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To model the interior of a black hole, a study is made of a spin system with long-range random four-spin
couplings that exhibits quantum chaos. The black hole limit corresponds to a system where the microstates
are approximately degenerate and equally likely, corresponding to the high temperature limit of the spin
system. At the leading level of approximation, reconstruction of bulk physics implies that local probes of
the black hole should exhibit free propagation and unitary local evolution. We test the conjecture that a
particular mean field Hamiltonian provides such a local bulk Hamiltonian by numerically solving the exact
Schrodinger equation and comparing the time evolution to the approximate mean field time values. We find
excellent agreement between the two time evolutions for timescales smaller than the scrambling time. In
earlier work, it was shown bulk evolution along comparable time slices is spoiled by the presence of the
curvature singularity, thus the matching found in the present work provides evidence of the success of this
approach to interior holography. The numerical solutions also provide a useful testing ground for various
measures of quantum chaos and global scrambling. A number of different observables, such as
entanglement entropy, out-of-time-order correlators, and trace distance are used to study these effects.
This leads to a suitable definition of scrambling time, and evidence is presented showing a logarithmic
variation with the system size.
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I. INTRODUCTION

The anti–de Sitter/conformal field theory correspon-
dence (AdS=CFT) [1] has been tremendously successful
in providing a framework for addressing questions in
quantum gravity, that goes far beyond the successes of
perturbative string theory. In particular it provides a
detailed accounting of black hole entropy and important
information about the nonperturbative vacuum structure of
string theory/quantum gravity. The holographic mapping
from conformal field theory operators to bulk spacetime
operators is however only well understood as a perturbative
expansion around asymptotically AdS regions [2,3], and
there is much current debate about how (or even whether)
the holographic mapping can be extended deep into the
bulk spacetime, where the presence of apparent horizons
and global horizons make the application of the perturba-
tive holographic mapping problematic.
To make progress on these issues, it is necessary to

develop an understanding of the holographic mapping that

is less dependent on the special conformal symmetry of
AdS, and instead can work in much more general back-
grounds. In a series of papers, it has been argued a more
general holographic mapping should take the form of a
mean field theory approximation, where the bulk degrees
of freedom are to be extracted after suitable averaging
over the microscopic exact representation [4–7]. In some
sense, this is not a new idea, and similar proposals have
been made in the context of loop quantum gravity,
fuzzballs, etc. However what is new about the current
work is that a specific class of Hamiltonia are proposed to
describe black hole interiors, and a specific form of the
mean field approximation is developed that may then be
tested in detail.
In earlier work [7], this idea was developed for the

simpler case of a general (typically long-range, random)
two-spin interaction. However the simple form of the
interaction opens the door to questions about whether such
systems can really exhibit quantum chaos. Since the
systems have finite dimensional Hilbert spaces, by con-
struction, the Hamiltonian may always be diagonalized,
and questions of chaos boil down to whether the spectrum
of energy eigenvalues is suitably dense, and whether the
“local” basis of states one might be interested in have a
simple representation in terms of energy eigenstates. The
latter condition is not satisfied if we restrict to interactions
with a range comparable to the system extent. So it remains
to ensure the energy spectrum is not too sparse as to induce
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time recurrences. This effect emerged as a feature in s
ome of the toy model calculations of [7], and in part
motivates the present work. By considering a four-spin
interaction, the system is expected to exhibit quantum
chaos, with recurrences only expected on timescales para-
metrically larger than the scrambling time. However, in
addition, the couplings will be chosen to follow a random
distribution, ensuring the spectrum of energy eigenvalues is
suitably dense.
The starting point for translating states in such a

description to bulk states is to suppose that at some given
time one can pick a basis corresponding to bulk fields
localized on some shell of fixed proper radius in the vicinity
of the horizon of a black hole. For the present work we will
not consider additional charges, nor rotation and presume
we have a simple Schwarzschild black hole. For now, the
number of spacetime dimensions will be left arbitrary.
Such a shell can be viewed as our holographic screen, and
for bulk excitations localized on such a shell, the holo-
graphic map will be particularly simple. As time evolves,
the excitations will move forward in time, typically to
smaller radii. In the limit of a large black hole, we expect
these test probes to follow timelike geodesics ending on the
singularity.
We assume a good approximation to this choice of basis

can be made, which amounts to conjugating some initial
Hamiltonian by a unitary transformation. The main physi-
cal assumptions we make are that this Hamiltonian exhibits
chaotic scrambling, in a sense to be defined below, and that
the Bekenstein-Hawking entropy of the black hole is
chosen to match the log of the Hilbert space dimension

