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In this work we define a new type of flux operators on the Hilbert space of loop quantum gravity. We use
them to solve an equation of the form FðAÞ ¼ cΣ in loop quantum gravity. This equation, which relates the
curvature of a connection A with its canonical conjugate Σ ¼ �E, plays an important role for spherically
symmetric isolated horizons, and, more generally, for maximally symmetric geometries and for the
Kodama state. If the equation holds, the new flux operators can be interpreted as a quantization of surface
holonomies from higher gauge theory. Also, they represent a kind of quantum deformation of SU(2). We
investigate their properties and discuss how they can be used to define states that satisfy the isolated horizon
boundary condition in the quantum theory.
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I. INTRODUCTION

The classical boundary conditions on a spatial sliceH of
a spherically symmetric isolated horizon (IH) can be
expressed [1] by the very natural boundary condition [2]

{�HFðAÞ ¼ C{�Hð�EÞ: ð1:1Þ

Here, A and E are canonically conjugate Ashtekar-Barbero
variables [3,4], an SU(2) connection, and the corresponding
electric field. We will take E to be su(2) valued, using the
Cartan-Killing metric on su(2). �E denotes the 2-form

ð�EÞab ¼ ϵabcEc: ð1:2Þ

Before the invention of isolated horizons, a boundary
condition of the form (1.1) has already been studied in
[2]. In that prescient work, Smolin has argued that the
imposition of (1.1) in the quantum theory leaves a
quantized Chern-Simons theory on the boundary, with
defects at the locations where quantized gravitational
excitations of the bulk touch the boundary. This picture
is the foundation of all later work on the entropy of isolated
horizons. In the present work, we will investigate how far
the picture of [2] can be derived from an operator version of
(1.1) in the quantum theory.
In loop quantum gravity (LQG), there exists a well-

defined operator for the parallel transport induced by A, but
A itself, and by extension its curvature F, are not well
defined in the quantum theory. If one rewrites (1.1) in terms

of holonomies of A, what objects will one deal with in
terms of E? And how can one implement (1.1) in LQG? It is
important to answer these questions if one wants to solve
the boundary conditions (1.1) from within the formalism of
LQG [5].
It is interesting to note that equations of the form

FðAÞ ¼ Cð�EÞ ð1:3Þ
also play a role in different contexts. An equation
very similar to (1.1) is part of a condition for spherical
symmetry [6]. In that case the curvature is that of a related
connection—the spin connectionΓ. Also the equation shows
up in calculations of quantum gravity amplitudes [7–9], in an
LQG treatment of Chern-Simons theory [10–12], and in the
context of the Kodama state for LQG [13–16]. In these cases,
techniques to implement (1.3) might be useful.
One can use a non-Abelian generalization of Stokes’

theorem [17] to obtain a holonomy around the boundary ∂S
of a simply connected surface as a function of its curvature
FðAÞ:

h∂S ¼ S exp
Z
S
−F : ð1:4Þ

This is a surface-ordered exponential integral, a higher-
dimensional analog of the path-ordered exponential inte-
gral expressing the holonomy as a function of A on a curve.
F is a suitable parallel transport of FðAÞ. Equation (1.1)
then implies that on a spherically symmetric horizon, the
holonomy can similarly be expressed as

WS ≔ S exp
Z
S
−CE: ð1:5Þ*hanno.sahlmann@gravity.fau.de
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Here and in the following, pullbacks to the horizon are
assumed, but not written explicitly.
One can then impose (1.1) in LQG by looking for states

Ψ such that

dWSΨ ¼ ch∂SΨ ð1:6Þ

for surfaces S on the horizon.
We must mention that in the remarkable article [16]

Bodendorfer suggests a route to solving (1.3) that is
different from what we propose here. He points out that
by modifying the canonical momentum according to
E ↦ Eþ �F, one can regard the Ashtekar-Lewandowski
vacuum as a solution of (1.3). The advantage of that method
is that it is very clean and straightforward. However,
functions of E can then not be quantized straightforwardly.
Still, [16] contains suggestions for volume and for the
Hamiltonian constraint. Our method works with a Hilbert
space in which E is still represented straightforwardly. The
disadvantage is that it is not straightforward to identify
solutions of (1.3). We also note that [16] contains an
important discussion of the question of how far (1.1) is
related to the symmetry of the horizon. We note that [16]
makes the argument that (1.1) holds entirely due to
symmetry.
To understand the properties of dWS, it is important to

realize that (1.1) and (1.5) have a deeper mathematical
meaning in the framework of higher gauge theory. This is a
formalism which categorically extends the notions of gauge
theory. In particular, it defines higher gauge fields and
corresponding notions of parallel transport along higher
dimensional objects. In this context, (1.1) is just the
statement that A and E together define a 2-connection,
and (1.5) is the parallel transport across a surface S. These
aspects of the problem are explained in the companion
paper [18]. They naturally explain the reparametrization
independence and other properties of (1.5). We also note
that very recently, higher gauge theory has shown up in
LQG in a different context [19]. It is an intriguing question
whether there is any connection to the matters under
consideration here.
The quantization of (1.5) adds another layer of complex-

ity and is explored in the present work. In LQG, the
components of the field E are somewhat singular operators,
and they do not commute in the quantum theory. Therefore
(1.5) presents a host of problems when trying to transfer it
to the quantum theory. The noncommutativity is of the type
of an SU(2) current algebra,

½bEiðxÞ; bEjðyÞ� ¼ δx;yfijkbEkðxÞ; ð1:7Þ

where fijk are the structure constants of SU(2). One can use
the fact that it derives from a symplectic structure on suð2Þ�
to quantize the surface holonomies WS (1.5) using the
Duflo-Kirillov map [20]. The use of this map in LQG was

first suggested in [21]. It has been used in various contexts
[22–24]. In our context, it gives the surface holonomy
operators special properties [12,25]. In [25], the action ofdWS was determined only on special states. The first result
of this work is the extension of the action of this operator to
a large class of LQG states. In particular, we are inves-
tigating the action on edges carrying arbitrary spin, and we
are carefully defining the action at vertices. The latter is
important when considering repeated application of surface
holonomy operators.
At the core of the quantization of WS is the application

of the Duflo-Kirillov map to a function of the form

W ¼ expðEiTiÞ ð1:8Þ

with TI a basis of su(2), and

fEi; Ejg ¼ fijkEk: ð1:9Þ

In other words, we are looking for the Duflo-Kirillov
quantization of the exponential map. The resulting object

and by extension the quantum surface holonomiesdWS are
operator-valued matrices with noncommuting entries,

bW ¼
� ba bb
−bb† ba†

�
: ð1:10Þ

We analyze their properties and show that they still retain
many properties of SU(2) group elements. Thus, we are
dealing with a kind of quantum deformation of SU(2). The

eigenvalues of traces of dWS can be expressed in terms of
quantum integers, but the commutation relations between
the components seem to be of a different kind than the ones
described by an R-matrix. This is the second set of results
of the present work.
Coming back to the physics aspects, in the last part of the

article we start to analyze what kind of states fulfill the
quantum version of the isolated horizon boundary con-
dition (1.1). We find that a relevant operator seems to be the
determinant ofdWS on the horizon. In general it is not equal
to 1, meaning that, according to (1.4), also the holonomies
must have quite nonclassical properties on the horizon.
However, in the holonomy-flux algebra of LQG, the
holonomies h all fulfill det h ¼ 1. One option is thus to

reject states on which detdWS ≠ 1 on the basis that the
quantum version of (1.1) cannot be fulfilled. The other
option is to define the holonomies on the horizon by thedWS. We consider the implications of this identification for
very simple states with only two punctures and find that

again detdWS is relevant for the question whether a state can
reasonably be said to solve the IH boundary conditions.
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II. SURFACE HOLONOMIES AND THE ISOLATED
HORIZON BOUNDARY CONDITION

In this section, we will explain the classical setting and
introduce some of our conventions and notation (those
related to the quantum theory will be introduced in the next
section).
As already mentioned in the introduction, the basic

variables used in LQG are not the Ashtekar-Barbero
variables A and E directly, but rather certain smearings
of those. For the connection A, these smearings are
so-called holonomies, which are given explicitly by

hα½A� ¼ P exp

�
−
Z
α
A

�
¼ 1þ

X∞
n¼1

ð−1Þn
Z

1

0

dt1

Z
t1

0

dt2…

×
Z

tn−1

0

dtnAa1ðαðt1ÞÞ _αa1ðt1Þ…AanðαðtnÞÞ _αanðtnÞ:

ð2:1Þ

Note that αðtÞ can be any parametrization of the path α and
hα will not depend on it. We now want to write down a
similar formula for the surface-ordered exponential from
Eq. (1.5). However, in contrast to paths, two-dimensional
surfaces are a priori not equipped with a natural order. In
order to have a chance of defining the surface-ordered
exponential, we would therefore need to add an ordering of
the surface S as an additional structure to the data on which
the surface holonomy depends. For example, in [17]
lexicographical ordering is used with respect to some given
parametrization of the surface. However, instead of using
an ordered surface as label for the surface holonomies,
we will be guided by insights from higher gauge theory
[26–32] (see also [33] for an excellent review). From the
perspective of higher gauge theory, the isolated horizon
boundary condition just states that, on the horizon surface
H, the LQG variables A and Cð�EÞ form a 2-connection
[18]. The surface holonomies also show up in higher gauge
theory, although their definition is rather abstract in this
context. However, the main message from higher gauge
theory is that surface holonomies are group elements
that are actually not associated with surfaces but with
homotopies.1

Let us briefly recall the definition of a homotopy.
Consider two paths α and β with the same starting and
end points. A homotopy h∶α ⇒ β from α to β is a
continuous map

h∶½0; 1� × ½0; 1� → Σ ð2:2Þ

such that

hð0; tÞ ¼ αðtÞ; hðs; 0Þ ¼ αð0Þ ¼ βð0Þ; ð2:3Þ

hð1; tÞ ¼ βðtÞ; hðs; 1Þ ¼ αð1Þ ¼ βð1Þ: ð2:4Þ

Homotopies can be composed in two distinct ways. Given
homotopies h1∶α1 ⇒ β1, h2∶α2 ⇒ β2 with α2ð0Þ ¼ α1ð1Þ
and β2ð0Þ ¼ β1ð1Þ, there is a natural composition called
horizontal composition ∘ h of 2-morphisms in the path
2-groupoid P2ðΣÞ yielding a homotopy from α2 ∘ α1 ⇒
β2 ∘ β1. Explicitly,
ðh2 ∘ hh1Þðs; tÞ

¼
8<: ðidh2ð0;0Þ ∘ h1ð2s; ·ÞÞðtÞ for s ∈

h
0; 1

2

i
ðh2ð2s − 1; ·Þ ∘ h1ð1; ·ÞÞðtÞ for s ∈

h
1
2
; 1
i : ð2:5Þ

The second type of composition in P2ðΣÞ is called vertical
composition, and it is defined for homotopies h1∶α1 ⇒ β1
and h2∶α2 ⇒ β2 if β1 ¼ α2. In this case, vertical compo-
sition works just like path composition in the s-parameter
of homotopies, i.e.,

ðh2 ∘vh1Þðs;tÞ¼
8<:h1ð2s;tÞ for s∈

h
0;1

2

i
h2ð2s−1; tÞ for s∈

h
1
2
;1
i : ð2:6Þ

At this point, we could define abstract classical surface
holonomies as 2-functors from the path 2-groupoid to a
2-group as is done in higher gauge theory. On the level of
2-morphisms, these associate group elements with equiv-
alence classes of homotopies. However, we want to give an
explicit formula for those surface holonomies and, in order
for this formula to be well defined, we need the homotopies
to satisfy certain additional requirements. For every homo-
topy H, we define a corresponding surface SH as the
interior of the image of H. In order for the surface-ordered
exponential integral over these SH to be well defined, they
need to be equipped with an order. If we assume the
homotopies H to be one-to-one, they will induce a surface
ordering by choosing lexicographical ordering on the
parameter space ½0; 1� × ½0; 1�. Note that the one-to-one
assumption can be violated on measure-zero sets without
changing the value of the integral.2 We will also require our
homotopies to be differentiable because we want to use

1More precisely, they only depend on equivalence classes of
homotopies with respect to thin homotopy. This property is
analogous to the parametrization independence of ordinary (path)
holonomies.

