa½λwa

ρ� ¼ 0:

ð2:3Þ

In such a situation, there will be no D-term contributions
generated to the scalar potential as all the fluxes relevant for
D-terms have α ∈ h1;1þ indices, and hence are projected out.
For the T-dual of the above type IIA setting, one needs to

look at the set of type IIB Bianchi identities given in
Eq. (2.2), which suggests that if one chooses the holomor-
phic involution such that the even (2,1)-cohomology sector
is trivial, then only the following Bianchi identities remain
nontrivial,

HΛωa
Λ ¼ HΛωΛa; HΛQ̂Λ

α ¼ HΛQ̂
αΛ;

ωa
ΛωbΛ ¼ ωb

ΛωaΛ;

ωaΛQ̂
αΛ ¼ ωa

ΛQ̂α
Λ; Q̂αΛQ̂β

Λ ¼ Q̂βΛQ̂α
Λ; ð2:4Þ

which are in a one-to-one correspondence with those in
Eq. (2.3). In such a situation, there will be no D-term
generated as all the fluxes with fJ; Kg ∈ h2;1þ indices are
projected out. Moreover, on top of this if the holomorphic
involution is chosen to result in a trivial odd (1,1)-
cohomology, which corresponds to a situation with the
absence of odd moduli Ga on the type IIB side and is also

very often studied as a case for being simplistic in nature
(e.g., see [100,110–112]), then there are only two Bianchi
identities to worry about, and they are given as

HΛQ̂Λ
α ¼ HΛQ̂

αΛ; Q̂αΛQ̂β
Λ ¼ Q̂βΛQ̂α

Λ: ð2:5Þ
This further simplification on type IIB side corresponds to
the absence of Nk moduli on the type IIA side, and so is the
case for the corresponding fluxes that couple to Nk through
the superpotential. This leads to two Bianchi identities on
the type IIA side which happen to be T-dual to those
presented in Eq. (2.5) and are given as

RλH0 − HλR0 þ wa
λQa

0 − Qaλwa0 ¼ 0;

H½λRρ� þ Qa½λwa
ρ� ¼ 0: ð2:6Þ

These “simple” solutions of the Bianchi identities based
on some specific choice of orientifold involution leads to
some interesting scenarios in both type IIA and type IIB
theories.

B. IIA with special solution ≡IIB
with geometric-flux ≡∃ dS no-go

From the set of type IIA Bianchi identities given in
Eq. (2.1), one can observe that several Bianchi identities
appear in the form of orthogonal symplectic vectors and
therefore half of the flux components can be set to zero by
performing appropriate symplectic rotations.2 The same is
equivalent to setting some fluxes, say those with upper h2;1

indices, to zero as we present below,

Hλ ¼ 0; ŵα
0 ¼ ŵα

k ¼ wa
λ ¼ 0;

Rλ ¼ 0; Q̂α0 ¼ Q̂αk ¼ Qaλ ¼ 0: ð2:7Þ
This is what we call the special solution. Now, using these
special flux choices in Eq. (2.7) results in the fact that all
the type IIA Bianchi identities except the following three
are trivially satisfied:

H½0Rk� þ Qa½0wak� ¼ 0;

H½kRk0� þ Qa½kwak0� ¼ 0;

ŵαλQ̂
α
ρ ¼ Q̂α

λŵαρ: ð2:8Þ
This makes a huge simplification in the generic compli-
cated flux constraints. Now considering the T-dual of the
type IIA special flux choice, as given in Eq. (2.7), turns
out to be equivalent to switching off the following flux
components on the type IIB side:

Q̂α
0 ¼ Q̂α

i ¼ Qa
K ¼ 0; RK ¼ 0;

Qαi ¼ Q̂α0 ¼ QaK ¼ 0; RK ¼ 0; ð2:9Þ

TABLE I. T-duality transformations among the various fluxes
and complex variable.

Type IIA
with D6=O6

Type IIB with D3=O3
and D7=O7

F-term fluxes H0, Hk, Hλ, H0, ωa0, Q̂
α
0,

wa0, wak, wa
λ, Hi, ωai, Q̂

α
i,

Qa
0, Qa

k, Qaλ, Hi, ωa
i, Q̂αi,

R0, Rk, Rλ, −H0, −ωa
0, −Q̂α0,

e0, ea, ma, m0. F0, Fi, Fi, −F0.

D-term fluxes ŵα
0, ŵα

k, ŵαλ, −RK , −Qa
K , ω̂αK ,

Q̂α0, Q̂αk, Q̂α
λ. −RK , −QaK , ω̂α

K .

Complex moduli N0, Nk, Uλ, Ta. S, Ga, Tα, Ui.

2See [97,98,113] also, for more arguments in this regard
relating to dyonic Black hole charges.
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which means setting all the nongeometric (Q as well as R)
fluxes to zero on the type IIB side. Moreover, using the T-
dual flux choice on the type IIB side as given in Eq. (2.9),
one finds that the set of Bianchi identities on the type IIB
side are reduced into the following three constraints:

HΛωa
Λ ¼ HΛωΛa; ωa

ΛωbΛ ¼ ωb
ΛωaΛ;

ω̂α
Kω̂βK ¼ ω̂β

Kω̂αK; ð2:10Þ

which is very much expected as there are no nonzero Q and
R flux components present in the current setting. As a side
remark, let us point out that if the involutions are consid-
ered as per the choices earlier explained as simple sol-
utions, i.e., those without D-terms, then there remain just
two identities on the two sides,

IIA∶ H½0Rk� þQa½0wak� ¼ 0; H½kRk0� þQa½kwak0� ¼ 0;

IIB ∶ HΛωa
Λ ¼HΛωΛa; ωa

ΛωbΛ ¼ ωb
ΛωaΛ;

ð2:11Þ

and even the above ones are absent if one sets a ¼ 0, i.e.,
no Ga moduli in IIB and equivalently no Nk moduli in IIA.
Thus with some orientifold setting one can have special
solutions in which all the Bianchi identities are trivial. Note
that all these identities are well in line with the T-duality
transformations inherited from their generic structure
before taking any simplification.

A no-go condition for de Sitter
and slow-roll inflation

As we have seen, the type IIA nongeometric setup with
the special solution leads to a type IIB setup without any
nongeometric flux. Now, following from Table XI of the
dictionary in Appendix, the type IIB scalar potential can be
expressed as a sum of the following pieces:

VRR
IIB ¼ e4ϕ

4V2U
½f20 þ UfiGijfj þ UfiGijfj þ U2ðf0Þ2�;

VNS1
IIB ¼ e2ϕ

4V2U
½h20 þ UhiGijhj þ UhiGijhj þ U2ðh0Þ2�;

VNS2
IIB ¼ e2ϕ

4V2U

�
VGab

�
ha0hb0 þ

lilj
4

haihbj þ haihbjuiuj

þ U2ha0hb0 −
li
2
haihb0 −

li
2
ha0hbi

− Uuiha0hbi − Uuihb0hai

��
;

V loc
IIB ¼ e3ϕ

2V2
½f0h0 − fihi þ fihi − f0h0�;

VD
IIB ¼ e2ϕ

4V2
½tαtβðĥαJGJKĥβK þ ĥα

JGJKĥβ
KÞ�; ð2:12Þ

where f0;fi;fi;f0;h0;hi;hi;h0;ha0;hai;ha0;hai;ĥαK , and
ĥα

K are the axionic flux orbits as defined in Table X.
However, as they do not depend on any of the saxions, it is
not relevant to give their explicit lengthy details. Also note
that in this orientifold we have the following axionic flux
orbits of Table X being identically zero on the type IIB side:

hα0 ¼ hαi ¼ hαi ¼ hα0 ¼ 0; hK0 ¼ hK0 ¼ 0: ð2:13Þ

For studying the scalar potential in Eq. (2.12), let us extract
the volume factor by introducing a new modulus ρ via
defining the two-cycle volume moduli as tα ¼ ργα where γα

is the angular Kähler moduli satisfying the constraint
lαβγγ

αγβγγ ¼ 6. This leads to the overall volume being
given as V ¼ ρ3 and the volume dependent moduli space
metric being simplified as

Gab ¼ −l̂ab ¼ −
1

ρ
ðl̂αabγ

αÞ−1: ð2:14Þ

Also note that the moduli space metric GJK and its inverse
GJK are independent of any of the volume moduli, and in
particular on the ρmodulus as well. Subsequently the scalar
potential can be expressed as

V ¼ V1 þ V2 þ V3 þ V4; ð2:15Þ

where defining a new variable τ ¼ e−ϕ
ffiffiffiffi
V

p ¼ e−ϕρ3=2, the
above four pieces are given as

V1 ¼
A1

τ4
; V2 ¼

A2

τ2ρ3
; V3 ¼

A3

τ2ρ
; V4 ¼

A4

τ3ρ3=2
:

ð2:16Þ

Here Ai’s depend on the complex structure moduli and the
angular Kähler moduli but not on any of the τ and ρmoduli.
In addition, one has A1 ≥ 0, A2 ≥ 0; however, signs of A3

and A4 are not fixed. Also note that we have combined the
two pieces VNS2

IIB and VD
IIB as they have the same scaling for

the ρ and τ moduli. This leads to the following relation:

−3τ∂τV − ρ∂ρV ¼ 12V1 þ 9V2 þ 7V3 þ
21

2
V4: ð2:17Þ

This apparently shows that the necessary condition for the
de Sitter no-go scenario, which one usually gets in the ðτ; ρÞ
plane, is evaded. But after checking trace and determinants
of the Hessian in the ðτ; ρÞ plane, one finds that the
determinant of the Hessian evaluated at the extremum is
never positive, hence confirming a no-go case due to the
presence of tachyons. Such a type IIB setup with D3=D7
andO3=O7 having F3,H3 and the geometric flux have also
been studied in [16,29], where it was concluded that no
stable de Sitter vacua can be realized in this type IIB
setting. Thus from our T-duality rules, we conclude the
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following de Sitter no-go condition on the dual type
IIA side:

Type IIA no-go theorem: In the framework of non-
geometric type IIA orientifold compactification with O6
planes, one cannot have a de Sitter solution by merely
considering the RR flux F0, F2, F4, F6 along with the
special solutions of the NS-NS Bianchi identities.