SBH ¼ N log 2: ð1Þ

For the purposes of the numerics below we further assume a
random four-spin Hamiltonian is sufficiently general to
capture the relevant properties, with the black hole is
represented by some randomly chosen vector in the
Hilbert space of a large number N of spins.
To represent a bulk probe, a smaller system of spins is

tensored to this Hilbert space and a pure state is constructed
in this Hilbert subspace. The full state is then a product of
two pure states. Under the exact time evolution, these states
become entangled, and the reduced density matrix in the
probe Hilbert subspace becomes mixed. However this exact
evolution is at odds with what is expected from time
evolution of bulk fields with respect to a local Lagrangian.
The primary goal of the present work is to test the idea that
this mixing can be neglected for times less than the
scrambling time, and explore a variety of measures that
are diagnostics of this mixing. This in turn will lead to a
definition of the thermalization time as we detail below, and
we will see that even in this high temperature limit, the spin
model exhibits a version of scrambling, where the thermal-
ization time is logarithmic in the system size.

II. HOLOGRAPHIC MODEL

The basic form of the holographic model to be studied in
the present paper is a N spin-1=2 system with a 4-spin
nonlocal coupling

H ¼
X

1≤i<j<k<l≤N
Jijkls⃗is⃗js⃗ks⃗l ð2Þ

where Jijkl are random couplings proportional to J times a
unit normal distribution, completely symmetric in the
indices i, j, k, l and pointing in a random direction in
spin space. The s⃗i are spin-1=2 operators acting on site i
where i ¼ 1;…; N. The limit of interest is to take N large
while keeping

varðHÞ ¼ N0 ð3Þ

where the variance is taken over the full Hilbert space. This
corresponds to taking

J−2 ¼
�
N

4

�
:

This condition will be discussed further below. We note this
large N limit is different than the Sachdev-Ye-Kitaev model
[8], where instead one scales for fast scrambling at low
temperatures, where an additional conformal symmetry
emerges, and the holographic dual includes an entire AdS
asymptotic region. High temperature scrambling in this
(and a more general class of such models) has been studied
in [9].
In practice, we will perform numerical computations

at finite N, imposing the condition (3) to normalize the
couplings Jijkl. One of our goals will be to show that such
a system scrambles in the limit of large temperature, in
the sense that the scrambling time to be defined below
behaves as

tscr ∼ N0 logN: ð4Þ

We note in this theory nothing yet depends on the
dimensionality of spacetime. The theory is intended to
reproduce the correct chaotic physics of the horizon for
timescales of order the scrambling time. In future work,
local dimension dependent modifications of the theory will
be studied which can allow the holographic mapping to the
bulk to be further completed, with a view to including the
correct local interactions, beyond geodesic propagation.

A. Matching with the bulk

The theory in question may be viewed as a model for the
stretched horizon theory, in the sense of [10]. For simplicity
we consider a Schwarzschild black hole in general space-
time dimension D
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ds2 ¼
�
1 −

2M
rD−3

�
dt2 −

�
1 −

2M
rD−3

�
−1
dr2 þ r2dΩ2

D−2

where we work in units where G ¼ 1 ¼ c ¼ ℏ. Since we
will match the Bekenstein-Hawking entropy withN via (1),
it will be helpful to tabulate the N dependence of the
thermodynamic observables of the black hole

M ∼ N
D−3
D−2; TBH ∼ N− 1

D−2;

rH ∼ N
1

D−2; ðδMÞ2 ¼ T2
BH

∂M
∂TBH

∼ −ND−4
D−2

With respect to Schwarzschild time, which measures proper
time near r ¼ ∞, the energy is simply M. The set of states
associated with the microscopic Hamiltonian H will split
this energy into a band of states and we choose to normalize
the width of this band according to the following relation

E ¼ MðNÞ þ N− 1
D−2H ð5Þ

where MðNÞ represents the classical black hole mass,
which may be treated as an N dependent constant shift
in the Hamiltonian. This scaling corresponds to choosing to
define the position of the stretched horizon such that the
redshift with respect to infinity converts a Planck energy
down to an energy equal to the Hawking temperature.
With this scaling, we recover the expected expression