2Since we consider only homotopies with fixed end points, the
homotopies themselves can actually never be one-to-one maps.
However, the only problematic points in this regard are the end
points of the paths HsðtÞ ≔ Hðs; tÞ and they definitely form a
subset of measure zero.
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them as parametrizations for the surfaces SH in the
following. Now, given a homotopy H, we define canonical
paths αx from x0 ≔ Hð0; 1Þ to any point x ¼ Hðsx; txÞ in
the surface SH via

αxðtÞ ¼ Hðsx; 1 − ð1 − txÞtÞ; ð2:7Þ

and for every 2-form B we introduce the notation

BðxÞ ¼ h−1αx BðxÞhαx ð2:8Þ

that has already been used in the Introduction. This allows
us to write the surface-ordered exponential as

WH½A;B� ¼ S exp

�
−
Z
SH

B
�

≔ 1þ
X∞
n¼1

ð−1Þn
Z

…

Z
SH×���×SH
p1≥���≥pn

Bðp1Þ…BðpnÞ

¼ 1þ
X∞
n¼1

ð−1Þn
Z

1

0

ds1

Z
1

0

dt1

Z
s1

0

ds2

Z
1

0

dt2…

…

Z
sn−1

0

dsn

Z
1

0

dtnðBa1b1H
a1
;s H

b1
;t Þðs1; t1Þ…ðBanbnH

an
;s H

bn
;t Þðsn; tnÞ: ð2:9Þ

In the last line, we have used the homotopy H as para-
metrization for the surface SH and we have ignored the
ordering in the t-parameter since this is only relevant on
subsets of measure zero. This surface-ordered integral
was first defined in [17], where it was used to prove a
non-Abelian version of Stokes’ theorem. In our notation,
the non-Abelian Stokes theorem can be written as

WH½A;FðAÞ� ¼ hHð1;·Þ½A�; ð2:10Þ

where H is assumed to be a homotopy from the constant
path idx0 to the path given by the boundary ∂SH which
starts and ends at x0 ∈ ∂SH. From this point onward, we
will always consider homotopies to be of this type. This
will ensure that any two homotopies can be horizontally
composed, if they have the same distinguished point x0.
Furthermore, the resulting homotopy will again be of this
form with the same distinguished point.
Let us now have a look at the boundary condition for

spherically symmetric isolated horizons

{ aH;α{
b
H;βFðAÞiab ¼ C{ aH;α{

b
H;βϵabcκ

ijEc
j ; ð2:11Þ

where {H is an embedding of the two-dimensional inter-
sectionH of the isolated horizon and the spatial 3-manifold
Σ into the latter and

C ¼ 4πð1 − β2Þ
aH

; ð2:12Þ

with aH denoting the area ofH [34]. Equation (2.11) is the
same condition that was already stated in the Introduction
as (1.1), but here we have explicitly written down all the
indices involved. Applying the surface-ordered exponential
integral on both sides leads us to

WH½A;Cð�EÞ� ¼ WH½A;FðAÞ� ¼ hHð1;·Þ½A�: ð2:13Þ

The trace of this exponentiated and integrated condition has
already been studied in [11,12]. In a companion paper [18],
we actually proof the following theorem:
Theorem 1. The following are equivalent (using the

notation introduced above):
(i) { aH;α{

b
H;βFðAÞiabðxÞ ¼C{ aH;α{

b
H;βϵabcκ

ijEc
jðxÞ ∀x∈H.

(ii) WH½A;Cð�EÞ� ¼ hHð1;·Þ½A� ∀ homotopiesH; s:t:
SH ⊂ H.

We already mentioned in the Introduction that there are
well-defined quantum operators associated with path hol-
onomies in LQG. The following sections will thus be
devoted to finding a quantization of the surface holonomies
appearing in condition (2.13), to analyzing the properties of
those quantum surface holonomy operators and to solving
the quantum version of (2.13) on the LQG Hilbert space.

III. QUANTIZATION OF SURFACE HOLONOMIES

The aim of this section is to define quantum operators for
the surface holonomies from the previous section on the
LQGHilbert space. In order to do so, we will first introduce
some further notation from LQG. Let Ψγ denote a spin
network state associated with the graph γ. The action of the
E-field on such a state can formally be written as

bEa
kðxÞΨγ ¼ 8πGℏβi

X
e∈γ

eaðxÞbEðeÞ
k ðxÞΨγ: ð3:1Þ

Here, the factor eaðxÞ makes sure that the action of the
operator is concentrated on the graph γ. It is explicitly
given by
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eaðxÞ ¼
Z

_eaðtÞδð3Þðx; eðtÞÞdt: ð3:2Þ

The bEðeÞ
k ðxÞ obey the commutation relation

½bEðeÞ
i ðpÞ; bEðe0Þ

j ðp0Þ� ¼ δe;e0δp;p0fkijbEðeÞ
k ðpÞ; ð3:3Þ

with fkij denoting the structure constants of su(2) in a
specific basis Ti satisfying

½Ti; Tj� ¼ fijkTk;

and they act in the representation space associated with the
corresponding edge e. Note that they behave like genuine
su(2) elements, i.e., without the additional factor i that is
typically used in physics when dealing with angular
momentum operators.
As already indicated above, however, expression (3.1) is

merely formal in the sense that bEa
kðxÞ is not an operator but

an operator-valued distribution. Therefore, an appropriate
smearing is required and in LQG one usually considers the
flux operators

bES ≔
Z
S

bE a
k ðxÞϵabcdxbdxcΨγ

¼ 8πGℏβi
X
p

X
e atp

κðe; SÞbEðeÞ
k ðpÞΨγ

¼ 8πGℏβi
X
p

½bEðuÞ
k ðpÞ − bEðdÞ

k ðpÞ�Ψγ

≕ 8πGℏβi
X
p

bEkðpÞΨγ; ð3:4Þ

where the sum over p runs over all punctures of the spin
network graph γ with the surface S and

κðe; SÞ ¼
8<:

þ1 if e lies aboveS

−1 if e lies belowS

0 otherwise

ð3:5Þ

encodes the relative orientation of S with respect to each
edge e in γ. In the last line of (3.4), we have defined

bEkðpÞ ¼ bEðuÞ
k ðpÞ − bEðdÞ

k ðpÞ ð3:6Þ
in terms of the operatorsbEðuÞ
k ðpÞ ¼

X
e atp

e above S

bEðeÞ
k ðpÞ and bEðdÞ

k ðpÞ ¼
X
e atp

e belowS

bEðeÞ
k ðpÞ;

ð3:7Þ
which naturally showed up in the second line. Eventually,
let us define bEðpÞ ≔ κijTi

bEjðpÞ;
where κij are the components of the inverse of the Cartan-
Killing metric

κij ¼ trðadTi
adTj

Þ:
We can now start evaluating the surface-ordered expo-

nential as defined in (2.9). Consider a surface SH defined by
a homotopy H, and a fixed graph γ. Denote by Hγ the
Hilbert space of cylindrical functions with respect to this
graph and let N be the number of punctures of γ with
SH. The punctures p1;…; pN are labeled such that p1 ≤ …
≤ pN with respect to the order on SH induced by H. Using

c ≔ −8πGℏβiC; ð3:8Þ
we then obtain

dWH

���
Hγ

¼ 1þ
X∞
n¼1

cn
Z

…

Z
SH×���×SH
x1≤���≤xn

ð�bEÞðxnÞ…ð�bEÞðx1Þ���
Hγ

¼ 1þ
X∞
n¼1

cn
X

k1 ;…;kN¼0
k1þ���þkN¼n

1

k1!…kN!
½h−1αpN bEðpNÞhαpN �kN…½h−1αp1 bEðp1Þhαp1 �k1

¼ 1þ
X∞
n¼1

cn
X

k1 ;…;kN¼0
k1þ���þkN¼n

1

k1!…kN!
ðh−1αpN Tin−kNþ1

…TinhαpN Þ…ðh−1αp1Ti1…Tik1
hαp1 Þ

× κi1j1…κinjn ½bEjn−kNþ1
ðpNÞ…bEjnðpNÞ�…½bEj1ðp1Þ…bEjk1

ðp1Þ�: ð3:9Þ
Obviously, the factors within each of the square brackets do not commute, which implies that there is an ordering ambiguity.
Following [11,12], we will use the Duflo-Kirillov map QDK to resolve this ambiguity. We will make this ordering choice
explicit in the notation by writingdWH

���
Hγ

¼ 1þ
X∞
n¼1

cn
Xn

k1;…;kN¼0

k1þ���þkN¼n

1

k1!…kN!
ðh−1αpN Tin−kNþ1

…TinhαpN Þ…ðh−1αp1Ti1…Tik1
hαp1 Þ

× κi1j1…κinjnQDK½Ejn−kNþ1
ðpNÞ…EjnðpNÞ�…QDK½Ej1ðp1Þ…Ejk1

ðp1Þ�: ð3:10Þ
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Recall that

EkðpÞ ¼ EðuÞ
k ðpÞ − EðdÞ

k ðpÞ ¼
X
e atp

e above S

EðeÞ
k ðpÞ −

X
e atp

e below S

EðeÞ
k ðpÞ;

ð3:11Þ

and while bEðuÞ
k ðpÞ ¼ QDKðEðuÞ

k ðpÞÞ, bEðdÞ
k ðpÞ, and bEðeÞ

k ðpÞ
all behave like su(2) elements, bEkðpÞ does not. Therefore,
we will have to decide whether we consider EðuÞ

k ðpÞ and

EðdÞ
k ðpÞ as basic quantities and only order these using the

Duflo-Kirillov map or whether we apply QDK to EðeÞ
k ðpÞ

for all e independently. While the latter approach appears
more fundamental, the first choice permits the explicit
calculations in the next chapter and we will therefore stick
to it throughout this paper.
Specializing to the case of a single puncture, Eq. (3.10)

becomes

dWH

���
Hγ

¼ 1þ
X∞
n¼1

cn
1

n!
ðh−1αp Ti1…TinhαpÞκi1j1

…κinjnQDK½Ej1ðpÞ…EjnðpÞ�
¼ h−1αp QDK½exp ðcTiκ

ijEjðpÞÞ�hαp
≕ h−1αp QDK½Wp�hαp : ð3:12Þ

In the last line, the notation QDK½Wp� indicates that when
the resulting operator acts on a spin network state, the
result only depends on the edges that start or end at the
puncture p. However, information about the surface SH is

still present in the splitting bEi ¼ bEðuÞ
i − bEðdÞ

i , where the co-
normal to SH at p determines which edges contribute tobEðuÞ
i and bEðdÞ

i , respectively.
We can use these explicit formulas for the quantum

surface holonomies to prove the following theorem:
Theorem 2. Consider a graph γ, a homotopy H and

homotopies H1;…; Hm such that

H ¼ Hm ∘ h… ∘ hH1 ð3:13Þ

where SHi
is punctured by γ at most once, and

∂SHi
∩ γ ¼ ∅. As mentioned before, we still assume all

homotopies starting from the trivial path. Then

dWHjHγ
¼ cWHm

jHγ
…cWH1

jHγ
: ð3:14Þ

Proof.—We can assume without loss of generality that
each Hi contains precisely one puncture, because homo-
topies without puncture contribute just the identity
operator, and therefore effectively reduce the number of
homotopies in (3.13). With this assumption, every factor on
the right-hand side just takes the form (3.12). Multiplying
them and sorting with respect to the number of Lie algebra

generators, it is straightforward to see that this leads
to (3.10). ▪
This theorem allows us to express surface holonomies as

products of surface holonomies acting on single punctures,
provided we can find a suitable decomposition of the
homotopy labeling the surface holonomy. In the following
sections, we will therefore focus our attention on the single
puncture case. We will later come back to the case of
multiple punctures again.

IV. EXPLICIT ACTION OF SURFACE
HOLONOMY OPERATORS ON
SINGLE PUNCTURE STATES

In the following, we will explicitly calculate the action
of the previously defined quantum surface holonomy
operators on quantum states that are represented by a spin
network graph having a single intersection with the surface
associated with the homotopy labeling the surface holon-
omy (see Fig. 1 for an illustration). To this end, let us
introduce some further notation.
We first define the relevant Hilbert spaces. All of these

are defined relative to a given homotopy H, but to keep
things simple, we will not indicate this dependency in the
notation. Let

HðpÞ ¼ spanfspin nets with single puncture atpg: ð4:1Þ

This space decomposes into a direct sum

HðpÞ ¼ ⨁
ju;jd

Hðju;jdÞðpÞ ð4:2Þ

under the action of bEðpÞ in the following sense:Hðju;jdÞðpÞ
is an infinite direct sum of spaces on which

bEðpÞ ¼ bEðuÞðpÞ − bEðdÞðpÞ

FIG. 1. The single puncture intersection of a holonomy with a
surface.
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acts irreducibly, with bEðuÞ acting in the ju-irrep of su(2), andbEðdÞ in the jd-irrep. Due to the additional holonomies indWH, its components mix these subsectors of Hðju;jdÞðpÞ,
but leave Hðju;jdÞðpÞ invariant.
Given ju; jd, we call Hðju;jdÞðpÞ the state space of a one-

sided puncture if either ju ¼ 0 or jd ¼ 0. Otherwise we call
it the state space of a two-sided puncture. We should
remind the reader that the Duflo-quantization for the two-
sided puncture in Sec. IV B was calculated for a state in
which EðjuþdÞ ¼ 0. In the quantum theory, this implies—
among other things—that ju ¼ jd and that states should be
in the gauge-invariant subspace of Hðju;jdÞðpÞ. In the
following, for the two-sided puncture we will therefore
restrict our discussion to the space Hðj;jÞðpÞ in which
ju ¼ jd. We will sometimes also display the action on the
non-gauge-invariant part of that space.