Note that given the fact that there are certain nongeometric
flux components present in the dual type IIA side despite
corresponding to the special solutions of the Bianchi
identities, this de Sitter no-go condition would not have
been possible to guess a priori the explicit computations
are done, but from the type IIB side it is not hard to invoke.

C. IIB with special solution ≡IIA
with geometric-flux ≡∄ dS no-go

Similar to the type IIA case, one can observe from
Eq. (2.2) that many of the type IIB Bianchi identities also
appear in the form of orthogonal symplectic vectors, and
therefore half of the flux components can be rotated away,
as presented below:

H0 ¼ 0 ¼ Hi; ωa
0 ¼ 0 ¼ ωa

i; Q̂α0 ¼ 0 ¼ Q̂αi;

ω̂α
K ¼ 0; QaK ¼ 0; RK ¼ 0: ð2:18Þ

Now, one can observe that using the special flux choice in
Eq. (2.18) results in the fact that all the type IIB Bianchi
identities except the following two are trivially satisfied:

H0RK þ ωa0Qa
K þ Q̂α

0ω̂αK ¼ 0;

HiRK þ ωaiQa
K þ Q̂α

iω̂αK ¼ 0: ð2:19Þ

Moreover, the type IIB special solution as given in
Eq. (2.18) is equivalent to switching-off the following
T-dual fluxes on the type IIA side:

Qa
0 ¼ Qa

k ¼ Qaλ ¼ 0; Q̂α0 ¼ Q̂αk ¼ Q̂α
λ ¼ 0;

R0 ¼ Rk ¼ Rλ ¼ 0: ð2:20Þ

This immediately implies that type IIB special solutions
correspond to setting all the nongeometric fluxes to zero on
the type IIA side. Further, using the T-duality on the type
IIB side, the two constraints given in Eq. (2.19) translates
into the following two constraints on the type IIA side:

Hλŵαλ ¼ Hk̂ŵα
k̂; wa

λŵαλ ¼ wak̂ŵα
k̂; ð2:21Þ

which is very much expected as there are no nonzero
Q- and R-flux components present in this setting. As a side
remark, one can observe that for a trivial even (2,1)
cohomology on the type IIB side, the special solution is
sufficient to satisfy all the flux constraints as the constraints
in Eq. (2.19) get trivial. On the T-dual type IIA side, this
would mean to have the even-(1,1) cohomology trivial and
so trivially satisfying Eq. (2.21). A summary of the results
of this section has been presented in Table II.

III. NO-GO-1

In this section we present the de Sitter no-go scenario
realized in the context of type IIA flux compactification
with the inclusion of the NS-NS H3 flux, and the standard
RR fluxes, namely the F0, F2, F4, F6 flux [5]. First we
revisit the ingredients of the no-go condition and then we
will T-dualize the same to investigate the no-go condition
in the type IIB theory.

A. Type IIA with RR flux and H3 flux

In the absence of any geometric and nongeometric fluxes
in the type IIA flux compactifications, the generic four-
dimensional scalar potential presented in Table XI
simplifies to a form given as

TABLE II. Possible nonzero fluxes in the special solutions of Bianchi identities.

Scenario ∃ no-go Type IIA with D6=O6 Type IIB with D3=O3 and D7=O7

Type IIA with special solutions Yes H0, wa0, Qa
0, R0, H0, Hi, Hi, −H0,

Hk, wak, Qa
k, Rk, ωa0, ωai, ωa

i, −ωa
0,

e0, ea, ma, m0. F0, Fi, Fi, −F0.
ŵαλ, Q̂

α
λ. ω̂αK , ω̂α

K .
(Type IIB with geometric flux)

Type IIB with special solution No H0, Hk, Hλ, H0, ωa0, Q̂
α
0,

wa0, wak, wa
λ, Hi, ωai, Q̂

α
i,

e0, ea, ma, m0. F0, Fi, Fi, −F0.
ŵα

0, ŵα
k, ŵαλ. −RK , −Qa

K , ω̂αK .
(Type IIA with geometric flux)
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VIIA ¼ e4D

4V
½f20 þ VfaG̃abfb þ VfaG̃

abfb þ V2ðf0Þ2�

þ e2D

4V

�
h20
U

þ G̃ijhi0hj0 þ G̃λρhλ0hρ0

�

þ e3D

2
ffiffiffiffi
U

p
�
f0h0 −

kλ
2
f0hλ0

�
; ð3:1Þ

where the various “axionic flux orbits” defined in Table IX
are simplified to the following form:

f0 ¼ e0 þ baea þ
1

2
κabcbabbmc þ 1

6
κabcbabbbcm0

− ξ0H0 − ξkHk − ξλHλ;

fa ¼ ea þ κabcbbmc þ 1

2
κabcbbbcm0;

fa ¼ ma þm0ba; f0 ¼ m0;

h0 ¼ H0 þ zkHk þ
1

2
k̂λmnzmznHλ;

hk0 ¼ Hk þ k̂λknznHλ; hλ0 ¼ Hλ: ð3:2Þ

We further introduce a new modulus ρ through a redefi-
nition in the overall volume (V) of the Calabi Yau threefold
by considering the two-cycle volume moduli ta via
ta ¼ ργa, where γa’s denote the angular Kähler moduli
satisfying the constraint κabcγaγbγc ¼ 6 implying V ¼ ρ3.
Now we can extract the volume factor ρ from the Kähler
moduli space metric and its inverse in the following way:

G̃ab ¼
κaκb − 4Vκab

4V
¼ ρg̃ab;

G̃ab ¼ 2tatb − 4Vκab

4V
¼ 1

ρ
g̃ab; ð3:3Þ

where g̃ab and the inverse g̃ab do not depend on the ρ
modulus. Subsequently the scalar potential in Eq. (3.1) can
be written as

VIIA ¼ e4D

4ρ3
½f20 þ ρ2fag̃abfb þ ρ4fag̃abfb þ ρ6ðf0Þ2�

þ e2D

4ρ3

�
h20
U

þ G̃ijhi0hj0 þ G̃λρhλ0hρ0

�

þ e3D

2
ffiffiffiffi
U

p
�
f0h0 −

kλ
2
f0hλ0

�
: ð3:4Þ

Now for the above potential, one can easily show that the
following inequality holds:

3∂DVIIA − ρ∂ρVIIA

¼ 9VIIA þ e4D

4ρ3
½6f20 þ 4ρ2fag̃abfb þ 2ρ4fag̃abfb� ≥ 9VIIA;

ð3:5Þ

where in the last step we have used the fact that all the
additional terms in the bracket are guaranteed to be non-
negative. This immediately leads to a de Sitter no-go
theorem because at this extremum ∂DVIIA ¼ 0 ¼ ∂ρVIIA,
the potential is evaluated to take nonpositive values as we
see below:

Vext
IIA ¼ −

1

9
×
e4D

4ρ3
½6f20 þ 4ρ2fag̃abfb þ 2ρ4fag̃abfb� ≤ 0:

ð3:6Þ

Moreover, one has the following inequality on the infla-
tionary slow-roll ϵ parameter:

ϵ ≥ V−2
IIA

�
ρ2

3
ð∂ρVIIAÞ2 þ

1

4
ð∂DVIIAÞ2

�

¼ V−2
IIA

�
1

39
ð3∂DVIIA − ρ∂ρVIIAÞ2

þ 1

52
ð∂DVIIA þ 4ρ∂ρVIIAÞ2

�
≥
27

13
: ð3:7Þ

This clearly forbids the slow-roll inflation in this simplistic
framework as proposed in [5,8].

B. T-dual de Sitter no-go-1 in type IIB

Now we invoke the T-dual of this type IIA no-go
scenario and investigate the type IIB side. The type IIB
fluxes that are T-dual to the nonzero type IIA fluxes are
given in Table III. This shows that the type IIB side can
generically have all the components of the F3 flux while for
the NS-NS sector, there are only the “rigid” fluxes which
are allowed, though due to a mixing through the T-duality,
there are some (non)geometric flux components present
unlike the type IIA case. We call H0;ωa0, and Q̂α

0 “rigid
fluxes” because they are the ones that are allowed in a
type IIB framework without the complex structure moduli.
However, by saying this we do not mean that our T-dual
approach is valid for the rigid Calabi Yau compactification
as it is well known that the mirror of a rigid Calabi Yau is
not a Calabi Yau [114–116]. We have studied the scalar
potentials arising in rigid compactifications separately in

TABLE III. Nonzero type IIA fluxes and their respective
T-duals for No-Go-1.