[11] for the scrambling time in Schwarzschild coordinates
from the relation (4)

tscr;S ∼
1

TBH
logSBH

One can also look at the contribution of the microscopic
Hamiltonian to the width of the energy spectrum

ðδEÞ2 ∼ −ND−4
D−2 þO

�
N− 2

D−2

�
ð6Þ

where the first term is the semiclassical result, reflecting the
negative specific heat of the black hole, and the second term
is due to the width of the microscopic spectrum of spin
states. We see this extra width matches the energy scale
associated with a single Hawking particle of energy TBH,
which is a physically reasonable result. It is also compatible
with treating the holographic model in the high temperature
limit, since the physical temperature TBH induces a much
larger scale for fluctuations via the semiclassical term (the
first term in (6)) versus the term arising from the micro-
scopic Hamiltonian. Our goal is to use the Hamiltonian H
to model the dynamics of the black hole on timescales
below the Page time (tPage ∼ N

D−1
D−2 ≫ tS), when we may

approximate the black hole as having an a constant mass
(and hence N).

To derive black hole thermodynamics from the micro-
scopic energy (5) one can use the relation S ¼ logΩ where
Ω is the dimension of the Hilbert space of the spin model.
This statement implicitly assumes one is coarse graining
over energies of order TBH, allowing one to simply count all
the states in the spin model. With such a coarse graining,
one may also drop the second term in (5). Applying the
usual rules of thermodynamics to SðEÞ then reproduces all
the expected relations of black hole thermodynamics.
In general, the holographic mapping to the dual gravity

variables is expected to be highly non-local. However in the
present situation, we can take advantage of the infinite
range interactions to simplify this map. At any given time,
we can try to perform a general unitary transformation on
our 2N dimensional Hilbert space to organize the space into
N sites with a spin 1=2 degree of freedom at each site,
where each site is to be thought of as some point on a
sphere of some fixed radius inside or near the horizon. As
time progresses, this map will become much more com-
plicated, but we will be chiefly interested in the early time
behavior, prior to the scrambling time tscr, where this
quasilocal bulk interpretation of the Hilbert space is a good
approximation. The immediate goal then is to build a
candidate for the bulk Hamiltonian, which is local, and
which provides an alternative evolution to the exact time
evolution, which is essentially indistinguishable in this
range of times.
Now there is no guarantee this procedure will work,

chiefly because we have little insight into the detailed
form of the correct interactions, and whether this quasi-
localization basis can actually be constructed for the
Hamiltonian that descends from some complete theory of
quantum gravity. But as we will see in the present work, the
results are largely insensitive to the details of the interaction
chosen, so a goal of the present work is to present this picture
in as general a context as possible so it may one day be
applied to some correct Hamiltonian of the black hole.

B. Observables

The Hilbert space is the tensor product of individual spin
sites H ¼⊗N

i¼1 Hi. Under the assumption the system
exhibits quantum chaos for typical states, then such a
typical state will scramble in a timescale of order tscr and we
can use such a state to describe a black hole. In practice, we
will simply choose a random unitary vector in the Hilbert
space H to generate candidate black hole states.
To represent an observer (or test particle) entering the

black hole, we enlarge the Hilbert space (for example
taking N → N þ 1 and begin in a product state

jψð0Þi ¼ jψ1i ⊗ jψbh
0 i ð7Þ

where jψ1i is the spin state representing the observer, and is
chosen to be j↑i and jψbh

0 i describes the state of the black
hole. The HamiltonianH generates the exact time evolution
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of the system. However in a scrambling time the observer’s
spin becomes entangled with the black hole. Certainly with
respect to the original local basis, the observer’s reduced
density matrix becomes highly mixed, and they do not
experience the expected laws of quantum mechanics
following from time evolution along a bulk geodesic. On
the other hand, the efficient averaging of the maximally
nonlocal interaction suggests mean field can be appropri-
ate. As we now see, this leads to evolution that preserves
the pure state tensor structure (7), as we would expect for a
particle moving along a bulk geodesic.