A. Action on one-sided puncture state

In the case of a single puncture, the quantum operator
associated with a surface holonomy was given in (3.12).
Two of the three factors in this expression are path
holonomies, whose action on the Hilbert space of LQG
is well understood. We will therefore focus on the remain-
ing part, QDK½Wp�. In the following, we will explicitly
calculate the action of this operator on a certain class of spin
network states Ψγ in the LQG Hilbert space. Namely, we
will assume γ to contain only a single edge that intersects
SH at p. Without loss of generality, we can assume this
edge to puncture the surface from above. This effectively
leads to

bEkðpÞ ¼ bEðuÞ
k ðpÞ; ð4:3Þ

and therefore bEkðpÞ itself satisfies su(2) commutation
relations. This case was already investigated in earlier
work [25]. However, in this earlier work we used a different
convention for the κ factor defined in Eq. (3.5), which made
the result appear more general. At the time, we were only
able to give an explicit expression for the action of the
surface holonomy operator on punctures carrying spin 1

2
. In

the following, we will now generalize this calculation to
spin network punctures labeled by arbitrary spin j.
Recall, from the previous section, the definition

Wp ¼ exp ðcTiκ
ijEjðpÞÞ: ð4:4Þ

From now on, we will drop the label p indicating the
puncture. Throughout this section, the E are understood to
be evaluated at the puncture p. This actually implies that we
will only consider nontrivial representations for the quan-
tum operators corresponding to the E, since a puncture with
spin label 0 is equivalent to no puncture in the LQG Hilbert
space. Therefore, a quantum surface holonomy will always
act as the identity operator on a puncture where j ¼ 0. We
will also choose a specific basis

Ti ¼ τi ¼ −
i
2
σi ð4:5Þ

of su(2), where σi are the Pauli matrices. In this basis, the
components of the Cartan-Killing metric become

κij ¼ −2δij: ð4:6Þ

We can then write

Wp ¼ cosh

�
c

2
ffiffiffi
2

p jjEjj
�
12 þ

sinh ð c
2
ffiffi
2

p jjEjjÞ
c

2
ffiffi
2

p jjEjj cκijEiτj

¼
X∞
k¼0

1

ð2kÞ!
�

c

2
ffiffiffi
2

p
�

2k
jjEjj2k12 þ c

X∞
k¼0

1

ð2kþ 1Þ!
�

c

2
ffiffiffi
2

p
�

2k
κijjjEjj2kEiτj: ð4:7Þ

We already showed in [25] that

j
1
=2ð∂Þ½jjEjj2kEi� ¼

Xk
N¼0

1

ð2N þ 1Þ!
1

8N
ð2kþ 1Þ!

ð2k − 2N þ 1Þ!
2kþ 3

2k − 2N þ 3
jjEjj2ðk−NÞEi

¼
Xk
N¼0

1

8N

�
2kþ 4

2N þ 1

�
2k − 2N þ 2

ð2kþ 2Þð2kþ 4Þ jjEjj
2ðk−NÞEi ð4:8Þ

and
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QS½jjEjj2kEi� ¼
QS½jjEjj2ðkþ1Þ�

ΔSUð2Þ
QS½Ei�: ð4:9Þ

Combining these two expression with the fact that the Laplacian of SU(2) evaluates to

ΔSUð2ÞjHðj;0ÞðpÞ ¼
jðjþ 1Þ

2
idHðj;0ÞðpÞ ð4:10Þ

on a single edge carrying spin j, we obtain

QDK½jjEjj2kEi�jHðj;0ÞðpÞ ¼ ½QS ∘ j1=2ð∂Þ�ðjjEjj2kEiÞjHðj;0ÞðpÞ

¼
Xk
N¼0

1

8N

�
2kþ 4

2N þ 1

�
2k − 2N þ 2

ð2kþ 2Þð2kþ 4ÞQS½jjEjj2ðk−NÞEi�jHðj;0ÞðpÞ

¼ −
1

8kþ1

2

jðjþ 1Þ
Xk
N¼0

�
2kþ 4

2N þ 1

�
2k − 2N þ 2

ð2kþ 2Þð2kþ 4Þ

×
X2ðk−Nþ1Þ

m¼0

�
2ðk − NÞ þ 3

m

�
Bmð2m − 2Þ½2jþ 1�2ðk−Nþ1Þ−mπðjÞ½bEi�

¼ −
1

8kþ1

2

jðjþ 1Þ
Xk
p¼0

�
2kþ 4

2pþ 3

�
2pþ 2

ð2kþ 2Þð2kþ 4Þ

×
X2ðpþ1Þ

m¼0

�
2pþ 3

m

�
Bmð2m − 2Þ½2jþ 1�2ðpþ1Þ−mπðjÞ½bEi�: ð4:11Þ

After simplifying this expression (see Appendix A for details) we end up with

QDK½jjEjj2kEi�jHðj;0ÞðpÞ ¼
8

2k
2kþ 3

2kþ 2

1

2jð2jþ 1Þð2jþ 2Þ
�
j

�
2jþ 1

2

�
2kþ2

−
X2j−12

l¼1

l2kþ2

�
πðjÞ½bEi�: ð4:12Þ

We can now use this result in combination with Eq. (4.7) to get

QDK½Wp�jHðj;0ÞðpÞ ¼
X∞
n¼0

1

ð2nÞ!
�

c

2
ffiffiffi
2

p
�

2n
QDK½jjEjj2n�jHðj;0ÞðpÞ ⊗ 12

þ
X∞
n¼0

1

ð2nþ 1Þ!
�

c

2
ffiffiffi
2

p
�

2n
cκilQDK½jjEjj2nEi�jHðj;0ÞðpÞ ⊗ τl

¼
X∞
n¼0

1

ð2nÞ!
�

c

2
ffiffiffi
2

p
�

2n 1

8n
ð2jþ 1Þ2nidHðj;0ÞðpÞ ⊗ 12

þ
X∞
n¼0

1

ð2nþ 1Þ!
�

c

2
ffiffiffi
2

p
�

2n
c
8

2n
2nþ 3

2nþ 2

1

2jð2jþ 1Þð2jþ 2Þ

×

�
j

�
2jþ 1

2

�
2nþ2

−
X2j−12

l¼1

l2nþ2

�
κilπðjÞ½bEi� ⊗ τl

¼ cosh

�ð2jþ 1Þc
8

�
idHðj;0ÞðpÞ ⊗ 12 þ

128

c
κilπðjÞ½bEi� ⊗ τl

2jð2jþ 1Þð2jþ 2Þ

×
X∞
n¼0

2nþ 3

ð2nþ 2Þ!
�
c
4

�
2nþ2

�
j

�
2jþ 1

2

�
2nþ2

−
X2j−12

l¼1

l2nþ2

�
: ð4:13Þ
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Simplifying once more (for details, see again Appendix A) and defining

QDK½Wp�jHðj;0ÞðpÞ≕ ξcðjÞidHðj;0ÞðpÞ ⊗ 12 þ iξsðjÞκimπðjÞ½ bEi� ⊗ τm ð4:14Þ

we arrive at

ξcðjÞ ¼ cosh

�ð2jþ 1Þc
8

�
ð4:15Þ

and

ξsðjÞ ¼
−128i

2jð2jþ 1Þð2jþ 2Þ
1

c
d
dc

�
jc cosh

�ð2jþ 1Þc
8

�
−
c
2
− c

sinh ð2j−1Þc
16

sinh c
8

cosh

�ð2jþ 1Þc
16

��
ð4:16Þ

for the functions ξcðjÞ and ξsðjÞ. In the expression for ξsðjÞ, the derivative with respect to c can still be carried out,
leading to

ξsðjÞ ¼
−8i

2jð2jþ 1Þð2jþ 2Þ
�
2jð2jþ 1Þ coshð

ð2jþ1Þc
8

Þ
ð2jþ1Þc

8

þ 2jð2jþ 1Þ sinh
�ð2jþ 1Þc

8

�

−
1

sinhðc
8
Þ
�
2j cosh

�
2jc
8

�
þ 2j

sinhð2jc
8
Þ

2jc
8

− sinh

�
2jc
8

�
coth

�
c
8

���
: ð4:17Þ

B. Action on two-sided puncture state

In order to perform the same calculation for the case of a two-sided puncture, we start again from the series expansion as
given in (4.7):

Wp ¼ cosh

�
c

2
ffiffiffi
2

p jjEjj
�
12 þ

sinh ð c
2
ffiffi
2

p jjEjjÞ
c

2
ffiffi
2

p jjEjj cκijEiτj

¼
X∞
k¼0

1

ð2kÞ!
�

c

2
ffiffiffi
2

p
�

2k
jjEjj2k12 þ c

X∞
k¼0

1

ð2kþ 1Þ!
�

c

2
ffiffiffi
2

p
�

2k
κijjjEjj2kEiτj: ð4:18Þ

When acting on a two-edge puncture state, we now have
to distinguish several cases. Assuming that neither of the
two edges is tangential to the surface, there are two main
scenarios: the two edges can either lie on the same side
of the surface SH, or they can lie on different sides. In the

first case, however, we can consider the quantity EðuÞ
i ¼

EðeÞ
i þ Eðe0Þ

i , which again behaves like an element of su(2).
This case can thus be treated as in the previous subsection.
In the following, we will therefore focus on the case where
one edge, e, lies above the surface and the other edge, e0,
lies below SH. In other words, we now have

bEi ¼ bEðuÞ
i − bEðdÞ

i ; ð4:19Þ

where bEðuÞ
i ¼ bEðeÞ

i and bEðdÞ
i ¼ bEðe0Þ

i . Thus, bEðuÞ
i inserts a

generator of SU(2) into the holonomy associated with the

edge e and bEðdÞ
i acts analogously on e0. Since the combi-

nation (4.19) does no longer behave as an element of su(2),

we will have to order the quantities bEðuÞ
i and bEðdÞ

i indi-
vidually. We can write

jjEjj2 ¼ κijEiEj

¼ κijðEðuÞ
i − EðdÞ

i ÞðEðuÞ
j − EðdÞ

j Þ
¼ jjEðuÞjj2 þ jjEðdÞjj2 − 2κijEðuÞ

i EðdÞ
j : ð4:20Þ

We thus see that, if we want to order both the EðuÞ
i and EðdÞ

i
separately using the Duflo-Kirillov map, we need to
evaluate said map on terms of the form

jjEðuÞjj2kEðuÞ
i1
…EðuÞ

in
ð4:21Þ

and, unfortunately, we do not have a formula for this. In
order to circumvent this problem, we will use the relation

jjEðuþdÞjj2 ¼ jjEðuÞjj2 þ jjEðdÞjj2 þ 2κijEðuÞ
i EðdÞ

j ð4:22Þ
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to obtain

jjEjj2 ¼ 2jjEðuÞjj2 þ 2jjEðdÞjj2 − jjEðuþdÞjj2; ð4:23Þ

where

EðuþdÞ
i ¼ EðuÞ

i þ EðdÞ
i : ð4:24Þ

Unfortunately, we cannot quantize EðuÞ, EðdÞ, and EðuþdÞ

independently, since, e.g., bEðuÞ
i does not commute with

jjbEðuþdÞjj2. However, if we focus on the sector of the
quantum theory invariant under SU(2) gauge transforma-
tions, bEðuÞ and bEðdÞ must couple to the trivial representation
in the absence of transversal edges. We will therefore
assume

jjEðuþdÞjj2 ¼ 0 ð4:25Þ

already on the classical side. The expression for jjEjj2 then
simplifies to

jjEjj2 ¼ 2jjEðuÞjj2 þ 2jjEðdÞjj2 ð4:26Þ

and we can write arbitrary powers of this term as

jjEjj2k ¼ 2k½jjEðuÞjj2 þ jjEðdÞjj2�k

¼ 2k
Xk
m¼0

�
k

m

�
jjEðuÞjj2mjjEðdÞjj2ðk−mÞ: ð4:27Þ

Inserting this expression into Eq. (4.7), we then obtain

Wp ¼
X∞
k¼0

1

ð2kÞ!
�
c
2

�
2kXk

m¼0

�
k

m

�
jjEðuÞjj2mjjEðdÞjj2ðk−mÞ12

þ c
X∞
k¼0

1

ð2kþ 1Þ!
�
c
2

�
2k
κij
Xk
m¼0

�
k

m

�
jjEðuÞjj2mjjEðdÞjj2ðk−mÞ½EðuÞ

i − EðdÞ
i �τj ð4:28Þ

and applying the Duflo-Kirillov map leaves us with

QDK½Wp�jHðju ;jdÞðpÞ ¼
X∞
k¼0

1

ð2kÞ!
�
c
2

�
2kXk

m¼0

�
k

m

�
QDK½jjEðuÞjj2m�jHðju ;0ÞQDK½jjEðdÞjj2ðk−mÞ�j

Hð0;jdÞ ⊗ 12

þ c
X∞
k¼0

1

ð2kþ 1Þ!
�
c
2

�
2k
κij
Xk
m¼0

�
k

m

�
QDK½jjEðuÞjj2mEðuÞ

i �jHðju ;0ÞQDK½jjEðdÞjj2ðk−mÞ�j
Hð0;jdÞ ⊗ τj

− c
X∞
k¼0

1

ð2kþ 1Þ!
�
c
2

�
2k
κij
Xk
m¼0

�
k

m

�
QDK½jjEðuÞjj2m�jHðju ;0ÞQDK½jjEðdÞjj2ðk−mÞEðdÞ

i �j
Hð0;jdÞ ⊗ τj:

ð4:29Þ

Note that we have calculated the action of the Duflo-Kirillov map on both types of terms showing up in this expression
already in the previous subsection. If E is associated with an edge labeled by spin j, this action is given by

QDK½jjEjj2k�jHðj;0ÞðpÞ ¼ ðQDK½jjEjj2�jHðj;0ÞðpÞÞk ¼
�
ΔSUð2ÞjHðj;0ÞðpÞ þ

1

8
idHðj;0ÞðpÞ

�
k
¼
�ð2jþ 1Þ2

8

�
k

idHðj;0ÞðpÞ ð4:30Þ

and

QDK½jjEjj2kEi�jHðj;0ÞðpÞ ¼
2

8k
1

2jð2jþ 1Þð2jþ 2Þ
2kþ 3

2kþ 2

�
jð2jþ 1Þ2kþ2 −

Xbjc
l¼1

ð2lÞ2kþ2

�
πðjÞðbEiÞ; ð4:31Þ

respectively, with bjc denoting the floor function of j. Now, inserting these expressions into Eq. (4.29) and writing the
result as