IIA e0 ea ma m0 H0 Hk Hλ

IIB F0 Fi Fi −F0 H0 ωa0 Q̂α
0

T-DUALIZING DE SITTER NO-GO SCENARIOS PHYS. REV. D 102, 026014 (2020)

026014-7



[101], and throughout this work we assume that the
compactifications are on nonrigid threefolds. For the
present case, this type IIB scenario only reflects the fact
that we have just rigid fluxes turned on while setting others
to zero, and for this, a no-go should exist.
Having no (non)geometric fluxes present, there are no

Bianchi identities to satisfy in the type IIA side, and the
same is true for the type IIB side as well, despite the
presence of some rigid (non)geometric fluxes.3 The dual
scalar potential for the type IIB side can be read from
Table XI as

VIIB ¼ e4ϕ

4V2U
½f20 þ UfiGijfj þ UfiGijfj þ U2ðf0Þ2�

þ e2ϕ

4V2U
½h20 þ VGabha0hb0 þ VGαβhα0hβ0�

þ e3ϕ

2V2

�
f0h0 −

lα

2
f0hα0

�
; ð3:8Þ

where the simplified axionic flux orbits following from
Table X are given as

f0 ¼ F0 þ viFi þ
1

2
lijkvjvkFi −

1

6
lijkvivjvkF0 − ωa0ca

− Q̂α
0ĉα − c0

�
H0 þ ωa0ba þ

1

2
l̂αabbabbQ̂

α
0

�
;

fi ¼ Fi þ lijkvjFk −
1

2
lijkvjvkF0;

fi ¼ Fi − viF0; f0 ¼ −F0;

h0 ¼ H0 þ ωa0ba þ
1

2
l̂αabbabbQ̂

α
0;

ha0 ¼ ωa0 þ Q̂α
0l̂αabbb; hα0 ¼ Q̂α

0: ð3:9Þ

Although the no-scale structure on type IIB is broken by the
presence of the nonzero Q̂α

0 flux that couples to Tα moduli
in the superpotential and subsequently has been reflected
via the appearance of the moduli space metric Gαβ in the
scalar potential (3.8), but that would not lead to a de Sitter
solution as suggested by the dual type IIA side. Thus the
type IIA no-go condition tells us something interesting and
is harder to guess a priori on the type IIB side.
To check that this duality-based claim is true, all we need

to do is to swap the role of the Kähler moduli with complex
structure moduli. On that line, similar to the case of volume
modulus V, now we defined a new modulus σ from the
saxion of the complex structure moduli such that ui ¼ σλi,

which leads to U ¼ σ3 subject to a condition: lijkλiλjλk ¼ 6

satisfied by the angular complex structure moduli γi on the
type IIB side. Now we can extract the σ factor from the
complex structure moduli space metric and its inverse in
the following way:

Gij ¼
lilj − 4Ulij

4U
¼ σgij; Gij ¼ 2uiuj − 4Ulil

4U
¼ 1

σ
gij;

ð3:10Þ

where gij and gij depend only on the angular complex
structure moduli and not on the σ modulus. Using this
information the scalar potential in Eq. (3.8) can be
written as

VIIB ¼ e4ϕ

4V2σ3
½f20 þ σ2figijfj þ σ4figijfj þ σ6ðf0Þ2�

þ e2ϕ

4V2σ3
½h20 þ VGabha0hb0 þ VGαβhα0hβ0�

þ e3ϕ

2V2

�
f0h0 −

lα

2
f0hα0

�
: ð3:11Þ

Subsequently it is not hard to show that the following
inequality holds:

3∂ϕVIIB − σ∂σVIIB

¼ 9VIIB þ e4ϕ

4V2σ3
½f20 þ σ2figijfj þ σ4figijfj� ≥ 9VIIB;

ð3:12Þ

where in the last step we have used the fact that all the
additional terms in brackets are guaranteed to be positive
semidefinite. This immediately leads to a de Sitter no-go
theorem as at this extremum ∂ϕVIIB ¼ 0 ¼ ∂σVIIB, the
potential can only take nonpositive values as we see below:

Vext
IIB ¼ −

e4ϕ

2V2σ3
½6f20 þ 4σ2figijfj þ 2σ4figijfj� ≤ 0:

ð3:13Þ

Thus we are able to prove an interesting de Sitter no-go
theorem on the type IIB side.

Type IIB no-go theorem 1: In the framework of type IIB
nongeometric flux compactification with O3=O7 ori-
entifold planes, one cannot have a de Sitter solution by
considering the RR flux F3 along with the rigid NS-NS
flux components H0;ωa0, and Q̂α

0 only.

IV. NO-GO-2

In this section we consider another no-go condition
found in the type IIA framework, which in addition to the

3This is something one would expect from the set of Bianchi
identities known to us in the cohomology formulation, though
there are several observations based on toroidal examples
that there may be a few of the missing identities in this approach
[97–101].
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ingredients of the no-go-1 scenario, also includes the geometric flux [7–9], and subsequently we will T-dualize the same to
invoke its type IIB counterpart.

A. Type IIA with RR flux, H3 flux, and ω flux

This type IIA de Sitter no-go scenario includes the NS-NSH3 flux, geometric flux w, and the standard RR fluxes, namely

the F0, F2, F4, and F6 fluxes [7–9]. However, there are no nongeometric fluxes turned on, i.e., Qa
k̂ ¼ Qaλ ¼ Q̂αk̂ ¼

Q̂α
λ ¼ 0 and Rk̂ ¼ 0 ¼ Rλ. To get the scalar potential from our generic formula in Table XI one has to simply set the

following flux orbits to zero:

ha ¼ 0 ¼ h0; hak ¼ 0 ¼ hk0; haλ ¼ 0 ¼ hλ0; ĥα0 ¼ 0 ¼ ĥαλ; ð4:1Þ

where the last two fluxes are parts of the D-term contributions via the Q flux. Setting off these nongeometric fluxes in
Eq. (4.1), the generic scalar potential given in Table XI can be simplified to take a form given as

VIIA ¼ e4D

4V
½f20 þ VfaG̃

abfb þ VfaG̃abfb þ V2ðf0Þ2� þ e2D

4V

�
h20
U

þ G̃ijhi0hj0 þ G̃λρhλ0hρ0

�

þ e2D

4V

�
tatb

�
hahb
U

þ G̃ijhaihbj þ G̃λρhaλhbρ
�
þ 1

U

�
ha −

kλ
2
haλ

�
ðVG̃ab − tatbÞ

�
hb −

kρ
2
hbρ

�

þ 1

U
ðUĥα0 þ zλĥαλÞVðκ̂aαβtaÞ−1ðUĥβ0 þ zρĥβρÞ

�
þ e3D

2
ffiffiffiffi
U

p
�
ðf0h0 − fahaÞ − ðf0hλ0 − fahλaÞ

kλ
2

�
; ð4:2Þ

where using the simplifications from Eq. (4.1), the various nonzero “axionic flux orbits” can be written out from Table IX
and those are simplified as

f0 ¼ e0 þ baea þ
1

2
κabcbabbmc þ 1

6
κabcbabbbcm0 − ξ0ðH0 þ bawa0Þ − ξkðHk þ bawakÞ − ξλðHλ þ bawa

λÞ;

fa ¼ ea þ κabcbbmc þ 1

2
κabcbbbcm0 − ξ0wa0 − ξkwak − ξλwa

λ;

fa ¼ ma þm0ba; f0 ¼ m0;

h0 ¼ ðH0 þ bawa0Þ þ zkðHk þ bawakÞ þ
1

2
k̂λmnzmznðHλ þ bawa

λÞ;
hk0 ¼ ðHk þ bawakÞ þ k̂λknznðHλ þ bawa

λÞ; hλ0 ¼ ðHλ þ bawa
λÞ;

ha ¼ wa0 þ zkwak þ
1

2
k̂λmnzmznwa

λ; hak ¼ wak þ k̂λknznwa
λ; haλ ¼ wa

λ;

ĥαλ ¼ ŵαλ þ k̂λkmzmŵα
k −

1

2
k̂λkmzkzmŵα

0; ĥα
0 ¼ ŵα

0: ð4:3Þ

Note that unlike the previous de Sitter no-go scenario, now there can be nontrivial contributions generated from theD-terms
via the geometric fluxes. Similar to the previous case, extracting the factor ρ from the various volume moduli and metrics as
in Eq. (3.3), the total scalar potential in Eq. (4.2) simplifies to the following form:

VIIA ¼ e4D

4ρ3
½f20 þ ρ2fag̃abfb þ ρ4fag̃abfb þ ρ6ðf0Þ2� þ e2D

4ρ3

�
h20
U

þ G̃ijhi0hj0 þ G̃λρhλ0hρ0

�

þ e2D

4ρ

�
γaγb

�
hahb
U

þ G̃ijhaihbj þ G̃λρhaλhbρ
�
þ 1

U

�
ha −

kλ
2
haλ

�
ðg̃ab − γaγbÞ

�
hb −

kρ
2
hbρ

�

þ 1

U
ðUĥα0 þ zλĥαλÞðκ̂aαβγaÞ−1ðUĥβ0 þ zρĥβρÞ

�
þ e3D

2
ffiffiffiffi
U

p
�
ðf0h0 − fahaÞ − ðf0hλ0 − fahλaÞ

kλ
2

�
: ð4:4Þ
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Now using the scalar potential in Eq. (4.4) one can show
that the following interesting relation holds:

∂DVIIA − ρ∂ρVIIA

¼ 3VIIA þ e2D

2ρ3

�
h20
U

þ G̃ijhi0hj0 þ G̃λρhλ0hρ0

�

þ e4D

4ρ3
½4f20 þ 2ρ2fag̃abfb − 2ρ6ðf0Þ2�: ð4:5Þ

One can observe the fact that for f0 ¼ m0 being set
to zero, all the terms on the right-hand side are non-
negative which results in ð∂DVIIA − ρ∂ρVIIAÞ ≥ 3VIIA,
and hence in this situation a new no-go condition holds
despite the fact that geometric fluxes are included.
Moreover, one has the following inequality on the infla-
tionary parameter ϵ:

ϵ ≥ V−2
IIA

�
ρ2

3
ð∂ρVIIAÞ2 þ

1

4
ð∂DVIIAÞ2

�

¼ V−2
IIA

�
1

7
ð3∂DVIIA − ρ∂ρVIIAÞ2

þ 1

84
ð3∂DVIIA þ 4ρ∂ρVIIAÞ2

�
≥
9

7
: ð4:6Þ

However, it is also true that the earlier no-go condition is
evaded with the simultaneous presence of geometric flux
and the Romans mass term. The extremization conditions
∂DVIIA ¼ 0 ¼ ∂ρVIIA lead to the following form of the
potential:

Vext
IIA ¼ −

e2D

6ρ3

�
h20
U

þ G̃ijhi0hj0 þ G̃λρhλ0hρ0

�

−
e4D

12ρ3
½4f20 þ 2ρ2fag̃abfb − 2ρ6ðf0Þ2�;

which clearly opens up the possibility of getting de Sitter
via considering a large enough value for the Romans mass
parameter f0 ¼ m0 [7].