III. MEAN FIELD VERSUS EXACT EVOLUTION

The mean field Hamiltonian is defined as

HMFðtÞ ¼
XN
i¼1

HMF
i ðtÞ ¼

XN
i¼1

TricðHρMFðtÞÞ; ð8Þ

where ρMFðtÞ is the unitary time evolution of the same
initial state evolved by mean field Hamiltonian, and
satisfies the von Neumann equation

dρMFðtÞ
dt

¼ −i½HMFðtÞ; ρMFðtÞ�: ð9Þ

Note that each HMF
i is a local operator in the Hilbert

subspace associated with spin i. The trace is over the
complement ic to the Hilbert subspace associated with spin
i. The mean field time evolution is therefore guaranteed to
preserve the product form (7). However this operator
depends on the state of the other spins, so the time
evolution (9) is inherently nonlinear.
The mean field state will deviate from the exact time

evolution. To measure this deviation, one can consider the
trace distance between reduced density matrices

Dðρ1ðtÞ; ρMF
1 ðtÞÞ≡ 1

2
kρ1ðtÞ; ρMF

1 ðtÞk1

¼ 1

2
Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ1ðtÞ − ρMF

1 ðtÞÞ2
q

which offers a metric to measure distinguishability between
two quantum states. In the case ρMF

1 ðtÞ is a pure state, as is
the case here, the trace distance is bounded from below by
1
2
ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2P − 1
p Þ where P is the purity of ρ1ðtÞ, as shown in

Appendix.
Trace distance may also be bounded from above by a

Lieb-Robinson bound [7,12]. Combining the purity bound
with Lieb-Robinson bound we obtain

8

3N
t2 < Dðρ1ðtÞ; ρMF

1 ðtÞÞ < c0

N
ect: ð10Þ

Here c and c0 are constants independent of N. This is
enough to ensure that the decoherence is an 1=N effect. If

the exponential behavior is saturated from early times to
times well before the purity levels off at 1=2, the scram-
bling timescale (4) will emerge, as the timescale over which
the trace distance increases to some fixed fraction (say 10%
for example). The trace distance between these density
matrices measures what is usually termed decoherence of
the pure probe state at site 1. However because the
interactions are maximally nonlocal, in this particular
model, we expect this to also be a good measure of the
global thermalization properties of the system, and hence
we will use this method to define our notion of scrambling
time. As we will see later, it corresponds well to other
definitions considered in the literature.
In Fig. 1 we plot NDðρ1ðtÞ; ρMF

1 ðtÞÞ which clearly
indicates the universal behavior for early times.
Eventually the trace distance saturates, as the purity
of ρ1ðtÞ approaches its minimum of 1=2. The time at
which this saturation occurs increases with N as
expected from (10). The comparison to the bound
1
2
ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2P − 1
p Þ is shown in Fig. 2.

Following [13] one my try a fit ofDðρ1ðtÞ; ρMF
1 ðtÞÞ to the

phenomenologically motivated exponential form

Dðρ1ðtÞ; ρMF
1 ðtÞÞ ¼ aðebt − 1ÞΔN−γ ð11Þ

which yields the values a ¼ 5.5, b ¼ 0.5, Δ ¼ 1.8 and
γ ¼ :92. The value for γ is consistent with the analytic
bounds (10). The values for the other parameters are not
well determined when looking at the early time limit.
Instead a better fit is obtained simply by the quadratic form

Dðρ1ðtÞ; ρMF
1 ðtÞÞ ¼ a

N
t2

which yields a better least squares fit with fewer para-
meters, with a ¼ 2.6, agreeing well with the 8=3 prediction

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
t

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

N
 D

(
1,

1M
F
)

N=5
N=6
N=7
N=8
N=9
N=10
N=11
N=12

FIG. 1. NDðρ1ðtÞ; ρMF
1 ðtÞÞ for various N. For each N, trace

distance divergence is averaged over random Page states and over
the ensemble of H.
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of Appendix, as shown in Fig. 3. With this purely quadratic
form we do not see evidence of a logarithmic scrambling
time until after we exit this early time limit. In fact, the
quadratic approximation holds very well up until just
before the point of inflection in the curves. This point of
inflection then provides one means of defining the scram-
bling time. As we see later this matches well with some
alternative measures we study below, which indicate the
model does indeed scramble with in a timescale of order
logN. In the meantime, we see the results establish the
validity of the mean field approximation in the window of
time prior to the scrambling time.
Rather than study the trace distance between mean field

and exact evolution for a subsystem (in this case a single
qubit) we can instead examine the trace distance between
the mean field evolution and the exact evolution of the full
global state over the N qubits. In line with the expectations
of [14] we expect a rapid deviation to emerge, as shown in