QDK½Wp�jHðju ;jdÞðpÞ ¼ χcðju; jdÞidHðju ;jdÞðpÞ ⊗ 12 þ iχsðju; jdÞκmnπðjuÞðbEðuÞ
m Þ ⊗ id

Hð0;jdÞ ⊗ τn

− iχsðjd; juÞκmnidHðju ;0Þ ⊗ πðjdÞðbEðdÞ
m Þ ⊗ τn; ð4:32Þ
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the functions χcðju; jdÞ and χsðju; jdÞ take the forms

χcðju; jdÞ ¼ cosh

�
c
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ju þ 1Þ2

8
þ ð2jd þ 1Þ2

8

r �
ð4:33Þ

and

χsðju; jdÞ ¼ −
2i

ju þ 1

264cosh
�
c
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2juþ1Þ2

8
þ ð2jdþ1Þ2

8

q 	
− coshðð2jdþ1Þc

4
ffiffi
2

p Þ
ð2juþ1Þc

8

þ 2ju þ 1

2

sinh
�
c
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2juþ1Þ2

8
þ ð2jdþ1Þ2

8

q 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2juþ1Þ2

8
þ ð2jdþ1Þ2

8

q
375

þ 8i
juðju þ 1Þð2ju þ 1Þ

Xbjuc
k¼1

264cosh
�
c
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjdþ1Þ2

8
þ k2

2

q 	
− coshðð2jdþ1Þc

4
ffiffi
2

p Þ
c
2

þ
k2
2
sinh

�
c
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjdþ1Þ2

8
þ k2

2

q 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjdþ1Þ2

8
þ k2

2

q
375; ð4:34Þ

respectively. The details of the calculation can be found in Appendix B. Specializing to the gauge-invariant case3 where
ju ¼ jd ¼ j, we end up with

QDK½Wp�jHðj;jÞðpÞ ¼ χcðjÞidHðj;jÞðpÞ ⊗ 12 þ iχsðjÞκmn½πðjÞðbEðuÞ
m Þ ⊗ idHðjÞ

e0
− idHðj;0ÞðpÞ ⊗ πðjÞðbEðdÞ

m Þ� ⊗ τn; ð4:35Þ

where now

χcðjÞ ¼ cosh

�ð2jþ 1Þc
4

�
ð4:36Þ

and

χsðjÞ ¼ −
2i

jþ 1

�coshðð2jþ1Þc
4

Þ − coshðð2jþ1Þc
4
ffiffi
2

p Þ
ð2jþ1Þc

8

þ sinh

�ð2jþ 1Þc
4

��

þ 8i
jðjþ 1Þð2jþ 1Þ

Xbjc
k¼1

264cosh
�
c
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ1Þ2

8
þ k2

2

q 	
− coshðð2jþ1Þc

4
ffiffi
2

p Þ
c
2

þ
k2
2
sinh

�
c
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ1Þ2

8
þ k2

2

q 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ1Þ2

8
þ k2

2

q
375: ð4:37Þ

V. PROPERTIES OF QUANTUM SURFACE
HOLONOMY OPERATORS

In this section we focus on the properties of the
holonomy operators just calculated. These properties are
important since they determine the existence and the
properties of solutions to the quantized isolated horizon
boundary condition.

A. Behavior under gauge transformations

Gauge transformations g∶Σ → SUð2Þ act as unitary
operators Ug on the LQG Hilbert space. They transform
the basic field operators as

UgheU
†
g ¼ gðtðeÞÞhegðsðeÞÞ−1;

UgE
ðeÞ
k ðpÞU†

g ¼ π1ðgðpÞ−1ÞjkEðeÞ
j ðpÞ: ð5:1Þ

As a consequence, using Eqs. (3.12), (4.14), (4.35), (3.14)

that define dWH in terms of E and holonomies h, we find
that it transforms as

Ug
dWHU

†
g ¼ gðx0ÞdWHgðx0Þ−1; ð5:2Þ

where x0 ∈ ∂SH denotes the special point on the boundary

of SH. Thus dWH transforms exactly as a holonomy
beginning and ending in x0.

B. Matrix elements

The quantum surface holonomyoperatorscW are operator-
valued matrices. In the following, we will consider their

3Recall that we have already imposed gauge invariance par-
tially on the classical side by demanding that jjEðuþdÞjj2 ¼ 0. The
result for χs will probably change without this assumption.
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components. In particular, we will take a look at the
adjointness and commutation relations between matrix
elements of QDK½Wp� and WH and compare them to those
from known quantum group deformations of SUð2Þ. Wewill
always assume that the holonomies act on single puncture
states. Wewill distinguish the case of a one-sided and a two-
sided puncture. We also assume a relative orientation
between the surface S and the intersecting edge as in

Fig. 1. Changing the orientation of S will change the sign
of the second term in (5.47) and (5.54), and hence some signs
in the equations following them.
Let us first consider the operator bWp on a one-sided

puncture. We explicitly consider only the action on
Hðj;0ÞðpÞ. The action on Hð0;jÞðpÞ just differs by a factor
of −1 in bEðpÞ. In the previous section, we found

QDK½Wp�jHðj;0ÞðpÞ ¼ ξcðjÞidHðj;0ÞðpÞ ⊗ 12 þ iξsðjÞκmncEm ⊗ τn

¼
 
ξcðjÞidHðj;0ÞðpÞ − 1

4
ξsðjÞcE3 − 1

4
ξsðjÞðcE1 − icE2Þ

− 1
4
ξsðjÞðcE1 þ icE2Þ ξcðjÞidHðj;0ÞðpÞ þ 1

4
ξsðjÞcE3

!

¼
 
ξcðjÞidHðj;0ÞðpÞ − 1

4
ξsðjÞcE3 − 1

4
ξsðjÞcE−

− 1
4
ξsðjÞcEþ ξcðjÞidHðj;0ÞðpÞ þ 1

4
ξsðjÞcE3

!
; ð5:3Þ

where we have now introduced the notation

cE� ≔ cE1 � icE2: ð5:4Þ

Using the fact that the bEi are skew-adjoint, we can write

QDK½Wp�jHðj;0ÞðpÞ ¼
� ba bb
−bb† ba†

�
; ð5:5Þ

with

ba ¼ ξcðjÞidHðj;0ÞðpÞ −
1

4
ξsðjÞcE3; ð5:6Þ

bb ¼ −
1

4
ξsðjÞcE−: ð5:7Þ

For the double puncture, the structure is similar:

QDK½Wp�jHðj;jÞðpÞ ¼ χcðjÞidHðj;jÞðpÞ ⊗ 12 þ iχsðjÞκmn½bEðuÞ
m − bEðdÞ

m � ⊗ τn

¼

0B@ χcðjÞidHðj;jÞðpÞ − 1
4
χsðjÞdEðuÞ

3 −dEðdÞ
3 − 1

4
χsðjÞðdEðuÞ

− −dEðdÞ
− Þ

− 1
4
χsðjÞðdEðuÞ

þ −dEðdÞ
þ Þ χcðjÞidHðj;jÞðpÞ þ 1

4
χsðjÞðdEðuÞ

3 −dEðdÞ
3 Þ

1CA
≕
� ba bb
−bb† ba†

�
ð5:8Þ

with

ba ¼ χcðjÞidHðj;jÞðpÞ −
1

4
χsðjÞðdEðuÞ

3 −dEðdÞ
3 Þ ð5:9Þ

bb ¼ −
1

4
χsðjÞðdEðuÞ

− −dEðdÞ
− Þ: ð5:10Þ

We will now turn to the matrix elements ofcW. Recall from
(3.12) that

dWHjHðj;0ÞðpÞ ¼ h−1αp QDK½Wp�hαp : ð5:11Þ

We first observe that the matrix elements of hαp and h−1αp
commute with the bEi, and hence withQDK½Wp� because hαp

HANNO SAHLMANN and THOMAS ZILKER PHYS. REV. D 102, 026009 (2020)

026009-12



runs tangential to the surface and there is no intertwiner
connecting hαp and the holonomy of the puncture. Second,
we also notice that products of matrices with the adjoint-
ness structure (5.5) again have the same structure. The
matrices on the right-hand side of (5.11) are operator
valued, but, as observed, the entries of the holonomies
commute with those of Wp. We can thus conclude that

dWHjHðj;0ÞðpÞ ¼
� ba bb
−bb† ba†

�
: ð5:12Þ

Next, we can determine the matrix entries of dWH. To this
end, note the intertwiner properties

gτig−1 ¼ τjπ1ðgÞji; π1ðg−1Þn0nκnm ¼ κm
0n0π1ðgÞmm0

ð5:13Þ

of the τi and κ. As a consequence, we can write

dWHjHðj;0ÞðpÞ

¼ ξcðjÞidHðj;0ÞðpÞ ⊗ 12 þ iξsðjÞκmncEm ⊗ h−1αp τnhαp

¼ ξcðjÞidHðj;0ÞðpÞ ⊗ 12 þ iξsðjÞπ1ðh−1α Þn0nκmncEm ⊗ τn0

≕ ξcðjÞidHðj;0ÞðpÞ ⊗ 12 þ iξsðjÞκmnbEm ⊗ τn0 ; ð5:14Þ

where we have introduced

bEm ¼ hm
0
m
cEm0 : ð5:15Þ

Note that the last expression in (5.14) is of identical form as
that in (5.3), except for the replacement of cEm by bEm.
Therefore, we have

ba ¼ ξcðjÞidHðj;0ÞðpÞ −
1

4
ξsðjÞ bE3; ð5:16Þ

bb ¼ −
1

4
ξsðjÞcE−: ð5:17Þ

The same reasoning applies to the case of the two-sided
puncture, hence

dWHjHðj;jÞðpÞ ¼
� ba bb
−bb† ba†

�
ð5:18Þ

with

ba ¼ χcðjÞidHðj;jÞðpÞ −
1

4
χsðjÞðdEðuÞ

3 −dEðdÞ
3 Þ; ð5:19Þ

bb ¼ −
1

4
χsðjÞðdEðuÞ

− −dEðdÞ
− Þ: ð5:20Þ

Let us remark that the adjointness structure of bW and cW
mirrors that of an SU(2) element in the defining represen-
tation. The remaining condition on the matrix components
of an SU(2) element is given by the requirement that the
determinant equals unity. We will turn to this requirement
in the next subsection. Here, we will demonstrate that we
are far from classical SU(2), by calculating the commuta-
tors of matrix elements.
Let us first consider the case of the one-sided puncture.

Using the fact that the bEi have su(2) commutators in this
case, we find

½ba;bb� ¼ −
iξsðjÞ
4

bb; ½ba;bb†� ¼ iξsðjÞ
4

bb†; ð5:21Þ

½ba;ba†� ¼ 0; ½bb;bb†� ¼ iξsðjÞ
4

ðba − ba†Þ; ð5:22Þ

½bb;ba†� ¼ ½ba;bb�; ½bb†;ba†� ¼ ½ba;bb†�: ð5:23Þ

Using the fact that the holonomies hα in the surface
commute with the bEi, and that π1ðhαÞ is an orthogonal
matrix, one can show that also the bEm satisfy su(2)
commutation relations, and hence in complete analogy

½ba; bb� ¼ −
iξsðjÞ
4

bb; ½ba; bb†� ¼ iξsðjÞ
4

bb†; ð5:24Þ

½ba; ba†� ¼ 0; ½bb; bb†� ¼ iξsðjÞ
4

ðba − ba†Þ; ð5:25Þ

½bb; ba†� ¼ ½ba; bb�; ½bb†; ba†� ¼ ½ba; bb†�: ð5:26Þ

For the double-sided puncture, the reasoning is again
analogous. Note however, that in contrast to the sum
of two angular momenta the difference of two angular
momenta is not again an angular momentum operator in the
sense of commutation relations. This holds in particular fordEðuÞ −dEðdÞ and dEðuÞ −dEðdÞ. For example

½dEðuÞ
− −dEðdÞ

− ;
d
EðuÞ
þ −dEðdÞ

þ � ¼ 2i
d

EðuþdÞ
3 :

This changes the commutation relations of the matrix
elements slightly. We will only give the relations for the
matrix elements of the full surface holonomy, since the
ones for cWp are structurally identical. They are

½ba;bb� ¼ iχ2sðjÞ
16

dEðuþdÞ
− ; ½ba;bb†� ¼ iχ2sðjÞ

16

d
EðuþdÞ
þ ; ð5:27Þ

½ba; ba†� ¼ 0; ½bb; bb†� ¼ −
iχ2sðjÞ
8

d
EðuþdÞ
3 ; ð5:28Þ

½bb; ba†� ¼ ½ba; bb�; ½bb†; ba†� ¼ ½ba; bb†�: ð5:29Þ
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Let us finally compare these commutation relations to those
appearing in standard quantum deformations of SU(2),
such as SUqð2Þ (see for example [35]). At least in the
standard representations, the latter have a different struc-
ture. For example it would hold that ba bb ¼ qbb ba which
would correspond to a commutator

½ba; bb�SUqð2Þ ¼ ðq − 1Þbb ba ¼ ðqþ 1Þba bb :
By comparison, the commutators of surface holonomies are
linear in the matrix elements. Thus, we are very likely
dealing with a different mathematical object.