B. T-dual de Sitter no-go-2 in type IIB

Now we want to know the T-dual version of this second
type IIA no-go scenario on the type IIB side, and the T-
duality from the nonzero fluxes in type IIA gives the flux
ingredients of the type IIB setup as given in Table IV. It
shows that for this scenario, the dual type IIB side can get
fairly complicated with the presence of RR (F3) flux along
with all the (non)geometric NS-NS fluxes unlike the type
IIA case. Moreover, given the fact that this scenario
corresponds to type IIA without any nongeometric flux,
and therefore as we have analyzed in the previous section,
this would be dual to type IIB with the special solution of
Bianchi identities, in which half of the fluxes can be rotated
away by a suitable symplectic transformation. Also, the
Bianchi identities to worry about on type IIA and their dual
type IIB side are simply the following ones:

IIA ∶ Hλŵαλ ¼ Hk̂ŵα
k̂; wa

λŵαλ ¼ wak̂ŵα
k̂;

IIB ∶ H0RK þ ωa0Qa
K þ Q̂α

0ω̂αK ¼ 0;

HiRK þ ωaiQa
K þ Q̂α

iω̂αK ¼ 0: ð4:7Þ
For implementing the special solution of Bianchi identities
in the type IIB scalar potential, we need to switch off the
following axionic flux orbits,

h0 ¼ 0 ¼ hi; hai ¼ 0 ¼ ha0;

hαi ¼ 0 ¼ hα0; ĥα
K ¼ 0 ¼ ĥK; ð4:8Þ

where the last two hatted fluxes are parts of the D-term
contributions. Using this simplification, and after a bit of
reshuffling of terms, the dual scalar potential for the type
IIB side can subsequently be read from Table XI and turns
out to be given as

VIIB ¼ e4ϕ

4V2U
½f20 þ UfiGijfj þ UfiGijfj þ U2ðf0Þ2� þ e2ϕ

4V2U

�
h20 þ VGabha0hb0 þ VGαβhα0hβ0

þ uiujðhihj þ VGαβhαihβj þ VGabhaihbjÞ þ ðUGij − uiujÞ
�
hi −

lα

2
hαi

��
hj −

lβ

2
hβj

�

þ UðVĥJ0 − tαĥαJÞðl̂iJKuiÞ−1ðVĥK0 − tβĥβKÞ
�
þ e3ϕ

V2

�
ðf0h0 − fihiÞ − ðf0hα0 − fihαiÞ

lα

2

�
; ð4:9Þ

TABLE IV. Nonzero type IIA fluxes and their respective T-duals for No-Go-2.

IIA e0 ea ma m0 H0 Hk Hλ wa0 wak wa
λ ŵa

0 ŵa
k ŵαλ

IIB F0 Fi Fi −F0 H0 ωa0 Q̂α
0 Hi ωai Q̂α

i −RK −Qa
K ω̂αK
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where the simplified version of the nontrivial axionic flux orbits are given as below:

f0 ¼ −F0; fi ¼ Fi − viF0;

fi ¼ Fi þ lijkvjFk −
1

2
lijkvjvkF0 − ωaica − Q̂α

iĉα − c0hi;

f0 ¼ F0 þ viFi þ
1

2
lijkvjvkFi −

1

6
lijkvivjvkF0 − ωa0ca − Q̂α

0ĉα − c0h0;

h0 ¼ H0 þ ωa0ba þ
1

2
l̂αabbabbQ̂

α
0 þ vihi; hi ¼ Hi þ ωaiba þ

1

2
l̂αabbabbQ̂

α
i;

ha0 ¼ ωa0 þ Q̂α
0l̂αabbb þ vihai; hai ¼ ωai þ Q̂α

il̂αabbb;

hα0 ¼ Q̂α
0 þ viQ̂α

i; hαi ¼ Q̂α
i;

ĥαK ¼ ω̂αK −Qa
Kl̂αabbb þ

1

2
l̂αabbabbRK; ĥK

0 ¼ −RK: ð4:10Þ

Now similar to the previous no-go-1 case, in order to prove that there is a new de Sitter no-go scenario in the type IIB side
with nongeometric flux, all we need to do is to swap the role of the complex-structure and the Kähler moduli. To see it
explicitly we extract the σ factor from the complex-structure moduli and the moduli space metrics as given in Eq. (3.10).
This leads to the type IIB scalar potential being written as

VIIB ¼ e4ϕ

4V2σ3
½f20 þ σ2figijfj þ σ4figijfj þ σ6ðf0Þ2� þ e2ϕ

4V2σ3
½ðh20 þ VGabha0hb0 þ VGαβhα0hβ0Þ�

þ e2ϕ

4V2σ

�
λiλjðhihj þ VGαβhαihβj þ VGabhaihbjÞ þ ðgij − λiλjÞ

�
hi −

lα

2
hαi

��
hj −

lβ

2
hβj

�

þ ðVĥJ0 − tαĥαJÞðl̂iJKλ
iÞ−1ðVĥK0 − tβĥβKÞ

�
þ e3ϕ

2V2

�
ðf0h0 − fihiÞ − ðf0hα0 − fihαiÞ

lα

2

�
; ð4:11Þ

where the angular moduli λi’s and the metrics gij; gij do not
have any dependence on the σ modulus. Subsequently it is
not hard to show that the following relation holds:

∂ϕVIIB − σ∂σVIIB

¼ 3VIIB þ e2ϕ

2V2σ3
½ðh20 þ VGabha0hb0 þ VGαβhα0hβ0Þ�

þ e4ϕ

4V2σ3
½4f20 þ 2σ2figijfj − 2σ6ðf0Þ2�: ð4:12Þ

The last term is the only nonpositive term, and this
shows that for f0 ≡ −F0 ¼ 0 we have the inequality
ð∂ϕVIIB − σ∂σVIIBÞ ≥ 3VIIB. This immediately leads
to a de Sitter no-go theorem as at this extremum
∂ϕVIIB ¼ 0 ¼ ∂σVIIB, the potential is allowed to take
only the nonpositive values as long as f0 ¼ 0 as we see
below,

Vext
IIB ¼ −

e2ϕ

3V2σ3
½ðh20 þ VGabha0hb0 þ VGαβhα0hβ0Þ�

−
e4ϕ

2V2σ3
½4f20 þ 2σ2figijfj − 2σ6ðf0Þ2�: ð4:13Þ

Thus we are able to prove an interesting de Sitter no-go
theorem on the type IIB side by T-dualizing the type IIA
no-go, and moreover, we have a possible way for finding
de Sitter by satisfying the necessary condition F0 ≠ 0 for
the nongeometric flux with special solutions.

Type IIB no-go theorem 2: In type IIB framework with
O3=O7 orientifold planes and (non)geometric fluxes
along with the standard F3, H3 fluxes, one cannot
have stable de Sitter minima with special solutions
of Bianchi identities, unless the F0 component of
the F3 flux is nonzero, where F3 ¼ FΛAΛ − FΛBΛ and
Λ ∈ f0; 1;…; h2;1− g.

V. NO-GO-3

In the previous section, we have seen that after including
the Romans mass term in type IIA or equivalently F0

component of the three-form F3 flux in type IIB, the
necessary condition for getting the de Sitter no-go is
violated. This can be taken as a window to hunt for de
Sitter solutions. On the other hand, naively speaking, in
order to restore the no-go condition or for finding another
no-go, one would need to nullify the effects of these
respective fluxes in the type IIA and the type IIB scenarios,
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and therefore one can ask the question if there are certain
geometries that could be useful for this purpose. In this
section we will show how the K3- or T4-fibered Calabi Yau
(CY) threefolds could be useful in this regard as they
facilitate a factorization in the moduli space as shown to be
needed in [8].