Fig. 4. We find a linear increase in the trace distance,
saturating at late times, with behavior largely independent
of N.
The behavior of the purity of ρ1ðtÞ, PðtÞ ¼ Trρ21 is

shown in Fig. 5. The eigenvalues of the Hamiltonians are
sufficiently dense, due to the choice of random couplings,
that no recurrence is observed over the time range explored.
This is an improvement over [7], though the early time
results there remain valid despite the simplicity of those
models.
Finally we show in Fig. 6 a fit of the purity as a function

of t and N, verifying the form valid for early times found in
Appendix. Fitting the form

PðtÞ ¼ 1 − aN−δt2

6.05.04.03.02.01.00
t

0

0.2

0.4

0.6

0.8

1

1.2

N
 D

(
1,

1M
F
)

N=5
N=6
N=7
N=8
N=9
N=10
N=11
N=12
N=5
N=6
N=7
N=8
N=9
N=10
N=11
N=12

FIG. 2. The trace distance (solid lines) is compared to the purity bound 1
2
ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2P − 1
p Þ (dashed lines). The bound (A3) is close to

being saturated.

FIG. 3. Fit of the averaged trace distance, as a function of time t
and N. The surface shows a fit to at2=N where a ≈ 2.6 in good
agreement with the 8=3 prediction.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
(

,
M

F
)

N=5
N=6
N=7
N=8
N=9
N=10

FIG. 4. Trace distance between mean field and exact evolution
for the global state.
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for early times yields δ ¼ −0.8 and a ¼ −2.8. Errors with
the expected form arise from the relatively small values of
N considered. Rounding errors also play a role for larger
values of N.
In summary, we have studied numerically and analyti-

cally the trace distance between the mean field and exact
evolution for states corresponding to local probes of black
holes in this model. We see the trace distance remains small
for a timescales shorter than the scrambling time (4). We
have also shown the trace distance is bounded below by the
purity, which depends only on decoherence of a local spin
with respect to the exact time evolution. Moreover this
bound is apparently saturated at early times. These results
are consistent with the holographic interpretation of the
mean field as a bulk worldline Hamiltonian advocated in
[7]. At this level of approximation the mean field

approximation is essentially free evolution (more generally
an arbitrary local Hamiltonian can be chosen without
changing the validity of mean field). In future work, we
consider adding nearest neighbor interactions to the spin
model to reproduce local field theory interactions in the
bulk. For now we turn to a study of the extent to which one
sees evidence for scrambling in this class of models.

IV. EVIDENCE FOR SCRAMBLING

The observables studied above are arguably simply
studying the thermalization of the subsystem as interactions
place it in contact with the rest of the system, which acts as
the environment, decohering the subsystem. For a general
Hamiltonian, those observables would not be indicative of
global scrambling or quantum chaos. However for the
particular class of Hamiltonians studied here, which are
maximally nonlocal, we find the results match well with
other diagnostics of scrambling studied in the literature. We
now turn to the study of these observables. In this section,
the observables are computed using exact diagonalization
coded using MATLAB and the QUBIT4MATLAB library [15].
This approach readily allows for parallelization of the
numerics. Numerical convergence has been confirmed by
adjusting precision for the exact diagonalization routine in
a number of test cases.

A. OTOC

The out-of-time-order-correlator (OTOC) is one of the
first studied diagnostics of quantum chaos [16], where it
was noticed that chaotic dynamics can lead to exponential
variation in such quantities. In particular, the expectation
value of the square of the commutator of a pair of Hermitian
operators V andW, C2ðtÞ ¼ h½WðtÞ; Vð0Þ�†½WðtÞ; Vð0Þ�i is

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
t

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
P

N=5
N=6
N=7
N=8
N=9
N=10
N=11
N=12

FIG. 5. Purity of ρ1ðtÞ for various values of N. For N > 6 these
approach 1=2 monotonically, as expected for a system exhibiting
quantum chaos.