C. Determinant

In the present section, we will consider the determinant
of surface holonomy operators. The determinant is espe-
cially relevant if we aim to solve the quantized isolated
horizon boundary condition by states in a representation of
the standard holonomy-flux (HF) algebra: The holonomies
of the HF-algebra are SUð2Þ-valued functionals and there-
fore their determinant is unity.
We define

detδdWH≡detδ

� ba bb
−bb† ba†

�
≔ baba†þδbbbb†þð1−δÞbb†bb

ð5:30Þ

where the parameter δ labels some of the possible operator
orderings. We will first consider the transformation behav-
ior under gauge transformations. We parametrize a classical
SU(2) element as

g ¼
�

α β

−β̄ ᾱ

�
; α; β ∈ C with jαj2 þ jβj2 ¼ 1:

A tedious but straightforward calculation shows that

detδ½gdWHg−1� ¼ baba†þbbbb†½jαj2jβj2þδjαj4þð1−δÞjβj4�
þbb†bb½jαj2jβj2þδjβj4þð1−δÞjαj4�
þðba†bb†−bb† ba†Þð2δ−1Þ: ð5:31Þ

Thus

det1
2
½gdWHg−1� ¼ det1

2
½dWH� ð5:32Þ

and, in view of (5.2), the symmetrically ordered determi-
nant is gauge invariant. This also implies that

det1
2
½dWH� ¼ det1

2
½cWp�: ð5:33Þ

Altogether, the symmetric ordering seems to be preferred,
and wewill often restrict consideration to this case. We start
with the action on the one-sided puncture:

detδdWHjHðj;0ÞðpÞ ¼ ξcðjÞ2idHðj;0ÞðpÞ −
ξsðjÞ2
16

ð bE3Þ2 −
ξsðjÞ2
16

½ð bE1Þ2 þ ð bE2Þ2 þ iδ½ bE1; bE2� þ ið1 − δÞ½ bE2; bE1��

¼ ξcðjÞ2idHðj;0ÞðpÞ −
ξsðjÞ2
16

bE2 þ ið1 − 2δÞ ξsðjÞ
2

16
bE3

¼
�
ξcðjÞ2 þ

ξsðjÞ2
8

Δj

�
idHðj;0ÞðpÞ þ ið1 − 2δÞ ξsðjÞ

2

16
bE3: ð5:34Þ

For symmetric ordering this reduces to

det1
2

dWHjHðj;0ÞðpÞ ¼
�
ξcðjÞ2 þ

ξsðjÞ2
8

Δj

�
idHðj;0ÞðpÞ: ð5:35Þ

For the two sided puncture, the determinant acts as

detδdWHjHðj;jÞðpÞ ¼ χcðjÞ2idHðj;jÞðpÞ −
1

16
χsðjÞ2½ðdEðuÞ

3 Þ
2

þ ðdEðdÞ
3 Þ

2

− 2
d
EðuÞ
3

d
EðdÞ
3 �

−
1

16
χsðjÞ2½ðdEðuÞ

1 Þ
2

þ ðdEðuÞ
2 Þ

2

þ ðdEðdÞ
1 Þ

2

þ ðdEðdÞ
2 Þ

2

− 2
d
EðuÞ
1

d
EðdÞ
1 −2

d
EðuÞ
2

d
EðdÞ
2

þ ið2δ − 1Þ½dEðuÞ
1 ;
d
EðuÞ
2 � þ ið2δ − 1Þ½dEðdÞ

1 ;
d
EðdÞ
2 ��

¼ χcðjÞ2idHðj;jÞðpÞ −
1

16
χsðjÞ2½ðdEðuÞÞ2 þ ðdEðdÞÞ2 − 2dEðuÞ ·dEðdÞ� − i

16
ð2δ − 1ÞχsðjÞ2 dEðuþdÞ

3 : ð5:36Þ

For the symmetric ordering, this reduces to
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det1
2

dWHjHðj;jÞðpÞ ¼ χcðjÞ2idHðj;jÞðpÞ

þ 1

8
χsðjÞ2½2ΔjidHðj;jÞðpÞ þdEðuÞ ·dEðdÞ�;

ð5:37Þ

and on the gauge-invariant Hilbert space to

det1
2

dWHjHðj;jÞðpÞ ¼ χcðjÞ2idHðj;jÞðpÞ

þ 1

8
χsðjÞ2½2ΔjidHðj;jÞðpÞ − ðdEðuÞÞ2�

¼ ðχcðjÞ2 þ
1

2
χsðjÞ2ΔjÞidHðj;jÞðpÞ: ð5:38Þ

We see that, in general, the eigenvalues of the determinant
operator differ from 1. However, there is a limit in which
they get close. Recall that ξcðjÞ and ξsðjÞ [and similarly
χcðjÞ and χsðjÞ] are both power series in the parameter c
introduced in (3.8). For small c,4 we can consider the
Taylor expansion of the eigenvalue of the determinant
operator to second order. We get

ξcðjÞ ≈ 1þ ð2jþ 1Þ2c2
32

ð5:39Þ

and

ξsðjÞ ≈OðcÞ; ð5:40Þ

and a similar result for χcðjÞ and χsðjÞ. This shows that for
small c we are in a regime in which dWH is close to a
classical SU(2) element.
Another regime in which the determinant is close to 1

can be seen from the plots in Fig. 2. For fixed c ¼ 8πi=k
with k ∈ N, the eigenvalues oscillate as a function of j with

a period set by k, but they tend to 1 quickly as j gets larger.
Additionally, it appears that there are also certain small
values of j for which the eigenvalue is very close to 1.
For example, in the plot for k ¼ 3 there is a series
f5=2; 4; 11=2; 7; 17=2;…g of values for j with determinant
close to 1. One notices a spacing of k=2. For k ¼ 101 there
is a similar series f1=2; 3=2; 5=2; 7=2;…g.

D. Adjoint operator

As we have seen in Sec. IV, the quantum operator
associated with a surface holonomy WH takes the form

dWHjHðj;jÞðpÞ ¼ χcðjÞidHðj;jÞðpÞ ⊗ 12

þ iχsðjÞκmnπðjÞ½bEm� ⊗ h−1αp τnhαp ; ð5:41Þ

where p denotes the location of the puncture. Quantum
surface holonomies can thus be regarded as two-by-two
matrices whose entries are operators acting on spin network
states. The adjoint bW†

H is thus given by transposing the two-
by-two matrix and then taking the adjoint of each entry as
an operator. As both χcðjÞ and χsðjÞ are real, this leads to
cW†

HjHðj;jÞðpÞ ¼ χcðjÞidHðj;jÞðpÞ ⊗ 12

− iχsðjÞκmnπðjÞ½bEm� ⊗ h−1αp τnhαp ð5:42Þ

for the action of the adjoint of a quantum surface holonomy
on a single puncture state. Now, recall that, classically,
surface holonomies are elements of SU(2) and, as such,
their adjoint is equal to the inverse of the surface holonomy.
Furthermore, the inverse surface holonomy is equal to the
surface holonomy associated with the (horizontally) inverse
homotopy,

W−1
H ¼ WH−1 : ð5:43Þ

It is not clear, however, whether the latter property carries
over to the quantum theory, since the horizontal inverse of a
homotopy is only an inverse on the level of equivalence

FIG. 2. The eigenvalues of the determinant for c ¼ 8πi=k with k ¼ 3 (left) and k ¼ 101 (right).

4In the application to black holes, c contains the area of the
black hole horizon in the denominator, thus we can assume c to
be small in the case of macroscopic black holes, for example.
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classes with respect to thin homotopy and the quantum
surface holonomy operators are not well defined on those
equivalence classes. Therefore, let us next evaluate bWH−1 on
a single-puncture state and compare the result to (5.42).
The horizontal inverse of a homotopy Hðs; tÞ is given

by H−1ðs; tÞ ¼ Hðs; 1 − tÞ. It is immediate to see from
Eq. (2.9) that the inverse homotopy induces the inverse
orientation on the surface SH. Other than that, the integral is
over the same surface and therefore, comparing with (3.12),
we have

cWH−1 jHðj;jÞðpÞ ¼ h−1α̃p ðQDK½exp ð−cTiκ
ijEjðpÞÞ�jHðj;jÞðpÞÞhα̃p

¼ χcðjÞidHðj;jÞðpÞ ⊗ 12

− iχsðjÞκmnπðjÞ½bEm� ⊗ h−1α̃p τnhα̃p : ð5:44Þ

This is almost identical to the action of the adjoint operator.
Note, however, that the holonomies conjugating the gen-
erators of su(2) in the second term in (5.44) are calculated
along different paths than in (5.42). However, in the
absence of further punctures, the corresponding quantum
states are related by a diffeomorphism. This indicates that
the quantum analog of (5.43) might hold on single-
puncture states at the diffeomorphism-invariant level.
Another class of states on which it might hold are those
where the connection is flat on the part of the surface

enclosed by α̃−1p ∘ αp. This includes in particular the single-
puncture states satisfying the IH boundary condition on SH.

E. Products of quantum surface holonomies

Let us now consider products of surface holonomy
operators. We will again restrict our discussion to the
one puncture case. For the setup and notation see again
Fig. 1 and the text surrounding it. We will be working in the
standard basis fτig of su(2) in which

κik ¼ −2δik; κik ¼ −
1

2
δik: ð5:45Þ

Wewill also use the fact that the basis can be regarded as an
intertwiner,

gτig−1 ¼ τjπ1ðgÞji: ð5:46Þ

We recall that the action of a single surface holonomy for
the case depicted in the upper part of Fig. 1 (one-sided
puncture) is given by

ð5:47Þ

where

ð5:48Þ

The negative sign in (5.47) is due to the fact that the edge e0 is assumed as incoming with respect to SðHÞ, and we have used
(5.46) to rewrite the holonomies connecting the puncture with the source of H. The double application of the surface
holonomy operator then gives

ð5:49Þ

with

This state is not linearly independent from and . In fact, it decomposes into a linear combination of them due to

the fact that the latter are spin networks. We will use

τiτi0 ¼ −
1

4
δii01þ 1

2
ϵii0k0δ

kk0τk ð5:50Þ

to decompose the first product of τs. The orthogonality of the matrix π1ðheÞ simplifies the first resulting term, while for the
second we obtain from the intertwiner property of ϵ

ϵi0jkπ1ðhÞjj0π1ðhÞkk0 ¼ ϵi00j0k0π1ðh−1Þi00 i0 :
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This gives

where in the last line we have used

ϵll
0
nτlτl0 ¼

1

4
ϵll0nδ

lmδl
0m0
τmτm0 ¼ 1

8
ϵll0nδ

lmδl
0m0
ϵmm0k0δ

kk0τk ¼
1

4
δknτk

because of (5.45) and (5.50). We can further simplify

with

πjðκabτaτbÞ ¼
1

2
jðjþ 1Þ1≕Δj1:

Thus we find

ð5:51Þ

ð5:52Þ

for the product of two surface holonomies and the trace thereof. We also see from this calculation that the space spanned by

the states and is closed under the action of the surface holonomy operator. This action was already given in

(5.47) for the former, while on the latter state, the action is explicitly given by

ð5:53Þ

In the case that the holonomy runs through the puncture (lower part of Fig. 1), there are some changes to the above result.
The action of the surface holonomy is now

ð5:54Þ
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where

Acting a second time, one obtains

where now

We thus get

ð5:55Þ

ð5:56Þ

We are also interested in products involving the (matrix and operator) adjoint defined in (5.42). We have

and hence

Since we have

HANNO SAHLMANN and THOMAS ZILKER PHYS. REV. D 102, 026009 (2020)

026009-18



ξcðjÞ ¼ ξcðjÞ; ξsðjÞ ¼ ξsðjÞ;

and

χcðjÞ ¼ χcðjÞ; χsðjÞ ¼ χsðjÞ;

this simplifies to

ð5:57Þ

ð5:58Þ

ð5:59Þ

One can also ask about products of surface holonomies that
are not contracted, and in particular, about their commu-
tators. These questions can be answered using the results of
Sec. V B. In particular, (5.24)–(5.29) give the commutators.
We would like to point out that these commutators vanish
on two-sided gauge-invariant punctures,

ð5:60Þ

This is interesting, since it shows that on these states, the
surface holonomies have the same adjointness and com-
mutation relations as ordinary holonomy operators in the
holonomy-flux algebra of loop quantum gravity.