A. Type IIA with K3- or T 4-fibered (CY) threefolds

Superstring compactifications using K3- or T4-fibered
CY threefolds present an interesting case as there is some
kind of factorization guaranteed in the Kähler moduli
space. By the theorem of [117,118], such a Calabi Yau
threefold will have at least one two-cycle dual to a K3 or a
T4 divisor that appears only linearly in the intersection
polynomial.4 In other words, the intersection numbers
can be managed to split in the following manner by
singling out a component through the splitting of index
a as a ¼ f1; a0g,

κ111 ¼ 0 ¼ κ11a0 ; κ1a0b0 ≠ 0; κ̂1αβ ≠ 0;

κ̂a0αβ ¼ 0; where a0 ≠ 1 ≠ b0: ð5:1Þ

On top of that, in particular we also assume that κa0b0c0 ¼ 0
and note that there is only one nonzero intersection of the
type κ̂aαβ with a ¼ 1. A concrete example of a K3-fibered
CY threefold with such even/odd splitting in the inter-
section numbers (and hence in the corresponding moduli
space metrics) can be found in [122]. Recall that a nonzero
intersection number of the type κ̂aαβ is also essential for
generating the D-terms by coupling through the (non)
geometric fluxes.
Let us say that the volume of a two-cycle that is singled

out is denoted as t1 ¼ ρ0 leaving ta
0
the number of volume

moduli as the remaining ones, and then the overall volume
of the threefold can be written out as

V ¼ 1

6
κabctatbtc ¼

1

2
κ1a0b0ρ0ta

0
tb

0
; ð5:2Þ

which leaves the volume form as a homogeneous function of
degree 2 in the remaining prime-indexed Kähler moduli.
Now we can still assume ta

0 ¼ργa
0
where γa

0
’s are the

remaining angular Kähler moduli satisfying κ1a0b0γa
0
γb

0 ¼ 2.
This leads to a simple volume form given as

V ¼ ρ0ρ
2: ð5:3Þ

Before we come to the explicit detail on restoring the de
Sitter no-go condition by making an appropriate choice of
the geometry, let us throw some more light on the motivation
of looking at this K3=T4-fibered geometry by considering

the following Romans mass term as it appears in the type IIA
scalar potential,

Vf0 ¼
e4D

2
Vðf0Þ2: ð5:4Þ

One can easily be convinced that using Eq. (4.4) in which
V ¼ ρ3 simplification has been made we get the following
relations:

ð∂DVf0 − ρ∂ρVf0Þ ¼ Vf0 ⇒ ð∂DVIIA − ρ∂ρVIIAÞ
¼ 3VIIA − 2Vf0 þ � � � ; ð5:5Þ

where dots have some non-negative pieces as seen while
deriving the no-go-2, and this way Vf0 appearing with a
minus sign on the right-hand side helps in evading the de
Sitter no-go condition. Now suppose we have a volume form
of the type V ¼ ρ0ρ

2 instead of V ¼ ρ3; then the following
relations hold:

ðIÞ ð∂DVf0 − ρ0∂ρ0Vf0Þ ¼ 3Vf0 ⇒ ð∂DVIIA − ρ0∂ρ0VIIAÞ
¼ 3VIIA þ � � � ;

ðIIÞ ð2∂DVf0 − ρ∂ρVf0Þ ¼ 6Vf0 ⇒ ð2∂DVIIA − ρ∂ρVIIAÞ
¼ 6VIIA þ � � � ; ð5:6Þ

where we can see that now Vf0 can be completely absorbed
in VIIA and so a negative piece with Vf0 is absent. Here we
take an assumption (to be proven in a while) that one can
appropriately make the flux choice to be such that all the
other pieces inside the dots remain to be non-negative. Thus
by considering these simple heuristics, one can anticipate
getting another de Sitter no-go with some appropriate choice
of fluxes and geometries.
Let us mention that one can also demand the splitting of

intersection numbers on the mirror side, i.e., kλρσ leading to
the splitting in the complex structure moduli metric, to
balance things from the ð∂DVf0Þ piece [8] rather than
considering ð∂ρVf0Þ via taking a factorizable Kähler moduli
space as we are considering. That may result in some new
no-go scenarios; however, we will not consider that case in
this work.
To explore the details, using the choice for the triple-

intersection numbers given in Eq. (5.1) and the definitions
of the metric given in Table XI we have the following
block-diagonal forms for the (inverse-)moduli space
metrics,

VG̃ab ¼
�
ρ20 0

0 ρ2ðγa0γb0 − κ̃a
0b0 Þ

�
;

VG̃ab ¼
�
ρ4 0

0 ρ20ρ
2ðκ̃a0 κ̃b0 − κ̃a0b0 Þ

�
; ð5:7Þ4Such Calabi Yau threefolds with K3=T 4 fibrations have also

been useful for realizing fiber inflation models [119–121].
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where a0 ∈ f2; 3;…; h1;1− g and the angular quantities with
a0 indices do not depend on any of the moduli ρ0 and ρ.
From the scalar potential in Eq. (4.2), which is relevant for
this type IIA case with geometric flux, we observe that the
volume moduli ρ0 and ρ can appear through factors such as
ðVG̃abÞ; ðVG̃abÞ; ðtatbÞ, or ðκ̂aαβtaÞ. As we have seen from
Eq. (5.7), the moduli space metrics are already block
diagonal with the splitting of index a as a ¼ f1; a0g.
Also note that the piece with ðκ̂aαβtaÞ−1 will only depend
on ρ0 (and not on the ρ) modulus as we have assumed
in Eq. (5.1) that κ̂1αβ is the only nonzero intersection

with index α, β being in the even (1,1) cohomology.
However, scalar potential pieces involving the factor
ðtatbÞ can generate off-diagonal mixings and so might
disturb the balance of pieces in ð∂DVIIA − ρ0∂ρ0VIIAÞ ¼
3VIIA þ � � �, so as to keep retaining the pieces hidden in
the dots as positive semidefinite, something that was
established for the earlier no-go-2. To concretize these
arguments, we simplify the geometric type IIA scalar
potential given in Eq. (4.2) utilizing the above splitting
of the moduli space metrics, and it turns out to be
given as

VIIA ¼ e4D

4ρ0ρ
2
½ðf0Þ2 þ ρ20ðf1Þ2 þ ρ2fa0 ðγa0γb0 − κ̃a

0b0 Þfb0 þ ρ4ðf1Þ2 þ ρ20ρ
2fa

0 ðκ̃a0 κ̃b0 − κ̃a0b0 Þfb0 þ ρ20ρ
4ðf0Þ2�

þ e2D

4ρ0ρ
2

�
h20
U

þ G̃ijhi0hj0 þ G̃λρhλ0hρ0

�
þ e2D

4ρ2
× ρ0

��
h1h1
U

þ G̃ijh1ih1j þ G̃λρh1λh1ρ
��

þ e2D

2ρ

�
γa

0
�
ha0h1
U

þ G̃ijha0ih1j þ G̃λρha0 λh1ρ
��

þ e2D

4ρ0

�
γa

0
γb

0
�
ha0hb0

U
þ G̃ijha0ihb0j þ G̃λρha0 λhb0ρ

��

−
e2D

4ρ0U

��
ha0 −

kλ
2
ha0 λ

�
κ̃a

0b0
�
hb0 −

kρ
2
hb0ρ

��
−

e2D

2ρU

��
h1 −

kλ
2
h1λ

�
γa

0
�
ha0 −

kρ
2
ha0ρ

��

þ e2D

4ρ0U
½ðUĥα0 þ zλĥαλÞðκ̂1αβγ1Þ−1ðUĥβ0 þ zρĥβρÞ� þ

e3D

2
ffiffiffiffi
U

p
�
ðf0h0 − fahaÞ − ðf0hλ0 − fahλaÞ

kλ
2

�
; ð5:8Þ

where the flux orbits can be read off from Eq. (4.3) after imposing the splitting of indices as a ¼ f1; a0g and using the
intersection numbers given in Eq. (5.1). Now from this complicated potential we can see the off-diagonal mixing, e.g.,
arising from the ðtatbÞ factor as we discussed before. This issue can be avoided by appropriately setting the respective fluxes
coupled in the off-diagonal blocks to zero. That is, by taking either of the following two cases which subsequently leads to
the new de Sitter no-go scenarios:

ðIÞ h1 ¼ h1k ¼ h1λ ¼ 0 ⇔ w10 ¼ w1k ¼ w1
λ ¼ 0;

⇒ ð∂DVIIA − ρ0∂ρ0VIIAÞ ≥ 3VIIA;

ðIIÞ ha00 ¼ ha0k ¼ ha0λ ¼ ĥα
0 ¼ ĥα

k ¼ ĥαλ ¼ 0 ⇔

wa00 ¼ wa0k ¼ wa0
λ ¼ ŵα

0 ¼ ŵα
k ¼ ŵαλ ¼ 0 ⇒ ð2∂DVIIA − ρ∂ρVIIAÞ ≥ 6VIIA: ð5:9Þ

Also note that in the no-go scenarios corresponding to the
above two cases, one has to impose those extra flux
conditions about the vanishing of certain fluxes to deter-
mine the simplified axionic flux orbits from their generic
expressions. However, given their nature of being inde-
pendent of the saxion, it does not bother us for our purpose
as we are only interested in considering the saxionic
derivatives of the potential to look for the possible no-go
inequalities.