FIG. 6. Purity on the probe site as a function of time t andN. Fit
to 1 − at2=N with a ≈ 5.3 close to the prediction of 16=3 of
Appendix.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
t

0

50

100

150

200

250

300

350

400

450

500

N
2.

28
 C

2

N=5
N=6
N=7
N=8
N=9
N=10
N=11
N=12

FIG. 7. Commutator C2ðtÞ as a function of time for various
values of N. The result has been rescaled by N2.28 to illustrate the
universal early time behavior, prior to saturation/scrambling in
the late time regime.
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expected to grow exponentially in time: C2ðtÞ ∼ eλLt. Here
λL is to be identified as an analog of a Lyapunov exponent.
Here we study this quantity where V ¼ sz;1 andW ¼ sz;2 as
shown in Fig. 7.
For early time evolution, each line can be fitted by

at2=Nδ, where a and δ are fitting coefficients as shown
in Fig. 8.
The growth in C2ðtÞ provides the first hint of scrambling.

For the numerically accessible values of N the expected
exponential growth seems to saturate well before there is a
clear separation from the perturbative early time regime
(which is only sensitive to the t2 term in an expansion around
t ¼ 0). The behavior ofC2 is qualitatively very similar to the
behavior of the trace distance (exact vs mean field) consid-
ered in the previous section. To do better in measuring the
scrambling timescale, our strategy will be to perform a
measurement of the cross-over timescale between these
different regimes, and we will study observables where this
crossover can be measured with greater precision.

B. Entanglement entropy

Since the Hamiltonian is maximally nonlocal in the spin
basis, we expect studying the entanglement entropy of pairs
of spins provides a useful measure of the global entangle-
ment of the system, and hence the extent to which
scrambling has taken place. Recalling that we start the
system in a product pure state (7) we can compute the
entanglement entropy of the spin at site 1, via

SentðtÞ ¼ −Trðρ1 ln ρ1Þ:

Below we carry out numerical simulations of the system to
obtain entropy growth as a function of holographic time as
shown in Fig. 10.
Entanglement entropy growth in a strongly coupled

gapless system with a gravity dual has been studied
intensely in [17–19]. It was proposed that the growth in

entanglement entropy can be visualized as the spreading of
an “entanglement tsunami.” The region covered by the
wave front is entangled with the rest of the system, and the
system achieves saturation when fully covered by the
tsunami. For a wide class of black hole systems, entropy
growth exhibit three stages of development: 1. prelocal-
equilibration quadratic growth; 2. post-local equilibration
linear growth; 3. saturation, exactly matched by our
numeric simulation. It was discussed in [18] that the linear
growth regime characterizes the late-time memory loss: the
wave front forms a uniform circle and propagates in the
sameway regardless of what the initial configuration is. For
us, we are interested in this timescale to reach the linear
regime. From the data in Fig. 9 we can study the position
where the point of inflection of the curves.

FIG. 8. Here the OTOC is fit to the form at2=Nδ with
a ≈ 175� 4, δ ≈ 2.28� 0.02, showing the early time growth
of the commutator.
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FIG. 9. Entanglement entropy as a function of time for various
N. For each N entropy growth is averaged over random Page
states and over the ensemble of H. A rescaling by N:67 illustrates
the universality of the early time regime. The early time regime, is
fit well by atγ=Nδ with a ≈ 3.7� 0.1, γ ≈ 1.62� 0.01,
δ ≈ 0.67� 0.01.
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FIG. 10. Scrambling time extracted from entropy as a function
of N.
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The results are shown in Fig. 10. The timescale shows an
obvious logN dependence tscr ¼ 0.21 logN. We note this
one parameter fit produces a better fit than a three
parameter power law fit aNδ þ c, which offers the strongest
numerical evidence of the logarithmic scrambling time we
have found. The entanglement entropy does not depend on
a choice of operators (as in the OTOC) nor on the mean
field approximation (as in the previous section), so for us is
the most numerically useful quantity to study in the
approach to global scrambling.