F. Traces, relations, other irreducible representations

We have already considered traces of products of
surfaces holonomies. We will now discuss traces a bit
more systematically. Consider the trace of a single surface
holonomy,

trðdWHÞ ¼ aþa†: ð5:61Þ

There is obviously no ordering ambiguity, and the traces are
automatically gauge invariant:

trðgdWHg−1Þ ¼ trðdWHÞ for g ∈ SUð2Þ: ð5:62Þ

On single punctures this implies trðdWHÞ ¼ trðcWpÞ, and
hence

trdWHjHðj;0ÞðpÞ ¼ 2ξcðjÞidHðj;0ÞðpÞ;

trdWHjHðj;jÞðpÞ ¼ 2χcðjÞidHðj;jÞðpÞ: ð5:63Þ

We note that there are classical relations between the
objects we have considered so far. For example, the relation

detðWÞ ¼ 1

2
ððtrWÞ2 − trðW2ÞÞ ð5:64Þ

holds for any2 × 2matrixW. This is a relationwhich is intact
in the quantum theory. For example, we can show that
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For the two-sided puncture, we similarly have

We can also use the traces above to find expressions for the traces of surface holonomies in different representations of
SU(2). For example,

trðπ1ðgÞÞ ≔
1

2
½trðg2Þ þ trðgÞ2� for g ∈ SUð2Þ: ð5:65Þ

We can thus define

trπ1ðdWHÞ ¼
1

2
½trðdWH

2Þ þ trðdWHÞ2�;

and we find

ð5:66Þ

Similarly,

ð5:67Þ

Assuming detδ dWH ¼ 1, we note that both eigenvalues are of the form

λj ¼ 4 cos2 ðð2jþ 1ÞθÞ − 1 with θ ¼ −
ic
8
;−

ic
4
: ð5:68Þ

This is interesting because it can be rewritten as

λj ¼ 3 − 4sin2ðð2jþ 1ÞθÞ ¼ 3sin2ðð2jþ 1ÞθÞ − 4sin3ðð2jþ 1ÞθÞ
sin2ðð2jþ 1ÞθÞ

¼ sin ð3ð2jþ 1ÞθÞ
sin ðð2jþ 1ÞθÞ

¼ q3ð2jþ1Þ − q−3ð2jþ1Þ

q2jþ1 − q−ð2jþ1Þ

¼ ½3ð2jþ 1Þ�q
½2jþ 1�q

with q ¼ eiθ: ð5:69Þ

Here we have used the quantum integers

½n�q ¼
qn − q−n

q − q−1
: ð5:70Þ

The eigenvalues are quotients of the Chern-Simons expectation value for holonomies around the Hopf link and the unlink,
respectively, [36] and thus arguably the expectation value of a surface holonomy around a Chern-Simons puncture.
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VI. APPLICATION TO BLACK HOLES

In this section, we want to come back to our original
motivation for investigating quantum operators associated
with surface holonomies. Namely, we want to use the
quantum surface holonomies to quantize the isolated
horizon boundary condition (IHBC)

{�HF ¼ C{�Hð�EÞ: ð6:1Þ

As already stated in Sec. II, this condition is equivalent to

WH½A;C{�Hð�EÞ� ¼ hHð1;:Þ½A�; ð6:2Þ

which has to be satisfied for all homotopies H, for which
the surface SH lies entirely withinH. Recall our assumption
that all homotopies H start from the trivial path at the point
at which the surface holonomies transform. Also, note that
we can evaluate these conditions for any two-dimensional
surface H. In this section, we will take H to be homeo-
morphic to a 2-sphere, but we will not assume that it is the
spatial section of an isolated horizon. Ideally, we would
find states in the quantum theory on which the quantum
version of the IHBC is exactly satisfied. However, from our
results in the previous section we can conclude that one-
puncture states and two-puncture states cannot be solutions
to this quantum operator equation. The reason is that
holonomies are quantized as multiplication operators in
LQG. Therefore, they act by multiplying the state with an
element of SU(2), which necessarily has unit determinant.
The determinant of the quantum surface holonomies,
however, does not equal unity for any choice of spin on
such states. Nevertheless, we have seen that for some spins
the determinant is very close to unity, which indicates that
their behavior may be similar to real SU(2) elements on
some states. Therefore, instead of trying to implement the
quantum isolated horizon boundary condition (QIHBC)
exactly, we will take it as a definition for some kind of
quantum holonomies replacing the standard holonomy
operators on H.5 We will regard states on which these
quantum holonomies behave closely to classical holono-
mies as solutions to the QIHBC.
Since we are interested in surfaces of spherical topology

here, we are faced with the topological property of such
surfaces that a circle on a 2-sphere S2 forms the boundary
of two distinct surfaces. In terms of homotopies, this
translates to the existence of two distinct equivalence
classes of homotopies between any two paths sharing their
endpoints. Let us denote representatives of these equiv-
alence classes by H1 and H2, respectively. This now
introduces an ambiguity in the definition of holonomies

via the QIHBC. Consider any circular path γ on S2. Without
loss of generality, we will assume γ to coincide with the
equator of S2. We can then define the holonomy hγ using
Eq. (6.2) in two different ways: either by

hγ ¼ WH1
ð6:3Þ

or by

hγ ¼ WH2
; ð6:4Þ

where H1 and H2 now denote the homotopies from the
constant path at the starting and end point p of γ to γ by
passing over the northern and southern hemisphere of S2,
respectively (see also Figs. 3 and 4). Therefore, only states
on which we have

WH1
¼ WH2

ð6:5Þ

qualify as candidates for implementing the QIHBC.
Furthermore, classical holonomies satisfy the relation

hγ−1 ¼ h−1γ : ð6:6Þ

If we want this property to hold also for the holonomies that
are defined in terms of surface holonomies, then we need to
restrict ourselves to states on which the relation

FIG. 3. Single puncture state.

FIG. 4. Double puncture case.

5This approach is supported by the fact that, in the original
works on quantum isolated horizons in LQG, the holonomies on
the horizon also did not take values in SU(2) but rather in a
quantum group deformation thereof.
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WH1
¼ hγ ¼ h−1

γ−1
¼ W−1

H−1
2

ð6:7Þ

holds. Here,H−1
2 denotes the horizontal inverse ofH2 in the

path 2-groupoid, i.e., it is a homotopy from the trivial path
at x0 to γ−1. We can equivalently write this relation between
surface holonomies on a 2-sphere as

WH1
WH−1

2
¼ 12 ¼ WH−1

2
WH1

; ð6:8Þ

where we have now avoided the use of inverse surface
holonomies. In the following, we will use the quantum
version of (6.8) as a measure for how closely the holon-
omies defined via the quantized IHBC, i.e., in terms
of quantum surface holonomies, resemble classical path
holonomies. In the remainder of this section, we will analyze
quantized versions of (6.5) and (6.8). Throughout this
section, we will only consider two-edge punctures. We
deem this reasonable because, as we have seen in the
previous section, the behavior of the quantum surface
holonomy operators resembles that of their classical counter-
parts more closely when evaluated on this type of puncture.

A. Single two-edge puncture

Let us first consider the simple case of a single puncture
as depicted in Fig. 3. Wewill refer to this one-puncture state
as Ψ1P. Since there is no puncture on the southern hemi-
sphere, we have

cWH2
jΨ1Pi ¼ 12jΨ1Pi: ð6:9Þ

On the other hand, we have

cWH1
jΨ1Pi ¼ χcðjÞ12jΨ1Pi − 2iχsðjÞκmnτnπ

ðjÞ½bEm�jΨ1Pi:
ð6:10Þ

Therefore, the consistency condition (6.5) is only satisfied
for spins j, such that

χcðjÞ ¼ 1 and χsðjÞ ¼ 0: ð6:11Þ

As there are no integer or half-integer spins satisfying this
condition, we can already conclude that there are no single-
puncture solutions to the quantized IHBC. Note that for
j ¼ 0, the condition reduces to

χcð0Þ ¼ 1; ð6:12Þ

since πðjÞðbEiÞ equals zero in the j ¼ 0 representation. This
is of course trivially satisfied, as quantum surface holon-
omies act as the identity on punctures with j ¼ 0, and it
implies that spin network graphs that do not puncture the
sphere under consideration are solutions to the quantized
IHBC. However, the area eigenvalue of the sphere vanishes
on such states and thus the sphere would be unobservable.

B. Double two-edge puncture

Let us go one step further and take a look at a situation
with two punctures. Consider a spin network consisting of a
single edge that punctures the sphere H in two points
labeled p1 and p2. Without loss of generality, we assume
that p1 and p2 coincide with the north and south poles of
the sphere (as illustrated in Fig. 4). This state will be
referred to as Ψ2P. Let us start again with checking the
consistency condition (6.5). This time we have

cWH1
jΨ2Pi ¼ χcðjÞ12jΨ2Pi − 2iχsðjÞκmnτnπ

ðjÞ½bEm�jΨ2Pi:
ð6:13Þ

Recall that the minus sign in front of the second term is due
to the different orientations of the spin network edge
puncturing the surface at p1 and the normal on the surface
whose orientation is induced by using the homotopy H1 as
a parametrization. Noting that on the southern hemisphere
the normal induced by H2 again points upwards, we can
immediately conclude that we get the same expression

cWH2
jΨ2Pi ¼ χcðjÞ12jΨ2Pi − 2iχsðjÞκmnτnπ

ðjÞ½bEm�jΨ2Pi
ð6:14Þ

for the surface holonomy associated with H2. However,
they are not exactly the same. We have hidden the
conjugation with the holonomies from and to the distin-
guished point x0 of the surface by writing E instead of E.
The paths along which these holonomies are calculated are
different for H1 and H2. One may hope that this difference
disappears at the diffeomorphism invariant level. For the
moment, we will assume that we can move the holonomy
from x0 to p1 as illustrated in Fig. 5 (and accordingly
for p2).
Let us turn our attention to the other consistency

condition (6.8). As discussed above, this condition encodes
the property

hγ−1 ¼ h−1γ ð6:15Þ

FIG. 5. Moving of holonomies.
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of classical path holonomies. In terms of surface holono-
mies, we now need to consider the two conditions

cWH1
cWH−1

2
Ψ2P ¼ 12Ψ2P ð6:16Þ

and

cWH−1
2

cWH1
Ψ2P ¼ 12Ψ2P: ð6:17Þ

One might be tempted now to conclude from our previous
results that these two conditions are satisfied on states
where the surface holonomies have unit determinant.

However, this is not the case. While we have found in
the previous section that

ð6:18Þ

and

ð6:19Þ

which, when combined with our statements in the previous
paragraph, would seem to imply that

ð6:20Þ

it is important to remember that the first equation in this
deduction only holds if a certain diffeomorphism is applied.
Therefore, it would probably be more precise to write it as

ð6:21Þ

where the diffeomorphism D2←1 moves the attachment
point from p1 to p2. With this notation it is obvious that the
argument (6.20) already fails in the first step. We will
therefore have to evaluate conditions (6.16) and (6.17)
independently. Let us start with the latter.
In order to evaluate the left-hand side, let us recall the

action of the surface holonomy operator again, which was
calculated in Sec. IV to be

ð6:22Þ

Here, we have introduced the graphical notation

ð6:23Þ

ð6:24Þ

where hp1→p2
denotes the holonomy along the segment of

the spin network edge between p1 and p2, Tl is a generator
of the Lie algebra su(2) in the spin j representation and h̃
denotes a holonomy from the starting point x0 of the
surface holonomy to the point p1. Analogously, we will
also use

ð6:25Þ

ð6:26Þ

We can now calculate how the operator appearing on the
left-hand side of condition (6.17) acts on the spin network
state under consideration and we obtain

ð6:27Þ

The spin network states appearing in this result are not independent. We will assume

ð6:28Þ
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where

ð6:29Þ

and, consequently, we get

ð6:30Þ

This last state can be expressed as a linear combination of the other two via

ð6:31Þ

where we used that ΔðjÞ ¼ jðjþ1Þ
2

. Putting everything together, we end up with

ð6:32Þ

If we now want the state to satisfy the quantized isolated

horizon boundary condition, the right-hand side of

Eq. (6.32) has to be equal to . We

can therefore read off the equations

χcðjÞ2 þ αβ
jðjþ 1Þ

4
χsðjÞ2 ¼ 1; ð6:33Þ

2iðβ − αÞχcðjÞχsðjÞ − αβχsðjÞ2 ¼ 0; ð6:34Þ

that need to be fulfilled by α, β, and j. Note that, in
principle, α and β are allowed to depend on j. We recognize
that (6.33) will reduce to the condition of the surface
holonomies having unit determinant if β ¼ α−1. Since this
condition has already shown up quite often during the
analysis of the properties of surface holonomies, this seems
like a natural condition and we will assume that α and β
satisfy the relation above. However, we get an additional
condition from (6.34). This can be solved by choosing α as
a function of j satisfying
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2i
αðjÞ ð1 − αðjÞ2ÞχcðjÞ ¼ χsðjÞ; ð6:35Þ

which implies that αðjÞ has to be a solution to the quadratic
equation

αðjÞ2 þ χsðjÞ
2iχcðjÞ

αðjÞ − 1 ¼ 0: ð6:36Þ

We therefore get

αðjÞ ¼ χsðjÞ
4χcðjÞ

i�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
χsðjÞ
4χcðjÞ

�
2

s
ð6:37Þ

and we immediately see that αðjÞ is purely imaginary if
j χsðjÞ
4χcðjÞ j > 1. On the other hand, if j χsðjÞ

4χcðjÞ j ≤ 1, we have

jαðjÞj ¼ 1 and αðjÞ will therefore just be a phase. Actually,
the latter is the case for most values of j. This can for
example be seen from Fig. 6, where we have plotted the full
discriminant

D ≔ 1 −
�
χsðjÞ
4χcðjÞ

�
2

: ð6:38Þ

Remember that χs depends on the constant

c ¼ −8πGℏβi
4πð1 − β2Þ

aH
≕ −

8πi
k

; ð6:39Þ

where

k ¼ aH
4πl2Pβð1 − β2Þ ; ð6:40Þ

lP ¼ ffiffiffiffiffiffiffi
ℏG

p
denotes the Planck length and aH is the

classical area of the horizon in the IHBC. We can now
either keep aH as a free classical parameter, or we can
replace it with the eigenvalue of the area operator in the
state under consideration. In Fig. 6, we show plots for
both options.6

The plots to the left and in the middle are for fixed values
of k (k ¼ 3 and k ¼ 101, respectively), while for the plot to
the right we used

kðjÞ ¼ 4

1 − β2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

p
ð6:41Þ

following directly from inserting the area eigenvalue

aH ¼ 16πβl2P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

p
ð6:42Þ

into the definition of k. All three plots show that the
discriminant D tends to 1 as j increases. However, the
details differ between the two choices for k. The plots for
fixed k show some periodic behavior (with period approx-
imately k

4
in the plot for k ¼ 101). Also, the convergence of

D to unity seems slower in this case. The fast convergence
rate in the case where k ¼ kðjÞ can also be seen more
clearly from Fig. 7, where we have plotted the difference

FIG. 6. This figure shows the discriminant D as a function of j. From left to right, the plots are for k ¼ 3, k ¼ 101, and k ¼ kðjÞ,
respectively.