B. T-dual de Sitter no-go-3 in type IIB

On the lines of computations done for the explicit
T-dualization of the two de Sitter no-go scenarios, one

can be convinced that the no-go-3 in (5.9) can easily be
T-dualized to find new no-go scenarios on the type IIB side.
For this to happen, the assumption to make is that type IIB
compactification should be done on theCY threefoldswhich
have K3- or T 4-fibered mirror CYs. So this framework
should not be confused with having type IIB compactifica-
tion on theK3- or T4-fibered CYitself, although there might
be a different set of no-go’s for that case, but thosewould not
be the ones we are considering as type IIA no-go-3.
Having said the above, now the complex structure side

can be studied by the mirror CY, and hence will inherit the
splitting of complex-structure moduli space on the type IIB
side such that one can single out two complex structure
moduli σ0 and σ such that
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u1 ¼ σ0; ui
0 ¼ σλi

0
; l1i0j0λi

0
λj

0 ¼ 2; U ¼ σ0σ
2;

UGij ¼
�
σ20 0

0 σ2ðλi0λj0 − l̃i
0j0 Þ

�
; UGij ¼

�
σ4 0

0 σ20σ
2ðl̃i0 l̃j0 − l̃i0j0 Þ

�
; ð5:10Þ

where the indices i0’s denote the remaining complex structure moduli different from u1 and quantities such as l̃i are the ones
that only depend on the angular complex structure moduli. Under these circumstances, the type IIB scalar potential can be
explicitly given as

VIIB ¼ e4ϕ

4V2σ0σ
2
½ðf0Þ2 þ ðσ4ðf1Þ2 þ σ20σ

2fi
0 ðl̃i0 l̃j0 − l̃i0j0 Þfj0 Þ þ ðσ20ðf1Þ2 þ σ2fi0 ðλi0λj0 − l̃i

0j0 Þfj0 Þ þ σ20σ
4ðf0Þ2�

þ e2ϕ

4V2σ0σ
2

�
h20 þ VGabha0hb0 þ VGαβhα0hβ0 þ σ20ððh1Þ2 þ VGαβhα1hβ1 þ VGabha1hb1Þ

þ σ2λi
0
λj

0 ðhi0hj0 þ VGαβhαi0hβj0 þ VGabhai0hbj0 Þ þ σ2ðλi0λj0 − l̃i
0j0 Þ

�
hi0 −

lα

2
hαi0

��
hj0 −

lβ

2
hβj0

�

þ σ2ðVĥJ0 − tαĥαJÞðl̂1JKÞ−1ðVĥK0 − tβĥβKÞ
�
þ e3ϕ

V2

�
ðf0h0 − fihiÞ − ðf0hα0 − fihαiÞ

lα

2

�
; ð5:11Þ

where the only interest for us at the moment lies in the saxionic moduli σ0 and σ, though for completion we do provide the
explicit expressions for all the axionic flux orbits as

f0 ¼ −F0; f1 ¼ F1 − v1F0; fi
0 ¼ Fi0 − vi

0
F0;

f1 ¼ F1 þ l1i0j0vi
0
Fj0 −

1

2
l1j0k0vj

0
vk

0
F0 − ωa1ca − Q̂α

1ĉα − c0h1;

fi0 ¼ Fi0 þ l1i0j0 ðvj0F1 þ v1Fj0 Þ − l1i0jv1vj
0
F0 − ωai0ca − Q̂α

i0 ĉα − c0hi0 ;

f0 ¼ F0 þ v1F1 þ vi
0
Fi0 þ

1

2
l1i0j0vi

0
vj

0
F1 þ l1i0j0v1vi

0
Fj0

−
1

2
l1i0j0vi

0
vj

0
v1F0 − ωa0ca − Q̂α

0ĉα − c0h0;

h0 ¼ H0 þ ωa0ba þ
1

2
l̂αabbabbQ̂

α
0 þ v1h1 þ vi

0
hi0 ;

h1 ¼ H1 þ ωa1ba þ
1

2
l̂αabbabbQ̂

α
1; hi0 ¼ Hi0 þ ωai0ba þ

1

2
l̂αabbabbQ̂

α
i0 ;

ha0 ¼ ωa0 þ Q̂α
0l̂αabbb þ v1ha1 þ vi

0
hai0 ; ha1 ¼ ωa1 þ Q̂α

1l̂αabbb;

hai0 ¼ ωai0 þ Q̂α
i0 l̂αabbb; hα0 ¼ Q̂α

0 þ v1Q̂α
1 þ vi

0
Q̂α

i0 ; hα1 ¼ Q̂α
1; hαi0 ¼ Q̂α

i0 ;

ĥαK ¼ ω̂αK −Qa
Kl̂αabbb þ

1

2
l̂αabbabbRK; ĥK

0 ¼ −RK: ð5:12Þ

A close look at the scalar potential in Eq. (5.11) confirms that one can have the following two T-dual cases:

ðIÞ h1 ¼ ha1 ¼ hα1 ¼ 0 ⇔ H1 ¼ ωa1 ¼ Q̂α
1 ¼ 0

⇒ ð∂DVIIB − σ0∂σ0VIIBÞ ≥ 3VIIA;

ðIIÞ hi0 ¼ hai0 ¼ hαi0 ¼ ĥαK ¼ haK ¼ ĥK
0 ¼ 0

⇔ Hi0 ¼ ωai0 ¼ Q̂α
i0 ¼ ω̂αK ¼ Qa

K ¼ RK ¼ 0

⇒ ð2∂DVIIB − σ∂σVIIBÞ ≥ 6VIIB: ð5:13Þ

This result can be summarized in the following no-go condition.
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Type IIB no-go theorem 3: In type IIB framework with
O3=O7 orientifold planes and (non)geometric fluxes
along with the standard F3, H3 fluxes, one cannot have
stable de Sitter minima with special solutions of Bianchi
identities, if the complex structure moduli spaces exhibit
a factorization on top of suitably having some of the flux
components set to zero. This can happen when the
mirror of the type IIB compactifying CY is a particular
type of K3=T4-fibered CY threefold satisfying Eq. (5.1).

C. More de Sitter no-go conditions
for toroidal examples

This no-go-3 appears to be a rather complicated state-
ment to make; however, it has several interesting implica-
tions. To illustrate what it means in a simple way, we
consider the toroidal models based on type IIA and type IIB
compactifications using orientifold of the T 6=ðZ2 × Z2Þ
orbifold. To being with, let us mention that this no-go-3 can
be applied directly to these conventional vanilla toroidal
orientifold models which have been studied numerous
times. This model has the only intersection number nonzero
to be

IIA∶ κ123 ¼ 1; k123 ¼ 1;

IIB∶ l123 ¼ 1; l123 ¼ 1; ð5:14Þ

while all the other intersection numbers are zero. With the
standard orientifold involution there are noD-terms present
in type IIA or type IIB settings. So the total scalar potential
arises from the F-term contributions itself. In addition, let
us note that the even (1,1) cohomology is trivial in type IIA
while the odd (1,1) cohomology is trivial in type IIB
implying that fluxes/moduli with indices k in type IIA and
with index a in type IIB are absent.

1. Type IIA

It turns out that 12 axionic flux orbits are identically zero
in this construction, which in addition does not include
nongeometric Q and R fluxes,

ha¼ 0¼ h0; hk0¼ hak ¼ hak ¼ hk0 ¼ 0; haλ¼ 0¼ hλ0;

ĥα
0¼ ĥαλ ¼ ĥα0¼ ĥαλ ¼ 0: ð5:15Þ

As there can be equivalence between the three T2’s
appearing in the six-torus, and therefore one can single
out ρ0 modulus from any of the three ta’s, say we take
t1 ¼ ρ0 and subsequently the remaining 2 × 2 sector in the
Kähler moduli space is block diagonal. In fact, it is
completely diagonal in all the three moduli, though we
need it only partially. Noting that the only fluxes which can
get nonzero values in this model are the following:

h0; ha; haλ; hλ0; ð5:16Þ

our no-go-3 implies that one would end up having de Sitter
no-go scenarios if one switches off certain fluxes as
mentioned in Table V.
The particular models of Table V present those cases in

which onewould have de Sitter no-go irrespective of the fact
whether the Romans mass term is zero or nonzero. This
simplymeans that these are the examples inwhich geometric
fluxes are not enough to evade the no-go-2 despite having
nonzero Romans mass. Moreover, from the observations
from Table V it is not hard to guess that if all the geometric
fluxes are zero, one gets back to the no-go-1 having an
inequality of the type ð3∂DVIIA − ρ∂ρVIIAÞ ≥ 9VIIA.

2. Type IIB

Now an interesting question to ask is what happens to the
dual type IIB side that would involve nongeometric fluxes
as well, unlike the type IIA case. It turns out that 12 axionic
flux orbits are identically zero in this construction, and they
are given as

h0 ¼ hi¼ 0; ha0¼ hai¼ hai¼ ha0 ¼ 0; hαi ¼ hα0 ¼ 0;

ĥK ¼ ĥαK ¼ ĥα
K ¼ ĥK ¼ 0: ð5:17Þ

Now due to symmetries in the intersection number lijk, one
can single out a σ0 modulus from any of the three complex
structure saxions ui’s, say we take u1 ¼ σ0 and sub-
sequently the remaining 2 × 2 sector in the complex
structure moduli space is block diagonal, and one can
write U ¼ σ0σ

2. As before, it is completely diagonal in all
three moduli. Noting that the only fluxes which can get
nonzero values in this model are the following ones:

h0; hi; hα0; hαi; ð5:18Þ

TABLE V. Type IIA de Sitter no-go scenarios with T 6=ðZ2 × Z2Þ having geometric flux.

h1 ¼ h1λ ¼ 0 w10 ¼ w1
λ ¼ 0 ∂DVIIA − ρ0∂ρ0VIIA ≥ 3VIIA

h2 ¼ h2λ ¼ 0 w20 ¼ w2
λ ¼ 0 ∂DVIIA − ρ0∂ρ0VIIA ≥ 3VIIA

h3 ¼ h3λ ¼ 0 w30 ¼ w3
λ ¼ 0 ∂DVIIA − ρ0∂ρ0VIIA ≥ 3VIIA

h20 ¼ h30 ¼ h2λ ¼ h3λ ¼ 0 w20 ¼ w30 ¼ w2
λ ¼ w3

λ ¼ 0 2∂DVIIA − ρ∂ρVIIA ≥ 6VIIA

h10 ¼ h30 ¼ h1λ ¼ h3λ ¼ 0 w10 ¼ w30 ¼ w1
λ ¼ w3

λ ¼ 0 2∂DVIIA − ρ∂ρVIIA ≥ 6VIIA

h10 ¼ h20 ¼ h1λ ¼ h2λ ¼ 0 w10 ¼ w20 ¼ w1
λ ¼ w2

λ ¼ 0 2∂DVIIA − ρ∂ρVIIA ≥ 6VIIA
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our no-go-3 implies that one would end up having de Sitter
no-go scenarios if one switches off certain fluxes as
mentioned in Table VI. The particular models of
Table VI present those cases in which one would have
de Sitter no-go irrespective of the fact whether the F0

components of the RR F3 flux is zero or nonzero, and
moreover despite having some nongeometric fluxes being
turned on. This means that these are the examples in which
nongeometric fluxes are not enough to evade the no-go-2
due to the presence of some specific geometries inherited
from the six-torus.