V. SUMMARY

We have explored a four-spin interacting system that
exhibits fast scrambling feature in the high temperature
limit which is conjectured to be holographically dual to a
black hole spacetime in the vicinity of the horizon. This is
in contrast with Sachdev-Ye-Kitaev model, where chaotic
behaviors emerge when the couplings βJ are taken to be
large, corresponding to a low temperature limit, and holo-
graphically to a complete asymptotically anti–de Sitter
spacetime. We extend early work of the mean field
construction to this new holographic Hamiltonian. The
trace distance between the exact and mean field
Hamiltonian remain small for at least a scrambling time
which indicates the local mean field viewpoint, which may
be reinterpreted in terms of a bulk description can be valid
for timescales smaller than the scrambling time. This
supports the conjecture that decoherence of the in-falling
state is a dual to the disruptive bulk effects near the space-
time singularity.
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APPENDIX: BOUNDING THE TRACE DISTANCE

For a density matrix ρ, the purity is defined by

PðtÞ ¼ Trρ2: ðA1Þ

The purity may be computed in an early time expansion
following [20]

PðtÞ¼ 1−2t2ðhHi2ψ þhH2iψ − hhHi2ψ1
i
ψ2

− hhHi2ψ2
i
ψ1
ÞþOðt4Þ

where we have a pure state jψi ¼ jψ1i × jψ2i and use the
notation for partial matrix elements hHiψk

¼ hψkjHjψki. If
we approximate this formula using an average over Page
states, subject to the normalization (3) we obtain

PðtÞ ≈ 1 −
16t2

3N
þOðt4Þ:

We may use the purity to bound the trace distance

Dðρ; ρ0Þ ¼ 1

2
kρ − ρ0k1

which is our most refined observable used to define global
thermalization. To do this in the examples studied here, we
may use the geometric representation of a general mixed
state on the single qubit on site 1 as a point a⃗ on (or inside)
the Bloch sphere [21]

ρ ¼ 1

2
ð1þ a⃗ · σ⃗Þ: ðA2Þ

In that representation the trace distance becomes half the
Euclidean distance between the points. The initial state is a
pure state on the unit Bloch sphere, represented by a vector
a⃗ with a⃗2 ¼ 1. As scrambling proceeds, ρðtÞ becomes a
mixed state represented by a vector b⃗ with b⃗2 < 1. This
implies

DðρðtÞ; ρMFðtÞÞ ≥ Dðρ1ðtÞ; ρMF;1ðtÞÞ ≥
1

2
ð1 − jb⃗jÞ

using the triangle inequality to bound the minimum
distance between the points. The purity of (A2) is

PðtÞ ¼ 1

2
ð1þ b⃗2Þ

so

DðρðtÞ; ρMFðtÞÞ ≥
1

2
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P − 1

p
Þ: ðA3Þ

Approximating this for early times when P is close to 1,
gives

DðρðtÞ; ρMFðtÞÞ ≥
1

2
ð1 − PÞ ≈ 8t2

3N
:

DAVID A. LOWE and MENGYANG TONG PHYS. REV. D 102, 026008 (2020)

026008-8



[1] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and
Y. Oz, Large N field theories, string theory and gravity,
Phys. Rep. 323, 183 (2000).

[2] A. Hamilton, D. N. Kabat, G. Lifschytz, and D. A. Lowe,
Local bulk operators in AdS=CFT: A boundary view of
horizons and locality, Phys. Rev. D 73, 086003 (2006).

[3] A. Hamilton, D. N. Kabat, G. Lifschytz, and D. A. Lowe,
Holographic representation of local bulk operators, Phys.
Rev. D 74, 066009 (2006).

[4] D. A. Lowe and L. Thorlacius, Black hole complementarity:
The inside view, Phys. Lett. B 737, 320 (2014).

[5] D. A. Lowe and L. Thorlacius, Quantum information
erasure inside black holes, J. High Energy Phys. 12
(2015) 096.

[6] D. A. Lowe and L. Thorlacius, A holographic model for
black hole complementarity, J. High Energy Phys. 12 (2016)
024.

[7] D. A. Lowe and L. Thorlacius, Black hole holography and
mean field evolution, J. High Energy Phys. 01 (2018) 049.

[8] S. Sachdev and J. Ye, Gapless Spin-Fluid Ground State in a
Random Quantum Heisenberg Magnet, Phys. Rev. Lett. 70
3339 (1993); A. Kitaev, A simple model of quantum
holography, in KITP Strings Seminar and Entanglement
2015 Program (2015), http://online.kitp.ucsb.edu/online/
entangled15/.