FIG. 7. We plot the deviation from 1 of the discriminant D for
k ¼ kðjÞ.

6Note that in both cases we still have the Barbero-Immirzi
parameter β as a free parameter and the numerical values of the
solutions will depend on its value. For all plots in this section we
have used β ¼ 0.274. This is the value determined from the
entropy calculation for type I isolated horizons with gauge group
SU(2) [36–38].
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1 −D. This deviation from 1 is less than 10−4 for all spins
greater than 20, and it seems to decrease by another order of
magnitude before reaching spin 50. This implies that if j
becomes large enough, the solutions for α will approx-
imately become �1. However, this way of solving (6.34)
has a serious drawback. Recall that in order to solve the
QIHBC, a state needs to satisfy not only (6.17) but also
(6.16). The latter condition leads to almost the same set of
equations, but with the opposite sign in the second term of
Eq. (6.34). We thus get a different solution for α, implying
that conditions (6.16) and (6.17) cannot be solved simulta-
neously using this approach. Fortunately, we can also solve
(6.34) by requiring that χsðjÞ ¼ 0. Although this works for
any choice of α and β, we will still demand that β ¼ α−1 in
order to identify Eq. (6.33) with the unit determinant
condition. We can already see from Fig. 7, where we have
plotted

1 −D ¼
�
χsðjÞ
4χcðjÞ

�
2

; ð6:43Þ

that χsðjÞ will approach 0 as j grows large. This is
confirmed in Fig. 8, where we have plotted χsðjÞ for the
same three choices of k as before. The overall tendency of
converging to 0 is again the same in all three cases.
However, while the overall convergence is again faster
in the case where k depends on j, there are individual spins
in the plots for fixed k, for which χsðjÞ is considerably
closer to zero than for any spin less than 70 in the
j-dependent case.

VII. CONCLUSION AND OUTLOOK

In the preceding sections, we have presented three sets of
results:
(1) We have defined the surface-ordered, exponentiated

fluxes dWH on a large class of states in the Hilbert
space of LQG.

(2) We have explored many of their properties, such as
commutation relations and the spectra of their trace
and determinant. Interestingly, the dWH are in some
sense close to classical group elements, but by no
means in all aspects.

(3) We have started to analyze what kind of states fulfil
the quantum version of the isolated horizon boun-
dary condition. We find that a relevant operator
seems to be the determinant of the dWH on the
horizon. But the states we look at are too limited to
make any solid statements about quantized IHs.

One fundamental limitation of our method is that whiledWH
determines the holonomy around SH, it will create new,
undetermined holonomies when acting on quantum states.
We suspect that this is responsible for the problem that,
although a classical surface holonomy is invariant under

changes of the homotopy generating the surface, the dWH
appear to depend on the parametrization in the sense that
they give the punctures an ordering. This ordering is
dependent on the parametization and changing it appears

to change the state that results from the action of dWH. This
might be partially remedied if the properties of the

holonomies created by dWH could be established through
the use of the IHBC. This direction should be studied
further.
Another avenue for future work could be to discard the

results (4.17), (4.37) for the second coefficient in the action
of dWH obtained by the Duflo map, and instead to fix it by
demanding that the determinant is equal to 1 for all states,

ξ2sðjÞ ¼
8

Δj

�
1 − cosh2

�ð2jþ 1Þc
8

��
;

χ2sðjÞ ¼
2

Δj

�
1 − cosh2

�ð2jþ 1Þc
4

��
: ð7:1Þ

In this setting, one could continue to work with the LQG
holonomies on the horizon and perhaps obtain a state
described by a measure on the space A of generalized
connections.
A final point that should be studied further is the

quantization of the dWH without setting

jjEjj2 ¼ 2jjEðuÞjj2 þ 2jjEðdÞjj2 ð7:2Þ

(see the discussion in Sec. IV B for details). This might

substantially change the properties of the operators dWH.

FIG. 8. This figure shows plots of χsðjÞ. As in Fig. 6, we have chosen k ¼ 3, k ¼ 101, and k ¼ kðjÞ, respectively, from left to right.
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APPENDIX A: ACTION OF QUANTUM SURFACE
HOLONOMY ON ONE-EDGE PUNCTURE

STATE (DETAILED CALCULATION)

We can rewrite the sum in the last line of the previous
equation as

X2ðpþ1Þ

m¼0

�
2pþ 3

m

�
Bmð2m − 2Þ½2jþ 1�2ðpþ1Þ−m

¼ 22ðpþ1Þ X2ðpþ1Þ

m¼0

�
2pþ 3

m

�
Bm

�
2jþ 1

2

�
2ðpþ1Þ−m

− 2
X2ðpþ1Þ

m¼0

�
2pþ 3

m

�
Bm½2jþ 1�2ðpþ1Þ−m ðA1Þ

and make use of the relation (known as Faulhaber’s
formula)

Xn
k¼0

�
nþ 1

k

�
Bkmn−k ¼ nþ 1

m
½1n þ 2n þ � � � þmn� ðA2Þ

for the Bernoulli numbers (of second kind) Bk and positive
integers m, n to obtain

X2ðpþ1Þ

m¼0

�
2pþ 3

m

�
Bmð2m − 2Þ½2jþ 1�2ðpþ1Þ−m

¼ 22pþ2
2ð2pþ 3Þ
2jþ 1

×

�
12ðpþ1Þ þ 22ðpþ1Þ þ � � � þ

�
2jþ 1

2

�
2ðpþ1Þ�

−
2ð2pþ 3Þ
2jþ 1

½12ðpþ1Þ þ 22ðpþ1Þ þ � � � þ ð2jþ 1Þ2ðpþ1Þ�

¼ −
2ð2pþ 3Þ
2jþ 1

½12ðpþ1Þ þ 32ðpþ1Þ þ � � � þ ð2jÞ2ðpþ1Þ�:

ðA3Þ
Note that when applying Eq. (A2) to the middle line of

Eq. (A1) we assumed that 1
2
ð2jþ 1Þ is an integer, i.e., that

the spin j is a half-integer. Inserting this result back into
Eq. (4.11) we are left with

QDK½jjEjj2kEi�jHðj;0ÞðpÞ ¼
2

8k
1

2jð2jþ 1Þð2jþ 2Þ π
ðjÞ½bEi�

Xk
p¼0

�
2kþ 4

2pþ 3

� ð2pþ 2Þð2pþ 3Þ
ð2kþ 2Þð2kþ 4Þ

× ½12ðpþ1Þ þ 32ðpþ1Þ þ � � � þ ð2jÞ2ðpþ1Þ�

¼ 2

8k
2kþ 3

2kþ 2

1

2jð2jþ 1Þð2jþ 2Þ π
ðjÞ½bEi�

Xk
p¼0

�
2kþ 2

2pþ 1

�
× ½12ðpþ1Þ þ 32ðpþ1Þ þ � � � þ ð2jÞ2ðpþ1Þ�: ðA4Þ

Let us focus on the last line to further simplify this expression. We can make use of the relation

Xk
p¼0

�
2kþ 2

2pþ 1

�
n2pþ1 ¼ 1

2
½ðnþ 1Þ2kþ2 − ðn − 1Þ2kþ2� ðA5Þ

to obtain

Xk
p¼0

�
2kþ 2

2pþ 1

�
½12ðpþ1Þ þ 32ðpþ1Þ þ � � � þ ð2jÞ2ðpþ1Þ� ¼

Xk
p¼0

�
2kþ 2

2pþ 1

�X2j−12

l¼0

ð2lþ 1Þ2pþ2

¼ 1

2

X2j−12

l¼0

½2lþ 2 − 1�½ð2lþ 2Þ2kþ2 − ð2lÞ2kþ2�

¼ 1

2

X2j−12

l¼0

½ð2lþ 2Þ2kþ3 − ð2lþ 2Þ2kþ2 − ð2lÞ2kþ3 − ð2lÞ2kþ2�

¼ 1

2

X2j−12

l¼0

½ð2lþ 2Þ2kþ3 − ð2lÞ2kþ3� − 1

2

X2j−12

l¼0

½ð2lþ 2Þ2kþ2 þ ð2lÞ2kþ2�
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¼ 1

2
ð2jþ 1Þ2kþ3 −

1

2

X2j−12

l¼0

½ð2lþ 2Þ2kþ2 þ ð2lÞ2kþ2�

¼ 1

2
ð2jþ 1Þ2kþ3 −

1

2
ð2jþ 1Þ2kþ2 −

X2j−12

l¼1

ð2lÞ2kþ2

¼ jð2jþ 1Þ2kþ2 − 22kþ2
X2j−12

l¼1

l2kþ2

¼ 4kþ1

�
j

�
2jþ 1

2

�
2kþ2

−
X2j−12

l¼1

l2kþ2

�
: ðA6Þ

Reinserting this into (A4) we end up with

QDK½jjEjj2kEi�jHðj;0ÞðpÞ ¼
8

2k
2kþ 3

2kþ 2

1

2jð2jþ 1Þð2jþ 2Þ
�
j

�
2jþ 1

2

�
2kþ2

−
X2j−12

l¼1

l2kþ2

�
πðjÞ½bEi�: ðA7Þ

Using this result we can now use Eq. (4.7) to calculate

QDK½Wp�jHðj;0ÞðpÞ ¼
X∞
n¼0

1

ð2nÞ!
�

c

2
ffiffiffi
2

p
�

2n
QDK½jjEjj2n�jHðj;0ÞðpÞ ⊗ 12

þ
X∞
n¼0

1

ð2nþ 1Þ!
�

c

2
ffiffiffi
2

p
�

2n
cκilQDK½jjEjj2nEi�jHðj;0ÞðpÞ ⊗ τl

¼
X∞
n¼0

1

ð2nÞ!
�

c

2
ffiffiffi
2

p
�

2n 1

8n
ð2jþ 1Þ2nidHðj;0ÞðpÞ ⊗ 12

þ
X∞
n¼0

1

ð2nþ 1Þ!
�

c

2
ffiffiffi
2

p
�

2n
c
8

2n
2nþ 3

2nþ 2

1

2jð2jþ 1Þð2jþ 2Þ

×
�
j
�
2jþ 1

2

�
2nþ2

−
X2j−12

l¼1

l2nþ2

�
κilπðjÞ½bEi� ⊗ τl

¼ cosh

�ð2jþ 1Þc
8

�
idHðj;0ÞðpÞ ⊗ 12 þ

128

c
κilπðjÞ½bEi� ⊗ τl

2jð2jþ 1Þð2jþ 2Þ

×
X∞
n¼0

2nþ 3

ð2nþ 2Þ!
�
c
4

�
2nþ2

�
j

�
2jþ 1

2

�
2nþ2

−
X2j−12

l¼1

l2nþ2

�
: ðA8Þ

Let us look at the term

128

c
κilπðjÞ½bEi� ⊗ τl

2jð2jþ 1Þð2jþ 2Þ
X∞
n¼0

2nþ 3

ð2nþ 2Þ!
�
c
4

�
2nþ2

"
j

�
2jþ 1

2

�
2nþ2

−
X2j−12

l¼1

l2nþ2

#
ðA9Þ

in more detail. The sum over the first term inside the square brackets can be calculated as
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X∞
n¼0