VI. SUMMARY AND CONCLUSIONS

In this article, we have T-dualized several de Sitter no-go
scenarios which have been well known in the type IIA flux
compactifications for more than a decade. This sub-
sequently leads to a set of peculiar de Sitter no-go scenarios
in the type IIB flux compactifications with (non)geometric
fluxes.
Before exploring the de Sitter no-go scenarios, we have

studied the solutions of Bianchi identities in the type IIA
and type IIB theories as the same is crucial for finding a
genuinely effective scalar potential. In this context we
present a peculiar class of solutions, what we call the
special solutions of Bianchi identities, in each of the two
type II theories. The main idea behind the existence of such
solutions is the fact that several Bianchi identities can be
understood as a set of orthogonal symplectic (flux) vectors,
and hence half of the flux components can be rotated away
by a symplectic transformation. The possible nonzero

fluxes for the special solutions are summarized in
Table II. Moreover, after exploring the T-dual versions
of these special solutions from type IIA to type IIB and vice
versa, we make some very interesting observations as
collected in the following points:

(i) The nongeometric type IIA setup with the special
solutions of Bianchi identities is equivalent to the
type IIB setup without any nongeometric fluxes.
Moreover, for such a type IIB geometric setup with
O3=O7, there is a de Sitter no-go theorem [16,29],
which we have also rederived from our approach.
This helps us in concluding that the T-dual type IIA
setting, which although includes some nongeometric
fluxes, cannot result in stable de Sitter vacua, and
this is something against the naive expectations.

(ii) The nongeometric type IIB setup with special
solutions of Bianchi identities is equivalent to the
type IIA setup without any nongeometric fluxes
turned on. Such a type IIA setup has been studied in
a variety of models in the past, especially regarding
the search of de Sitter vacua and their no-go
conditions [5,7,8,45].

In this context of type IIA orientifold compactifications
with geometric flux, first we have rederived several de
Sitter no-go scenarios of [5,8] and have subsequently
explored their T-dual counterparts in type IIB theory. In
particular, we have T-dualized three classes of type IIA no-
go scenarios that are summarized in Table VII. These can
be elaborated as follows:

(i) no-go-1: Type IIB nongeometric setup with O3=O7
and having RR flux F3 along with only the rigid

TABLE VII. T-dual fluxes relevant for the three no-go scenarios.

Scenarios Fluxes in type IIA Fluxes in type IIB
with D6=O6 with D3=O3 and D7=O7

No-go-1 F-term fluxes H0, Hk, Hλ, H0, ωa0, Q̂
α
0,

e0, ea, ma, m0. F0, Fi, Fi, −F0.

No-go-2 and no-go-3 F-term fluxes H0, Hk, Hλ, H0, ωa0, Q̂
α
0,

wa0, wak, wa
λ, Hi, ωai, Q̂

α
i,

e0, ea, ma, m0. F0, Fi, Fi, −F0.
D-term fluxes ŵα

0, ŵα
k, ŵαλ. −RK , −Qa

K , ω̂αK .

No-scale-structure in IIB F-term fluxes H0, wa0, Qa
0, R0, H0, Hi, Hi, −H0,

e0, ea, ma, m0. F0, Fi, Fi, −F0.

TABLE VI. Type IIB de Sitter no-go scenarios with T 6=ðZ2 × Z2Þ having (non)geometric fluxes.

h1 ¼ hα1 ¼ 0 H1 ¼ Q̂α
1 ¼ 0 ð∂ϕVIIB − σ0∂σ0VIIBÞ ≥ 3VIIB

h2 ¼ hα2 ¼ 0 H2 ¼ Q̂α
2 ¼ 0 ð∂ϕVIIB − σ0∂σ0VIIBÞ ≥ 3VIIB

h3 ¼ hα3 ¼ 0 H3 ¼ Q̂α
3 ¼ 0 ð∂ϕVIIB − σ0∂σ0VIIBÞ ≥ 3VIIB

h2 ¼ h3 ¼ hα2 ¼ hα3 ¼ 0 H2 ¼ H3 ¼ Q̂α
2 ¼ Q̂α

3 ¼ 0 ð2∂ϕVIIB − σ∂σVIIBÞ ≥ 6VIIB

h3 ¼ h1 ¼ hα3 ¼ hα1 ¼ 0 H3 ¼ H1 ¼ Q̂α
3 ¼ Q̂α

1 ¼ 0 ð2∂ϕVIIB − σ∂σVIIBÞ ≥ 6VIIB

h1 ¼ h2 ¼ hα1 ¼ hα2 ¼ 0 H1 ¼ H2 ¼ Q̂α
1 ¼ Q̂α

2 ¼ 0 ð2∂ϕVIIB − σ∂σVIIBÞ ≥ 6VIIB
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fluxes H0;ωa0, and Q̂α
0 cannot give stable de

Sitter vacua.
(ii) no-go-2: Type IIB nongeometric setup with O3=O7

and having RR flux F3 along with only the special
solutions of the NS-NS Bianchi identities cannot
give stable de Sitter vacua unless the F0 component
of the F3 flux is nonzero.

(iii) no-go-3: This no-go scenario is rather a restoration
of the no-go-2 itself, in the sense of F0 being zero or
nonzero getting irrelevant. This can be done by
choosing certain compactification geometries that
have factorization in the complex structure moduli
space. To be specific, the violation of no-go-2 via
including the nonzero F0 flux (of F3) can be avoided
if the type IIB compactification is made on a CY
threefold that admits a K3=T 4-fibered mirror Calabi
Yau threefold having some specific triple intersec-
tion numbers along with the need of setting a couple
of fluxes to zero.

Note that in Table VII we have also collected the T-dual
fluxes corresponding to the type IIB no-scale model that
has only the F3 and H3 fluxes. This subsequently shows
that in the dual type IIA side, one has all the RR fluxes and
NS-NS fluxes of the rigid type only, for which we have
already shown that a de Sitter no-go condition exists.

To conclude, we have shown in this analysis how one
can engineer a pair of T-dual setups in type IIA and type
IIB theories in which it may be easier to derive some de
Sitter no-go conditions that can be translated into the
mirror side. By considering multiple examples, we have
presented a kind of recipe for evading or further restoring
the no-go window depending on the various ingredients,
including the compactification geometries, one could use.
Thus one of the main advantages of this work can also be
taken as where not to look for the de Sitter search, and
hence refining the vast nongeometric flux landscape for
hunting the de Sitter vacua. Moreover, our analysis can
also be extended to utilize/investigate the nongeometric
type II models for/against the recently proposed trans-
Planckian censorship conjecture [123] and also its pos-
sible connection with the swampland distance conjecture.
We hope to report on (some of) these issues in the near
future [124].
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APPENDIX: A DICTIONARY FOR THE TYPE II NONGEOMETRIC FLUX COMPACTIFICATIONS

TABLE VIII. One-to-one T-duality transformations among the various fluxes, the moduli, and the axions.

Type IIA with D6=O6 Type IIB with D3=O3 and D7=O7

F-term fluxes H0, Hk, Hλ, H0, ωa0, Q̂
α
0,

wa0, wak, wa
λ, Hi, ωai, Q̂

α
i,

Qa
0, Qa

k, Qaλ, Hi, ωa
i, Q̂αi,

R0, Rk, Rλ, −H0, −ωa
0, −Q̂α0,

e0, ea, ma, m0. F0, Fi, Fi, −F0.

D-term fluxes ŵα
0, ŵα

k, ŵαλ, −RK , −Qa
K , ω̂αK ,

Q̂α0, Q̂αk, Q̂α
λ. −RK , −QaK , ω̂α

K .

Complex moduli N0, Nk, Uλ, Ta. S, Ga, Tα, Ui.
Ta ¼ ba − ita, Ui ¼ vi − iui,

N0 ¼ ξ0 þ iðz0Þ−1, S ¼ c0 þ is,

Nk ¼ ξk þ iðz0Þ−1zk, Ga ¼ ðca þ c0baÞ þ isba,

Uλ ¼ − i
2z0 ðkλρκzρzκ − k̂λkmzkzmÞ þ ξλ. Tα ¼ − is

2
ðlαβγtβtγ − l̂αabbabbÞ

þðcα þ l̂αabcabb þ 1
2
c0l̂αabbabbÞ.

Axions zk, ba, ξ0, ξk, ba, vi, c0, ca þ c0ba,

ξλ. cα þ l̂αabcabb þ 1
2
c0l̂αabbabb.

Saxions ðz0Þ−1, zλ, ta, V, U. s≡ e−ϕ, tα, ui U, V.

Inter-sections kλρμ, k̂λmn, κabc, κ̂aαβ. lαβγ , l̂αab, lijk, l̂iJK .
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TABLE X. Axionic type IIB flux orbits with their dual type IIA counterpart.