[9] G. Bentsen, Y. Gu, and A. Lucas, Fast scrambling on sparse
graphs, Proc. Natl. Acad. Sci. U.S.A. 116, 6689 (2019).

[10] Black Holes: The Membrane Paradigm, edited by K. S.
Thorne, R. H. Price, and D. A. Macdonald (Yale University
Press, New Haven and London, 1986).

[11] Y. Sekino and L. Susskind, Fast Scramblers, J. High Energy
Phys. 10 (2008) 065.

[12] N. Lashkari, D. Stanford, M. Hastings, T. Osborne, and P.
Hayden, Towards the fast scrambling conjecture, J. High
Energy Phys. 04 (2013) 022.

[13] N. Y. Yao, F. Grusdt, B. Swingle, M. D. Lukin, D. M.
Stamper-Kurn, J. E. Moore, and E. A. Demler, Interfero-
metric approach to probing fast scrambling, arXiv:1607
.01801.

[14] P. Hayden and J. Preskill, Black holes as mirrors: Quantum
information in random subsystems, J. High Energy Phys. 09
(2007) 120.

[15] G. Tóth, QUBIT4MATLAB V3.0: A program package for
quantum information science and quantum optics for
MATLAB, Comput. Phys. Commun. 179, 430 (2008).

[16] A. Larkin and Y. N. Ovchinnikov, Quasiclassical method in
the theory of superconductivity, Sov. Phys. JETP 28, 1200
(1969).

[17] H. Casini, H. Liu, and M. Mezei, Spread of entanglement
and causality, J. High Energy Phys. 07 (2016) 077.

[18] H. Liu and S. J. Suh, Entanglement Tsunami: Universal
Scaling in Holographic Thermalization, Phys. Rev. Lett.
112, 011601 (2014).

[19] H. Liu and S. J. Suh, Entanglement growth during thermal-
ization in holographic systems, Phys. Rev. D 89, 066012
(2014).

[20] J. I. Kim, M. C. Nemes, A. F. R. de Toledo Piza, and H. E.
Borges, Perturbative Expansion for Coherence Loss, Phys.
Rev. Lett. 77, 207 (1996).

[21] D. C. Marinescu and G. M. Marinescu, Classical and quan-
tum information theory, in Classical and Quantum Infor-
mation, edited by D. C. Marinescu and G. M. Marinescu
(Academic Press, Boston, 2012), Chapter 3, pp. 221–344.

BLACK HOLE INTERIORS VIA SPIN MODELS PHYS. REV. D 102, 026008 (2020)

026008-9

https://doi.org/10.1016/S0370-1573(99)00083-6
https://doi.org/10.1103/PhysRevD.73.086003
https://doi.org/10.1103/PhysRevD.74.066009
https://doi.org/10.1103/PhysRevD.74.066009
https://doi.org/10.1016/j.physletb.2014.08.062
https://doi.org/10.1007/JHEP12(2015)096
https://doi.org/10.1007/JHEP12(2015)096
https://doi.org/10.1007/JHEP12(2016)024
https://doi.org/10.1007/JHEP12(2016)024
https://doi.org/10.1007/JHEP01(2018)049
https://doi.org/10.1103/PhysRevLett.70.3339
https://doi.org/10.1103/PhysRevLett.70.3339
http://online.kitp.ucsb.edu/online/entangled15/
http://online.kitp.ucsb.edu/online/entangled15/
http://online.kitp.ucsb.edu/online/entangled15/
http://online.kitp.ucsb.edu/online/entangled15/
http://online.kitp.ucsb.edu/online/entangled15/
https://doi.org/10.1073/pnas.1811033116
https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1007/JHEP04(2013)022
https://doi.org/10.1007/JHEP04(2013)022
https://arXiv.org/abs/1607.01801
https://arXiv.org/abs/1607.01801
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1016/j.cpc.2008.03.007
https://doi.org/10.1007/JHEP07(2016)077
https://doi.org/10.1103/PhysRevLett.112.011601
https://doi.org/10.1103/PhysRevLett.112.011601
https://doi.org/10.1103/PhysRevD.89.066012
https://doi.org/10.1103/PhysRevD.89.066012
https://doi.org/10.1103/PhysRevLett.77.207
https://doi.org/10.1103/PhysRevLett.77.207