2nþ 3

ð2nþ 2Þ!
�
c
4

�
2nþ2

j

�
2jþ 1

2

�
2nþ2

¼ 8j
2jþ 1

d
dc

X∞
n¼0

1

ð2nþ 2Þ!
�ð2jþ 1Þc

8

�
2nþ3

¼ 8j
2jþ 1

d
dc

�ð2jþ 1Þc
8

�
cosh

�ð2jþ 1Þc
8

�
− 1

��
¼ d

dc

�
jc

�
cosh

�ð2jþ 1Þc
8

�
− 1

��
: ðA10Þ

The second term can also be simplified via

X∞
n¼0

2nþ 3

ð2nþ 2Þ!
�
c
4

�
2nþ2X2j−12

l¼1

l2nþ2 ¼
X2j−12

l¼1

X∞
n¼0

2nþ 3

ð2nþ 2Þ!
�
cl
4

�
2nþ2

¼
X2j−12

l¼1

4

l
d
dc

X∞
n¼0

1

ð2nþ 2Þ!
�
cl
4

�
2nþ3

¼
X2j−12

l¼1

4

l
d
dc

cl
4

X∞
n¼0

1

ð2nþ 2Þ!
�
cl
4

�
2nþ2

¼
X2j−12

l¼1

4

l
d
dc

cl
4

�
cosh

�
cl
4

�
− 1

�

¼ d
dc

c
X2j−12

l¼1

�
cosh

�
cl
4

�
− 1

�

¼ d
dc

c

�
sinh ð2j−1Þc

16

sinh c
8

cosh
ð2jþ 1Þc

16
−
�
j −

1

2

��
ðA11Þ

where we used

Xn
m¼1

coshðmxÞ ¼ sinhðnx
2
Þ

sinhðx
2
Þ cosh

�ðnþ 1Þx
2

�
ðA12Þ

in the last equality. We can thus rewrite the sum in expression (A9) as

d
dc

�
jc cosh

�ð2jþ 1Þc
8

�
−
c
2
− c

sinh ð2j−1Þc
16

sinh c
8

cosh

�ð2jþ 1Þc
16

��
: ðA13Þ

Defining

QD½Wp�jHðj;0ÞðpÞ ≕ ξcðjÞidHðj;0ÞðpÞ ⊗ 12 þ iξsðjÞκimπðjÞ½ bEi� ⊗ τm ðA14Þ

we arrive at

ξcðjÞ ¼ cosh

�ð2jþ 1Þc
8

�
ðA15Þ

and

ξsðjÞ ¼
−128i

2jð2jþ 1Þð2jþ 2Þ
1

c
d
dc

�
jc cosh

�ð2jþ 1Þc
8

�
−
c
2
− c

sinh ð2j−1Þc
16

sinh c
8

cosh

�ð2jþ 1Þc
16

��
ðA16Þ
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for the function ξcðjÞ and cξsðjÞ. In the expression for ξsðjÞ the derivative with respect to c can still be carried out,
leading to

ξsðjÞ ¼
−8i

2jð2jþ 1Þð2jþ 2Þ

×

�
2jð2jþ 1Þ coshð

ð2jþ1Þc
8

Þ
ð2jþ1Þc

8

þ 2jð2jþ 1Þ sinh
�ð2jþ 1Þc

8

�

−
1

sinhðc
8
Þ
�
2j cosh

�
2jc
8

�
þ 2j

sinhð2jc
8
Þ

2jc
8

− sinh

�
2jc
8

�
coth

�
c
8

���
: ðA17Þ

A similar calculation shows that the same result holds for integer values of j. The main difference between the two
calculations is that one cannot simply apply Faulhaber’s formula (A2) in the case of integer spins. Instead, one has to use the
recently discovered extended version of Faulhaber’s formula [39] in order to simplify the complicated formula we
started with.

APPENDIX B: ACTION OF QUANTUM SURFACE HOLONOMY ON TWO-EDGE
PUNCTURE STATE (DETAILED CALCULATION)

Here, we will perform the calculation from Appendix A again for the two-edge puncture. We will start by inserting
expressions (4.30) and (4.31) into each line of Eq. (4.29) separately in order to keep the calculations legible. Starting with
the first line, we have

X∞
k¼0

1

ð2kÞ!
�
c
2

�
2kXk

m¼0

�
k

m

�
QDK½jjEðuÞjj2m�jHðju ;0ÞQDK½jjEðdÞjj2ðk−mÞ�j

Hð0;jdÞ ⊗ 12

¼
X∞
k¼0

1

ð2kÞ!
�
c
2

�
2kXk

m¼0

�
k

m

��ð2jðuÞ þ 1Þ2
8

�m�ð2jðdÞ þ 1Þ2
8

�k−m
idHðj;0ÞðpÞ ⊗ 12

¼
X∞
k¼0

1

ð2kÞ!
�
c
2

�
2k
�ð2jðuÞ þ 1Þ2

8
þ ð2jðdÞ þ 1Þ2

8

�k
id

Hðju ;jdÞðpÞ ⊗ 12

¼ cosh

 
c
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jðuÞ þ 1Þ2

8
þ ð2jðdÞ þ 1Þ2

8

s !
id

Hðju ;jdÞðpÞ ⊗ 12: ðB1Þ

Using the fact that we are considering only gauge-invariant states, we know that we need to have jðuÞ ¼ jðdÞ ¼ j. The above
expression therefore simplifies to

cosh

�ð2jþ 1Þc
4

�
idHðj;jÞðpÞ ⊗ 12: ðB2Þ

The second line is considerably more involved and we will split it into two parts corresponding to the two summands in
(4.31). The first part of the second line therefore reads

c
X∞
k¼0

1

ð2kþ 1Þ!
�
c
2

�
2k
κij
Xk
m¼0

�
k

m

�
QDK½jjEðuÞjj2mEðuÞ

i �jsummand #1QDK½jjEðdÞjj2ðk−mÞ� ⊗ τj

¼ c
X∞
k¼0

1

ð2kþ 1Þ!
�
c
2

�
2kXk

m¼0

�
k

m

��ð2jðdÞ þ 1Þ2
8

�k−m
×

2

8m
1

2jðuÞð2jðuÞ þ 1Þð2jðuÞ þ 2Þ
2mþ 3

2mþ 2
jðuÞð2jðuÞ þ 1Þ2mþ2κijπðjðuÞÞðbEðuÞ

i Þ ⊗ τj
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¼ c

2jðuÞð2jðuÞ þ 1Þð2jðuÞ þ 2Þ
X∞
k¼0

1

ð2kþ 2Þ!
�
c
2

�
2k

× jðuÞ
d

djðuÞ
Xk
m¼0

�
kþ 1

mþ 1

��ð2jðdÞ þ 1Þ2
8

�kþ1−ðmþ1Þ 1

8m
ð2jðuÞ þ 1Þ2mþ3κijπðjðuÞÞðbEðuÞ

i Þ ⊗ τj

¼ c

2jðuÞð2jðuÞ þ 1Þð2jðuÞ þ 2Þ
X∞
k¼0

1

ð2kþ 2Þ!
�
c
2

�
2k
κijπðjðuÞÞðbEðuÞ

i Þ ⊗ τj

× jðuÞ
d

djðuÞ



8ð2jðuÞ þ 1Þ

��ð2jðuÞ þ 1Þ2
8

þ ð2jðdÞ þ 1Þ2
8

�kþ1

−
�ð2jðdÞ þ 1Þ2

8

�kþ1
��

¼ c

2jðuÞð2jðuÞ þ 1Þð2jðuÞ þ 2Þ
X∞
k¼0

1

ð2kþ 2Þ!
�
c
2

�
2k
κijπðjðuÞÞðbEðuÞ

i Þ ⊗ τj

× jðuÞ


16

��ð2jðuÞ þ 1Þ2
8

þ ð2jðdÞ þ 1Þ2
8

�kþ1

−
�ð2jðdÞ þ 1Þ2

8

�kþ1
�

þ 8ð2jðuÞ þ 1Þðkþ 1Þ
�ð2jðuÞ þ 1Þ2

8
þ ð2jðdÞ þ 1Þ2

8

�k ð2jðuÞ þ 1Þ
2

�
: ðB3Þ

We have

c
X∞
k¼0

1

ð2kþ 1Þ!
�
c
2

�
2k
κij
Xk
m¼0

�
k

m

�
QDK½jjEðuÞjj2mEðuÞ

i �jsummand #1QDK½jjEðdÞjj2ðk−mÞ� ⊗ τj

¼ 2

ju þ 1
κmnπðjðuÞÞðbEðuÞ

m Þ ⊗ τn

×

264cosh
�
c
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2juþ1Þ2

8
þ ð2jdþ1Þ2

8

q 	
− coshðð2jdþ1Þc

4
ffiffi
2

p Þ
ð2juþ1Þc

8

þ 2ju þ 1

2

sinh
�
c
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2juþ1Þ2

8
þ ð2jdþ1Þ2

8

q 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2juþ1Þ2

8
þ ð2jdþ1Þ2

8

q
375 ðB4Þ

and, using again that jðuÞ ¼ jðdÞ ¼ j, we obtain

8c
2jð2jþ 1Þð2jþ 2Þ

X∞
k¼0

1

ð2kþ 2Þ!
�
c
2

�
2k
κijπðjÞðbEðuÞ

i Þ ⊗ τj

× j



2

�ð2jþ 1Þ2
4

�
kþ1

− 2

�ð2jþ 1Þ2
8

�
kþ1

þ ðkþ 1Þ ð2jþ 1Þ2
2

�ð2jþ 1Þ2
4

�
k
�

¼ 8c
ð2jþ 1Þð2jþ 2Þ

X∞
k¼0

1

ð2kþ 2Þ!
�
c
2

�
2k
�ð2jþ 1Þ

2

�
2kþ2

κijπðjÞðbEðuÞ
i Þ ⊗ τj

−
8c

ð2jþ 1Þð2jþ 2Þ
X∞
k¼0

1

ð2kþ 2Þ!
�
c
2

�
2k
�ð2jþ 1Þ

2
ffiffiffi
2

p
�
2kþ2

κijπðjÞðbEðuÞ
i Þ ⊗ τj

þ 4c
ð2jþ 1Þð2jþ 2Þ

X∞
k¼0

1

ð2kþ 1Þ!
�
c
2

�
2k
�ð2jþ 1Þ

2

�
2kþ2

κijπðjÞðbEðuÞ
i Þ ⊗ τj

¼ 2

jþ 1



2
coshðð2jþ1Þc

4
Þ − 1

ð2jþ1Þc
4

−
ffiffiffi
2

p coshðð2jþ1Þc
4
ffiffi
2

p Þ − 1

ð2jþ1Þc
4
ffiffi
2

p
þ sinh

�ð2jþ 1Þc
4

��
κijπðjÞðbEðuÞ

i Þ ⊗ τj ðB5Þ

for the first contribution. Turning our attention to the second term in (4.31), we immediately note that it vanishes if either
ju ¼ 0 or ju ¼ 1

2
. For higher spins, we get
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c
X∞
k¼0

1

ð2kþ 1Þ!
�
c
2

�
2k
κij
Xk
m¼0

�
k

m

�
QDKðjjEðuÞjj2mEðuÞ

i Þjsummand #2QDKðjjEðdÞjj2ðk−mÞÞτj

¼ −c
X∞
k¼0

1

ð2kþ 1Þ!
�
c
2

�
2kXk

m¼0

�
k

m

��ð2jðdÞ þ 1Þ2
8

�k−m
κijπðjðuÞÞðdEðuÞ

iÞ ⊗ τj

×
2

8m
1

2jðuÞð2jðuÞ þ 1Þð2jðuÞ þ 2Þ
2mþ 3

2mþ 2

XbjðuÞc
l¼1

ð2lÞ2mþ2κijπðjðuÞÞðdEðuÞ
iÞ ⊗ τj

¼ −
2c

2jðuÞð2jðuÞ þ 1Þð2jðuÞ þ 2Þ
XbjðuÞc
l¼1

X∞
k¼0

1

ð2kþ 1Þ!
�
c
2

�
2k
κijπðjðuÞÞðdEðuÞ

iÞ ⊗ τj

×
Xk
m¼0

�
k

m

��ð2jðdÞ þ 1Þ2
8

�k−m 2mþ 3

2mþ 2

1

8m
ð2lÞ2mþ2

¼ −
c

2jðuÞð2jðuÞ þ 1Þð2jðuÞ þ 2Þ
XbjðuÞc
l¼1

X∞
k¼0

1

ð2kþ 2Þ!
�
c
2

�
2k
κijπðjðuÞÞðdEðuÞ

iÞ ⊗ τj

×
Xk
m¼0

�
kþ 1

mþ 1

��ð2jðdÞ þ 1Þ2
8

�kþ1−ðmþ1Þ 8

8mþ1

d
dl
ð2lÞ2mþ3

¼ −
8c

2jðuÞð2jðuÞ þ 1Þð2jðuÞ þ 2Þ
XbjðuÞc
l¼1

X∞
k¼0

1

ð2kþ 2Þ!
�
c
2

�
2k
κijπðjðuÞÞðdEðuÞ

iÞ ⊗ τj

×
d
dl
ð2lÞ

Xkþ1

m¼1

�
kþ 1

m

��ð2jðdÞ þ 1Þ2
8

�kþ1−m 1

8m
ð2lÞ2m

¼ −
8c

2jðuÞð2jðuÞ þ 1Þð2jðuÞ þ 2Þ
XbjðuÞc
l¼1

X∞
k¼0

1

ð2kþ 2Þ!
�
c
2

�
2k
κijπðjðuÞÞðdEðuÞ

iÞ ⊗ τj

×
d
dl
ð2lÞ


�ð2jðdÞ þ 1Þ2
8

þ l2

2

�kþ1

−
�ð2jðdÞ þ 1Þ2

8

�kþ1
�
: ðB6Þ

Using once again that jðuÞ ¼ jðdÞ ¼ j, the second contribution simplifies to

−
16

2jð2jþ 1Þð2jþ 2Þ κ
ijπðjÞðdEðuÞ

iÞ ⊗ τj

×
Xbjc
l¼1

d
dl

8<:2l

264cosh
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2jþ1Þ2
8

þ l2
2

q
c
2

	
− 1

c
2

−
coshðð2jþ1Þc

4
ffiffi
2

p Þ − 1

c
2

375
9=;

¼ −
32

2jð2jþ 1Þð2jþ 2Þ κ
ijπðjÞðdEðuÞ

iÞ ⊗ τj

×
Xbjc
l¼1

264cosh
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2jþ1Þ2
8

þ l2
2

q
c
2

	
− coshðð2jþ1Þc

4
ffiffi
2

p Þ
c
2

þ
l2
2
sinh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ1Þ2

8
þ l2

2

q
c
2

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ1Þ2

8
þ l2

2

q
375: ðB7Þ
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