Type IIB flux orbits Dual type IIA

f0 F0 þ viF i þ 1
2
lijkvjvkF i − 1

6
lijkvivjvkF0 f0

fi F i þ lijkvjF k − 1
2
lijkvjvkF0 fa

fi F i − viF0 fa

f0 −F0 f0

h0 H0 þ viHi þ 1
2
lijkvjvkHi − 1

6
lijkvivjvkH0 h0

hi Hi þ lijkvjHk − 1
2
lijkvjvkH0 ha

hi Hi − viH0 ha

h0 −H0 h0

(Table continued)

TABLE IX. Axionic flux orbits for the type IIA side.

Type IIA flux orbits

f0 G0 − ξk̂Hk̂ − ξλHλ

fa Ga − ξk̂℧ak̂ − ξλ℧a
λ

fa Ga − ξk̂Qa
k̂ − ξλQaλ

f0 G0 − ξk̂Rk̂ − ξλRλ

h0 H0 þHkzk þ 1
2
k̂λmnzmznHλ

ha ℧a0 þ℧akzk þ 1
2
k̂λmnzmzn℧a

λ

ha Qa
0 þQa

kzk þ 1
2
k̂λmnzmznQαλ

h0 R0 þRkzk þ 1
2
k̂λmnzmznRλ

hk0 Hk þ k̂λknznHλ

hak ℧ak þ k̂λknzn℧a
λ

hak Qa
k þ k̂λknznQaλ

hk0 Rk þ k̂λknznRλ

hλ0 Hλ

haλ ℧a
λ

haλ Qaλ

hλ0 Rλ

F-term fluxes G0 ¼ ē0 þ baēa þ 1
2
κabcbabbmc þ 1

6
κabcbabbbcm0,

Ga ¼ ēa þ κabcbbmc þ 1
2
κabcbbbcm0,

Ga ¼ ma þm0ba,

G0 ¼ m0,

Hk̂ ¼ H̄k̂ þ w̄ak̂b
a þ 1

2
κabcbbbcQa

k̂ þ 1
6
κabcbabbbcRk̂,

Hλ ¼ H̄λ þ w̄a
λba þ 1

2
κabcbbbcQaλ þ 1

6
κabcbabbbcRλ,

℧ak̂ ¼ w̄ak̂ þ κabcbbQc
k̂ þ 1

2
κabcbbbcRk̂,

℧a
λ ¼ w̄a

λ þ κabcbbQcλ þ 1
2
κabcbbbcRλ,

Qa
k̂ ¼ Qa

k̂ þ baRk̂, Q
aλ ¼ Qaλ þ baRλ,

Rk̂ ¼ Rk̂, R
λ ¼ Rλ.

D-term fluxes ĥαλ ≡ ℧̂αλ ¼ ŵαλ þ k̂λkmzmŵα
k − 1

2
k̂λkmzkzmŵα

0

ĥα
k ≡ ℧̂α

k ¼ ŵα
k − zkŵα

0, ĥα
0 ≡ ℧̂α

0 ¼ ŵα
0,

ĥαλ ≡ Q̂α
λ ¼ Q̂α

λ þ k̂λkmzmQ̂
αk − 1

2
k̂λkmzλzkzmQ̂

α0,

ĥαk ≡ Q̂αk ¼ Q̂αk − zkQ̂α0, ĥα0 ≡ Q̂α0 ¼ Q̂α0.
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TABLE X. (Continued)

Type IIB flux orbits Dual type IIA

ha0 ℧a0 þ vi℧ai þ 1
2
lijkvjvk℧a

i − 1
6
lijkvivjvk℧a

0 hk0
hai ℧ai þ lijkvj℧a

k − 1
2
lijkvjvk℧a

0 hak
hai ℧a

i − vi℧a
0 hak

ha0 −℧a
0 hk0

hα0 Q̂0
α þ viQ̂i

α þ 1
2
lijkvjvkQ̂

αi − 1
6
lijkvivjvkQ̂

α0 hλ0
hαi Q̂i

α þ lijkvjQ̂
αk − 1

2
lijkvjvkQ̂

α0 haλ

hαi Q̂αi − viQ̂α0 haλ

hα0 −Q̂α0 hλ0

F-term fluxes FΛ ¼ F̄Λ − ω̄aΛca − Q̂α
Λðcα þ l̂αabcabbÞ − c0HΛ

FΛ ¼ FΛ − ωa
Λca − Q̂αΛðcα þ l̂αabcabbÞ − c0HΛ

HΛ ¼ H̄Λ þ ω̄aΛba þ 1
2
l̂αabbabbQ̂

α
Λ

HΛ ¼ HΛ þ ωa
Λba þ 1

2
l̂αabbabbQ̂

αΛ

℧aΛ ¼ ω̄aΛ þ Q̂α
Λl̂αabbb

℧a
Λ ¼ ωa

Λ þ Q̂αΛl̂αabbb

Q̂α
Λ ¼ Q̂α

Λ, Q̂
αΛ ¼ Q̂αΛ

D-term fluxes ĥαK ≡ ℧̂αK ¼ ω̂αK −Qa
Kl̂αabbb þ 1

2
l̂αabbabbRK ĥαλ

ĥα
K ≡ ℧̂α

K ¼ ω̂α
K −QaKl̂αabbb þ 1

2
l̂αabbabbRK ĥαλ

haK ≡Qa
K ¼ −Qa

K þ RKba, haK ≡QaK ¼ −QaK þ RKba ĥα
k, ĥαk

ĥK
0 ≡ −RK ¼ −RK , ĥ

K0 ≡ −RK ¼ −RK ĥα
0, ĥα0

TABLE XI. A one-to-one exchange of the type IIA and type IIB scalar potentials under T-duality.

IIA V tot
IIA ¼ e4D

4V ½f20 þ VfaG̃abfb þ VfaG̃
abfb þ V2ðf0Þ2� þ e2D

4UV ½h20 þ VhaG̃abhb

þVhaG̃
abhb þ V2ðh0Þ2 þ UG̃ijðhi0hj0 þ κaκb

4
hiahjb þ haihbjtatb þ V2hi0hj0

− κa
2
haihj0 −

κa
2
hi0haj − Vtahi0haj − Vtahaihj0Þ þ UG̃λρðhλ0hρ0 þ κaκb

4
hλahρb

þtatbhaλhbρ þ V2hλ0hρ0 − κa
2
hλ0hρa −

κa
2
hλahρ0 − Vtahλ0haρ − Vtahaλhρ0Þ

þ kλkρ
4
ðVhaλG̃abhbρ þ VhaλG̃

abhbρ þ Vtahλ0haρ þ Vtahaλhρ0 − tatbhaλhbρ

þ κa
2
hλ0haρ þ κa

2
haλhβ0 −

κaκb
4
haλhbρÞ − 2 × kλ

2
ðVhaG̃abhbλ þ VhaG̃

abhbλ

þVtah0haλ þ Vtahahλ0 − tatbhahbλ þ κa
2
hah0λ þ κa

2
h0haλ −

κaκb
4
hahbλÞ

þ½ðUĥα0 þ zλĥαλÞVG̃αβðUĥβ0 þ zρĥβρÞ þ ðUĥα0 þ zλĥαλÞVG̃αβðUhβ0 þ zρĥβρÞ��
þ e3D

2
ffiffiffi
U

p ½ðf0h0 − faha þ faha − f0h0Þ − ðf0hλ0 − fahλa þ fahλa − f0hλ0Þ kλ2 �.
G̃ab ¼ κaκb−4Vκab

4V , G̃ab ¼ 2tatb−4Vκab
4V , G̃αβ ¼ −κ̂αβ, G̃αβ ¼ −κ̂αβ,

G̃λρ ¼ kλkρ−4Ukλρ
4U , G̃λρ ¼ 2zλzρ−4Ukλρ

4U , G̃jk ¼ −k̂jk, G̃jk ¼ −k̂jk.

IIB V tot
IIB ¼ e4ϕ

4V2U ½f20 þ UfiGijfj þ UfiGijfj þ U2ðf0Þ2� þ e2ϕ

4V2U ½h20 þ UhiGijhj

þUhiGijhj þ U2ðh0Þ2 þ VGabðha0hb0 þ lilj
4
haihbj þ haihbjuiuj þ U2ha0hb0

− li
2
haihb0 −

li
2
ha0hbi − Uuiha0hbi − Uuihb0haiÞ þ VGαβðhα0hβ0 þ lilj

4
hαihβj

þuiujhαihβj þ U2hα0hβ0 − li
2
hα0hβ i −

li
2
hαihβ0 − Uuihα0hβ i − Uuihαihβ0Þ

þ lαlβ

4
ðUhαiGijhβj þ UhαiGijhβj þ Uuihα0hiβ þ Uuihαihβ0 − uiujhαihβj

þ li
2
hα0hβ i þ li

2
hαihβ0 −

lilj
4
hαihβjÞ − 2 × lα

2
ðUhiGijhαj þ UhiGijhαj

þUuih0hαi þ Uuihihα0 − uiujhihαj þ li
2
hihα0 þ li

2
h0hαi −

lilj
4
hihαjÞ

þ½ðVĥJ0 − tαĥαJÞUGJKðVĥK0 − tβĥβKÞ þ ðVĥJ0 − tαĥα
JÞUGJKðVĥK0 − tβĥβ

KÞ��
þ e3ϕ

2V2 ½ðf0h0 − fihi þ fihi − f0h0Þ − ðf0hα0 − fihαi þ fihαi − f0hα0Þ lα2 �.
Gαβ ¼ lαlβ−4Vlαβ

4V , Gαβ ¼ 2tαtβ−4Vlαβ
4V , Gab ¼ −l̂ab, Gab ¼ −l̂ab,

Gij ¼ lilj−4Ulij
4U , Gij ¼ 2uiuj−4Ulij

4U , GJK ¼ −l̂JK , GJK ¼ −l̂JK .
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